In-orbit background simulation of a type-B CATCH satellite
The Chasing All Transients Constellation Hunters (CATCH) space mission plans to launch three types of micro-satellites (A, B, and C). The type-B CATCH satellites are dedicated to locating transients and detecting their time-dependent energy spectra. A type-B satellite is equipped with lightweight Wo...
Saved in:
Published in | Experimental astronomy Vol. 56; no. 2-3; pp. 477 - 498 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.12.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Chasing All Transients Constellation Hunters (CATCH) space mission plans to launch three types of micro-satellites (A, B, and C). The type-B CATCH satellites are dedicated to locating transients and detecting their time-dependent energy spectra. A type-B satellite is equipped with lightweight Wolter-I X-ray optics and an array of position-sensitive multi-pixel Silicon Drift Detectors. To optimize the scientific payloads for operating properly in orbit and performing the observations with high sensitivities, this work performs an in-orbit background simulation of a type-B CATCH satellite using the Geant4 toolkit. It shows that the persistent background is dominated by the cosmic X-ray diffuse background and the cosmic-ray protons. The dynamic background is also estimated considering trapped charged particles in the radiation belts and low-energy charged particles near the geomagnetic equator, which is dominated by the incident electrons outside the aperture. The simulated persistent background within the focal spot is used to estimate the observation sensitivity, i.e. 4.22
×
10
-
13
erg cm
-
2
s
-
1
with an exposure of 10
4
s and a Crab-like source spectrum, which can be utilized further to optimize the shielding design. The simulated in-orbit background also suggests that the magnetic diverter just underneath the optics may be unnecessary in this kind of micro-satellites, because the dynamic background induced by charged particles outside the aperture is around 3 orders of magnitude larger than that inside the aperture. |
---|---|
AbstractList | The Chasing All Transients Constellation Hunters (CATCH) space mission plans to launch three types of micro-satellites (A, B, and C). The type-B CATCH satellites are dedicated to locating transients and detecting their time-dependent energy spectra. A type-B satellite is equipped with lightweight Wolter-I X-ray optics and an array of position-sensitive multi-pixel Silicon Drift Detectors. To optimize the scientific payloads for operating properly in orbit and performing the observations with high sensitivities, this work performs an in-orbit background simulation of a type-B CATCH satellite using the Geant4 toolkit. It shows that the persistent background is dominated by the cosmic X-ray diffuse background and the cosmic-ray protons. The dynamic background is also estimated considering trapped charged particles in the radiation belts and low-energy charged particles near the geomagnetic equator, which is dominated by the incident electrons outside the aperture. The simulated persistent background within the focal spot is used to estimate the observation sensitivity, i.e. 4.22 × 10-13 erg cm-2 s-1 with an exposure of 104 s and a Crab-like source spectrum, which can be utilized further to optimize the shielding design. The simulated in-orbit background also suggests that the magnetic diverter just underneath the optics may be unnecessary in this kind of micro-satellites, because the dynamic background induced by charged particles outside the aperture is around 3 orders of magnitude larger than that inside the aperture. The Chasing All Transients Constellation Hunters (CATCH) space mission plans to launch three types of micro-satellites (A, B, and C). The type-B CATCH satellites are dedicated to locating transients and detecting their time-dependent energy spectra. A type-B satellite is equipped with lightweight Wolter-I X-ray optics and an array of position-sensitive multi-pixel Silicon Drift Detectors. To optimize the scientific payloads for operating properly in orbit and performing the observations with high sensitivities, this work performs an in-orbit background simulation of a type-B CATCH satellite using the Geant4 toolkit. It shows that the persistent background is dominated by the