Uniform Linear Inviscid Damping and Enhanced Dissipation Near Monotonic Shear Flows in High Reynolds Number Regime (I): The Whole Space Case
We study the dynamics of the two dimensional Navier Stokes equations linearized around a strictly monotonic shear flow on T × R . The main task is to understand the associated Rayleigh and Orr–Sommerfeld equations, under the natural assumption that the linearized operator around the monotonic shear...
Saved in:
Published in | Journal of mathematical fluid mechanics Vol. 25; no. 3 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.08.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the dynamics of the two dimensional Navier Stokes equations linearized around a strictly monotonic shear flow on
T
×
R
. The main task is to understand the associated Rayleigh and Orr–Sommerfeld equations, under the natural assumption that the linearized operator around the monotonic shear flow in the inviscid case has no discrete eigenvalues. We obtain precise control of solutions to the Orr–Sommerfeld equations in the high Reynolds number limit, using the perspective that the nonlocal term can be viewed as a compact perturbation with respect to the main part that includes the small diffusion term. As a corollary, we give a detailed description of the linearized flow in Gevrey spaces (linear inviscid damping) that are uniform with respect to the viscosity, and enhanced dissipation type decay estimates. The key difficulty is to accurately capture the behavior of the solution to Orr–Sommerfeld equations in the critical layer. In this paper we consider the case of shear flows on
T
×
R
. The case of bounded channels poses significant additional difficulties, due to the presence of boundary layers, and will be addressed elsewhere. |
---|---|
AbstractList | We study the dynamics of the two dimensional Navier Stokes equations linearized around a strictly monotonic shear flow on
T
×
R
. The main task is to understand the associated Rayleigh and Orr–Sommerfeld equations, under the natural assumption that the linearized operator around the monotonic shear flow in the inviscid case has no discrete eigenvalues. We obtain precise control of solutions to the Orr–Sommerfeld equations in the high Reynolds number limit, using the perspective that the nonlocal term can be viewed as a compact perturbation with respect to the main part that includes the small diffusion term. As a corollary, we give a detailed description of the linearized flow in Gevrey spaces (linear inviscid damping) that are uniform with respect to the viscosity, and enhanced dissipation type decay estimates. The key difficulty is to accurately capture the behavior of the solution to Orr–Sommerfeld equations in the critical layer. In this paper we consider the case of shear flows on
T
×
R
. The case of bounded channels poses significant additional difficulties, due to the presence of boundary layers, and will be addressed elsewhere. We study the dynamics of the two dimensional Navier Stokes equations linearized around a strictly monotonic shear flow on T×R. The main task is to understand the associated Rayleigh and Orr–Sommerfeld equations, under the natural assumption that the linearized operator around the monotonic shear flow in the inviscid case has no discrete eigenvalues. We obtain precise control of solutions to the Orr–Sommerfeld equations in the high Reynolds number limit, using the perspective that the nonlocal term can be viewed as a compact perturbation with respect to the main part that includes the small diffusion term. As a corollary, we give a detailed description of the linearized flow in Gevrey spaces (linear inviscid damping) that are uniform with respect to the viscosity, and enhanced dissipation type decay estimates. The key difficulty is to accurately capture the behavior of the solution to Orr–Sommerfeld equations in the critical layer. In this paper we consider the case of shear flows on T×R. The case of bounded channels poses significant additional difficulties, due to the presence of boundary layers, and will be addressed elsewhere. |
