Deep learning for lung Cancer detection and classification
Lung cancer is one of the main reasons for death in the world among both men and women, with an impressive rate of about five million deadly cases per year. Computed Tomography (CT) scan can provide valuable information in the diagnosis of lung diseases. The main objective of this work is to detect...
Saved in:
Published in | Multimedia tools and applications Vol. 79; no. 11-12; pp. 7731 - 7762 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lung cancer is one of the main reasons for death in the world among both men and women, with an impressive rate of about five million deadly cases per year. Computed Tomography (CT) scan can provide valuable information in the diagnosis of lung diseases. The main objective of this work is to detect the cancerous lung nodules from the given input lung image and to classify the lung cancer and its severity. To detect the location of the cancerous lung nodules, this work uses novel Deep learning methods. This work uses best feature extraction techniques such as Histogram of oriented Gradients (HoG), wavelet transform-based features, Local Binary Pattern (LBP), Scale Invariant Feature Transform (SIFT) and Zernike Moment. After extracting texture, geometric, volumetric and intensity features, Fuzzy Particle Swarm Optimization (FPSO) algorithm is applied for selecting the best feature. Finally, these features are classified using Deep learning. A novel FPSOCNN reduces computational complexity of CNN. An additional valuation is performed on another dataset coming from Arthi Scan Hospital which is a real-time data set. From the experimental results, it is shown that novel FPSOCNN performs better than other techniques. |
---|---|
AbstractList | Lung cancer is one of the main reasons for death in the world among both men and women, with an impressive rate of about five million deadly cases per year. Computed Tomography (CT) scan can provide valuable information in the diagnosis of lung diseases. The main objective of this work is to detect the cancerous lung nodules from the given input lung image and to classify the lung cancer and its severity. To detect the location of the cancerous lung nodules, this work uses novel Deep learning methods. This work uses best feature extraction techniques such as Histogram of oriented Gradients (HoG), wavelet transform-based features, Local Binary Pattern (LBP), Scale Invariant Feature Transform (SIFT) and Zernike Moment. After extracting texture, geometric, volumetric and intensity features, Fuzzy Particle Swarm Optimization (FPSO) algorithm is applied for selecting the best feature. Finally, these features are classified using Deep learning. A novel FPSOCNN reduces computational complexity of CNN. An additional valuation is performed on another dataset coming from Arthi Scan Hospital which is a real-time data set. From the experimental results, it is shown that novel FPSOCNN performs better than other techniques. |
Author | Srinivasan, Andy Asuntha, A. |
Author_xml | – sequence: 1 givenname: A. surname: Asuntha fullname: Asuntha, A. email: asuntha.srm@gmail.com organization: Department of Electronics & Instrumentation Engineering, SRM Institute of Science & Technology – sequence: 2 givenname: Andy surname: Srinivasan fullname: Srinivasan, Andy organization: Department of Electronics & Instrumentation Engineering, Valliammai Engineering College |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqP52k3iTeonFLzoOcxmk5KyZmuyPfjvTV1B8FDmMMMwz7wz7wLN4hAdQpeUXFNC5E2mlAiGCdWYKK4F5idoTmvJsZSMzkrNFcGyJvQMLXLeEkKbmok5ur13blf1DlIMcVP5IVX9vhQriNalqnOjs2MYYgWxq2wPOQcfLBxa5-jUQ5_dxW9eovfHh7fVM16_Pr2s7tbYcqpHLFraMMs8bxVzHEB7LxuvbUcbL7XyrNUehCBdDVLrpmkYAaiVLlFDKzq-RFfT3l0aPvcuj2Y77FMskoZxVWutpFRlik1TNg05J-fNLoUPSF-GEnPwyEwemeKR-fHI8AKpf5AN489zY4LQH0f5hOaiEzcu_V11hPoGLDJ8cA |
