Deep learning for lung Cancer detection and classification

Lung cancer is one of the main reasons for death in the world among both men and women, with an impressive rate of about five million deadly cases per year. Computed Tomography (CT) scan can provide valuable information in the diagnosis of lung diseases. The main objective of this work is to detect...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 79; no. 11-12; pp. 7731 - 7762
Main Authors Asuntha, A., Srinivasan, Andy
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lung cancer is one of the main reasons for death in the world among both men and women, with an impressive rate of about five million deadly cases per year. Computed Tomography (CT) scan can provide valuable information in the diagnosis of lung diseases. The main objective of this work is to detect the cancerous lung nodules from the given input lung image and to classify the lung cancer and its severity. To detect the location of the cancerous lung nodules, this work uses novel Deep learning methods. This work uses best feature extraction techniques such as Histogram of oriented Gradients (HoG), wavelet transform-based features, Local Binary Pattern (LBP), Scale Invariant Feature Transform (SIFT) and Zernike Moment. After extracting texture, geometric, volumetric and intensity features, Fuzzy Particle Swarm Optimization (FPSO) algorithm is applied for selecting the best feature. Finally, these features are classified using Deep learning. A novel FPSOCNN reduces computational complexity of CNN. An additional valuation is performed on another dataset coming from Arthi Scan Hospital which is a real-time data set. From the experimental results, it is shown that novel FPSOCNN performs better than other techniques.
AbstractList Lung cancer is one of the main reasons for death in the world among both men and women, with an impressive rate of about five million deadly cases per year. Computed Tomography (CT) scan can provide valuable information in the diagnosis of lung diseases. The main objective of this work is to detect the cancerous lung nodules from the given input lung image and to classify the lung cancer and its severity. To detect the location of the cancerous lung nodules, this work uses novel Deep learning methods. This work uses best feature extraction techniques such as Histogram of oriented Gradients (HoG), wavelet transform-based features, Local Binary Pattern (LBP), Scale Invariant Feature Transform (SIFT) and Zernike Moment. After extracting texture, geometric, volumetric and intensity features, Fuzzy Particle Swarm Optimization (FPSO) algorithm is applied for selecting the best feature. Finally, these features are classified using Deep learning. A novel FPSOCNN reduces computational complexity of CNN. An additional valuation is performed on another dataset coming from Arthi Scan Hospital which is a real-time data set. From the experimental results, it is shown that novel FPSOCNN performs better than other techniques.
Author Srinivasan, Andy
Asuntha, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Asuntha
  fullname: Asuntha, A.
  email: asuntha.srm@gmail.com
  organization: Department of Electronics & Instrumentation Engineering, SRM Institute of Science & Technology
– sequence: 2
  givenname: Andy
  surname: Srinivasan
  fullname: Srinivasan, Andy
  organization: Department of Electronics & Instrumentation Engineering, Valliammai Engineering College
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqP52k3iTeonFLzoOcxmk5KyZmuyPfjvTV1B8FDmMMMwz7wz7wLN4hAdQpeUXFNC5E2mlAiGCdWYKK4F5idoTmvJsZSMzkrNFcGyJvQMLXLeEkKbmok5ur13blf1DlIMcVP5IVX9vhQriNalqnOjs2MYYgWxq2wPOQcfLBxa5-jUQ5_dxW9eovfHh7fVM16_Pr2s7tbYcqpHLFraMMs8bxVzHEB7LxuvbUcbL7XyrNUehCBdDVLrpmkYAaiVLlFDKzq-RFfT3l0aPvcuj2Y77FMskoZxVWutpFRlik1TNg05J-fNLoUPSF-GEnPwyEwemeKR-fHI8AKpf5AN489zY4LQH0f5hOaiEzcu_V11hPoGLDJ8cA
CitedBy_id crossref_primary_10_1038_s41598_021_89352_8
crossref_primary_10_1016_j_eswa_2024_124665
crossref_primary_10_1080_03772063_2024_2437546
crossref_primary_10_37391_IJEER_120122
crossref_primary_10_12720_jait_15_11_1242_1251
crossref_primary_10_32604_cmc_2022_024583
crossref_primary_10_1016_j_measen_2023_100993
crossref_primary_10_1016_j_bspc_2023_105485
crossref_primary_10_1016_j_bspc_2022_104398
crossref_primary_10_1007_s11042_020_09455_8
crossref_primary_10_1088_1361_6501_ad8a7c
