Uniform Linear Inviscid Damping and Enhanced Dissipation Near Monotonic Shear Flows in High Reynolds Number Regime (I): The Whole Space Case

We study the dynamics of the two dimensional Navier Stokes equations linearized around a strictly monotonic shear flow on T × R . The main task is to understand the associated Rayleigh and Orr–Sommerfeld equations, under the natural assumption that the linearized operator around the monotonic shear...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical fluid mechanics Vol. 25; no. 3
Main Author Jia, Hao
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the dynamics of the two dimensional Navier Stokes equations linearized around a strictly monotonic shear flow on T × R . The main task is to understand the associated Rayleigh and Orr–Sommerfeld equations, under the natural assumption that the linearized operator around the monotonic shear flow in the inviscid case has no discrete eigenvalues. We obtain precise control of solutions to the Orr–Sommerfeld equations in the high Reynolds number limit, using the perspective that the nonlocal term can be viewed as a compact perturbation with respect to the main part that includes the small diffusion term. As a corollary, we give a detailed description of the linearized flow in Gevrey spaces (linear inviscid damping) that are uniform with respect to the viscosity, and enhanced dissipation type decay estimates. The key difficulty is to accurately capture the behavior of the solution to Orr–Sommerfeld equations in the critical layer. In this paper we consider the case of shear flows on T × R . The case of bounded channels poses significant additional difficulties, due to the presence of boundary layers, and will be addressed elsewhere.
AbstractList We study the dynamics of the two dimensional Navier Stokes equations linearized around a strictly monotonic shear flow on T × R . The main task is to understand the associated Rayleigh and Orr–Sommerfeld equations, under the natural assumption that the linearized operator around the monotonic shear flow in the inviscid case has no discrete eigenvalues. We obtain precise control of solutions to the Orr–Sommerfeld equations in the high Reynolds number limit, using the perspective that the nonlocal term can be viewed as a compact perturbation with respect to the main part that includes the small diffusion term. As a corollary, we give a detailed description of the linearized flow in Gevrey spaces (linear inviscid damping) that are uniform with respect to the viscosity, and enhanced dissipation type decay estimates. The key difficulty is to accurately capture the behavior of the solution to Orr–Sommerfeld equations in the critical layer. In this paper we consider the case of shear flows on T × R . The case of bounded channels poses significant additional difficulties, due to the presence of boundary layers, and will be addressed elsewhere.
We study the dynamics of the two dimensional Navier Stokes equations linearized around a strictly monotonic shear flow on T×R. The main task is to understand the associated Rayleigh and Orr–Sommerfeld equations, under the natural assumption that the linearized operator around the monotonic shear flow in the inviscid case has no discrete eigenvalues. We obtain precise control of solutions to the Orr–Sommerfeld equations in the high Reynolds number limit, using the perspective that the nonlocal term can be viewed as a compact perturbation with respect to the main part that includes the small diffusion term. As a corollary, we give a detailed description of the linearized flow in Gevrey spaces (linear inviscid damping) that are uniform with respect to the viscosity, and enhanced dissipation type decay estimates. The key difficulty is to accurately capture the behavior of the solution to Orr–Sommerfeld equations in the critical layer. In this paper we consider the case of shear flows on T×R. The case of bounded channels poses significant additional difficulties, due to the presence of boundary layers, and will be addressed elsewhere.
ArticleNumber 42
Author Jia, Hao
Author_xml – sequence: 1
  givenname: Hao
  surname: Jia