CitedBy_id | crossref_primary_10_1038_s41598_021_89352_8 crossref_primary_10_1016_j_eswa_2024_124665 crossref_primary_10_1080_03772063_2024_2437546 crossref_primary_10_37391_IJEER_120122 crossref_primary_10_12720_jait_15_11_1242_1251 crossref_primary_10_32604_cmc_2022_024583 crossref_primary_10_1016_j_measen_2023_100993 crossref_primary_10_1016_j_bspc_2023_105485 crossref_primary_10_1016_j_bspc_2022_104398 crossref_primary_10_1007_s11042_020_09455_8 crossref_primary_10_1088_1361_6501_ad8a7c crossref_primary_10_1007_s11042_024_19795_4 crossref_primary_10_1016_j_imu_2024_101547 crossref_primary_10_3390_diagnostics14202282 crossref_primary_10_1007_s12065_020_00408_6 crossref_primary_10_1088_2057_1976_ad0b4b crossref_primary_10_1016_j_ibmed_2024_100188 crossref_primary_10_2174_0929867329666220222154733 crossref_primary_10_2174_0115734056248176230923143105 crossref_primary_10_1080_13682199_2023_2222992 crossref_primary_10_1016_j_eij_2022_08_002 crossref_primary_10_1016_j_mlwa_2023_100492 crossref_primary_10_3390_app12147165 crossref_primary_10_1109_TRPMS_2024_3452683 crossref_primary_10_1007_s11831_021_09648_w crossref_primary_10_1016_j_cmpbup_2025_100182 crossref_primary_10_1007_s42979_024_03251_z crossref_primary_10_1016_j_health_2023_100195 crossref_primary_10_1186_s12859_023_05235_x crossref_primary_10_1108_DTA_10_2022_0384 crossref_primary_10_1007_s10278_024_01355_9 crossref_primary_10_1007_s40033_023_00586_4 crossref_primary_10_1016_j_bspc_2022_103986 crossref_primary_10_3390_diagnostics14212356 crossref_primary_10_1080_0954898X_2024_2373127 crossref_primary_10_1002_eng2_13069 crossref_primary_10_1111_coin_12563 crossref_primary_10_1007_s41870_023_01532_z crossref_primary_10_1007_s41939_024_00385_8 crossref_primary_10_1177_09592989241308775 crossref_primary_10_1007_s00530_020_00694_1 crossref_primary_10_1016_j_csbj_2024_06_019 crossref_primary_10_3390_cancers15143608 crossref_primary_10_3390_diagnostics13132206 crossref_primary_10_1007_s42979_022_01167_0 crossref_primary_10_1007_s10462_024_10807_1 crossref_primary_10_1016_j_imavis_2024_104918 crossref_primary_10_1016_j_measen_2023_100932 crossref_primary_10_32604_cmc_2023_046821 crossref_primary_10_3389_fonc_2023_1193746 crossref_primary_10_1007_s10462_024_10871_7 crossref_primary_10_1007_s11277_022_09676_0 crossref_primary_10_1142_S0218001422400018 crossref_primary_10_1007_s11042_023_16796_7 crossref_primary_10_3390_bioengineering9110709 crossref_primary_10_1007_s10462_021_10074_4 crossref_primary_10_3389_fonc_2022_976168 crossref_primary_10_1007_s11831_024_10098_3 crossref_primary_10_3389_fcell_2021_687245 crossref_primary_10_3390_diagnostics13193053 crossref_primary_10_32628_IJSRST218236 crossref_primary_10_1002_ima_70066 crossref_primary_10_1016_j_asoc_2025_112696 crossref_primary_10_1016_j_bspc_2023_105055 crossref_primary_10_1007_s11045_021_00781_0 crossref_primary_10_1007_s11042_022_12547_2 crossref_primary_10_1007_s11831_023_09940_x crossref_primary_10_1016_j_bspc_2023_105849 crossref_primary_10_7717_peerj_cs_1802 crossref_primary_10_3390_app13127256 crossref_primary_10_1007_s13755_022_00193_9 crossref_primary_10_1016_j_compbiomed_2021_104961 crossref_primary_10_3389_fimmu_2022_942945 crossref_primary_10_35940_ijsce_E3653_14060125 crossref_primary_10_1371_journal_pone_0285796 crossref_primary_10_1007_s11831_025_10239_2 crossref_primary_10_3390_electronics13132554 crossref_primary_10_1007_s00500_023_08845_y crossref_primary_10_1080_23080477_2023_2194765 crossref_primary_10_52756_10_52756_ijerr_2023_v31spl_002 crossref_primary_10_1007_s12652_023_04514_y crossref_primary_10_1177_11769351241290608 crossref_primary_10_1038_s41598_023_38350_z crossref_primary_10_1109_ACCESS_2025_3539122 crossref_primary_10_3390_app132212510 crossref_primary_10_1002_hsr2_2268 crossref_primary_10_1007_s00500_023_08498_x crossref_primary_10_3390_cancers14051117 crossref_primary_10_3233_JIFS_232875 crossref_primary_10_1016_j_bspc_2024_106924 crossref_primary_10_1016_j_compbiomed_2022_105580 crossref_primary_10_1080_03772063_2023_2233465 crossref_primary_10_1007_s11831_022_09818_4 crossref_primary_10_32604_cmc_2022_028856 crossref_primary_10_3390_biomedicines11030679 crossref_primary_10_1371_journal_pone_0310882 crossref_primary_10_36548_jscp_2024_1_003 crossref_primary_10_3390_life13091911 crossref_primary_10_1007_s41939_024_00530_3 crossref_primary_10_1038_s41598_024_72013_x crossref_primary_10_1002_ima_23013 crossref_primary_10_1016_j_compbiolchem_2025_108363 