crossref_primary_10_1007_s11042_024_19795_4
crossref_primary_10_1016_j_imu_2024_101547
crossref_primary_10_3390_diagnostics14202282
crossref_primary_10_1007_s12065_020_00408_6
crossref_primary_10_1088_2057_1976_ad0b4b
crossref_primary_10_1016_j_ibmed_2024_100188
crossref_primary_10_2174_0929867329666220222154733
crossref_primary_10_2174_0115734056248176230923143105
crossref_primary_10_1080_13682199_2023_2222992
crossref_primary_10_1016_j_eij_2022_08_002
crossref_primary_10_1016_j_mlwa_2023_100492
crossref_primary_10_3390_app12147165
crossref_primary_10_1109_TRPMS_2024_3452683
crossref_primary_10_1007_s11831_021_09648_w
crossref_primary_10_1016_j_cmpbup_2025_100182
crossref_primary_10_1007_s42979_024_03251_z
crossref_primary_10_1016_j_health_2023_100195
crossref_primary_10_1186_s12859_023_05235_x
crossref_primary_10_1108_DTA_10_2022_0384
crossref_primary_10_1007_s10278_024_01355_9
crossref_primary_10_1007_s40033_023_00586_4
crossref_primary_10_1016_j_bspc_2022_103986
crossref_primary_10_3390_diagnostics14212356
crossref_primary_10_1080_0954898X_2024_2373127
crossref_primary_10_1002_eng2_13069
crossref_primary_10_1111_coin_12563
crossref_primary_10_1007_s41870_023_01532_z
crossref_primary_10_1007_s41939_024_00385_8
crossref_primary_10_1177_09592989241308775
crossref_primary_10_1007_s00530_020_00694_1
crossref_primary_10_1016_j_csbj_2024_06_019
crossref_primary_10_3390_cancers15143608
crossref_primary_10_3390_diagnostics13132206
crossref_primary_10_1007_s42979_022_01167_0
crossref_primary_10_1007_s10462_024_10807_1
crossref_primary_10_1016_j_imavis_2024_104918
crossref_primary_10_1016_j_measen_2023_100932
crossref_primary_10_32604_cmc_2023_046821
crossref_primary_10_3389_fonc_2023_1193746
crossref_primary_10_1007_s10462_024_10871_7
crossref_primary_10_1007_s11277_022_09676_0
crossref_primary_10_1142_S0218001422400018
crossref_primary_10_1007_s11042_023_16796_7
crossref_primary_10_3390_bioengineering9110709
crossref_primary_10_1007_s10462_021_10074_4
crossref_primary_10_3389_fonc_2022_976168
crossref_primary_10_1007_s11831_024_10098_3
crossref_primary_10_3389_fcell_2021_687245
crossref_primary_10_3390_diagnostics13193053
crossref_primary_10_32628_IJSRST218236
crossref_primary_10_1002_ima_70066
crossref_primary_10_1016_j_asoc_2025_112696
crossref_primary_10_1016_j_bspc_2023_105055
crossref_primary_10_1007_s11045_021_00781_0
crossref_primary_10_1007_s11042_022_12547_2
crossref_primary_10_1007_s11831_023_09940_x
crossref_primary_10_1016_j_bspc_2023_105849
crossref_primary_10_7717_peerj_cs_1802
crossref_primary_10_3390_app13127256
crossref_primary_10_1007_s13755_022_00193_9
crossref_primary_10_1016_j_compbiomed_2021_104961
crossref_primary_10_3389_fimmu_2022_942945
crossref_primary_10_35940_ijsce_E3653_14060125
crossref_primary_10_1371_journal_pone_0285796
crossref_primary_10_1007_s11831_025_10239_2
crossref_primary_10_3390_electronics13132554
crossref_primary_10_1007_s00500_023_08845_y
crossref_primary_10_1080_23080477_2023_2194765
crossref_primary_10_52756_10_52756_ijerr_2023_v31spl_002
crossref_primary_10_1007_s12652_023_04514_y
crossref_primary_10_1177_11769351241290608
crossref_primary_10_1038_s41598_023_38350_z
crossref_primary_10_1109_ACCESS_2025_3539122
crossref_primary_10_3390_app132212510
crossref_primary_10_1002_hsr2_2268
crossref_primary_10_1007_s00500_023_08498_x
crossref_primary_10_3390_cancers14051117
crossref_primary_10_3233_JIFS_232875
crossref_primary_10_1016_j_bspc_2024_106924
crossref_primary_10_1016_j_compbiomed_2022_105580
crossref_primary_10_1080_03772063_2023_2233465
crossref_primary_10_1007_s11831_022_09818_4
crossref_primary_10_32604_cmc_2022_028856
crossref_primary_10_3390_biomedicines11030679
crossref_primary_10_1371_journal_pone_0310882
crossref_primary_10_36548_jscp_2024_1_003
crossref_primary_10_3390_life13091911
crossref_primary_10_1007_s41939_024_00530_3
crossref_primary_10_1038_s41598_024_72013_x
crossref_primary_10_1002_ima_23013
crossref_primary_10_1016_j_compbiolchem_2025_108363
crossref_primary_10_1016_j_compbiomed_2021_104827
crossref_primary_10_1002_cpe_7251
crossref_primary_10_2139_ssrn_4628662
crossref_primary_10_1007_s11831_024_10219_y
crossref_primary_10_1007_s11042_024_20009_0
crossref_primary_10_1007_s11042_023_15047_z
crossref_primary_10_54732_jeecs_v9i1_6
crossref_primary_10_3390_cancers16234097
crossref_primary_10_1002_jbio_202300172
crossref_primary_10_1007_s00432_022_04539_4