ArticleNumber | 42 |
Author | Jia, Hao |
Author_xml | – sequence: 1 givenname: Hao surname: Jia fullname: Jia, Hao email: jia@umn.edu organization: University of Minnesota |
BookMark | eNp9kM1KAzEUhYNUUKsv4CrgRhejSWbSZtxJbbVQFfzBZbiTSTuRmWRMporv4EObWlFwUbK4OZfz3eSePdSzzmqEDik5pYQMzwIhhNGEsDSJMs8SsYV2acZYMsg56_3emdhBeyG8EEKHPGe76PPJmrnzDZ4Zq8HjqX0zQZkSX0LTGrvAYEs8thVYpWPThGBa6Iyz-HZlv3HWdc4ahR-qlZ7U7j1gY_G1WVT4Xn9YV5cB3y6bQvuoF6bR-Hh6co4fK42fK1dr_NCC0ngEQe-j7TnUQR_81D56mowfR9fJ7O5qOrqYJSqleZdwWmYcBCvSlPBMcKryooCC8KGKaxUs5cAZMA3xUD4XAIUgZQ66pFk5TFXaR0frua13r0sdOvnilt7GJyUTlJEBI3QQXWLtUt6F4PVcKtN97955MLWkRK6yl-vsZcxefmcvRUTZP7T1pgH_sRlK11CIZrvQ_u9XG6gvR9CYlQ |
CitedBy_id | crossref_primary_10_1007_s00220_024_05155_8 crossref_primary_10_1007_s10013_023_00661_z crossref_primary_10_1007_s00220_024_05175_4 |
Cites_doi | 10.1007/s00205-016-0991-1 10.4171/icm2022/1 10.1002/cpa.21948 10.1007/s00205-022-01815-y 10.1007/s00205-019-01445-x 10.1080/14786448708628078 10.1007/s10240-015-0070-4 10.1137/19M1273232 10.1002/cpa.21863 10.1002/cpa.22054 10.1007/s00205-018-1311-8 10.1007/s00020-021-02652-6 10.1016/j.jfa.2019.108339 10.1090/tran/6942 10.1002/mana.201700400 10.1080/03605302.2020.1791180 10.4171/aihpc/8 10.1007/s00220-020-03851-9 10.1007/s00205-018-1262-0 10.1016/j.aim.2019.106963 10.1007/s00220-020-03814-0 10.1007/BF01080007 10.1215/00127094-3645437 10.1007/s00205-021-01673-0 10.1016/j.physd.2010.01.020 10.1007/s00220-022-04597-2 10.1007/s00220-019-03550-0 10.1007/s00220-004-1254-9 10.1007/s00205-015-0917-3 10.1007/b97593 10.1007/s00205-020-01538-y 10.1007/s11425-018-9461-8 10.1016/j.aim.2016.01.007 10.1002/cpa.21672 10.1007/s00220-022-04389-8 10.1007/s40818-019-0060-9 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00021-023-00794-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1422-6952 |
ExternalDocumentID | 10_1007_s00021_023_00794_8 |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C .86 .VR 06D 0VY 1N0 1SB 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MBV N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9T PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-51d45a82b33054851c9bbab057c017b235a52a2eaeae15f8aab80d9aed14d73c3 |
IEDL.DBID | U2A |
ISSN | 1422-6928 |
IngestDate | Fri Jul 25 11:01:47 EDT 2025 Tue Jul 01 01:44:38 EDT 2025 Thu Apr 24 23:16:17 EDT 2025 Fri Feb 21 02:43:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-51d45a82b33054851c9bbab057c017b235a52a2eaeae15f8aab80d9aed14d73c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2812062016 |
PQPubID | 2043894 |
ParticipantIDs | proquest_journals_2812062016 crossref_citationtrail_10_1007_s00021_023_00794_8 crossref_primary_10_1007_s00021_023_00794_8 springer_journals_10_1007_s00021_023_00794_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Journal of mathematical fluid mechanics |
PublicationTitleAbbrev | J. Math. Fluid Mech |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | EngelKNagelROne-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics2000New YorkSpringer0952.47036 ChenQLiTWeiDZhangZTransition threshold for the 2-D Couette flow in a finite channelArch. Ration. Mech. Anal.20202381125183412113010.1007/s00205-020-01538-y1446.35094 LinZXuMMetastability of Kolmogorov flows and inviscid damping of shear flowsArch. Ration. Mech. Anal.201923118111852390247610.1007/s00205-018-1311-81426.76155 MasmoudiNZhaoWEnhanced dissipation for the 2D Couette flow in critical spaceCommun. Partial Differ. Equ.2020451216821701417691310.1080/03605302.2020.17911801462.35247 Coti ZelatiMElgindiTWidmayerKEnhanced dissipation in the Navier-Stokes equations near the Poiseuille flowCommun. Math. Phys.202037829871010413494010.1007/s00220-020-03814-01446.350952020CMaPh.378..987C Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and vorticity depletion for shear flows. Ann. PDE 5(3) (2019), see also arXiv:1704.00428 GallagherIHigakiMMaekawaYOn stationary two-dimensional flows around a fast rotating diskMath. Nachr.20192922273308391220110.1002/mana.2017004001414.35148 