crossref_primary_10_1016_j_compbiomed_2021_104827 crossref_primary_10_1002_cpe_7251 crossref_primary_10_2139_ssrn_4628662 crossref_primary_10_1007_s11831_024_10219_y crossref_primary_10_1007_s11042_024_20009_0 crossref_primary_10_1007_s11042_023_15047_z crossref_primary_10_54732_jeecs_v9i1_6 crossref_primary_10_3390_cancers16234097 crossref_primary_10_1002_jbio_202300172 crossref_primary_10_1007_s00432_022_04539_4 crossref_primary_10_4108_eetpht_9_3220 crossref_primary_10_48175_IJARSCT_15327 crossref_primary_10_1007_s12652_021_03464_7 crossref_primary_10_21015_vtse_v12i2_1852 crossref_primary_10_32604_cmes_2023_030712 crossref_primary_10_1016_j_bios_2024_116982 crossref_primary_10_54392_irjmt25110 crossref_primary_10_1016_j_procs_2021_10_056 crossref_primary_10_1051_e3sconf_202449103015 crossref_primary_10_1007_s11042_024_19034_w crossref_primary_10_1155_2022_5905230 crossref_primary_10_1007_s00432_023_05216_w crossref_primary_10_1007_s11831_024_10209_0 crossref_primary_10_1007_s42835_025_02182_w crossref_primary_10_1007_s11042_024_19990_3 crossref_primary_10_1007_s11042_024_18789_6 crossref_primary_10_4236_jct_2022_137041 crossref_primary_10_1002_ima_22719 crossref_primary_10_1007_s40031_023_00896_x crossref_primary_10_1016_j_compeleceng_2024_109891 crossref_primary_10_1007_s11042_023_17616_8 crossref_primary_10_1007_s00500_023_08453_w crossref_primary_10_1155_2020_8853277 crossref_primary_10_1002_jemt_24075 crossref_primary_10_1016_j_bspc_2023_105650 crossref_primary_10_1002_ima_22667 crossref_primary_10_1063_5_0208520 crossref_primary_10_4015_S1016237224500431 crossref_primary_10_48084_etasr_8181 crossref_primary_10_1007_s11042_023_14893_1 crossref_primary_10_3390_diagnostics14131378 crossref_primary_10_1007_s11042_023_14898_w crossref_primary_10_3390_app13042218 crossref_primary_10_32604_cmes_2023_029552 crossref_primary_10_56294_saludcyt2024_922 crossref_primary_10_32604_iasc_2022_025060 crossref_primary_10_1007_s10462_021_10084_2 |
Cites_doi | 10.1007/s11042-018-6673-2 10.1148/radiol.2283020505 10.1109/ISBI.2015.7163869 10.1109/WiSPNET.2016.7566533 10.1007/s10278-009-9185-9 10.1016/j.jvcir.2017.09.008 10.1088/0031-9155/56/4/016 10.1049/iet-ipr.2016.1014 10.1590/2446-4740.04615 10.1109/TKDE.2015.2399298 10.1007/s11277-017-4981-x 10.1016/j.patcog.2014.12.016 10.1016/j.acra.2009.12.009 10.1080/0952813X.2015.1020526 10.1007/s11265-016-1134-5 10.1109/CCAA.2015.7148560 10.1186/s12938-015-0003-y 10.1109/CRV.2015.25 10.1145/2733373.2806217 10.1007/s11042-017-4480-9 10.1016/j.procs.2017.12.016 10.1016/S0933-3657(01)00094-X 10.1016/j.mspro.2015.06.077 10.1109/ICACDOT.2016.7877572 10.1109/TIP.2008.919949 10.1109/ICACCI.2015.7275773 10.1007/s11517-018-1841-0 10.1155/2017/8314740 10.1109/ICCSNT.2012.6526151 10.1109/ISSPA.2012.6310676 10.1109/GCCT.2015.7342723 10.1109/TMI.2005.852048 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-019-08394-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 7762 |
ExternalDocumentID | 10_1007_s11042_019_08394_3 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-4b162c2f3b82e3aa9ff76f9cd16f798f2b9fa440d5a79966620aa5898985ab4d3 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 23:49:55 EDT 2025 Tue Jul 01 02:07:04 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Fri Feb 21 02:37:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11-12 |
Keywords | Deep learning Classifiers CNN Lung cancer Real-time |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-4b162c2f3b82e3aa9ff76f9cd16f798f2b9fa440d5a79966620aa5898985ab4d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2385998778 |
PQPubID | 54626 |
PageCount | 32 |