  fullname: Jia, Hao
  email: jia@umn.edu
  organization: University of Minnesota
BookMark eNp9kM1KAzEUhYNUUKsv4CrgRhejSWbSZtxJbbVQFfzBZbiTSTuRmWRMporv4EObWlFwUbK4OZfz3eSePdSzzmqEDik5pYQMzwIhhNGEsDSJMs8SsYV2acZYMsg56_3emdhBeyG8EEKHPGe76PPJmrnzDZ4Zq8HjqX0zQZkSX0LTGrvAYEs8thVYpWPThGBa6Iyz-HZlv3HWdc4ahR-qlZ7U7j1gY_G1WVT4Xn9YV5cB3y6bQvuoF6bR-Hh6co4fK42fK1dr_NCC0ngEQe-j7TnUQR_81D56mowfR9fJ7O5qOrqYJSqleZdwWmYcBCvSlPBMcKryooCC8KGKaxUs5cAZMA3xUD4XAIUgZQ66pFk5TFXaR0frua13r0sdOvnilt7GJyUTlJEBI3QQXWLtUt6F4PVcKtN97955MLWkRK6yl-vsZcxefmcvRUTZP7T1pgH_sRlK11CIZrvQ_u9XG6gvR9CYlQ
CitedBy_id crossref_primary_10_1007_s00220_024_05155_8
crossref_primary_10_1007_s10013_023_00661_z
crossref_primary_10_1007_s00220_024_05175_4
Cites_doi 10.1007/s00205-016-0991-1
10.4171/icm2022/1
10.1002/cpa.21948
10.1007/s00205-022-01815-y
10.1007/s00205-019-01445-x
10.1080/14786448708628078
10.1007/s10240-015-0070-4
10.1137/19M1273232
10.1002/cpa.21863
10.1002/cpa.22054
10.1007/s00205-018-1311-8
10.1007/s00020-021-02652-6
10.1016/j.jfa.2019.108339
10.1090/tran/6942
10.1002/mana.201700400
10.1080/03605302.2020.1791180
10.4171/aihpc/8
10.1007/s00220-020-03851-9
10.1007/s00205-018-1262-0
10.1016/j.aim.2019.106963
10.1007/s00220-020-03814-0
10.1007/BF01080007
10.1215/00127094-3645437
10.1007/s00205-021-01673-0
10.1016/j.physd.2010.01.020
10.1007/s00220-022-04597-2
10.1007/s00220-019-03550-0
10.1007/s00220-004-1254-9
10.1007/s00205-015-0917-3
10.1007/b97593
10.1007/s00205-020-01538-y
10.1007/s11425-018-9461-8
10.1016/j.aim.2016.01.007
10.1002/cpa.21672
10.1007/s00220-022-04389-8
10.1007/s40818-019-0060-9
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s00021-023-00794-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1422-6952
ExternalDocumentID 10_1007_s00021_023_00794_8
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0VY
1N0
1SB
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9T
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-51d45a82b33054851c9bbab057c017b235a52a2eaeae15f8aab80d9aed14d73c3
IEDL.DBID U2A
ISSN 1422-6928
IngestDate Fri Jul 25 11:01:47 EDT 2025
Tue Jul 01 01:44:38 EDT 2025
Thu Apr 24 23:16:17 EDT 2025
Fri Feb 21 02:43:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-51d45a82b33054851c9bbab057c017b235a52a2eaeae15f8aab80d9aed14d73c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2812062016
PQPubID 2043894
ParticipantIDs proquest_journals_2812062016
crossref_citationtrail_10_1007_s00021_023_00794_8
crossref_primary_10_1007_s00021_023_00794_8
springer_journals_10_1007_s00021_023_00794_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of mathematical fluid mechanics
PublicationTitleAbbrev J. Math. Fluid Mech
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References EngelKNagelROne-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics2000New YorkSpringer0952.47036
ChenQLiTWeiDZhangZTransition threshold for the 2-D Couette flow in a finite channelArch. Ration. Mech. Anal.20202381125183412113010.1007/s00205-020-01538-y1446.35094
LinZXuMMetastability of Kolmogorov flows and inviscid damping of shear flowsArch. Ration. Mech. Anal.201923118111852390247610.1007/s00205-018-1311-81426.76155
MasmoudiNZhaoWEnhanced dissipation for the 2D Couette flow in critical spaceCommun. Partial Differ. Equ.2020451216821701417691310.1080/03605302.2020.17911801462.35247
Coti ZelatiMElgindiTWidmayerKEnhanced dissipation in the Navier-Stokes equations near the Poiseuille flowCommun. Math. Phys.202037829871010413494010.1007/s00220-020-03814-01446.350952020CMaPh.378..987C
Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and vorticity depletion for shear flows. Ann. PDE 5(3) (2019), see also arXiv:1704.00428
GallagherIHigakiMMaekawaYOn stationary two-dimensional flows around a fast rotating diskMath. Nachr.20192922273308391220110.1002/mana.2017004001414.35148
JiaHLinear inviscid damping near monotone shear flowsSIAM J. Math. Anal.2020521623652406280210.1137/19M12732321431.35089
GallayTEnhanced dissipation and axisymmetrization of two-dimensional viscous vorticesArch. Ration. Mech. Anal.2018230939975385105310.1007/s00205-018-1262-01432.76093
Ionescu, A., Jia, H.: On the nonlinear stability of shear flows and vortices. Proc. ICM (2022) (to appear)