JiaHLinear inviscid damping near monotone shear flowsSIAM J. Math. Anal.2020521623652406280210.1137/19M12732321431.35089 GallayTEnhanced dissipation and axisymmetrization of two-dimensional viscous vorticesArch. Ration. Mech. Anal.2018230939975385105310.1007/s00205-018-1262-01432.76093 Ionescu, A., Jia, H.: On the nonlinear stability of shear flows and vortices. Proc. ICM (2022) (to appear) Chen, Q., Wei, D., Zhang, Z.: Linear stability of pipe Poiseuille flow at high Reynolds number regime. CPAM online https://doi.org/10.1002/cpa.22054, see also arXiv:1910.14245 (2019) IonescuAJiaHAxi-symmetrization near point vortex solutions for the 2D Euler equationCPAM202275481889144009031492.76017 Choi, K., Lim, D.: Stability of radially symmetric, monotone vorticities of 2D Euler equations. arXiv:2103.11724 WangYXieCUniform structural stability of Hagen–Poiseuille flows in a pipeCommun. Math. Phys.202239313471410445323610.1007/s00220-022-04389-81513.354372022CMaPh.393.1347W BedrossianJHeSInviscid damping and enhanced dissipation of the boundary layer for 2D Navier–Stokes linearized around Couette flow in a channelCommun. Math. Phys.20203791177226415227010.1007/s00220-020-03851-91448.760572020CMaPh.379..177B ChenQWeiDZhangZLinear inviscid damping and enhanced dissipation for monotone shear flowsCommun. Math. Phys.202210.1007/s00220-022-04597-21514.35310 GrenierEGuoYNguyenTSpectral instability of general symmetric shear flows in a two dimensional channelAdv. Math.201629252110346402010.1016/j.aim.2016.01.0071382.76079 BouchetFMoritaHLarge time behavior and asymptotic stability of the 2D Euler and linearized Euler equationsPhysica D2010239948966263961310.1016/j.physd.2010.01.0201189.352342010PhyD..239..948B HelfferBSjöstrandJImproving semigroup bounds with resolvent estimatesIntegr. Equ. Oper. Theory20219336427197910.1007/s00020-021-02652-61496.47067 Ionescu, A., Jia, H.: Nonlinear inviscid damping near monotonic shear flows. Acta Math. see also arXiv:2001.03087(to appear) IonescuAJiaHInviscid damping near the Couette flow in a channelCommun. Math. Phys.2020374320152096407609310.1007/s00220-019-03550-01468.760252019CMaPh.374.2015I BedrossianJCoti ZelatiMVicolVVortex axisymmetrization, inviscid damping, and vorticity depletion in the linearized 2D Euler equationsAnn. PDE201954119239194941428.35321 IonescuAJiaHLinear vortex symmetrization: the spectral density functionArch. Ration. Mech. Anal.2022246161137448751010.1007/s00205-022-01815-y1504.35258 GrenierEGuoYNguyenTSpectral instability of characteristic boundary layer flowsDuke Math. J.20161651630853146356619910.1215/00127094-36454371359.35129 WeiDZhangZZhaoWLinear inviscid damping for a class of monotone shear flow in Sobolev spacesCommun. Pure Appl. Math.201871617687377239910.1002/cpa.216721390.35251 WeiDZhangZZhaoWLinear inviscid damping and enhanced dissipation for the Kolmogorov flowAdv. Math.2020362405058610.1016/j.aim.2019.1069631437.76010 GrenierENguyenTRoussetFSofferALinear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator methodJ. Funct. Anal.20202783108339403028710.1016/j.jfa.2019.1083391447.35247 BedrossianJMasmoudiNVicolVEnhanced dissipation and inviscid damping in the inviscid limit of the Navier–Stokes equations near the two dimensional Couette flowArch. Ration. Mech. Anal.201621910871159344892410.1007/s00205-015-0917-31339.35208 LiTWeiDZhangZPseudospectral bound and transition threshold for the 3D Kolmogorov flowCommun. Pure Appl. Math.2020733465557405790010.1002/cpa.218631442.35346 Gallay, T., Sverak, V.: Arnold’s variational principle and its application to the stability of planar vortices. Preprint arXiv:2110.13739 OrrWThe stability or instability of steady motions of a perfect liquid and of a viscous liquid, Part I: a perfect liquidProc. R. Ir. Acad. A Math. Phys. Sci.190727968 RayleighLOn the stability or instability of certain fluid motionsProc. Lond. Math. Soc.1880S1–1157157526612.0711.02 ZillingerCLinear inviscid damping for monotone shear flowsTrans. Am. Math. Soc.201736987998855371064510.1090/tran/69421372.76045 