ParticipantIDs | proquest_journals_2385998778 crossref_primary_10_1007_s11042_019_08394_3 crossref_citationtrail_10_1007_s11042_019_08394_3 springer_journals_10_1007_s11042_019_08394_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200300 2020-03-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 3 year: 2020 text: 20200300 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Li X-X, Li B, Tian L-F, Zhang L (2018) Automatic benign and malignant classification of pulmonary nodules in thoracic computed tomography based on RF algorithm. IET Image Process. https://doi.org/10.1049/iet-ipr.2016.1014 Song QZ, Zhao L, Luo XK, Dou XC (2017) Using deep learning for classification of lung nodules on computed tomography images. Journal of healthcare engineering. https://doi.org/10.1155/2017/8314740 OrozcoHMVillegasOOVSánchezVGCde Jesús Ochoa DomínguezHde Jesús Nandayapa AlfaroMAutomated system for lung nodules classification based on wavelet feature descriptor and support vector machineBiomed Eng201514912010.1186/s12938-015-0003-y Shao H, Cao L, Liu Y (2012) A detection approach for solitary pulmonary nodules based on CT images. IEEE, 2nd international conference on computer science and network technology. da SilvaGLFde Carvalho FilhoAOSilvaACde PaivaACGattassMTaxonomic indexes for differentiating malignancy of lung nodules on CT imagesResearch on Biomedical Engineering201632326327210.1590/2446-4740.04615 Zhang B, Allebach JP (2008) Adaptive Bilateral Filter for Sharpness Enhancement and Noise Removal. IEEE Trans Image Process 17(5) Ani Brown MaryNDharmaD‘Coral reef image classification employing improved LDP for feature extraction’, ElsevierJ Vis Commun Image Represent201749C22524210.1016/j.jvcir.2017.09.008 de Sousa CostaRWda SilvaGLFde Carvalho FilhoAOSilvaACde Paiva Marcelo GattassAC“Classification of malignant and benign lung nodules using taxonomic diversity index and phylogenetic distance”, springerMed Biol Eng Comput201856112125213610.1007/s11517-018-1841-0 Kumar D, Wong A, Clausi DA (2015) “Lung nodule classification using deep features in CT images”, IEEE, 12th conference on computer robot vision, pp 133-138. DOI. https://doi.org/10.1109/CRV.2015.25 ParkSCTanJWangXLedermanDLeaderJKKimSHZhengBComputer-aided detection of early interstitial lung diseases using low-dose CT imagesPhys Med Biol2011561139115310.1088/0031-9155/56/4/016Iop Publishing Roy TS, Sirohi N, Patle A (2015) Classification of Lung Image and Nodule Detection Using Fuzzy Inference System. IEEE, International Conference on Computing, Communication and Automation (ICCCA2015), pp. 1204–1207 Van Ginneken B, Setio AAA, Jacobs C, Ciompi F (2015) Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. IEEE 12th International Symposium on Biomedical Imaging (ISBI). doi:10.1109/isbi.2015.7163869 ZhuYTanYHuaYWangMZhangGZhangJFeature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomographyJ Digit Imaging2010231516510.1007/s10278-009-9185-9 ZhouZ-HJiangYYangY-BChenS-FLung cancer cell identification based on artificial neural network ensemblesArtif Intell Med200224253610.1016/S0933-3657(01)00094-XElsevier MakajuSPrasadAAElchouemiSLung Cancer detection using CT scan imagesElsevier, Procedia Computer Science201812510711410.1016/j.procs.2017.12.016 Dong-ping Tian and Nai-qian Li, 2009, ‘Fuzzy Particle Swarm Optimization Algorithm’, IEEE, International Joint Conference on Artificial Intelligence, pp. 263–267. Jin X-Y, Zhang Y-C, Jin Q-L (2016) Pulmonary nodule detection based on CT images using Convolution neural network. IEEE, 9th International Symposium on Computational Intelligence and Design, pp. 202–204. de Carvalho FilhoAOSilvaACde PaivaACNunesRAGattassMLung-nodule classification based on computed tomography using taxonomic diversity indexes and an SVMSpringer, Journal of Signal Processing Systems, DOI20168717919610.1007/s11265-016-1134-5 Sangamithraa, Govindaraju (2016) Lung tumour detection and classification using EK-mean clustering. IEEE WiSPNET BhuvaneswariBTDetection of Cancer in lung with K-NN classification using genetic algorithmProcedia Mater Sci201510433440370179810.1016/j.mspro.2015.06.077Elsevier BrownAMaryNDejeyD‘Classification of coral reef submarine images and videos using a novel Z with tilted Z local binary pattern (Z⊕TZLBP)’, springerWirel Pers Commun20189832427245910.1007/s11277-017-4981-x ChabatFYangG-ZHansellDMObstructive lung diseases: texture classification for differentiation at CT1Radiology2003228387187710.1148/radiol.2283020505 Nie L, Zhang L, Yang Y, Wang M, Hong R, Chua T-S (2015) Beyond doctors: future health prediction from multimedia and multimodal observations. proceedings of the 23rd ACM international conference on