Chen, Q., Wei, D., Zhang, Z.: Linear stability of pipe Poiseuille flow at high Reynolds number regime. CPAM online https://doi.org/10.1002/cpa.22054, see also arXiv:1910.14245 (2019)
IonescuAJiaHAxi-symmetrization near point vortex solutions for the 2D Euler equationCPAM202275481889144009031492.76017
Choi, K., Lim, D.: Stability of radially symmetric, monotone vorticities of 2D Euler equations. arXiv:2103.11724
WangYXieCUniform structural stability of Hagen–Poiseuille flows in a pipeCommun. Math. Phys.202239313471410445323610.1007/s00220-022-04389-81513.354372022CMaPh.393.1347W
BedrossianJHeSInviscid damping and enhanced dissipation of the boundary layer for 2D Navier–Stokes linearized around Couette flow in a channelCommun. Math. Phys.20203791177226415227010.1007/s00220-020-03851-91448.760572020CMaPh.379..177B
ChenQWeiDZhangZLinear inviscid damping and enhanced dissipation for monotone shear flowsCommun. Math. Phys.202210.1007/s00220-022-04597-21514.35310
GrenierEGuoYNguyenTSpectral instability of general symmetric shear flows in a two dimensional channelAdv. Math.201629252110346402010.1016/j.aim.2016.01.0071382.76079
BouchetFMoritaHLarge time behavior and asymptotic stability of the 2D Euler and linearized Euler equationsPhysica D2010239948966263961310.1016/j.physd.2010.01.0201189.352342010PhyD..239..948B
HelfferBSjöstrandJImproving semigroup bounds with resolvent estimatesIntegr. Equ. Oper. Theory20219336427197910.1007/s00020-021-02652-61496.47067
Ionescu, A., Jia, H.: Nonlinear inviscid damping near monotonic shear flows. Acta Math. see also arXiv:2001.03087(to appear)
IonescuAJiaHInviscid damping near the Couette flow in a channelCommun. Math. Phys.2020374320152096407609310.1007/s00220-019-03550-01468.760252019CMaPh.374.2015I
BedrossianJCoti ZelatiMVicolVVortex axisymmetrization, inviscid damping, and vorticity depletion in the linearized 2D Euler equationsAnn. PDE201954119239194941428.35321
IonescuAJiaHLinear vortex symmetrization: the spectral density functionArch. Ration. Mech. Anal.2022246161137448751010.1007/s00205-022-01815-y1504.35258
GrenierEGuoYNguyenTSpectral instability of characteristic boundary layer flowsDuke Math. J.20161651630853146356619910.1215/00127094-36454371359.35129
WeiDZhangZZhaoWLinear inviscid damping for a class of monotone shear flow in Sobolev spacesCommun. Pure Appl. Math.201871617687377239910.1002/cpa.216721390.35251
WeiDZhangZZhaoWLinear inviscid damping and enhanced dissipation for the Kolmogorov flowAdv. Math.2020362405058610.1016/j.aim.2019.1069631437.76010
GrenierENguyenTRoussetFSofferALinear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator methodJ. Funct. Anal.20202783108339403028710.1016/j.jfa.2019.1083391447.35247
BedrossianJMasmoudiNVicolVEnhanced dissipation and inviscid damping in the inviscid limit of the Navier–Stokes equations near the two dimensional Couette flowArch. Ration. Mech. Anal.201621910871159344892410.1007/s00205-015-0917-31339.35208
LiTWeiDZhangZPseudospectral bound and transition threshold for the 3D Kolmogorov flowCommun. Pure Appl. Math.2020733465557405790010.1002/cpa.218631442.35346
Gallay, T., Sverak, V.: Arnold’s variational principle and its application to the stability of planar vortices. Preprint arXiv:2110.13739
OrrWThe stability or instability of steady motions of a perfect liquid and of a viscous liquid, Part I: a perfect liquidProc. R. Ir. Acad. A Math. Phys. Sci.190727968
RayleighLOn the stability or instability of certain fluid motionsProc. Lond. Math. Soc.1880S1–1157157526612.0711.02
ZillingerCLinear inviscid damping for monotone shear flowsTrans. Am. Math. Soc.201736987998855371064510.1090/tran/69421372.76045
JiaHLinear inviscid damping in Gevrey spacesArch. Ration. Mech. Anal.2020235213271355406420010.1007/s00205-019-01445-x1434.35079
MasmoudiNZhaoWStability threshold of the 2D Couette flow in Sobolev spacesAnn. Inst. H. Poincaré Anal. Non Linéaire2022392245325441207010.4171/aihpc/81510.352122022AIHPC..39..245M
Helffer, B., Sjöstrand, J.: From resolvent bounds to semigroup bounds. arXiv:1001.4171 (2010)