JiaHLinear inviscid damping in Gevrey spacesArch. Ration. Mech. Anal.2020235213271355406420010.1007/s00205-019-01445-x1434.35079 MasmoudiNZhaoWStability threshold of the 2D Couette flow in Sobolev spacesAnn. Inst. H. Poincaré Anal. Non Linéaire2022392245325441207010.4171/aihpc/81510.352122022AIHPC..39..245M Helffer, B., Sjöstrand, J.: From resolvent bounds to semigroup bounds. arXiv:1001.4171 (2010) ZillingerCLinear inviscid damping for monotone shear flows in a finite periodic channel, boundary effects, blow-up and critical Sobolev regularityArch. Ration. Mech. Anal.201622114491509350900610.1007/s00205-016-0991-11350.35147 WeiDDiffusion and mixing in fluid flow via the resolvent estimateSci. China Math.202164507518421599710.1007/s11425-018-9461-81464.35260 ArnoldVKhesinBTopological Methods in Hydrodynamics1998New YorkSpringer10.1007/b975930902.76001 AlmogYHelfferBOn the stability of laminar flows between platesArch. Ration. Mech. Anal.202124112811401428452710.1007/s00205-021-01673-01473.35393 KelvinLStability of fluid motion-rectilinear motion of viscous fluid between two platesPhilos. Mag.18872418810.1080/14786448708628078 Stepin, S.: Nonself-adjoint Friedrichs Model in Hydrodynamic Stability, Functional analysis and its applications, 29(2) (1995). Translated from Funktsionaltnyi Analiz i Ego Prilozheniya, Vol. 29, No. 2, pp. 22–35, April–June, 1995. Original article submitted August 3, 1994 WeiDZhangZTransition threshold for the 3D Couette flow in Sobolev spaceCommun. Pure Appl. Math.2021741123982479437316110.1002/cpa.219481513.35438 Liu, X., Zeng, C.: Capillary gravity water waves linearized at monotone shear flows: eigenvalues and inviscid damping. Preprint (2021) arXiv:2110.12604 BedrossianJMasmoudiNInviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equationsPubl. Math. Inst. Hautes Etudes Sci.2015122195300341506810.1007/s10240-015-0070-41375.35340 Masmoudi, N., Zhao, W.: Nonlinear inviscid damping for a class of monotone shear flows in finite channel. Preprint (2020). arXiv:2001.08564 GallayTWayneEGlobal stability of vortex solutions of the two dimensional Navier–Stokes equationCommun. Math. Phys.200525597129212337810.1007/s00220-004-1254-91139.350842005CMaPh.255...97G Bedrossian, J., Vicol, V.: The Mathematical Analysis of the Incompressible Euler and Navier–Stokes Equations: An Introduction. AMS Books (to appear) E Grenier (794_CR19) 2020; 278 794_CR43 794_CR40 794_CR24 H Jia (794_CR30) 2020; 235 794_CR22 A Ionescu (794_CR25) 2020; 374 D Wei (794_CR42) 2018; 71 Q Chen (794_CR12) 2022 J Bedrossian (794_CR5) 2019; 5 Z Lin (794_CR33) 2019; 231 J Bedrossian (794_CR7) 2016; 219 Q Chen (794_CR10) 2020; 238 T Li (794_CR32) 2020; 73 C Zillinger (794_CR48) 2016; 221 E Grenier (794_CR21) 2016; 292 794_CR17 N Masmoudi (794_CR35) 2022; 39 L Kelvin (794_CR31) 1887; 24 794_CR37 A Ionescu (794_CR26) 2022; 75 C Zillinger (794_CR47) 2017; 369 J Bedrossian (794_CR3) 2020; 379 I Gallagher (794_CR18) 2019; 292 Y Almog (794_CR2) 2021; 241 J Bedrossian (794_CR4) 2015; 122 H Jia (794_CR29) 2020; 52 B Helffer (794_CR23) 2021; 93 Y Wang (794_CR41) 2022; 393 794_CR11 T Gallay (794_CR16) 2005; 255 794_CR34 K Engel (794_CR14) 2000 E Grenier (794_CR20) 2016; 165 L Rayleigh (794_CR39) 1880; S1–11 D Wei (794_CR44) 2021; 64 M Coti Zelati (794_CR13) 2020; 378 F Bouchet (794_CR8) 2010; 239 W Orr (794_CR38) 1907; 27 A Ionescu (794_CR27) 2022; 246 T Gallay (794_CR15) 2018; 230 D Wei (794_CR45) 2020; 362 794_CR28 794_CR6 N Masmoudi (794_CR36) 2020; 45 V Arnold (794_CR1) 1998 D Wei (794_CR46) 2021; 74 794_CR9 |