multimedia. Ignatious S, Joseph R (2015) Computer Aided Lung Cancer Detection System. IEEE, Proceedings of 2015 Global Conference on Communication Technologies (GCCT 2015), pp. 555–558. NieLWangMZhangLYanSZhangBChuaT-SDisease inference from health-related questions via sparse deep learningIEEE Trans Knowl Data Eng20152782107211910.1109/TKDE.2015.2399298 Zhang L, Zhang Q, Zhang L, Tao D, Huang X, Bo D (2014) Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding”, Elsevier. Pattern Recogn. https://doi.org/10.1016/j.patcog.2014.12.016 Orozco HM, Villegas OOV, Maynez LO, Sanchez VGC, de Jesus Ochoa Dominguez H (2012) Lung Nodule CLASSIFICATION in Frequency Domain Using Support Vector Machine. IEEE, In international conference on information science, signal processing and their application. Zhang L, Zhang Q, Du Member B, Huang X, Tang YY, Tao D (2016) Simultaneous spectral-spatial feature selection and extraction for Hyperspectral images. IEEE Transactions on Cybernetics AkramSJavedMYHussainARiazFUsman AkramMIntensity-based statistical features for classification of lungs CT scan nodules using artificial intelligence techniquesJournal of Experimental & Theoretical Artificial Intelligence201527673775110.1080/0952813X.2015.1020526 Ani Brown MaryNDejeyD‘Classification of coral reef submarine images and videos using a novel Z with tilted Z local binary pattern (Z⊕TZLBP)’, springerWirel Pers Commun20189832427245910.1007/s11277-017-4981-x Aggarwal T, Furqan A, Kalra K (2015) Feature extraction and LDA based classification of lung nodules in chest CT scan images. IEEE, International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1189–1193 Sun W, Zheng B, Qian W (2016) "computer aided lung cancer diagnosis with deep learning algorithms" International Society for Optics and Photonics, medical imaging : computer-aided diagnosis. Vol. 9785 AlakwaaWNassefMBadrALung Cancer detection and classification with 3D convolutional neural network (3D-CNN)International Journal of Advanced Computer Science and Applications (IJACSA)201788409417 Ani Brown Mary N, Dharma D (2018) A novel framework for real-time diseased coral reef image classification’, Springer. Multimed Tools Appl:1–39. https://doi.org/10.1007/s11042-018-6673-2 SuzukiKLiFSoneSDoiKComputer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural networkIEEE Trans Med Imaging20052491138115010.1109/TMI.2005.852048 Dhaware BU, Pise AC, (2016) Lung Cancer Detection Using Bayasein Classifier and FCM Segmentation. IEEE, International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), pp. 170–174 Da SilvaGLFda Silva NetoOPSilvaACde Paiva Marcelo GattassAC“Lung nodules diagnosis based on evolutionary convolutional neural network”, springerMultimed Tools Appl20177618190391905510.1007/s11042-017-4480-9 Chen H, Xu Y, Ma Y, Ma B (2010) Neural Network Ensemble-Based Computer-Aided Diagnosis for Differentiation of Lung Nodules on CT Images. Acad Radiol 17(5) W Alakwaa (8394_CR3) 2017; 8 GLF da Silva (8394_CR12) 2016; 32 L Nie (8394_CR21) 2015; 27 8394_CR19 N Ani Brown Mary (8394_CR4) 2018; 98 8394_CR27 8394_CR26 8394_CR6 8394_CR29 8394_CR28 8394_CR23 SC Park (8394_CR25) 2011; 56 8394_CR1 8394_CR22 Z-H Zhou (8394_CR37) 2002; 24 HM Orozco (8394_CR24) 2015; 14 S Makaju (8394_CR20) 2018; 125 A Brown (8394_CR8) 2018; 98 F Chabat (8394_CR9) 2003; 228 S Akram (8394_CR2) 2015; 27 Y Zhu (8394_CR38) 2010; 23 N Ani Brown Mary (8394_CR5) 2017; 49 RW de Sousa Costa (8394_CR14) 2018; 56 8394_CR16 8394_CR15 8394_CR18 8394_CR17 8394_CR34 8394_CR33 8394_CR36 8394_CR35 8394_CR30 BT Bhuvaneswari (8394_CR7) 2015; 10 8394_CR10 GLF Da Silva (8394_CR11) 2017; 76 K Suzuki (8394_CR31) 2005; 24 8394_CR32 AO de Carvalho Filho (8394_CR13) 2016; 87 |