crossref_primary_10_4108_eetpht_9_3220
crossref_primary_10_48175_IJARSCT_15327
crossref_primary_10_1007_s12652_021_03464_7
crossref_primary_10_21015_vtse_v12i2_1852
crossref_primary_10_32604_cmes_2023_030712
crossref_primary_10_1016_j_bios_2024_116982
crossref_primary_10_54392_irjmt25110
crossref_primary_10_1016_j_procs_2021_10_056
crossref_primary_10_1051_e3sconf_202449103015
crossref_primary_10_1007_s11042_024_19034_w
crossref_primary_10_1155_2022_5905230
crossref_primary_10_1007_s00432_023_05216_w
crossref_primary_10_1007_s11831_024_10209_0
crossref_primary_10_1007_s42835_025_02182_w
crossref_primary_10_1007_s11042_024_19990_3
crossref_primary_10_1007_s11042_024_18789_6
crossref_primary_10_4236_jct_2022_137041
crossref_primary_10_1002_ima_22719
crossref_primary_10_1007_s40031_023_00896_x
crossref_primary_10_1016_j_compeleceng_2024_109891
crossref_primary_10_1007_s11042_023_17616_8
crossref_primary_10_1007_s00500_023_08453_w
crossref_primary_10_1155_2020_8853277
crossref_primary_10_1002_jemt_24075
crossref_primary_10_1016_j_bspc_2023_105650
crossref_primary_10_1002_ima_22667
crossref_primary_10_1063_5_0208520
crossref_primary_10_4015_S1016237224500431
crossref_primary_10_48084_etasr_8181
crossref_primary_10_1007_s11042_023_14893_1
crossref_primary_10_3390_diagnostics14131378
crossref_primary_10_1007_s11042_023_14898_w
crossref_primary_10_3390_app13042218
crossref_primary_10_32604_cmes_2023_029552
crossref_primary_10_56294_saludcyt2024_922
crossref_primary_10_32604_iasc_2022_025060
crossref_primary_10_1007_s10462_021_10084_2
Cites_doi 10.1007/s11042-018-6673-2
10.1148/radiol.2283020505
10.1109/ISBI.2015.7163869
10.1109/WiSPNET.2016.7566533
10.1007/s10278-009-9185-9
10.1016/j.jvcir.2017.09.008
10.1088/0031-9155/56/4/016
10.1049/iet-ipr.2016.1014
10.1590/2446-4740.04615
10.1109/TKDE.2015.2399298
10.1007/s11277-017-4981-x
10.1016/j.patcog.2014.12.016
10.1016/j.acra.2009.12.009
10.1080/0952813X.2015.1020526
10.1007/s11265-016-1134-5
10.1109/CCAA.2015.7148560
10.1186/s12938-015-0003-y
10.1109/CRV.2015.25
10.1145/2733373.2806217
10.1007/s11042-017-4480-9
10.1016/j.procs.2017.12.016
10.1016/S0933-3657(01)00094-X
10.1016/j.mspro.2015.06.077
10.1109/ICACDOT.2016.7877572
10.1109/TIP.2008.919949
10.1109/ICACCI.2015.7275773
10.1007/s11517-018-1841-0
10.1155/2017/8314740
10.1109/ICCSNT.2012.6526151
10.1109/ISSPA.2012.6310676
10.1109/GCCT.2015.7342723
10.1109/TMI.2005.852048
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-019-08394-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 7762
ExternalDocumentID 10_1007_s11042_019_08394_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-4b162c2f3b82e3aa9ff76f9cd16f798f2b9fa440d5a79966620aa5898985ab4d3
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 23:49:55 EDT 2025
Tue Jul 01 02:07:04 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Fri Feb 21 02:37:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11-12
Keywords Deep learning
Classifiers
CNN
Lung cancer
Real-time
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-4b162c2f3b82e3aa9ff76f9cd16f798f2b9fa440d5a79966620aa5898985ab4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2385998778
PQPubID 54626
PageCount 32
ParticipantIDs proquest_journals_2385998778
crossref_primary_10_1007_s11042_019_08394_3
crossref_citationtrail_10_1007_s11042_019_08394_3
springer_journals_10_1007_s11042_019_08394_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200300
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 3
  year: 2020
  text: 20200300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Li X-X, Li B, Tian L-F, Zhang L (2018) Automatic benign and malignant classification of pulmonary nodules in thoracic computed tomography based on RF algorithm. IET Image Process. https://doi.org/10.1049/iet-ipr.2016.1014
Song QZ, Zhao L, Luo XK, Dou XC (2017) Using deep learning for classification of lung nodules on computed tomography images. Journal of healthcare engineering. https://doi.org/10.1155/2017/8314740
OrozcoHMVillegasOOVSánchezVGCde Jesús Ochoa DomínguezHde Jesús Nandayapa AlfaroMAutomated system for lung nodules classification based on wavelet feature descriptor and support vector machineBiomed Eng201514912010.1186/s12938-015-0003-y
Shao H, Cao L, Liu Y (2012) A detection approach for solitary pulmonary nodules based on CT images. IEEE, 2nd international conference on computer science and network technology.