ZillingerCLinear inviscid damping for monotone shear flows in a finite periodic channel, boundary effects, blow-up and critical Sobolev regularityArch. Ration. Mech. Anal.201622114491509350900610.1007/s00205-016-0991-11350.35147
WeiDDiffusion and mixing in fluid flow via the resolvent estimateSci. China Math.202164507518421599710.1007/s11425-018-9461-81464.35260
ArnoldVKhesinBTopological Methods in Hydrodynamics1998New YorkSpringer10.1007/b975930902.76001
AlmogYHelfferBOn the stability of laminar flows between platesArch. Ration. Mech. Anal.202124112811401428452710.1007/s00205-021-01673-01473.35393
KelvinLStability of fluid motion-rectilinear motion of viscous fluid between two platesPhilos. Mag.18872418810.1080/14786448708628078
Stepin, S.: Nonself-adjoint Friedrichs Model in Hydrodynamic Stability, Functional analysis and its applications, 29(2) (1995). Translated from Funktsionaltnyi Analiz i Ego Prilozheniya, Vol. 29, No. 2, pp. 22–35, April–June, 1995. Original article submitted August 3, 1994
WeiDZhangZTransition threshold for the 3D Couette flow in Sobolev spaceCommun. Pure Appl. Math.2021741123982479437316110.1002/cpa.219481513.35438
Liu, X., Zeng, C.: Capillary gravity water waves linearized at monotone shear flows: eigenvalues and inviscid damping. Preprint (2021) arXiv:2110.12604
BedrossianJMasmoudiNInviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equationsPubl. Math. Inst. Hautes Etudes Sci.2015122195300341506810.1007/s10240-015-0070-41375.35340
Masmoudi, N., Zhao, W.: Nonlinear inviscid damping for a class of monotone shear flows in finite channel. Preprint (2020). arXiv:2001.08564
GallayTWayneEGlobal stability of vortex solutions of the two dimensional Navier–Stokes equationCommun. Math. Phys.200525597129212337810.1007/s00220-004-1254-91139.350842005CMaPh.255...97G
Bedrossian, J., Vicol, V.: The Mathematical Analysis of the Incompressible Euler and Navier–Stokes Equations: An Introduction. AMS Books (to appear)
E Grenier (794_CR19) 2020; 278
794_CR43
794_CR40
794_CR24
H Jia (794_CR30) 2020; 235
794_CR22
A Ionescu (794_CR25) 2020; 374
D Wei (794_CR42) 2018; 71
Q Chen (794_CR12) 2022
J Bedrossian (794_CR5) 2019; 5
Z Lin (794_CR33) 2019; 231
J Bedrossian (794_CR7) 2016; 219
Q Chen (794_CR10) 2020; 238
T Li (794_CR32) 2020; 73
C Zillinger (794_CR48) 2016; 221
E Grenier (794_CR21) 2016; 292
794_CR17
N Masmoudi (794_CR35) 2022; 39
L Kelvin (794_CR31) 1887; 24
794_CR37
A Ionescu (794_CR26) 2022; 75
C Zillinger (794_CR47) 2017; 369
J Bedrossian (794_CR3) 2020; 379
I Gallagher (794_CR18) 2019; 292
Y Almog (794_CR2) 2021; 241
J Bedrossian (794_CR4) 2015; 122
H Jia (794_CR29) 2020; 52
B Helffer (794_CR23) 2021; 93
Y Wang (794_CR41) 2022; 393
794_CR11
T Gallay (794_CR16) 2005; 255
794_CR34
K Engel (794_CR14) 2000
E Grenier (794_CR20) 2016; 165
L Rayleigh (794_CR39) 1880; S1–11
D Wei (794_CR44) 2021; 64
M Coti Zelati (794_CR13) 2020; 378
F Bouchet (794_CR8) 2010; 239
W Orr (794_CR38) 1907; 27
A Ionescu (794_CR27) 2022; 246
T Gallay (794_CR15) 2018; 230
D Wei (794_CR45) 2020; 362
794_CR28
794_CR6
N Masmoudi (794_CR36) 2020; 45
V Arnold (794_CR1) 1998
D Wei (794_CR46) 2021; 74
794_CR9
References_xml – reference: GrenierENguyenTRoussetFSofferALinear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator methodJ. Funct. Anal.20202783108339403028710.1016/j.jfa.2019.1083391447.35247
– reference: Choi, K., Lim, D.: Stability of radially symmetric, monotone vorticities of 2D Euler equations. arXiv:2103.11724
– reference: WeiDZhangZZhaoWLinear inviscid damping and enhanced dissipation for the Kolmogorov flowAdv. Math.2020362405058610.1016/j.aim.2019.1069631437.76010
– reference: Coti ZelatiMElgindiTWidmayerKEnhanced dissipation in the Navier-Stokes equations near the Poiseuille flowCommun. Math. Phys.202037829871010413494010.1007/s00220-020-03814-01446.350952020CMaPh.378..987C
– reference: Gallay, T., Sverak, V.: Arnold’s variational principle and its application to the stability of planar vortices. Preprint arXiv:2110.13739
– reference: Helffer, B., Sjöstrand, J.: From resolvent bounds to semigroup bounds. arXiv:1001.4171 (2010)
– reference: Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and vorticity depletion for shear flows. Ann. PDE 5(3) (2019), see also arXiv:1704.00428