References_xml | – reference: GrenierENguyenTRoussetFSofferALinear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator methodJ. Funct. Anal.20202783108339403028710.1016/j.jfa.2019.1083391447.35247 – reference: Choi, K., Lim, D.: Stability of radially symmetric, monotone vorticities of 2D Euler equations. arXiv:2103.11724 – reference: WeiDZhangZZhaoWLinear inviscid damping and enhanced dissipation for the Kolmogorov flowAdv. Math.2020362405058610.1016/j.aim.2019.1069631437.76010 – reference: Coti ZelatiMElgindiTWidmayerKEnhanced dissipation in the Navier-Stokes equations near the Poiseuille flowCommun. Math. Phys.202037829871010413494010.1007/s00220-020-03814-01446.350952020CMaPh.378..987C – reference: Gallay, T., Sverak, V.: Arnold’s variational principle and its application to the stability of planar vortices. Preprint arXiv:2110.13739 – reference: Helffer, B., Sjöstrand, J.: From resolvent bounds to semigroup bounds. arXiv:1001.4171 (2010) – reference: Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and vorticity depletion for shear flows. Ann. PDE 5(3) (2019), see also arXiv:1704.00428 – reference: Ionescu, A., Jia, H.: Nonlinear inviscid damping near monotonic shear flows. Acta Math. see also arXiv:2001.03087(to appear) – reference: ChenQLiTWeiDZhangZTransition threshold for the 2-D Couette flow in a finite channelArch. Ration. Mech. Anal.20202381125183412113010.1007/s00205-020-01538-y1446.35094 – reference: GrenierEGuoYNguyenTSpectral instability of characteristic boundary layer flowsDuke Math. J.20161651630853146356619910.1215/00127094-36454371359.35129 – reference: GrenierEGuoYNguyenTSpectral instability of general symmetric shear flows in a two dimensional channelAdv. Math.201629252110346402010.1016/j.aim.2016.01.0071382.76079 – reference: Liu, X., Zeng, C.: Capillary gravity water waves linearized at monotone shear flows: eigenvalues and inviscid damping. Preprint (2021) arXiv:2110.12604 – reference: BedrossianJHeSInviscid damping and enhanced dissipation of the boundary layer for 2D Navier–Stokes linearized around Couette flow in a channelCommun. Math. Phys.20203791177226415227010.1007/s00220-020-03851-91448.760572020CMaPh.379..177B – reference: Chen, Q., Wei, D., Zhang, Z.: Linear stability of pipe Poiseuille flow at high Reynolds number regime. CPAM online https://doi.org/10.1002/cpa.22054, see also arXiv:1910.14245 (2019) – reference: JiaHLinear inviscid damping near monotone shear flowsSIAM J. Math. Anal.2020521623652406280210.1137/19M12732321431.35089 – reference: Stepin, S.: Nonself-adjoint Friedrichs Model in Hydrodynamic Stability, Functional analysis and its applications, 29(2) (1995). Translated from Funktsionaltnyi Analiz i Ego Prilozheniya, Vol. 29, No. 2, pp. 22–35, April–June, 1995. Original article submitted August 3, 1994 – reference: BouchetFMoritaHLarge time behavior and asymptotic stability of the 2D Euler and linearized Euler equationsPhysica D2010239948966263961310.1016/j.physd.2010.01.0201189.352342010PhyD..239..948B – reference: JiaHLinear inviscid damping in Gevrey spacesArch. Ration. Mech. Anal.2020235213271355406420010.1007/s00205-019-01445-x1434.35079 – reference: ArnoldVKhesinBTopological Methods in Hydrodynamics1998New YorkSpringer10.1007/b975930902.76001 – reference: WeiDDiffusion and mixing in fluid flow via the resolvent estimateSci. China Math.202164507518421599710.1007/s11425-018-9461-81464.35260 – reference: ZillingerCLinear inviscid damping for monotone shear flows in a finite periodic channel, boundary effects, blow-up and critical Sobolev regularityArch. Ration. Mech. Anal.201622114491509350900610.1007/s00205-016-0991-11350.35147 – reference: AlmogYHelfferBOn the stability of laminar flows between platesArch. Ration. Mech. Anal.202124112811401428452710.1007/s00205-021-01673-01473.35393 – reference: BedrossianJMasmoudiNVicolVEnhanced dissipation and inviscid damping in the inviscid limit of the Navier–Stokes equations near the two dimensional Couette flowArch. Ration. Mech. Anal.201621910871159344892410.1007/s00205-015-0917-31339.35208 – reference: IonescuAJiaHAxi-symmetrization near point vortex solutions for the 2D Euler equationCPAM202275481889144009031492.76017 – reference: GallayTWayneEGlobal stability of vortex solutions of the two dimensional Navier–Stokes equationCommun. Math. Phys.200525597129212337810.1007/s00220-004-1254-91139.350842005CMaPh.255...97G – reference: EngelKNagelROne-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics2000New YorkSpringer0952.47036 – reference: OrrWThe stability or instability of steady motions of a perfect liquid and of a viscous liquid, Part I: a perfect liquidProc. R. Ir. Acad. A Math. Phys. Sci.190727968 – reference: WangYXieCUniform structural stability of Hagen–Poiseuille flows in a pipeCommun. Math. Phys.202239313471410445323610.1007/s00220-022-04389-81513.354372022CMaPh.393.1347W – reference: MasmoudiNZhaoWEnhanced dissipation for the 2D Couette flow in critical spaceCommun. Partial Differ. Equ.2020451216821701417691310.1080/03605302.2020.17911801462.35247 – reference: IonescuAJiaHInviscid damping near the Couette flow in a channelCommun. Math. Phys.2020374320152096407609310.1007/s00220-019-03550-01468.760252019CMaPh.374.2015I – reference: ZillingerCLinear inviscid damping for monotone shear flowsTrans. Am. Math. Soc.201736987998855371064510.1090/tran/69421372.76045 – reference: LiTWeiDZhangZPseudospectral bound and transition threshold for the 3D Kolmogorov flowCommun. Pure Appl. Math.2020733465557405790010.1002/cpa.218631442.35346 – reference: MasmoudiNZhaoWStability threshold of the 2D Couette flow in Sobolev spacesAnn. Inst. H. Poincaré Anal. Non Linéaire2022392245325441207010.4171/aihpc/81510.352122022AIHPC..39..245M – reference: KelvinLStability of fluid motion-rectilinear motion of viscous fluid between two platesPhilos. Mag.18872418810.1080/14786448708628078 – reference: LinZXuMMetastability of Kolmogorov flows and inviscid damping of shear flowsArch. Ration. Mech. Anal.201923118111852390247610.1007/s00205-018-1311-81426.76155 – reference: Ionescu, A., Jia, H.: On the nonlinear stability of shear flows and vortices. Proc. ICM (2022) (to appear) – reference: Masmoudi, N., Zhao, W.: Nonlinear inviscid damping for a class of monotone shear flows in finite channel. Preprint (2020). arXiv:2001.08564 – reference: WeiDZhangZTransition threshold for the 3D Couette flow in Sobolev spaceCommun. Pure Appl. Math.2021741123982479437316110.1002/cpa.219481513.35438 – reference: WeiDZhangZZhaoWLinear inviscid damping for a class of monotone shear flow in Sobolev spacesCommun. Pure Appl. Math.201871617687377239910.1002/cpa.216721390.35251 – reference: IonescuAJiaHLinear vortex symmetrization: the spectral density functionArch. Ration. Mech. Anal.2022246161137448751010.1007/s00205-022-01815-y1504.35258 – reference: BedrossianJMasmoudiNInviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equationsPubl. Math. Inst. Hautes Etudes Sci.2015122195300341506810.1007/s10240-015-0070-41375.35340 – reference: BedrossianJCoti ZelatiMVicolVVortex axisymmetrization, inviscid damping, and vorticity depletion in the linearized 2D Euler equationsAnn. PDE201954119239194941428.35321 – reference: HelfferBSjöstrandJImproving semigroup bounds with resolvent estimatesIntegr. Equ. Oper. Theory20219336427197910.1007/s00020-021-02652-61496.47067 – reference: ChenQWeiDZhangZLinear inviscid damping and enhanced dissipation for monotone shear flowsCommun. Math. Phys.202210.1007/s00220-022-04597-21514.35310 – reference: GallayTEnhanced dissipation and axisymmetrization of two-dimensional viscous vorticesArch. Ration. Mech. Anal.2018230939975385105310.1007/s00205-018-1262-01432.76093 – reference: GallagherIHigakiMMaekawaYOn stationary two-dimensional flows around a fast rotating diskMath. Nachr.20192922273308391220110.1002/mana.2017004001414.35148 – reference: RayleighLOn the stability or instability of certain fluid motionsProc. Lond. Math. Soc.1880S1–1157157526612.0711.02 – reference: Bedrossian, J., Vicol, V.: The Mathematical Analysis of the Incompressible Euler and Navier–Stokes Equations: An Introduction. AMS Books (to appear) – volume: 221 start-page: 1449 year: 2016 ident: 794_CR48 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-016-0991-1 – ident: 794_CR28 doi: 10.4171/icm2022/1 – volume: 74 start-page: 2398 issue: 11 year: 2021 ident: 794_CR46 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.21948 – volume: 246 start-page: 61 issue: 1 year: 2022 ident: 794_CR27 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-022-01815-y – volume: 235 start-page: 1327 issue: 2 year: 2020 ident: 794_CR30 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-019-01445-x – volume: 24 start-page: 188 year: 1887 ident: 794_CR31 publication-title: Philos. Mag. doi: 10.1080/14786448708628078 – volume: 122 start-page: 195 year: 2015 ident: 794_CR4 publication-title: Publ. Math. Inst. Hautes Etudes Sci. doi: 10.1007/s10240-015-0070-4 – volume: 52 start-page: 623 issue: 1 year: 2020 ident: 794_CR29 publication-title: SIAM J. Math. Anal. doi: 10.1137/19M1273232 – volume: 73 start-page: 465 issue: 3 year: 2020 ident: 794_CR32 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.21863 – volume: S1–11 start-page: 57 year: 1880 ident: 794_CR39 publication-title: Proc. Lond. Math. Soc. – volume: 75 start-page: 818 issue: 4 year: 2022 ident: 794_CR26 publication-title: CPAM – ident: 794_CR11 doi: 10.1002/cpa.22054 – volume: 5 start-page: 1 issue: 4 year: 2019 ident: 794_CR5 publication-title: Ann. PDE – volume: 231 start-page: 1811 year: 2019 ident: 794_CR33 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-018-1311-8 – ident: 794_CR9 – volume: 93 start-page: 36 year: 2021 ident: 794_CR23 publication-title: Integr. Equ. Oper. Theory doi: 10.1007/s00020-021-02652-6 – volume: 278 start-page: 108339 issue: 3 year: 2020 ident: 794_CR19 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2019.108339 – volume: 369 start-page: 8799 year: 2017 ident: 794_CR47 publication-title: Trans. Am. Math. Soc. doi: 10.1090/tran/6942 – volume: 292 start-page: 273 issue: 2 year: 2019 ident: 794_CR18 publication-title: Math. Nachr. doi: 10.1002/mana.201700400 – volume: 45 start-page: 1682 issue: 12 year: 2020 ident: 794_CR36 publication-title: Commun. Partial Differ. Equ. doi: 10.1080/03605302.2020.1791180 – volume: 27 start-page: 9 year: 1907 ident: 794_CR38 publication-title: Proc. R. Ir. Acad. A Math. Phys. Sci. – volume: 39 start-page: 245 issue: 2 year: 2022 ident: 794_CR35 publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire doi: 10.4171/aihpc/8 – ident: 794_CR37 – volume: 379 start-page: 177 issue: 1 year: 2020 ident: 794_CR3 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-020-03851-9 – volume: 230 start-page: 939 year: 2018 ident: 794_CR15 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-018-1262-0 – volume: 362 year: 2020 ident: 794_CR45 publication-title: Adv. Math. doi: 10.1016/j.aim.2019.106963 – volume: 378 start-page: 987 issue: 2 year: 2020 ident: 794_CR13 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-020-03814-0 – ident: 794_CR34 – ident: 794_CR40 doi: 10.1007/BF01080007 – volume: 165 start-page: 3085 issue: 16 year: 2016 ident: 794_CR20 publication-title: Duke Math. J. doi: 10.1215/00127094-3645437 – volume: 241 start-page: 1281 year: 2021 ident: 794_CR2 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-021-01673-0 – volume: 239 start-page: 948 year: 2010 ident: 794_CR8 publication-title: Physica D doi: 10.1016/j.physd.2010.01.020 – year: 2022 ident: 794_CR12 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-022-04597-2 – volume: 374 start-page: 2015 issue: 3 year: 2020 ident: 794_CR25 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-019-03550-0 – volume: 255 start-page: 97 year: 2005 ident: 794_CR16 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-004-1254-9 – ident: 794_CR24 – volume: 219 start-page: 1087 year: 2016 ident: 794_CR7 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-015-0917-3 – volume-title: Topological Methods in Hydrodynamics year: 1998 ident: 794_CR1 doi: 10.1007/b97593 – volume: 238 start-page: 125 issue: 1 year: 2020 ident: 794_CR10 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-020-01538-y – ident: 794_CR17 – ident: 794_CR22 – volume: 64 start-page: 507 year: 2021 ident: 794_CR44 publication-title: Sci. China Math. doi: 10.1007/s11425-018-9461-8 – volume: 292 start-page: 52 year: 2016 ident: 794_CR21 publication-title: Adv. Math. doi: 10.1016/j.aim.2016.01.007 – volume: 71 start-page: 617 year: 2018 ident: 794_CR42 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.21672 – ident: 794_CR6 – volume: 393 start-page: 1347 year: 2022 ident: 794_CR41 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-022-04389-8 – volume-title: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics year: 2000 ident: 794_CR14 – ident: 794_CR43 doi: 10.1007/s40818-019-0060-9 |