da SilvaGLFde Carvalho FilhoAOSilvaACde PaivaACGattassMTaxonomic indexes for differentiating malignancy of lung nodules on CT imagesResearch on Biomedical Engineering201632326327210.1590/2446-4740.04615
Zhang B, Allebach JP (2008) Adaptive Bilateral Filter for Sharpness Enhancement and Noise Removal. IEEE Trans Image Process 17(5)
Ani Brown MaryNDharmaD‘Coral reef image classification employing improved LDP for feature extraction’, ElsevierJ Vis Commun Image Represent201749C22524210.1016/j.jvcir.2017.09.008
de Sousa CostaRWda SilvaGLFde Carvalho FilhoAOSilvaACde Paiva Marcelo GattassAC“Classification of malignant and benign lung nodules using taxonomic diversity index and phylogenetic distance”, springerMed Biol Eng Comput201856112125213610.1007/s11517-018-1841-0
Kumar D, Wong A, Clausi DA (2015) “Lung nodule classification using deep features in CT images”, IEEE, 12th conference on computer robot vision, pp 133-138. DOI. https://doi.org/10.1109/CRV.2015.25
ParkSCTanJWangXLedermanDLeaderJKKimSHZhengBComputer-aided detection of early interstitial lung diseases using low-dose CT imagesPhys Med Biol2011561139115310.1088/0031-9155/56/4/016Iop Publishing
Roy TS, Sirohi N, Patle A (2015) Classification of Lung Image and Nodule Detection Using Fuzzy Inference System. IEEE, International Conference on Computing, Communication and Automation (ICCCA2015), pp. 1204–1207
Van Ginneken B, Setio AAA, Jacobs C, Ciompi F (2015) Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. IEEE 12th International Symposium on Biomedical Imaging (ISBI). doi:10.1109/isbi.2015.7163869
ZhuYTanYHuaYWangMZhangGZhangJFeature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomographyJ Digit Imaging2010231516510.1007/s10278-009-9185-9
ZhouZ-HJiangYYangY-BChenS-FLung cancer cell identification based on artificial neural network ensemblesArtif Intell Med200224253610.1016/S0933-3657(01)00094-XElsevier
MakajuSPrasadAAElchouemiSLung Cancer detection using CT scan imagesElsevier, Procedia Computer Science201812510711410.1016/j.procs.2017.12.016
Dong-ping Tian and Nai-qian Li, 2009, ‘Fuzzy Particle Swarm Optimization Algorithm’, IEEE, International Joint Conference on Artificial Intelligence, pp. 263–267.
Jin X-Y, Zhang Y-C, Jin Q-L (2016) Pulmonary nodule detection based on CT images using Convolution neural network. IEEE, 9th International Symposium on Computational Intelligence and Design, pp. 202–204.
de Carvalho FilhoAOSilvaACde PaivaACNunesRAGattassMLung-nodule classification based on computed tomography using taxonomic diversity indexes and an SVMSpringer, Journal of Signal Processing Systems, DOI20168717919610.1007/s11265-016-1134-5
Sangamithraa, Govindaraju (2016) Lung tumour detection and classification using EK-mean clustering. IEEE WiSPNET
BhuvaneswariBTDetection of Cancer in lung with K-NN classification using genetic algorithmProcedia Mater Sci201510433440370179810.1016/j.mspro.2015.06.077Elsevier
BrownAMaryNDejeyD‘Classification of coral reef submarine images and videos using a novel Z with tilted Z local binary pattern (Z⊕TZLBP)’, springerWirel Pers Commun20189832427245910.1007/s11277-017-4981-x
ChabatFYangG-ZHansellDMObstructive lung diseases: texture classification for differentiation at CT1Radiology2003228387187710.1148/radiol.2283020505
Nie L, Zhang L, Yang Y, Wang M, Hong R, Chua T-S (2015) Beyond doctors: future health prediction from multimedia and multimodal observations. proceedings of the 23rd ACM international conference on multimedia.
Ignatious S, Joseph R (2015) Computer Aided Lung Cancer Detection System. IEEE, Proceedings of 2015 Global Conference on Communication Technologies (GCCT 2015), pp. 555–558.
NieLWangMZhangLYanSZhangBChuaT-SDisease inference from health-related questions via sparse deep learningIEEE Trans Knowl Data Eng20152782107211910.1109/TKDE.2015.2399298
Zhang L, Zhang Q, Zhang L, Tao D, Huang X, Bo D (2014) Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding”, Elsevier. Pattern Recogn. https://doi.org/10.1016/j.patcog.2014.12.016
Orozco HM, Villegas OOV, Maynez LO, Sanchez VGC, de Jesus Ochoa Dominguez H (2012) Lung Nodule CLASSIFICATION in Frequency Domain Using Support Vector Machine. IEEE, In international conference on information science, signal processing and their application.