– reference: Ionescu, A., Jia, H.: Nonlinear inviscid damping near monotonic shear flows. Acta Math. see also arXiv:2001.03087(to appear)
– reference: ChenQLiTWeiDZhangZTransition threshold for the 2-D Couette flow in a finite channelArch. Ration. Mech. Anal.20202381125183412113010.1007/s00205-020-01538-y1446.35094
– reference: GrenierEGuoYNguyenTSpectral instability of characteristic boundary layer flowsDuke Math. J.20161651630853146356619910.1215/00127094-36454371359.35129
– reference: GrenierEGuoYNguyenTSpectral instability of general symmetric shear flows in a two dimensional channelAdv. Math.201629252110346402010.1016/j.aim.2016.01.0071382.76079
– reference: Liu, X., Zeng, C.: Capillary gravity water waves linearized at monotone shear flows: eigenvalues and inviscid damping. Preprint (2021) arXiv:2110.12604
– reference: BedrossianJHeSInviscid damping and enhanced dissipation of the boundary layer for 2D Navier–Stokes linearized around Couette flow in a channelCommun. Math. Phys.20203791177226415227010.1007/s00220-020-03851-91448.760572020CMaPh.379..177B
– reference: Chen, Q., Wei, D., Zhang, Z.: Linear stability of pipe Poiseuille flow at high Reynolds number regime. CPAM online https://doi.org/10.1002/cpa.22054, see also arXiv:1910.14245 (2019)
– reference: JiaHLinear inviscid damping near monotone shear flowsSIAM J. Math. Anal.2020521623652406280210.1137/19M12732321431.35089
– reference: Stepin, S.: Nonself-adjoint Friedrichs Model in Hydrodynamic Stability, Functional analysis and its applications, 29(2) (1995). Translated from Funktsionaltnyi Analiz i Ego Prilozheniya, Vol. 29, No. 2, pp. 22–35, April–June, 1995. Original article submitted August 3, 1994
– reference: BouchetFMoritaHLarge time behavior and asymptotic stability of the 2D Euler and linearized Euler equationsPhysica D2010239948966263961310.1016/j.physd.2010.01.0201189.352342010PhyD..239..948B
– reference: JiaHLinear inviscid damping in Gevrey spacesArch. Ration. Mech. Anal.2020235213271355406420010.1007/s00205-019-01445-x1434.35079
– reference: ArnoldVKhesinBTopological Methods in Hydrodynamics1998New YorkSpringer10.1007/b975930902.76001
– reference: WeiDDiffusion and mixing in fluid flow via the resolvent estimateSci. China Math.202164507518421599710.1007/s11425-018-9461-81464.35260
– reference: ZillingerCLinear inviscid damping for monotone shear flows in a finite periodic channel, boundary effects, blow-up and critical Sobolev regularityArch. Ration. Mech. Anal.201622114491509350900610.1007/s00205-016-0991-11350.35147
– reference: AlmogYHelfferBOn the stability of laminar flows between platesArch. Ration. Mech. Anal.202124112811401428452710.1007/s00205-021-01673-01473.35393
– reference: BedrossianJMasmoudiNVicolVEnhanced dissipation and inviscid damping in the inviscid limit of the Navier–Stokes equations near the two dimensional Couette flowArch. Ration. Mech. Anal.201621910871159344892410.1007/s00205-015-0917-31339.35208
– reference: IonescuAJiaHAxi-symmetrization near point vortex solutions for the 2D Euler equationCPAM202275481889144009031492.76017
– reference: GallayTWayneEGlobal stability of vortex solutions of the two dimensional Navier–Stokes equationCommun. Math. Phys.200525597129212337810.1007/s00220-004-1254-91139.350842005CMaPh.255...97G
– reference: EngelKNagelROne-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics2000New YorkSpringer0952.47036
– reference: OrrWThe stability or instability of steady motions of a perfect liquid and of a viscous liquid, Part I: a perfect liquidProc. R. Ir. Acad. A Math. Phys. Sci.190727968
– reference: WangYXieCUniform structural stability of Hagen–Poiseuille flows in a pipeCommun. Math. Phys.202239313471410445323610.1007/s00220-022-04389-81513.354372022CMaPh.393.1347W
– reference: MasmoudiNZhaoWEnhanced dissipation for the 2D Couette flow in critical spaceCommun. Partial Differ. Equ.2020451216821701417691310.1080/03605302.2020.17911801462.35247
– reference: IonescuAJiaHInviscid damping near the Couette flow in a channelCommun. Math. Phys.2020374320152096407609310.1007/s00220-019-03550-01468.760252019CMaPh.374.2015I