cosmic X-ray diffuse background and the cosmic-ray protons. The dynamic background is also estimated considering trapped charged particles in the radiation belts and low-energy charged particles near the geomagnetic equator, which is dominated by the incident electrons outside the aperture. The simulated persistent background within the focal spot is used to estimate the observation sensitivity, i.e. 4.22 × 10 - 13 erg cm - 2 s - 1 with an exposure of 10 4 s and a Crab-like source spectrum, which can be utilized further to optimize the shielding design. The simulated in-orbit background also suggests that the magnetic diverter just underneath the optics may be unnecessary in this kind of micro-satellites, because the dynamic background induced by charged particles outside the aperture is around 3 orders of magnitude larger than that inside the aperture. |
Author | Tang, Ruijing Zhang, Xuan Yang, Yanji Li, Yajun Qi, Liqiang Zhang, Shuang-Nan Zhang, Juan Yang, Sheng Tao, Lian Li, Panping Yin, Qian-Qing Huang, Yiming Li, Zhengwei Ma, Ruican Yang, Yong Zhao, Kang Rao, Jinhui Zhao, Qingchang Wen, Xiangyang Bu, Qingcui Xu, Yibo Liu, Huaqiu Chen, Wen Xiao, Jingyu Liu, Xiaojing Zhao, Shujie |
Author_xml | – sequence: 1 givenname: Jingyu surname: Xiao fullname: Xiao, Jingyu organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 2 givenname: Liqiang surname: Qi fullname: Qi, Liqiang email: qilq@ihep.ac.cn organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 3 givenname: Shuang-Nan surname: Zhang fullname: Zhang, Shuang-Nan organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 4 givenname: Lian surname: Tao fullname: Tao, Lian organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 5 givenname: Zhengwei surname: Li fullname: Li, Zhengwei organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 6 givenname: Juan surname: Zhang fullname: Zhang, Juan organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 7 givenname: Xiangyang surname: Wen fullname: Wen, Xiangyang organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 8 givenname: Qian-Qing surname: Yin fullname: Yin, Qian-Qing organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 9 givenname: Yanji surname: Yang fullname: Yang, Yanji organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 10 givenname: Qingcui surname: Bu fullname: Bu, Qingcui organization: Institut für Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Eberhard Karls Universität – sequence: 11 givenname: Sheng surname: Yang fullname: Yang, Sheng organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 12 givenname: Xiaojing surname: Liu fullname: Liu, Xiaojing organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 13 givenname: Yiming surname: Huang fullname: Huang, Yiming organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 14 givenname: Wen surname: Chen fullname: Chen, Wen organization: Innovation Academy for Microsatellites of Chinese Academy of Sciences – sequence: 15 givenname: Yong surname: Yang fullname: Yang, Yong organization: Innovation Academy for Microsatellites of Chinese Academy of Sciences – sequence: 16 givenname: Huaqiu surname: Liu fullname: Liu, Huaqiu organization: Innovation Academy for Microsatellites of Chinese Academy of Sciences – sequence: 17 givenname: Yibo surname: Xu fullname: Xu, Yibo organization: Innovation Academy for Microsatellites of Chinese Academy of Sciences – sequence: 18 givenname: Shujie surname: Zhao fullname: Zhao, Shujie organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 19 givenname: Xuan surname: Zhang fullname: Zhang, Xuan organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Nanchang University – sequence: 20 givenname: Panping surname: Li fullname: Li, Panping organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 21 givenname: Kang surname: Zhao fullname: Zhao, Kang organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 22 givenname: Ruican surname: Ma fullname: Ma, Ruican organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 23 givenname: Qingchang surname: Zhao fullname: Zhao, Qingchang organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 24 givenname: Ruijing surname: Tang fullname: Tang, Ruijing organization: Beijing Jiaotong University – sequence: 25 givenname: Jinhui surname: Rao fullname: Rao, Jinhui organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Nanchang University – sequence: 26 givenname: Yajun surname: Li fullname: Li, Yajun organization: Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Zhengzhou University |