Zhang L, Zhang Q, Du Member B, Huang X, Tang YY, Tao D (2016) Simultaneous spectral-spatial feature selection and extraction for Hyperspectral images. IEEE Transactions on Cybernetics
AkramSJavedMYHussainARiazFUsman AkramMIntensity-based statistical features for classification of lungs CT scan nodules using artificial intelligence techniquesJournal of Experimental & Theoretical Artificial Intelligence201527673775110.1080/0952813X.2015.1020526
Ani Brown MaryNDejeyD‘Classification of coral reef submarine images and videos using a novel Z with tilted Z local binary pattern (Z⊕TZLBP)’, springerWirel Pers Commun20189832427245910.1007/s11277-017-4981-x
Aggarwal T, Furqan A, Kalra K (2015) Feature extraction and LDA based classification of lung nodules in chest CT scan images. IEEE, International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1189–1193
Sun W, Zheng B, Qian W (2016) "computer aided lung cancer diagnosis with deep learning algorithms" International Society for Optics and Photonics, medical imaging : computer-aided diagnosis. Vol. 9785
AlakwaaWNassefMBadrALung Cancer detection and classification with 3D convolutional neural network (3D-CNN)International Journal of Advanced Computer Science and Applications (IJACSA)201788409417
Ani Brown Mary N, Dharma D (2018) A novel framework for real-time diseased coral reef image classification’, Springer. Multimed Tools Appl:1–39. https://doi.org/10.1007/s11042-018-6673-2
SuzukiKLiFSoneSDoiKComputer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural networkIEEE Trans Med Imaging20052491138115010.1109/TMI.2005.852048
Dhaware BU, Pise AC, (2016) Lung Cancer Detection Using Bayasein Classifier and FCM Segmentation. IEEE, International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), pp. 170–174
Da SilvaGLFda Silva NetoOPSilvaACde Paiva Marcelo GattassAC“Lung nodules diagnosis based on evolutionary convolutional neural network”, springerMultimed Tools Appl20177618190391905510.1007/s11042-017-4480-9
Chen H, Xu Y, Ma Y, Ma B (2010) Neural Network Ensemble-Based Computer-Aided Diagnosis for Differentiation of Lung Nodules on CT Images. Acad Radiol 17(5)
W Alakwaa (8394_CR3) 2017; 8
GLF da Silva (8394_CR12) 2016; 32
L Nie (8394_CR21) 2015; 27
8394_CR19
N Ani Brown Mary (8394_CR4) 2018; 98
8394_CR27
8394_CR26
8394_CR6
8394_CR29
8394_CR28
8394_CR23
SC Park (8394_CR25) 2011; 56
8394_CR1
8394_CR22
Z-H Zhou (8394_CR37) 2002; 24
HM Orozco (8394_CR24) 2015; 14
S Makaju (8394_CR20) 2018; 125
A Brown (8394_CR8) 2018; 98
F Chabat (8394_CR9) 2003; 228
S Akram (8394_CR2) 2015; 27
Y Zhu (8394_CR38) 2010; 23
N Ani Brown Mary (8394_CR5) 2017; 49
RW de Sousa Costa (8394_CR14) 2018; 56
8394_CR16
8394_CR15
8394_CR18
8394_CR17
8394_CR34
8394_CR33
8394_CR36
8394_CR35
8394_CR30
BT Bhuvaneswari (8394_CR7) 2015; 10
8394_CR10
GLF Da Silva (8394_CR11) 2017; 76
K Suzuki (8394_CR31) 2005; 24
8394_CR32
AO de Carvalho Filho (8394_CR13) 2016; 87
References_xml – reference: BrownAMaryNDejeyD‘Classification of coral reef submarine images and videos using a novel Z with tilted Z local binary pattern (Z⊕TZLBP)’, springerWirel Pers Commun20189832427245910.1007/s11277-017-4981-x
– reference: Chen H, Xu Y, Ma Y, Ma B (2010) Neural Network Ensemble-Based Computer-Aided Diagnosis for Differentiation of Lung Nodules on CT Images. Acad Radiol 17(5)
– reference: Dhaware BU, Pise AC, (2016) Lung Cancer Detection Using Bayasein Classifier and FCM Segmentation. IEEE, International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), pp. 170–174
– reference: Van Ginneken B, Setio AAA, Jacobs C, Ciompi F (2015) Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. IEEE 12th International Symposium on Biomedical Imaging (ISBI). doi:10.1109/isbi.2015.7163869
– reference: ZhuYTanYHuaYWangMZhangGZhangJFeature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomographyJ Digit Imaging2010231516510.1007/s10278-009-9185-9
– reference: SuzukiKLiFSoneSDoiKComputer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural networkIEEE Trans Med Imaging20052491138115010.1109/TMI.2005.852048
– reference: BhuvaneswariBTDetection of Cancer in lung with K-NN classification using genetic algorithmProcedia Mater Sci201510433440370179810.1016/j.mspro.2015.06.077Elsevier
– reference: OrozcoHMVillegasOOVSánchezVGCde Jesús Ochoa DomínguezHde Jesús Nandayapa AlfaroMAutomated system for lung nodules classification based on wavelet feature descriptor and support vector machineBiomed Eng201514912010.1186/s12938-015-0003-y
– reference: ParkSCTanJWangXLedermanDLeaderJKKimSHZhengBComputer-aided detection of early interstitial lung diseases using low-dose CT imagesPhys Med Biol2011561139115310.1088/0031-9155/56/4/016Iop Publishing
– reference: Sun W, Zheng B, Qian W (2016) "computer aided lung cancer diagnosis with deep learning algorithms" International Society for Optics and Photonics, medical imaging : computer-aided diagnosis. Vol. 9785
– reference: Ani Brown Mary N, Dharma D (2018) A novel framework for real-time diseased coral reef image classification’, Springer. Multimed Tools Appl:1–39. https://doi.org/10.1007/s11042-018-6673-2
– reference: Ani Brown MaryNDharmaD‘Coral reef image classification employing improved LDP for feature extraction’, ElsevierJ Vis Commun Image Represent201749C22524210.1016/j.jvcir.2017.09.008
– reference: Da SilvaGLFda Silva NetoOPSilvaACde Paiva Marcelo GattassAC“Lung nodules diagnosis based on evolutionary convolutional neural network”, springerMultimed Tools Appl20177618190391905510.1007/s11042-017-4480-9
– reference: Jin X-Y, Zhang Y-C, Jin Q-L (2016) Pulmonary nodule detection based on CT images using Convolution neural network. IEEE, 9th International Symposium on Computational Intelligence and Design, pp. 202–204.