– reference: ZillingerCLinear inviscid damping for monotone shear flowsTrans. Am. Math. Soc.201736987998855371064510.1090/tran/69421372.76045
– reference: LiTWeiDZhangZPseudospectral bound and transition threshold for the 3D Kolmogorov flowCommun. Pure Appl. Math.2020733465557405790010.1002/cpa.218631442.35346
– reference: MasmoudiNZhaoWStability threshold of the 2D Couette flow in Sobolev spacesAnn. Inst. H. Poincaré Anal. Non Linéaire2022392245325441207010.4171/aihpc/81510.352122022AIHPC..39..245M
– reference: KelvinLStability of fluid motion-rectilinear motion of viscous fluid between two platesPhilos. Mag.18872418810.1080/14786448708628078
– reference: LinZXuMMetastability of Kolmogorov flows and inviscid damping of shear flowsArch. Ration. Mech. Anal.201923118111852390247610.1007/s00205-018-1311-81426.76155
– reference: Ionescu, A., Jia, H.: On the nonlinear stability of shear flows and vortices. Proc. ICM (2022) (to appear)
– reference: Masmoudi, N., Zhao, W.: Nonlinear inviscid damping for a class of monotone shear flows in finite channel. Preprint (2020). arXiv:2001.08564
– reference: WeiDZhangZTransition threshold for the 3D Couette flow in Sobolev spaceCommun. Pure Appl. Math.2021741123982479437316110.1002/cpa.219481513.35438
– reference: WeiDZhangZZhaoWLinear inviscid damping for a class of monotone shear flow in Sobolev spacesCommun. Pure Appl. Math.201871617687377239910.1002/cpa.216721390.35251
– reference: IonescuAJiaHLinear vortex symmetrization: the spectral density functionArch. Ration. Mech. Anal.2022246161137448751010.1007/s00205-022-01815-y1504.35258
– reference: BedrossianJMasmoudiNInviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equationsPubl. Math. Inst. Hautes Etudes Sci.2015122195300341506810.1007/s10240-015-0070-41375.35340
– reference: BedrossianJCoti ZelatiMVicolVVortex axisymmetrization, inviscid damping, and vorticity depletion in the linearized 2D Euler equationsAnn. PDE201954119239194941428.35321
– reference: HelfferBSjöstrandJImproving semigroup bounds with resolvent estimatesIntegr. Equ. Oper. Theory20219336427197910.1007/s00020-021-02652-61496.47067
– reference: ChenQWeiDZhangZLinear inviscid damping and enhanced dissipation for monotone shear flowsCommun. Math. Phys.202210.1007/s00220-022-04597-21514.35310
– reference: GallayTEnhanced dissipation and axisymmetrization of two-dimensional viscous vorticesArch. Ration. Mech. Anal.2018230939975385105310.1007/s00205-018-1262-01432.76093
– reference: GallagherIHigakiMMaekawaYOn stationary two-dimensional flows around a fast rotating diskMath. Nachr.20192922273308391220110.1002/mana.2017004001414.35148
– reference: RayleighLOn the stability or instability of certain fluid motionsProc. Lond. Math. Soc.1880S1–1157157526612.0711.02
– reference: Bedrossian, J., Vicol, V.: The Mathematical Analysis of the Incompressible Euler and Navier–Stokes Equations: An Introduction. AMS Books (to appear)
– volume: 221
  start-page: 1449
  year: 2016
  ident: 794_CR48
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-016-0991-1
– ident: 794_CR28
  doi: 10.4171/icm2022/1
– volume: 74
  start-page: 2398
  issue: 11
  year: 2021
  ident: 794_CR46
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.21948
– volume: 246
  start-page: 61
  issue: 1
  year: 2022
  ident: 794_CR27
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-022-01815-y
– volume: 235
  start-page: 1327
  issue: 2
  year: 2020
  ident: 794_CR30
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-019-01445-x
– volume: 24
  start-page: 188
  year: 1887
  ident: 794_CR31
  publication-title: Philos. Mag.
  doi: 10.1080/14786448708628078
– volume: 122
  start-page: 195
  year: 2015
  ident: 794_CR4
  publication-title: Publ. Math. Inst. Hautes Etudes Sci.
  doi: 10.1007/s10240-015-0070-4
– volume: 52
  start-page: 623
  issue: 1
  year: 2020
  ident: 794_CR29
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/19M1273232
– volume: 73
  start-page: 465
  issue: 3
  year: 2020
  ident: 794_CR32
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.21863
– volume: S1–11
  start-page: 57
  year: 1880
  ident: 794_CR39
  publication-title: Proc. Lond. Math. Soc.