BookMark | eNp9kD1PwzAYhC0EEm3hDzBFYjY4dmzHbKXio1IlFpgtx7ErlzQutjPk32MaJCSGTrfc8969Nwfnve8NADcluisR4vexRKxmEGECkRAIw_EMzErKMRQU1edghgTGkFWEXoJ5jDuEkOCUz8DDuoc-NC4VjdKf2-CHvi2i2w-dSs73hbeFKtJ4MPCxWC3fV69FVMl0nUvmClxY1UVz_asL8PH8lB1w8_ayXi03UJNSJFhZzFvGDdOVItRoZpWuRdMahYllrVCcZlG5EVekqQxFbWVta_NHVJSVJgtwO909BP81mJjkzg-hz5ESC1QJxhml2YUnlw4-xmCsPAS3V2GUJZI_G8lpI5k3kseN5Jih-h-kXTo-noJy3WmUTGjMOf3WhL9WJ6hvoCJ9kA |
CitedBy_id | crossref_primary_10_1007_s10686_024_09924_0 crossref_primary_10_1007_s10686_024_09963_7 crossref_primary_10_1088_1674_4527_adb938 |
Cites_doi | 10.21203/rs.3.rs-1956780/v1 10.1007/s10686-013-9341-6 10.1109/TNS.2006.869826 10.1109/NSSMIC.2008.4774969 10.1017/CBO9780511536359 10.1117/12.857087 10.1038/364693a0 10.1016/j.nima.2012.10.117 10.1086/307450 10.1117/12.734398 10.1088/1674-1137/37/12/126201 10.1007/s10686-011-9269-7 10.1016/j.nima.2020.163702 10.1117/12.2232537 10.1016/j.astropartphys.2021.102668 10.1016/S0168-9002(03)01368-8 10.1086/149822 10.1007/s10509-015-2559-1 10.1007/s10509-020-03873-8 10.3390/galaxies6020050 10.1016/j.asr.2007.08.007 10.1051/0004-6361:20066334 10.1007/978-1-4899-7433-4_18 10.1007/s10686-021-09707-x 10.1117/12.672183 10.1016/j.asr.2007.12.009 10.1117/12.789917 10.1109/TASC.2018.2811862 10.1016/j.nima.2016.06.125 10.1016/0168-9002(92)90832-O 10.1086/423801 10.3847/1538-4365/aab780 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1007/s10686-023-09902-y |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics Computer Science |
EISSN | 1572-9508 |
EndPage | 498 |
ExternalDocumentID | 10_1007_s10686_023_09902_y |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PKN PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z8M ZMTXR ZY4 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 8FD ABRTQ H8D L7M |
ID | FETCH-LOGICAL-c319t-4f27d67e6c4a35ec6fac89bdea23f6d9a75f6da0007a3b4e50d4ffdf1065914c3 |
IEDL.DBID | U2A |
ISSN | 0922-6435 |
IngestDate | Sun Jul 13 04:02:45 EDT 2025 Thu Apr 24 22:54:42 EDT 2025 Tue Jul 01 01:29:19 EDT 2025 Fri Feb 21 02:40:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2-3 |
Keywords | X-ray telescope background simulation CATCH Geant4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-4f27d67e6c4a35ec6fac89bdea23f6d9a75f6da0007a3b4e50d4ffdf1065914c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2904967655 |
PQPubID | 2043589 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2904967655 crossref_primary_10_1007_s10686_023_09902_y crossref_citationtrail_10_1007_s10686_023_09902_y springer_journals_10_1007_s10686_023_09902_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | Astrophysical Instrumentation and Methods |
PublicationTitle | Experimental astronomy |
PublicationTitleAbbrev | Exp Astron |
PublicationYear | 2023 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Agostinelli, S., Allison, J., Amako, K.a., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., et al.: Geant4-a simulation toolkit. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506(3), 250–303 (2003) AllisonJAmakoKApostolakisJArcePAsaiMAsoTBagliEBagulyaABanerjeeSBarrandGRecent developments in geant4Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment20168351862252016NIMPA.835..186A10.1016/j.nima.2016.06.125 Pagani, C., Morris, D., Racusin, J., Grupe, D., Vetere, L., Stroh, M., Falcone, A., Kennea, J., Burrows, D., Nousek, J., et al.: Characterization and evolution of the swift x-ray telescope instrumental background. In: UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XV, 6686, 80–88 (2007). SPIE MizunoTKamaeTGodfreyGHandaTThompsonDLaubenDFukazawaYOzakiMCosmic-ray background flux model based on a gamma-ray large area space telescope balloon flight engineering modelThe Astrophysical Journal2004614211132004ApJ...614.1113M10.1086/423801 ZhangJQiLYangYWangJLiuYCuiWZhaoDJiaSLiTChenTEstimate of the background and sensitivity of the follow-up x-ray telescope onboard einstein probeAstroparticle Physics202213710.1016/j.astropartphys.2021.102668 LahavOFabianABarconsXBoldtEButcherJCarreraFJahodaKMiyajiTStewartGWarwickRA significant contribution to the cosmic x-ray background from sources associated