– reference: Sangamithraa, Govindaraju (2016) Lung tumour detection and classification using EK-mean clustering. IEEE WiSPNET
– reference: Aggarwal T, Furqan A, Kalra K (2015) Feature extraction and LDA based classification of lung nodules in chest CT scan images. IEEE, International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1189–1193
– reference: de Carvalho FilhoAOSilvaACde PaivaACNunesRAGattassMLung-nodule classification based on computed tomography using taxonomic diversity indexes and an SVMSpringer, Journal of Signal Processing Systems, DOI20168717919610.1007/s11265-016-1134-5
– reference: AlakwaaWNassefMBadrALung Cancer detection and classification with 3D convolutional neural network (3D-CNN)International Journal of Advanced Computer Science and Applications (IJACSA)201788409417
– reference: ChabatFYangG-ZHansellDMObstructive lung diseases: texture classification for differentiation at CT1Radiology2003228387187710.1148/radiol.2283020505
– reference: Ani Brown MaryNDejeyD‘Classification of coral reef submarine images and videos using a novel Z with tilted Z local binary pattern (Z⊕TZLBP)’, springerWirel Pers Commun20189832427245910.1007/s11277-017-4981-x
– reference: Roy TS, Sirohi N, Patle A (2015) Classification of Lung Image and Nodule Detection Using Fuzzy Inference System. IEEE, International Conference on Computing, Communication and Automation (ICCCA2015), pp. 1204–1207
– reference: Kumar D, Wong A, Clausi DA (2015) “Lung nodule classification using deep features in CT images”, IEEE, 12th conference on computer robot vision, pp 133-138. DOI. https://doi.org/10.1109/CRV.2015.25
– reference: da SilvaGLFde Carvalho FilhoAOSilvaACde PaivaACGattassMTaxonomic indexes for differentiating malignancy of lung nodules on CT imagesResearch on Biomedical Engineering201632326327210.1590/2446-4740.04615
– reference: Nie L, Zhang L, Yang Y, Wang M, Hong R, Chua T-S (2015) Beyond doctors: future health prediction from multimedia and multimodal observations. proceedings of the 23rd ACM international conference on multimedia.
– reference: Li X-X, Li B, Tian L-F, Zhang L (2018) Automatic benign and malignant classification of pulmonary nodules in thoracic computed tomography based on RF algorithm. IET Image Process. https://doi.org/10.1049/iet-ipr.2016.1014
– reference: Orozco HM, Villegas OOV, Maynez LO, Sanchez VGC, de Jesus Ochoa Dominguez H (2012) Lung Nodule CLASSIFICATION in Frequency Domain Using Support Vector Machine. IEEE, In international conference on information science, signal processing and their application.
– reference: Song QZ, Zhao L, Luo XK, Dou XC (2017) Using deep learning for classification of lung nodules on computed tomography images. Journal of healthcare engineering. https://doi.org/10.1155/2017/8314740
– reference: Zhang L, Zhang Q, Zhang L, Tao D, Huang X, Bo D (2014) Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding”, Elsevier. Pattern Recogn. https://doi.org/10.1016/j.patcog.2014.12.016
– reference: Ignatious S, Joseph R (2015) Computer Aided Lung Cancer Detection System. IEEE, Proceedings of 2015 Global Conference on Communication Technologies (GCCT 2015), pp. 555–558.
– reference: Shao H, Cao L, Liu Y (2012) A detection approach for solitary pulmonary nodules based on CT images. IEEE, 2nd international conference on computer science and network technology.
– reference: ZhouZ-HJiangYYangY-BChenS-FLung cancer cell identification based on artificial neural network ensemblesArtif Intell Med200224253610.1016/S0933-3657(01)00094-XElsevier
– reference: AkramSJavedMYHussainARiazFUsman AkramMIntensity-based statistical features for classification of lungs CT scan nodules using artificial intelligence techniquesJournal of Experimental & Theoretical Artificial Intelligence201527673775110.1080/0952813X.2015.1020526
– reference: NieLWangMZhangLYanSZhangBChuaT-SDisease inference from health-related questions via sparse deep learningIEEE Trans Knowl Data Eng20152782107211910.1109/TKDE.2015.2399298
– reference: Zhang B, Allebach JP (2008) Adaptive Bilateral Filter for Sharpness Enhancement and Noise Removal. IEEE Trans Image Process 17(5)
– reference: de Sousa CostaRWda SilvaGLFde Carvalho FilhoAOSilvaACde Paiva Marcelo GattassAC“Classification of malignant and benign lung nodules using taxonomic diversity index and phylogenetic distance”, springerMed Biol Eng Comput201856112125213610.1007/s11517-018-1841-0
– reference: Dong-ping Tian and Nai-qian Li, 2009, ‘Fuzzy Particle Swarm Optimization Algorithm’, IEEE, International Joint Conference on Artificial Intelligence, pp. 263–267.