SSID | ssj0017592 |
Score | 2.3706484 |
Snippet | We study the dynamics of the two dimensional Navier Stokes equations linearized around a strictly monotonic shear flow on
T
×
R
. The main task is to... We study the dynamics of the two dimensional Navier Stokes equations linearized around a strictly monotonic shear flow on T×R. The main task is to understand... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Boundary layers Classical and Continuum Physics Damping Dissipation Eigenvalues Fluid flow Fluid mechanics Fluid- and Aerodynamics High Reynolds number Ladyzhenskaya Centennial Anniversary Linearization Mathematical analysis Mathematical Methods in Physics Orr-Sommerfeld equations Perturbation Physics Physics and Astronomy Reynolds number Shear flow Theoretical mathematics |
Title | Uniform Linear Inviscid Damping and Enhanced Dissipation Near Monotonic Shear Flows in High Reynolds Number Regime (I): The Whole Space Case |
URI | https://link.springer.com/article/10.1007/s00021-023-00794-8 https://www.proquest.com/docview/2812062016 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYhMSFHbEUNAcOIIjUOnHqcGuhZRM9ABVwirwFkEqKSAHxD3w0Y-MUgQAJ5RBFsX3wzHjeeDZCNhjj2mQUrRMeVoNIRXgOsjgLEikU16qOPGMv9E878WE3Or5iVz4prCij3UuXpDuph8luVRdOgDomwM8kCvgoGWfWdkcu7tLG0HdQZ64Vsr3cCOKEcp8q8_MaX9XRJ8b85hZ12qY9Q6Y8TITGB11nyYjJ58i0h4zgBbKYIxMuglMV8-QN0aMFoIDWJXIvHOXPNuFWw764tzlRIHINrfzWefxhH_fbB1NDxw5H2e4PbJlccD2uod3rvxRwl4MNBIEz85r3e7qAjmsggt83d_cGNo-2dgEZDS5tl104R_vbwB7qxQXSbbcu9g4D32ohUCiDg4DVdMQEpzJE-Y8QhalESiERzCncUElDJhgV1Ah8aizjQkhe1YkwuhbpeqjCRTKW93OzRCCMdT1COsuEK1u8TVA8xyQ3nGUZpZovk1q546nydchtO4xeOqyg7KiUIpVSR6UU52wP5zx8VOH4c3SlJGTqJbJIKSKZaoxwJ14mOyVxP3__vtrK_4avkknq-MvGCFbI2ODxyawhbhnIdTLeaDebHfs-uD5prTu2fQfvSOR1 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYhODCjlgKzIEDCCK1Tpw63Cqgall6ACq4Rd4CSCVFpID4Bz6asXGKQICEcrIy9sEz43n2bIRsMca1ySjeTnhYDSIV4TnI4ixIpFBcqzrKjH3QP-vErW50fM2ufVJYUUa7ly5Jd1IPk92qLpwAbUyAwyQK-CgZRzDAbSBXlzaGvoM6c62Q7eNGECeU-1SZn9f4ao4-MeY3t6izNs1ZMu1hIjQ--DpHRkw-T2Y8ZASvkMU8mXARnKpYIG-IHi0ABbxdovRCO3-2CbcaDsW9zYkCkWs4ym-dxx8Ocb99MDV0LDnqdn9gy-SC63ENzV7_pYC7HGwgCJyb17zf0wV0XAMRHN_c3RvYbu_sAwoaXNkuu3CB928DB2gXF0m3eXR50Ap8q4VAoQ4OAlbTEROcyhD1P0IUphIphUQwp3BDJQ2ZYFRQI_CrsYwLIXlVJ8LoWqTroQqXyFjez80ygTDW9Qj5LBOubPE2QfEck9xwlmWUar5CauWOp8rXIbftMHrpsIKy41KKXEodl1Kcszuc8_BRheNP6krJyNRrZJFSRDLVGOFOvEL2SuZ-_v59tdX_kW-Sydbl2Wl62u6crJEp6mTNxgtWyNjg8cmsI4YZyA0nsu-J0-RY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELeg0xAv22BMdHRwDzxsGhGNE6cOb1VLRQerpm0VvEX-ykBq3YpkQ_wP_NGc3bRlaCBNebJi--HufPez74uQfca4NjnF2wmPmkGsYtSDLMmDVArFtWqhzLgH_a-D5GQYf7lgFw-y-H20-9wlOctpcFWabHk41fnhIvGt6UML0N4EOEzjgK-SF6iOQyfXQ9pe-BFazLdFdg8dQZJSXqXN_HuPv03TEm8-cpF6y9N7Q15VkBHaMx5vkBVjN8nrCj5CdTiLTfLSR3Oq4i25QyTpwCjgTRMlGfr2j0u-1dAVY5cfBcJqOLaX3vsPXaR9FVgNAzcdz_mkdCVzwfe7ht5oclPAlQUXFALfza2djHQBA99MBMe_rsYGPvY_HQEKHZy7jrvwA-_iBjpoI7fIsHf8s3MSVG0XAoUELAMW6pgJTmWEuiBGRKZSKYVEYKeQoJJGTDAqqBH4hSznQkje1KkwOox1K1LRO1KzE2u2CUSJbsXIc5ly5Qq5CYo6TXLDWZ5TqnmdhHOKZ6qqSe5aY4yyRTVlz6UMuZR5LmW45vNizXRWkePZ2Y05I7PqdBYZRVTTTBD6JHVyMGfu8vfTu73_v-l7ZO1bt5ed9QenO2SdelFzoYMNUiuvf5sPCGdKuesl9h7lSeiU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniform+Linear+Inviscid+Damping+and+Enhanced+Dissipation+Near+Monotonic+Shear+Flows+in+High+Reynolds+Number+Regime+%28I%29%3A+The+Whole+Space+Case&rft.jtitle=Journal+of+mathematical+fluid+mechanics&rft.au=Jia+Hao&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1422-6928&rft.eissn=1422-6952&rft.volume=25&rft.issue=3&rft_id=info:doi/10.1007%2Fs00021-023-00794-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6928&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6928&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6928&client=summon |