– volume: 75
  start-page: 818
  issue: 4
  year: 2022
  ident: 794_CR26
  publication-title: CPAM
– ident: 794_CR11
  doi: 10.1002/cpa.22054
– volume: 5
  start-page: 1
  issue: 4
  year: 2019
  ident: 794_CR5
  publication-title: Ann. PDE
– volume: 231
  start-page: 1811
  year: 2019
  ident: 794_CR33
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-018-1311-8
– ident: 794_CR9
– volume: 93
  start-page: 36
  year: 2021
  ident: 794_CR23
  publication-title: Integr. Equ. Oper. Theory
  doi: 10.1007/s00020-021-02652-6
– volume: 278
  start-page: 108339
  issue: 3
  year: 2020
  ident: 794_CR19
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2019.108339
– volume: 369
  start-page: 8799
  year: 2017
  ident: 794_CR47
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/tran/6942
– volume: 292
  start-page: 273
  issue: 2
  year: 2019
  ident: 794_CR18
  publication-title: Math. Nachr.
  doi: 10.1002/mana.201700400
– volume: 45
  start-page: 1682
  issue: 12
  year: 2020
  ident: 794_CR36
  publication-title: Commun. Partial Differ. Equ.
  doi: 10.1080/03605302.2020.1791180
– volume: 27
  start-page: 9
  year: 1907
  ident: 794_CR38
  publication-title: Proc. R. Ir. Acad. A Math. Phys. Sci.
– volume: 39
  start-page: 245
  issue: 2
  year: 2022
  ident: 794_CR35
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.4171/aihpc/8
– ident: 794_CR37
– volume: 379
  start-page: 177
  issue: 1
  year: 2020
  ident: 794_CR3
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-020-03851-9
– volume: 230
  start-page: 939
  year: 2018
  ident: 794_CR15
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-018-1262-0
– volume: 362
  year: 2020
  ident: 794_CR45
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2019.106963
– volume: 378
  start-page: 987
  issue: 2
  year: 2020
  ident: 794_CR13
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-020-03814-0
– ident: 794_CR34
– ident: 794_CR40
  doi: 10.1007/BF01080007
– volume: 165
  start-page: 3085
  issue: 16
  year: 2016
  ident: 794_CR20
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-3645437
– volume: 241
  start-page: 1281
  year: 2021
  ident: 794_CR2
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-021-01673-0
– volume: 239
  start-page: 948
  year: 2010
  ident: 794_CR8
  publication-title: Physica D
  doi: 10.1016/j.physd.2010.01.020
– year: 2022
  ident: 794_CR12
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-022-04597-2
– volume: 374
  start-page: 2015
  issue: 3
  year: 2020
  ident: 794_CR25
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-019-03550-0
– volume: 255
  start-page: 97
  year: 2005
  ident: 794_CR16
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-004-1254-9
– ident: 794_CR24
– volume: 219
  start-page: 1087
  year: 2016
  ident: 794_CR7
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-015-0917-3
– volume-title: Topological Methods in Hydrodynamics
  year: 1998
  ident: 794_CR1
  doi: 10.1007/b97593
– volume: 238
  start-page: 125
  issue: 1
  year: 2020
  ident: 794_CR10
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-020-01538-y
– ident: 794_CR17
– ident: 794_CR22
– volume: 64
  start-page: 507
  year: 2021
  ident: 794_CR44
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-018-9461-8
– volume: 292
  start-page: 52
  year: 2016
  ident: 794_CR21
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2016.01.007
– volume: 71
  start-page: 617
  year: 2018
  ident: 794_CR42
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.21672
– ident: 794_CR6
– volume: 393
  start-page: 1347
  year: 2022
  ident: 794_CR41
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-022-04389-8
– volume-title: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics
  year: 2000
  ident: 794_CR14
– ident: 794_CR43
  doi: 10.1007/s40818-019-0060-9
SSID ssj0017592
Score 2.3706484
Snippet We study the dynamics of the two dimensional Navier Stokes equations linearized around a strictly monotonic shear flow on T × R . The main task is to...
We study the dynamics of the two dimensional Navier Stokes equations linearized around a strictly monotonic shear flow on T×R. The main task is to understand...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Boundary layers
Classical and Continuum Physics
Damping
Dissipation
Eigenvalues
Fluid flow
Fluid mechanics
Fluid- and Aerodynamics
High Reynolds number
Ladyzhenskaya Centennial Anniversary
Linearization
Mathematical analysis
Mathematical Methods in Physics
Orr-Sommerfeld equations
Perturbation
Physics
Physics and Astronomy
Reynolds number
Shear flow
Theoretical mathematics
Title Uniform Linear Inviscid Damping and Enhanced Dissipation Near Monotonic Shear Flows in High Reynolds Number Regime (I): The Whole Space Case
URI https://link.springer.com/article/10.1007/s00021-023-00794-8
https://www.proquest.com/docview/2812062016
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYhMSFHbEUNAcOIIjUOnHqcGuhZRM9ABVwirwFkEqKSAHxD3w0Y-MUgQAJ5RBFsX3wzHjeeDZCNhjj2mQUrRMeVoNIRXgOsjgLEikU16qOPGMv9E878WE3Or5iVz4prCij3UuXpDuph8luVRdOgDomwM8kCvgoGWfWdkcu7tLG0HdQZ64Vsr3cCOKEcp8q8_MaX9XRJ8b85hZ12qY9Q6Y8TITGB11nyYjJ58i0h4zgBbKYIxMuglMV8-QN0aMFoIDWJXIvHOXPNuFWw764tzlRIHINrfzWefxhH_fbB1NDxw5H2e4PbJlccD2uod3rvxRwl4MNBIEz85r3e7qAjmsggt83d_cGNo-2dgEZDS5tl104R_vbwB7qxQXSbbcu9g4D32ohUCiDg4DVdMQEpzJE-Y8QhalESiERzCncUElDJhgV1Ah8aizjQkhe1YkwuhbpeqjCRTKW93OzRCCMdT1COsuEK1u8TVA8xyQ3nGUZpZovk1q546nydchtO4xeOqyg7KiUIpVSR6UU52wP5zx8VOH4c3SlJGTqJbJIKSKZaoxwJ14mOyVxP3__vtrK_4avkknq-MvGCFbI2ODxyawhbhnIdTLeaDebHfs-uD5prTu2fQfvSOR1
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYhODCjlgKzIEDCCK1Tpw63Cqgall6ACq4Rd4CSCVFpID4Bz6asXGKQICEcrIy9sEz43n2bIRsMca1ySjeTnhYDSIV4TnI4ixIpFBcqzrKjH3QP-vErW50fM2ufVJYUUa7ly5Jd1IPk92qLpwAbUyAwyQK-CgZRzDAbSBXlzaGvoM6c62Q7eNGECeU-1SZn9f4ao4-MeY3t6izNs1ZMu1hIjQ--DpHRkw-T2Y8ZASvkMU8mXARnKpYIG-IHi0ABbxdovRCO3-2CbcaDsW9zYkCkWs4ym-dxx8Ocb99MDV0LDnqdn9gy-SC63ENzV7_pYC7HGwgCJyb17zf0wV0XAMRHN_c3RvYbu_sAwoaXNkuu3CB928DB2gXF0m3eXR50Ap8q4VAoQ4OAlbTEROcyhD1P0IUphIphUQwp3BDJQ2ZYFRQI_CrsYwLIXlVJ8LoWqTroQqXyFjez80ygTDW9Qj5LBOubPE2QfEck9xwlmWUar5CauWOp8rXIbftMHrpsIKy41KKXEodl1Kcszuc8_BRheNP6krJyNRrZJFSRDLVGOFOvEL2SuZ-_v59tdX_kW-Sydbl2Wl62u6crJEp6mTNxgtWyNjg8cmsI4YZyA0nsu-J0-RY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELeg0xAv22BMdHRwDzxsGhGNE6cOb1VLRQerpm0VvEX-ykBq3YpkQ_wP_NGc3bRlaCBNebJi--HufPez74uQfca4NjnF2wmPmkGsYtSDLMmDVArFtWqhzLgH_a-D5GQYf7lgFw-y-H20-9wlOctpcFWabHk41fnhIvGt6UML0N4EOEzjgK-SF6iOQyfXQ9pe-BFazLdFdg8dQZJSXqXN_HuPv03TEm8-cpF6y9N7Q15VkBHaMx5vkBVjN8nrCj5CdTiLTfLSR3Oq4i25QyTpwCjgTRMlGfr2j0u-1dAVY5cfBcJqOLaX3vsPXaR9FVgNAzcdz_mkdCVzwfe7ht5oclPAlQUXFALfza2djHQBA99MBMe_rsYGPvY_HQEKHZy7jrvwA-_iBjpoI7fIsHf8s3MSVG0XAoUELAMW6pgJTmWEuiBGRKZSKYVEYKeQoJJGTDAqqBH4hSznQkje1KkwOox1K1LRO1KzE2u2CUSJbsXIc5ly5Qq5CYo6TXLDWZ5TqnmdhHOKZ6qqSe5aY4yyRTVlz6UMuZR5LmW45vNizXRWkePZ2Y05I7PqdBYZRVTTTBD6JHVyMGfu8vfTu73_v-l7ZO1bt5ed9QenO2SdelFzoYMNUiuvf5sPCGdKuesl9h7lSeiU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniform+Linear+Inviscid+Damping+and+Enhanced+Dissipation+Near+Monotonic+Shear+Flows+in+High+Reynolds+Number+Regime+%28I%29%3A+The+Whole+Space+Case&rft.jtitle=Journal+of+mathematical+fluid+mechanics&rft.au=Jia+Hao&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1422-6928&rft.eissn=1422-6952&rft.volume=25&rft.issue=3&rft_id=info:doi/10.1007%2Fs00021-023-00794-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6928&client=summon