– reference: Zhang L, Zhang Q, Du Member B, Huang X, Tang YY, Tao D (2016) Simultaneous spectral-spatial feature selection and extraction for Hyperspectral images. IEEE Transactions on Cybernetics
– reference: MakajuSPrasadAAElchouemiSLung Cancer detection using CT scan imagesElsevier, Procedia Computer Science201812510711410.1016/j.procs.2017.12.016
– ident: 8394_CR6
  doi: 10.1007/s11042-018-6673-2
– volume: 228
  start-page: 871
  issue: 3
  year: 2003
  ident: 8394_CR9
  publication-title: Radiology
  doi: 10.1148/radiol.2283020505
– ident: 8394_CR33
  doi: 10.1109/ISBI.2015.7163869
– ident: 8394_CR27
  doi: 10.1109/WiSPNET.2016.7566533
– volume: 23
  start-page: 51
  issue: 1
  year: 2010
  ident: 8394_CR38
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-009-9185-9
– volume: 49
  start-page: 225
  issue: C
  year: 2017
  ident: 8394_CR5
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2017.09.008
– ident: 8394_CR35
– volume: 56
  start-page: 1139
  year: 2011
  ident: 8394_CR25
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/56/4/016
– volume: 8
  start-page: 409
  issue: 8
  year: 2017
  ident: 8394_CR3
  publication-title: International Journal of Advanced Computer Science and Applications (IJACSA)
– ident: 8394_CR19
  doi: 10.1049/iet-ipr.2016.1014
– ident: 8394_CR30
– volume: 32
  start-page: 263
  issue: 3
  year: 2016
  ident: 8394_CR12
  publication-title: Research on Biomedical Engineering
  doi: 10.1590/2446-4740.04615
– volume: 27
  start-page: 2107
  issue: 8
  year: 2015
  ident: 8394_CR21
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2015.2399298
– volume: 98
  start-page: 2427
  issue: 3
  year: 2018
  ident: 8394_CR8
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-017-4981-x
– volume: 98
  start-page: 2427
  issue: 3
  year: 2018
  ident: 8394_CR4
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-017-4981-x
– ident: 8394_CR36
  doi: 10.1016/j.patcog.2014.12.016
– ident: 8394_CR10
  doi: 10.1016/j.acra.2009.12.009
– volume: 27
  start-page: 737
  issue: 6
  year: 2015
  ident: 8394_CR2
  publication-title: Journal of Experimental & Theoretical Artificial Intelligence
  doi: 10.1080/0952813X.2015.1020526
– volume: 87
  start-page: 179
  year: 2016
  ident: 8394_CR13
  publication-title: Springer, Journal of Signal Processing Systems, DOI
  doi: 10.1007/s11265-016-1134-5
– ident: 8394_CR26
  doi: 10.1109/CCAA.2015.7148560
– ident: 8394_CR32
– volume: 14
  start-page: 1
  issue: 9
  year: 2015
  ident: 8394_CR24
  publication-title: Biomed Eng
  doi: 10.1186/s12938-015-0003-y
– ident: 8394_CR17
– ident: 8394_CR18
  doi: 10.1109/CRV.2015.25
– ident: 8394_CR22
  doi: 10.1145/2733373.2806217
– volume: 76
  start-page: 19039
  issue: 18
  year: 2017
  ident: 8394_CR11
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-4480-9
– volume: 125
  start-page: 107
  year: 2018
  ident: 8394_CR20
  publication-title: Elsevier, Procedia Computer Science
  doi: 10.1016/j.procs.2017.12.016
– volume: 24
  start-page: 25
  year: 2002
  ident: 8394_CR37
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(01)00094-X
– volume: 10
  start-page: 433
  year: 2015
  ident: 8394_CR7
  publication-title: Procedia Mater Sci
  doi: 10.1016/j.mspro.2015.06.077
– ident: 8394_CR15
  doi: 10.1109/ICACDOT.2016.7877572
– ident: 8394_CR34
  doi: 10.1109/TIP.2008.919949
– ident: 8394_CR1
  doi: 10.1109/ICACCI.2015.7275773
– volume: 56
  start-page: 2125
  issue: 11
  year: 2018
  ident: 8394_CR14
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-018-1841-0
– ident: 8394_CR29
  doi: 10.1155/2017/8314740
– ident: 8394_CR28
  doi: 10.1109/ICCSNT.2012.6526151
– ident: 8394_CR23
  doi: 10.1109/ISSPA.2012.6310676
– ident: 8394_CR16
  doi: 10.1109/GCCT.2015.7342723
– volume: 24
  start-page: 1138
  issue: 9
  year: 2005
  ident: 8394_CR31