References_xml | – reference: BrownAMaryNDejeyD‘Classification of coral reef submarine images and videos using a novel Z with tilted Z local binary pattern (Z⊕TZLBP)’, springerWirel Pers Commun20189832427245910.1007/s11277-017-4981-x – reference: Chen H, Xu Y, Ma Y, Ma B (2010) Neural Network Ensemble-Based Computer-Aided Diagnosis for Differentiation of Lung Nodules on CT Images. Acad Radiol 17(5) – reference: Dhaware BU, Pise AC, (2016) Lung Cancer Detection Using Bayasein Classifier and FCM Segmentation. IEEE, International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), pp. 170–174 – reference: Van Ginneken B, Setio AAA, Jacobs C, Ciompi F (2015) Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. IEEE 12th International Symposium on Biomedical Imaging (ISBI). doi:10.1109/isbi.2015.7163869 – reference: ZhuYTanYHuaYWangMZhangGZhangJFeature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomographyJ Digit Imaging2010231516510.1007/s10278-009-9185-9 – reference: SuzukiKLiFSoneSDoiKComputer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural networkIEEE Trans Med Imaging20052491138115010.1109/TMI.2005.852048 – reference: BhuvaneswariBTDetection of Cancer in lung with K-NN classification using genetic algorithmProcedia Mater Sci201510433440370179810.1016/j.mspro.2015.06.077Elsevier – reference: OrozcoHMVillegasOOVSánchezVGCde Jesús Ochoa DomínguezHde Jesús Nandayapa AlfaroMAutomated system for lung nodules classification based on wavelet feature descriptor and support vector machineBiomed Eng201514912010.1186/s12938-015-0003-y – reference: ParkSCTanJWangXLedermanDLeaderJKKimSHZhengBComputer-aided detection of early interstitial lung diseases using low-dose CT imagesPhys Med Biol2011561139115310.1088/0031-9155/56/4/016Iop Publishing – reference: Sun W, Zheng B, Qian W (2016) "computer aided lung cancer diagnosis with deep learning algorithms" International Society for Optics and Photonics, medical imaging : computer-aided diagnosis. Vol. 9785 – reference: Ani Brown Mary N, Dharma D (2018) A novel framework for real-time diseased coral reef image classification’, Springer. Multimed Tools Appl:1–39. https://doi.org/10.1007/s11042-018-6673-2 – reference: Ani Brown MaryNDharmaD‘Coral reef image classification employing improved LDP for feature extraction’, ElsevierJ Vis Commun Image Represent201749C22524210.1016/j.jvcir.2017.09.008 – reference: Da SilvaGLFda Silva NetoOPSilvaACde Paiva Marcelo GattassAC“Lung nodules diagnosis based on evolutionary convolutional neural network”, springerMultimed Tools Appl20177618190391905510.1007/s11042-017-4480-9 – reference: Jin X-Y, Zhang Y-C, Jin Q-L (2016) Pulmonary nodule detection based on CT images using Convolution neural network. IEEE, 9th International Symposium on Computational Intelligence and Design, pp. 202–204. – reference: Sangamithraa, Govindaraju (2016) Lung tumour detection and classification using EK-mean clustering. IEEE WiSPNET – reference: Aggarwal T, Furqan A, Kalra K (2015) Feature extraction and LDA based classification of lung nodules in chest CT scan images. IEEE, International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1189–1193 – reference: de Carvalho FilhoAOSilvaACde PaivaACNunesRAGattassMLung-nodule classification based on computed tomography using taxonomic diversity indexes and an SVMSpringer, Journal of Signal Processing Systems, DOI20168717919610.1007/s11265-016-1134-5 – reference: AlakwaaWNassefMBadrALung Cancer detection and classification with 3D convolutional neural network (3D-CNN)International Journal of Advanced Computer Science and Applications (IJACSA)201788409417 – reference: ChabatFYangG-ZHansellDMObstructive lung diseases: texture classification for differentiation at CT1Radiology2003228387187710.1148/radiol.2283020505 – reference: Ani Brown MaryNDejeyD‘Classification of coral reef submarine images and videos using a novel Z with tilted Z local binary pattern (Z⊕TZLBP)’, springerWirel Pers Commun20189832427245910.1007/s11277-017-4981-x – reference: Roy TS, Sirohi N, Patle A (2015) Classification of Lung Image and Nodule Detection Using Fuzzy Inference System. IEEE, International Conference on Computing, Communication and Automation (ICCCA2015), pp. 1204–1207 – reference: Kumar D, Wong A, Clausi DA (2015) “Lung nodule classification using deep features in CT images”, IEEE, 12th conference on computer robot vision, pp 133-138. DOI. https://doi.org/10.1109/CRV.2015.25 – reference: da SilvaGLFde Carvalho FilhoAOSilvaACde PaivaACGattassMTaxonomic indexes for differentiating malignancy of lung nodules on CT imagesResearch on