with nearby galaxiesNature199336464396936951993Natur.364..693L10.1038/364693a0 PetrovAGrigoryanOPanasyukMEnergy spectrum of proton flux near geomagnetic equator at low altitudesAdvances in Space Research2008418126912732008AdSpR..41.1269P10.1016/j.asr.2007.08.007 RivaNCalvelliVMusenichRFarinonSLottiSSaraccoPStudy of a superconducting magnetic diverter for the athena x-ray space telescopeIEEE Transactions on Applied Superconductivity20182841410.1109/TASC.2018.2811862 Weidenspointner, G., Pia, M.G., Zoglauer, A.: Application of the geant4 pixe implementation for space missions new models for pixe simulation with geant4. In: 2008 IEEE Nuclear Science Symposium Conference Record, 2877–2884 (2008). IEEE CampanaRFerociMDel MonteEMineoTLundNFraserGWBackground simulations for the large area detector onboard loftExperimental Astronomy2013364514772013ExA....36..451C10.1007/s10686-013-9341-6 GehrelsNInstrumental background in gamma-ray spectrometers flown in low earth orbitNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment199231335135281992NIMPA.313..513G10.1016/0168-9002(92)90832-O Spiga, D., Fioretti, V., Bulgarelli, A., Dell’Orto, E., Foschini, L., Malaguti, G., Pareschi, G., Tagliaferri, G., Tiengo, A.: A magnetic diverter for charged particle background rejection in the simbol-x telescope. In: Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray, 7011, 897–907 (2008). SPIE GruberDMattesonJPetersonLJungGThe spectrum of diffuse cosmic hard x-rays measured with heao 1The Astrophysical Journal199952011241999ApJ...520..124G10.1086/307450 ZhangJLiXGeMZhaoHTuoYXieFLiGZhengSNieJSongLComparison of simulated backgrounds with inorbit observations for he, me, and le onboard insight-hxmtAstrophysics and Space Science202036591582020Ap&SS.365..158Z10.1007/s10509-020-03873-8 Zombeck, M.: Handbook of Space Astronomy and Astrophysics: Third Edition, (2007) AllisonJAmakoKApostolakisJAraujoHDuboisPAAsaiMBarrandGCapraRChauvieSChytracekRGeant4 developments and applicationsIEEE Transactions on nuclear science20065312702782006ITNS...53..270A10.1109/TNS.2006.869826 Qi, L., Li, G., Xu, Y., Chen, Y., He, H., Wang, Y., Yang, Y., Zhang, J., Lu, F.: A preliminary design of the magnetic diverter on-board the extp observatory. Experimental Astronomy 51, 475–492 (2021) Hickox, R., Civano, F., Ballantyne, D., Balokovic, M., Boorman, P., Brandt, W., Canning, R., Fornasini, F., Gandhi, P., Jones, M., et al.: Resolving the cosmic x-ray background with a next-generation highenergy x-ray observatory. arXiv preprint arXiv:1905.11439 (2019) Fioretti, V., Bulgarelli, A., Malaguti, G., Spiga, D., Tiengo, A.: Monte carlo simulations of soft proton flares: testing the physics with xmmnewton. In: Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, vol. 9905, pp. 1991–2004 (2016). SPIE ZhaoX-YWangH-YWuFMengX-CMaY-QLuHWangHWangPLiX-QXuY-BA geometric factor calculation method based on the isotropic flux assumptionChinese Physics C201337122013ChPhC..37l6201Z10.1088/1674-1137/37/12/126201 Yamaguchi, H., Nakajima, H., Koyama, K., Tsuru, T., Matsumoto, H., Tawa, N., Tsunemi, H., Hayashida, K., Torii, K., Namiki, M., et al.: The background properties of suzaku/xis. In: Space Telescopes and Instrumentation II: Ultraviolet to Gamma Ray, 6266, 1195–1204 (2006). SPIE PerinatiETenzerCSantangeloADennerlKFreybergMPredehlPThe radiation environment in l-2 orbit: implications on the non-x-ray background of the erosita pn-ccd camerasExperimental Astronomy20123339532012ExA....33...39P10.1007/s10686-011-9269-7 QiLLiGXuYZhangJYangYShengLBassoSCampanaRChenYDe RosaAGeant4 simulation for the responses to x-rays and charged particles through the extp focusing mirrorsNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment202096310.1016/j.nima.2020.163702 Tenzer, C., Warth, G., Kendziorra, E., Santangelo, A.: Geant4 simulation studies of the erosita detector background. In: High Energy, Optical, and Infrared Detectors for Astronomy IV, 7742, 293–299 (2010). SPIE GilliRComastriAHasingerGThe synthesis of the cosmic xray background in the chandra and xmm-newton eraAstronomy & Astrophysics2007463179962007A&A...463...79G10.1051/0004-6361:20066334 GleesonLAxfordWSolar modulation of galactic cosmic raysAstrophysical Journal196815410111968ApJ...154.1011G10.1086/149822 GrigoryanOPanasyukMPetrovVShevelevaVPetrovASpectral characteristics of electron