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2005.852048
SSID ssj0016524
Score 2.566543
Snippet Lung cancer is one of the main reasons for death in the world among both men and women, with an impressive rate of about five million deadly cases per year....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7731
SubjectTerms Algorithms
Computed tomography
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Feature extraction
FPSO
Histograms
Image classification
Image detection
Lung cancer
Lung diseases
Machine learning
Multimedia Information Systems
Nodules
Particle swarm optimization
Special Purpose and Application-Based Systems
Wavelet transforms
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUAUCvLABpbi-BGHrSpUFRJMVOoW2bHNUoWqDf8fO3VaQIDEmjge7ny573z33QFce4-gSWK1D1OlwUzYBCtrOFbaBI6PMUSHC_2nZzGesMcpn0ZS2LKtdm9Tks2fekN2I4FKkgTSjffqDNNt2OE-dg-FXJN0sM4dCB5H2coEe39IIlXm5z2-uqMNxvyWFm28zegQ9iNMRIOVXo9gy1ZdOGhHMKBokV3Y-9RP8Bju7q2dozgI4hV5PIpm3pjRMKh2gYytm8KrCqnKoDLg5lAo1OjmBCajh5fhGMfhCLj0VlNjpolIy9RRLVNLlQp3r8LlpSHCZbl0qc6dYiwxXGUhphFpohQPwyIlV5oZegqd6q2yZ4AcVaxMOJdOhm4zHkGUTlCV0Ezm_jnpAWllVJSxc3gYYDErNj2Pg1wLL9eikWtBe3Cz_ma-6pvx5-p-K_oi2tCy8GCC-2Awy2QPblt1bF7_vtv5_5ZfwG4aguimsKwPnXrxbi890qj1VXOwPgD8PcbE
  priority: 102
  providerName: Springer Nature
Title Deep learning for lung Cancer detection and classification
URI https://link.springer.com/article/10.1007/s11042-019-08394-3
https://www.proquest.com/docview/2385998778
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4IXPTgAzWiSHrwpo376m7xYgB5RCMxRhI8bdpt1wtZEPD_21m6oCZy2mQfPczsdL6ZzswHcGU8gnQdLU2YyhUNQu1QoRWjQirs8VHKlZjQfx6Gg1HwOGZjm3Bb2LLKYk_MN2o1TTBHfmtcCzOhQRTx-9knRdYoPF21FBolqJgtmPMyVNrd4cvr-hwhZJbWljvU-EbXts2smudcbE1xsInHoISA-r9d0wZv_jkizT1P7xD2LWQkrZWOj2BHZ1U4KOgYiLXOKuz9mC14DHcPWs-IJYX4IAabkokxbNJBNc-J0su8CCsjIlMkQQyNRUO5nk5g1Ou-dQbUEiXQxFjQkgbSDb3ES33JPe0LgXnYMG0myg3TqMlTTzZTEQSOYiLC-Cb0HCEYEkdyJmSg_FMoZ9NMnwFJfREkDmM85Th5xqCJJA194fgRb5r7bg3cQkZxYqeII5nFJN7MP0a5xkaucS7X2K_B9fqb2WqGxta364XoY2tPi3ij_RrcFOrYPP5_tfPtq13ArocBdF5UVofycv6lLw3KWMoGlHiv34BKq9duD_Haf3_qNuwPZp6OvNY3Rp3QTg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xFEDBjVhOF1CBRRLbiRcJIQQsy1mBRBfs2KFZhQUWIX6Kb2Qmm7CABB1tDheTl5k39sw8gA2MCDYMvMU0VTsuYx9w453ixjrq8XEutLShf3kVt2_k2a26HYL3uheGyiprn1g6aveQ0R75DoYWhalBkuj97iMn1Sg6Xa0lNPqwOPdvr5iyPe-dHuH33Yyi1vH1YZtXqgI8Q7j1uLRhHGVRLqyOvDCGNi3jvJm5MM6Tps4j28yNlIFTJqFkII4CYxSpLGplrHQC1x2GUSkwklNneuvk89QiVpWIrg44RuKwatLpt-qF1AgTUMsQchLJxfdAOGC3Pw5kyzjXmobJiqCygz6iZmDIF7MwVYs_sMoXzMLEl0mGc7B75H2XVRIU9wyZMOugG2GHBKon5nyvLPkqmCkcy4ixU4lSiYp5uPkXAy7ASPFQ-EVguTAyC5TSuaY5N8hdsjwWJhCJbuL1sAFhbaM0q2aWk3RGJx1MWya7pmjXtLRrKhqw9flOtz-x48-nV2rTp9Xf-5wOsNaA7fpzDG7_vtrS36utw1j7-vIivTi9Ol-G8YhS97KcbQVGek8vfhX5Tc-ulaBicPffKP4AVBYHEA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1BkBAcgNJWhAbqQzm1FvvlXQcJISBEUEqEqiJxW-y13Uu0CUkQ4q_11zGz8RJAKjeu--HD7NuZN_bMPIBvGBF0GFiNaao0PEltwJU1gittqMfHmFDThv5FLz29Sn5ei-s5-Ff3wlBZZe0TK0dtBgXtke9iaBGYGmSZ3HW-LOKy0z0Y3nJSkKKT1lpOYwqRc_twj-nbeP-sg996J4q6J3-OT7lXGOAFQm_CEx2mURG5WMvIxkrRBmbq2oUJU5e1pYt026kkCYxQGSUGaRQoJUhxUQqlExPjuvOwkFFW1ICFo5Pe5e-nM4xUeEldGXCMy6Fv2Zk27oXUFhNQAxEylITHL8PijOu-Op6tol53DVY8XWWHU3x9gDlbrsNqLQXBvGdYh-Vncw0_wl7H2iHzghR_GfJi1kenwo4JYiNm7KQqACuZKg0riL9TwVKFkU9w9S4m_AyNclDaDWAuVkkRCCGdpKk3yGQKl8YqiDPZxuthE8LaRnnhJ5iTkEY_n81eJrvmaNe8smseN-H70zvD6fyON59u1abP_b88zmfIa8KP-nPMbv9_tc23V_sKi4jg_NdZ7_wLLEWUx1e1bS1oTEZ3dgvJzkRve1QxuHlvID8CNOkMog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+lung+Cancer+detection+and+classification&rft.jtitle=Multimedia+tools+and+applications&rft.au=Asuntha%2C+A.&rft.au=Srinivasan%2C+Andy&rft.date=2020-03-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=11-12&rft.spage=7731&rft.epage=7762&rft_id=info:doi/10.1007%2Fs11042-019-08394-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_019_08394_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon