Semi-global Interval Observer-Based Robust Control of Linear Time-Invariant Systems Subject to Input Saturation
This article investigates the issue of robust control based on interval observers for continuous-time linear time-invariant (LTI) systems with input saturation and disturbances. Firstly, an interval observer is derived by resorting to the system’s output information and the interval bounds on the di...
Saved in:
Published in | Circuits, systems, and signal processing Vol. 43; no. 8; pp. 4928 - 4951 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This article investigates the issue of robust control based on interval observers for continuous-time linear time-invariant (LTI) systems with input saturation and disturbances. Firstly, an interval observer is derived by resorting to the system’s output information and the interval bounds on the disturbances. Then, a parametric Lyapunov equation (PLE)-based low-gain feedback control method is introduced to guarantee semi-global boundedness. In contrast to the current parametric algebraic Riccati equation (PARE)-based method that requires an iterative approach to solve the PARE online, all relevant parameters in the adopted low-gain design approach are offline determined a priori. Moreover, considering the characteristics of the interval observer, a new stability analysis architecture is given by using a Lyapunov function with a mixture of quadratic and copositive types. Finally, two numerical examples are employed as a means of substantiating the theoretical results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0278-081X 1531-5878 |
DOI: | 10.1007/s00034-024-02716-z |