fluxes at l! 2 under the radiation beltsAdvances in Space Research2008429152315262008AdSpR..42.1523G10.1016/j.asr.2007.12.009 SpigaDRaimondiLSvetinaCZangrandoMX-ray beam-shaping via deformable mirrors: Analytical computation of the required mirror profileNuclear Instruments and Methodtivitys in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment20137101251302013NIMPA.710..125S10.1016/j.nima.2012.10.117 XieFPearceMA study of background conditions for sphinx-the satellite-borne gamma-ray burst polarimeterGalaxies201862502018Galax...6...50X10.3390/galaxies6020050 Ginet, G., O’Brien, T., Huston, S., Johnston, W., Guild, T., Friedel, R., Lindstrom, C., Roth, C., Whelan, P., Quinn, R., et al.: Ae9, ap9 and spm: New models for specifying the trapped energetic particle and space plasma environment. The van allen probes mission, 579–615 (2014) VianelloGThe significance of an excess in a counting experiment: Assessing the impact of systematic uncertainties and the case with a gaussian backgroundThe Astrophysical Journal Supplement Series20182361172018ApJS..236...17V125027310.3847/1538-4365/aab780 XieFZhangJSongL-MXiongS-LGuanJSimulation of the in-flight background for hxmt/heAstrophysics and Space Science20153601710.1007/s10509-015-2559-1 WangLQinLChengJZhangZWangYLiuJHuXWangQZhangCZhaoDDesign of the permanent magnet diverter for deflecting electrons on wide-field x-ray telescopeIEEE Transactions on Applied Superconductivity202030415 Li, P., Yin, Q.-Q., Li, Z., Tao, L., Wen, X., Zhang, S.-N., Qi, L., Zhang, J.,Zhao, D., Li, D., et al.: Catch: chasing all transients constellation hunters space mission. Experimental Astronomy, 1–40 (2023) J Zhang (9902_CR11) 2020; 365 O Grigoryan (9902_CR24) 2008; 42 A Petrov (9902_CR23) 2008; 41 J Allison (9902_CR14) 2006; 53 D Gruber (9902_CR19) 1999; 520 L Qi (9902_CR27) 2020; 963 R Gilli (9902_CR16) 2007; 463 F Xie (9902_CR9) 2015; 360 F Xie (9902_CR10) 2018; 6 9902_CR22 9902_CR20 D Spiga (9902_CR28) 2013; 710 N Riva (9902_CR33) 2018; 28 9902_CR18 R Campana (9902_CR8) 2013; 36 J Zhang (9902_CR12) 2022; 137 L Gleeson (9902_CR26) 1968; 154 E Perinati (9902_CR4) 2012; 33 G Vianello (9902_CR31) 2018; 236 9902_CR7 9902_CR6 9902_CR5 N Gehrels (9902_CR21) 1992; 313 L Wang (9902_CR34) 2020; 30 9902_CR13 X-Y Zhao (9902_CR29) 2013; 37 9902_CR3 9902_CR32 9902_CR2 T Mizuno (9902_CR25) 2004; 614 9902_CR1 J Allison (9902_CR15) 2016; 835 O Lahav (9902_CR17) 1993; 364 9902_CR30 |
References_xml | – reference: LahavOFabianABarconsXBoldtEButcherJCarreraFJahodaKMiyajiTStewartGWarwickRA significant contribution to the cosmic x-ray background from sources associated with nearby galaxiesNature199336464396936951993Natur.364..693L10.1038/364693a0 – reference: GehrelsNInstrumental background in gamma-ray spectrometers flown in low earth orbitNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment199231335135281992NIMPA.313..513G10.1016/0168-9002(92)90832-O – reference: PerinatiETenzerCSantangeloADennerlKFreybergMPredehlPThe radiation environment in l-2 orbit: implications on the non-x-ray background of the erosita pn-ccd camerasExperimental Astronomy20123339532012ExA....33...39P10.1007/s10686-011-9269-7 – reference: AllisonJAmakoKApostolakisJArcePAsaiMAsoTBagliEBagulyaABanerjeeSBarrandGRecent developments in geant4Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment20168351862252016NIMPA.835..186A10.1016/j.nima.2016.06.125 – reference: QiLLiGXuYZhangJYangYShengLBassoSCampanaRChenYDe RosaAGeant4 simulation for the responses to x-rays and charged particles through the extp focusing mirrorsNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment202096310.1016/j.nima.2020.163702 – reference: AllisonJAmakoKApostolakisJAraujoHDuboisPAAsaiMBarrandGCapraRChauvieSChytracekRGeant4 developments and applicationsIEEE Transactions on nuclear science20065312702782006ITNS...53..270A10.1109/TNS.2006.869826 – reference: MizunoTKamaeTGodfreyGHandaTThompsonDLaubenDFukazawaYOzakiMCosmic-ray background flux model based on a gamma-ray large area space telescope balloon flight engineering modelThe Astrophysical Journal2004614211132004ApJ...614.1113M10.1086/423801 – reference: GleesonLAxfordWSolar modulation of galactic cosmic raysAstrophysical Journal196815410111968ApJ...154.1011G10.1086/149822 – reference: Qi, L., Li, G., Xu, Y., Chen, Y., He, H., Wang, Y., Yang, Y., Zhang, J., Lu, F.: A preliminary design of the magnetic diverter on-board the extp observatory. Experimental Astronomy 51, 475–492 (2021) – reference: GrigoryanOPanasyukMPetrovVShevelevaVPetrovASpectral characteristics of electron fluxes at l! 2 under the radiation beltsAdvances in Space Research2008429152315262008AdSpR..42.1523G10.1016/j.asr.2007.12.009 – reference: WangLQinLChengJZhangZWangYLiuJHuXWangQZhangCZhaoDDesign of the permanent magnet diverter for deflecting electrons on wide-field x-ray telescopeIEEE Transactions on Applied Superconductivity202030415 – reference: VianelloGThe significance of an excess in a counting experiment: Assessing the impact of systematic uncertainties and the case with a gaussian backgroundThe Astrophysical Journal Supplement Series20182361172018ApJS..236...17V125027310.3847/1538-4365/aab780 – reference: Yamaguchi, H., Nakajima, H., Koyama, K., Tsuru, T., Matsumoto, H., Tawa, N., Tsunemi, H., Hayashida, K., Torii, K., Namiki, M., et al.: The background properties of suzaku/xis. In: Space Telescopes and Instrumentation II: Ultraviolet to Gamma Ray, 6266, 1195–1204 (2006). SPIE – reference: Agostinelli, S., Allison, J., Amako, K.a., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., et al.: Geant4-a simulation toolkit. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506(3), 250–303 (2003) – reference: Zombeck, M.: Handbook of Space Astronomy and Astrophysics: Third Edition, (2007) – reference: RivaNCalvelliVMusenichRFarinonSLottiSSaraccoPStudy of a superconducting magnetic diverter for the athena x-ray space telescopeIEEE Transactions on Applied Superconductivity20182841410.1109/TASC.2018.2811862 – reference: XieFZhangJSongL-MXiongS-LGuanJSimulation of the in-flight background for hxmt/heAstrophysics and Space Science20153601710.1007/s10509-015-2559-1 – reference: Li, P., Yin, Q.-Q., Li, Z., Tao, L., Wen, X., Zhang, S.-N., Qi, L., Zhang, J.,Zhao, D., Li, D., et al.: Catch: chasing all transients constellation hunters space mission. Experimental Astronomy, 1–40 (2023) – reference: PetrovAGrigoryanOPanasyukMEnergy spectrum of proton flux near geomagnetic equator at low altitudesAdvances in Space Research2008418126912732008AdSpR..41.1269P10.1016/j.asr.2007.08.007 – reference: Spiga, D., Fioretti, V., Bulgarelli, A., Dell’Orto, E., Foschini, L., Malaguti, G., Pareschi, G., Tagliaferri, G., Tiengo, A.: A magnetic diverter for charged particle background rejection in the simbol-x telescope. In: Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray, 7011, 897–907 (2008). SPIE – reference: Hickox, R., Civano, F., Ballantyne, D., Balokovic, M., Boorman, P., Brandt, W., Canning, R., Fornasini, F., Gandhi, P., Jones, M., et al.: Resolving the cosmic x-ray background with a next-generation highenergy x-ray observatory. arXiv preprint arXiv:1905.11439 (2019) – reference: SpigaDRaimondiLSvetinaCZangrandoMX-ray beam-shaping via deformable mirrors: Analytical computation of the required mirror profileNuclear Instruments and Methodtivitys in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment20137101251302013NIMPA.710..125S10.1016/j.nima.2012.10.117 – reference: Weidenspointner, G., Pia, M.G., Zoglauer, A.: Application of the geant4 pixe implementation for space missions new models for pixe simulation with geant4. In: 2008 IEEE Nuclear Science Symposium Conference Record, 2877–2884 (2008). IEEE – reference: CampanaRFerociMDel MonteEMineoTLundNFraserGWBackground simulations for the large area detector onboard loftExperimental Astronomy2013364514772013ExA....36..451C10.1007/s10686-013-9341-6 – reference: ZhangJQiLYangYWangJLiuYCuiWZhaoDJiaSLiTChenTEstimate of the background and sensitivity of the follow-up x-ray telescope onboard einstein probeAstroparticle Physics202213710.1016/j.astropartphys.2021.102668 – reference: ZhangJLiXGeMZhaoHTuoYXieFLiGZhengSNieJSongLComparison of simulated backgrounds with inorbit observations for he, me, and le onboard insight-hxmtAstrophysics and Space Science202036591582020Ap&SS.365..158Z10.1007/s10509-020-03873-8 – reference: XieFPearceMA study of background conditions for sphinx-the satellite-borne gamma-ray burst polarimeterGalaxies201862502018Galax...6...50X10.3390/galaxies6020050 – reference: Fioretti, V., Bulgarelli, A., Malaguti, G., Spiga, D., Tiengo, A.: Monte carlo simulations of soft proton flares: testing the physics with xmmnewton. In: Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, vol. 9905, pp. 1991–2004 (2016). SPIE – reference: Ginet, G., O’Brien, T., Huston, S., Johnston, W., Guild, T., Friedel, R., Lindstrom, C., Roth, C., Whelan, P., Quinn, R., et al.: Ae9, ap9 and spm: New models for specifying the trapped energetic particle and space plasma environment. The van allen probes mission, 579–615 (2014) – reference: Tenzer, C., Warth, G., Kendziorra, E., Santangelo, A.: Geant4 simulation studies of the erosita detector background. In: High Energy, Optical, and Infrared Detectors for Astronomy IV, 7742, 293–299 (2010). SPIE – reference: ZhaoX-YWangH-YWuFMengX-CMaY-QLuHWangHWangPLiX-QXuY-BA geometric factor calculation method based on the isotropic flux assumptionChinese Physics C201337122013ChPhC..37l6201Z10.1088/1674-1137/37/12/126201 – reference: Pagani, C., Morris, D., Racusin, J., Grupe, D., Vetere, L., Stroh, M., Falcone, A., Kennea, J., Burrows, D., Nousek, J., et al.: Characterization and evolution of the swift x-ray telescope instrumental background. In: UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XV, 6686, 80–88 (2007). SPIE – reference: GruberDMattesonJPetersonLJungGThe spectrum of diffuse cosmic hard x-rays measured with heao 1The Astrophysical Journal199952011241999ApJ...520..124G10.1086/307450 – reference: GilliRComastriAHasingerGThe synthesis of the cosmic xray background in the chandra and xmm-newton eraAstronomy & Astrophysics2007463179962007A&A...463...79G10.1051/0004-6361:20066334 – ident: 9902_CR1 doi: 10.21203/rs.3.rs-1956780/v1 – volume: 36 start-page: 451 year: 2013 ident: 9902_CR8 publication-title: Experimental Astronomy doi: 10.1007/s10686-013-9341-6 – volume: 53 start-page: 270 issue: 1 year: 2006 ident: 9902_CR14 publication-title: IEEE Transactions on nuclear science doi: 10.1109/TNS.2006.869826 – ident: 9902_CR6 doi: 10.1109/NSSMIC.2008.4774969 – ident: 9902_CR20 doi: 10.1017/CBO9780511536359 – ident: 9902_CR5 doi: 10.1117/12.857087 – volume: 364 start-page: 693 issue: 6439 year: 1993 ident: 9902_CR17 publication-title: Nature doi: 10.1038/364693a0 – volume: 710 start-page: 125 year: 2013 ident: 9902_CR28 publication-title: Nuclear Instruments and Methodtivitys in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment doi: 10.1016/j.nima.2012.10.117 – volume: 520 start-page: 124 issue: 1 year: 1999 ident: 9902_CR19 publication-title: The Astrophysical Journal doi: 10.1086/307450 – ident: 9902_CR3 doi: 10.1117/12.734398 – volume: 37 issue: 12 year: 2013 ident: 9902_CR29 publication-title: Chinese Physics C doi: 10.1088/1674-1137/37/12/126201 – volume: 33 start-page: 39 year: 2012 ident: 9902_CR4 publication-title: Experimental Astronomy doi: 10.1007/s10686-011-9269-7 – volume: 963 year: 2020 ident: 9902_CR27 publication-title: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment doi: 10.1016/j.nima.2020.163702 – ident: 9902_CR7 doi: 10.1117/12.2232537 – volume: 137 year: 2022 ident: 9902_CR12 publication-title: Astroparticle Physics doi: 10.1016/j.astropartphys.2021.102668 – volume: 30 start-page: 1 issue: 4 year: 2020 ident: 9902_CR34 publication-title: IEEE Transactions on Applied Superconductivity – ident: 9902_CR13 doi: 10.1016/S0168-9002(03)01368-8 – volume: 154 start-page: 1011 year: 1968 ident: 9902_CR26 publication-title: Astrophysical Journal doi: 10.1086/149822 – volume: 360 start-page: 1 year: 2015 ident: 9902_CR9 publication-title: Astrophysics and Space Science doi: 10.1007/s10509-015-2559-1 – volume: 365 start-page: 158 issue: 9 year: 2020 ident: 9902_CR11 publication-title: Astrophysics and Space Science doi: 10.1007/s10509-020-03873-8 – volume: 6 start-page: 50 issue: 2 year: 2018 ident: 9902_CR10 publication-title: Galaxies doi: 10.3390/galaxies6020050 – volume: 41 start-page: 1269 issue: 8 year: 2008 ident: 9902_CR23 publication-title: Advances in Space Research doi: 10.1016/j.asr.2007.08.007 – ident: 9902_CR18 – volume: 463 start-page: 79 issue: 1 year: 2007 ident: 9902_CR16 publication-title: Astronomy & Astrophysics doi: 10.1051/0004-6361:20066334 – ident: 9902_CR22 doi: 10.1007/978-1-4899-7433-4_18 – ident: 9902_CR30 doi: 10.1007/s10686-021-09707-x – ident: 9902_CR2 doi: 10.1117/12.672183 – volume: 42 start-page: 1523 issue: 9 year: 2008 ident: 9902_CR24 publication-title: Advances in Space Research doi: 10.1016/j.asr.2007.12.009 – ident: 9902_CR32 doi: 10.1117/12.789917 – volume: 28 start-page: 1 issue: 4 year: 2018 ident: 9902_CR33 publication-title: IEEE Transactions on Applied Superconductivity doi: 10.1109/TASC.2018.2811862 – volume: 835 start-page: 186 year: 2016 ident: 9902_CR15 publication-title: Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment doi: 10.1016/j.nima.2016.06.125 – volume: 313 start-page: 513 issue: 3 year: 1992 ident: 9902_CR21 publication-title: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment doi: 10.1016/0168-9002(92)90832-O – volume: 614 start-page: 1113 issue: 2 year: 2004 ident: 9902_CR25 publication-title: The Astrophysical Journal doi: 10.1086/423801 – volume: 236 start-page: 17 issue: 1 year: 2018 ident: 9902_CR31 publication-title: The Astrophysical Journal Supplement Series doi: 10.3847/1538-4365/aab780 |
SSID | ssj0009757 |
Score | 2.3609273 |
Snippet | The Chasing All Transients Constellation Hunters (CATCH) space mission plans to launch three types of micro-satellites (A, B, and C). The type-B CATCH... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 477 |
SubjectTerms | Apertures Astronomy Charged particles Chemistry and Earth Sciences Computer Science Cosmic rays Cosmic x rays Design optimization Energy spectra Geometrical optics Magnetic equator Microsatellites Observations and Techniques Particle physics Payloads Physics Physics and Astronomy Position sensing Radiation belts Radiation shielding Satellite constellations Satellites Sensitivity Simulation Space missions Statistics for Engineering X ray optics |
Title | In-orbit background simulation of a type-B CATCH satellite |
URI | https://link.springer.com/article/10.1007/s10686-023-09902-y https://www.proquest.com/docview/2904967655 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_ohuDFj6lsOkcO4kUD_UjS1lsdm1NRPDiYp5K2CQxdK2s97L836YdVUcFLW5I0h_eavu_fAzgxZOQSV9iY6gsxpMBKK1JWilTMd1xDiAKO4e6eTabkZkZnVVFYVme71yHJ4k_9qdiNuTph1sY6mGPh1Tq0qbLddSLX1PIbqF2nxPf0lJml5C2tSmV-3uOrOGp0zG9h0ULajHdgq1ITkV_ydRfWRNKBrp9px3W6WKFTVDyXfomsA9t1dwZUHdYObDyUk3twcZ3gdBnOcxTy6FnXcSQxyuaLqnMXSiXiSPti8SUa-o_DCcp4AdSZi32YjkdqBFc9E3CkDlOOibScmDmCRYTbVERM8sj1wlhwy5Ys9rhD1Y1r1YDbIRHUiImUsTR1fNUkkX0ArSRNRBeQFypeubES6WZIOLF5KD1hSal0RmlwGffArEkXRBWguO5r8RI0UMia3IEid1CQO1j14OzjndcSTuPP1f2aI0F1tLLA8pRRwxxGaQ_Oay4107_vdvi_5UewqVvLl6krfWjlyzdxrBSQPBxA2796uh0Niu_uHU2Y0og |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60InrxURXrcw_qRRfSZPMSPMQXrbbiwUJvcZPsQlFTaSLS_-MPdTYPo6KCh16SwG5CmJnd-WbnBbCnydBhjjCoqS5Mk4IiKkIrRSLzbUcTIivH0L2xWj121Tf7U_BW5sJk0e6lSzLbqT8lu1mOCpg1qHLm6HRchFJei_ErGmrJSfscubqv65cXd2ctWvQSoCEKWUqZ1O3IsoUVMm6YIrQkDx03iATXDWlFLrdNvHGlMrkRMGFqEZMykk3ld2yy0MDvTsMMgg9HrZ2e7lWlfe28nqiLZh3qd7NIzfn5n7-qvwrTfnPDZtrtcgkWClhKvFyOlmFKxHVY9xJ1UD58GpMDkj3n5yBJHRbLbhCk2BzqMHubD67AcTumw1EwSEnAwweVNxJHJBk8FZ3CyFASTtTZLz0lZx5SkSQ8KwyailXoTYSua1CLh7FYB-IGKBtOhBCiGTDODB5IV-hSIkaVGpdRA5ol6fywKGCu-mg8-lXpZUVuH8ntZ-T2xw04_HjnOS_f8efsrZIjfrGUE1930YiybMs0G3BUcqka_v1rG_-bvgtzrbtux--0b643YV61tc_DZraglo5exDaCnzTYyWSPwP2khf0dQ6APsg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4CMSFxwAxnjkAF4jo2vSFxGEwpo3HxIFJ3EraJBICumktQvtX_EScPhggQOKwS1spaVTZTm3H9meAXUNFHvOkRW19YYaSFK0i9FIUMt_1DCkzOIbrjtPqsos7-24C3spamCzbvQxJ5jUNGqUpTo_6Qh19KnxzPJ08a1Ed2DHpsEirvJTDV3TakpN2Azm8Z5rN89uzFi36CtAIBS6lTJmucFzpRIxbtowcxSPPD4XkpqUc4XPXxhvX6pNbIZO2IZhSQtV0DLLGIgvXnYRppquPcQd1zfoI5tfNsUV9dPFQ19tFmc7P3_xVFY7s228h2UzTNRdhvjBRST2XqSWYkHEF1uqJPjTvPQ_JPsme8zORpAILZWcIUvwoKjBzkw8uw3E7pr1B-JCSkEePuoYkFiR5eC66hpGeIpzoc2B6Ss7qSEWS8AwkNJUr0B0LXVdhKu7Fcg2IH6KceALNiVrIOLN4qHxpKoX2qjK4ElWolaQLogLMXPfUeApGMMya3AGSO8jIHQyrcPDxTj-H8vhz9mbJkaDY1klg-uhQOa5j21U4LLk0Gv59tfX_Td-B2ZtGM7hqdy43YE53uM8zaDZhKh28yC20g9JwOxM9AvfjlvV3JfgT5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-orbit+background+simulation+of+a+type-B+CATCH+satellite&rft.jtitle=Experimental+astronomy&rft.au=Xiao+Jingyu&rft.au=Qi+Liqiang&rft.au=Zhang+Shuang-Nan&rft.au=Lian%2C+Tao&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0922-6435&rft.eissn=1572-9508&rft.volume=56&rft.issue=2-3&rft.spage=477&rft.epage=498&rft_id=info:doi/10.1007%2Fs10686-023-09902-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0922-6435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0922-6435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0922-6435&client=summon |