Biomedical Engineering201632326327210.1590/2446-4740.04615 – reference: Nie L, Zhang L, Yang Y, Wang M, Hong R, Chua T-S (2015) Beyond doctors: future health prediction from multimedia and multimodal observations. proceedings of the 23rd ACM international conference on multimedia. – reference: Li X-X, Li B, Tian L-F, Zhang L (2018) Automatic benign and malignant classification of pulmonary nodules in thoracic computed tomography based on RF algorithm. IET Image Process. https://doi.org/10.1049/iet-ipr.2016.1014 – reference: Orozco HM, Villegas OOV, Maynez LO, Sanchez VGC, de Jesus Ochoa Dominguez H (2012) Lung Nodule CLASSIFICATION in Frequency Domain Using Support Vector Machine. IEEE, In international conference on information science, signal processing and their application. – reference: Song QZ, Zhao L, Luo XK, Dou XC (2017) Using deep learning for classification of lung nodules on computed tomography images. Journal of healthcare engineering. https://doi.org/10.1155/2017/8314740 – reference: Zhang L, Zhang Q, Zhang L, Tao D, Huang X, Bo D (2014) Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding”, Elsevier. Pattern Recogn. https://doi.org/10.1016/j.patcog.2014.12.016 – reference: Ignatious S, Joseph R (2015) Computer Aided Lung Cancer Detection System. IEEE, Proceedings of 2015 Global Conference on Communication Technologies (GCCT 2015), pp. 555–558. – reference: Shao H, Cao L, Liu Y (2012) A detection approach for solitary pulmonary nodules based on CT images. IEEE, 2nd international conference on computer science and network technology. – reference: ZhouZ-HJiangYYangY-BChenS-FLung cancer cell identification based on artificial neural network ensemblesArtif Intell Med200224253610.1016/S0933-3657(01)00094-XElsevier – reference: AkramSJavedMYHussainARiazFUsman AkramMIntensity-based statistical features for classification of lungs CT scan nodules using artificial intelligence techniquesJournal of Experimental & Theoretical Artificial Intelligence201527673775110.1080/0952813X.2015.1020526 – reference: NieLWangMZhangLYanSZhangBChuaT-SDisease inference from health-related questions via sparse deep learningIEEE Trans Knowl Data Eng20152782107211910.1109/TKDE.2015.2399298 – reference: Zhang B, Allebach JP (2008) Adaptive Bilateral Filter for Sharpness Enhancement and Noise Removal. IEEE Trans Image Process 17(5) – reference: de Sousa CostaRWda SilvaGLFde Carvalho FilhoAOSilvaACde Paiva Marcelo GattassAC“Classification of malignant and benign lung nodules using taxonomic diversity index and phylogenetic distance”, springerMed Biol Eng Comput201856112125213610.1007/s11517-018-1841-0 – reference: Dong-ping Tian and Nai-qian Li, 2009, ‘Fuzzy Particle Swarm Optimization Algorithm’, IEEE, International Joint Conference on Artificial Intelligence, pp. 263–267. – reference: Zhang L, Zhang Q, Du Member B, Huang X, Tang YY, Tao D (2016) Simultaneous spectral-spatial feature selection and extraction for Hyperspectral images. IEEE Transactions on Cybernetics – reference: MakajuSPrasadAAElchouemiSLung Cancer detection using CT scan imagesElsevier, Procedia Computer Science201812510711410.1016/j.procs.2017.12.016 – ident: 8394_CR6 doi: 10.1007/s11042-018-6673-2 – volume: 228 start-page: 871 issue: 3 year: 2003 ident: 8394_CR9 publication-title: Radiology doi: 10.1148/radiol.2283020505 – ident: 8394_CR33 doi: 10.1109/ISBI.2015.7163869 – ident: 8394_CR27 doi: 10.1109/WiSPNET.2016.7566533 – volume: 23 start-page: 51 issue: 1 year: 2010 ident: 8394_CR38 publication-title: J Digit Imaging doi: 10.1007/s10278-009-9185-9 – volume: 49 start-page: 225 issue: C year: 2017 ident: 8394_CR5 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2017.09.008 – ident: 8394_CR35 – volume: 56 start-page: 1139 year: 2011 ident: 8394_CR25 publication-title: Phys Med Biol doi: 10.1088/0031-9155/56/4/016 – volume: 8 start-page: 409 issue: 8 year: 2017 ident: 8394_CR3 publication-title: International Journal of Advanced Computer Science and Applications (IJACSA) – ident: 8394_CR19 doi: 10.1049/iet-ipr.2016.1014 – ident: 8394_CR30 – volume: 32 start-page: 263 issue: 3 year: 2016 ident: 8394_CR12 publication-title: Research on Biomedical Engineering doi: 10.1590/2446-4740.04615 – volume: 27 start-page: 2107 issue: 8 year: 2015 ident: 8394_CR21 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2015.2399298 – volume: 98 start-page: 2427 issue: 3 year: 2018 ident: 8394_CR8 publication-title: Wirel Pers Commun doi: 10.1007/s11277-017-4981-x – volume: 98 start-page: 2427 issue: 3 year: 2018 ident: 8394_CR4 publication-title: Wirel Pers Commun doi: 10.1007/s11277-017-4981-x – ident: 8394_CR36 doi: 10.1016/j.patcog.2014.12.016 – ident: 8394_CR10 doi: 10.1016/j.acra.2009.12.009 – volume: 27 start-page: 737 issue: 6 year: 2015 ident: 8394_CR2 publication-title: Journal of Experimental & Theoretical Artificial Intelligence doi: 10.1080/0952813X.2015.1020526 – volume: 87 start-page: 179 year: 2016 ident: 8394_CR13 publication-title: Springer, Journal of Signal Processing Systems, DOI doi: 10.1007/s11265-016-1134-5 – ident: 8394_CR26 doi: 10.1109/CCAA.2015.7148560 – ident: 8394_CR32 – volume: 14 start-page: 1 issue: 9 year: 2015 ident: 8394_CR24 publication-title: Biomed Eng doi: 10.1186/s12938-015-0003-y – ident: 8394_CR17 – ident: 8394_CR18 doi: 10.1109/CRV.2015.25 – ident: 8394_CR22 doi: 10.1145/2733373.2806217 – volume: 76 start-page: 19039 issue: 18 year: 2017 ident: 8394_CR11 publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-4480-9 – volume: 125 start-page: 107 year: 2018 ident: 8394_CR20 publication-title: Elsevier, Procedia Computer Science doi: 10.1016/j.procs.2017.12.016 – volume: 24 start-page: 25 year: 2002 ident: 8394_CR37 publication-title: Artif Intell Med doi: 10.1016/S0933-3657(01)00094-X – volume: 10 start-page: 433 year: 2015 ident: 8394_CR7 publication-title: Procedia Mater Sci doi: 10.1016/j.mspro.2015.06.077 – ident: 8394_CR15 doi: 10.1109/ICACDOT.2016.7877572 – ident: 8394_CR34 doi: 10.1109/TIP.2008.919949 – ident: 8394_CR1 doi: 10.1109/ICACCI.2015.7275773 – volume: 56 start-page: 2125 issue: 11 year: 2018 ident: 8394_CR14 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-018-1841-0 – ident: 8394_CR29 doi: 10.1155/2017/8314740 – ident: 8394_CR28 doi: 10.1109/ICCSNT.2012.6526151 – ident: 8394_CR23 doi: 10.1109/ISSPA.2012.6310676 – ident: 8394_CR16 doi: 10.1109/GCCT.2015.7342723 – volume: 24 start-page: 1138 issue: 9 year: 2005 ident: 8394_CR31 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2005.852048 |
SSID | ssj0016524 |
Score | 2.566543 |
Snippet | Lung cancer is one of the main reasons for death in the world among both men and women, with an impressive rate of about five million deadly cases per year.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7731 |
SubjectTerms | Algorithms Computed tomography Computer Communication Networks Computer Science Data Structures and Information Theory Deep learning Feature extraction FPSO Histograms Image classification Image detection Lung cancer Lung diseases Machine learning Multimedia Information Systems Nodules Particle swarm optimization Special Purpose and Application-Based Systems Wavelet transforms |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUAUCvLABpbi-BGHrSpUFRJMVOoW2bHNUoWqDf8fO3VaQIDEmjge7ny573z33QFce4-gSWK1D1OlwUzYBCtrOFbaBI6PMUSHC_2nZzGesMcpn0ZS2LKtdm9Tks2fekN2I4FKkgTSjffqDNNt2OE-dg-FXJN0sM4dCB5H2coEe39IIlXm5z2-uqMNxvyWFm28zegQ9iNMRIOVXo9gy1ZdOGhHMKBokV3Y-9RP8Bju7q2dozgI4hV5PIpm3pjRMKh2gYytm8KrCqnKoDLg5lAo1OjmBCajh5fhGMfhCLj0VlNjpolIy9RRLVNLlQp3r8LlpSHCZbl0qc6dYiwxXGUhphFpohQPwyIlV5oZegqd6q2yZ4AcVaxMOJdOhm4zHkGUTlCV0Ezm_jnpAWllVJSxc3gYYDErNj2Pg1wLL9eikWtBe3Cz_ma-6pvx5-p-K_oi2tCy8GCC-2Awy2QPblt1bF7_vtv5_5ZfwG4aguimsKwPnXrxbi890qj1VXOwPgD8PcbE priority: 102 providerName: Springer Nature |
Title | Deep learning for lung Cancer detection and classification |
URI | https://link.springer.com/article/10.1007/s11042-019-08394-3 https://www.proquest.com/docview/2385998778 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4IXPTgAzWiSHrwpo376m7xYgB5RCMxRhI8bdpt1wtZEPD_21m6oCZy2mQfPczsdL6ZzswHcGU8gnQdLU2YyhUNQu1QoRWjQirs8VHKlZjQfx6Gg1HwOGZjm3Bb2LLKYk_MN2o1TTBHfmtcCzOhQRTx-9knRdYoPF21FBolqJgtmPMyVNrd4cvr-hwhZJbWljvU-EbXts2smudcbE1xsInHoISA-r9d0wZv_jkizT1P7xD2LWQkrZWOj2BHZ1U4KOgYiLXOKuz9mC14DHcPWs-IJYX4IAabkokxbNJBNc-J0su8CCsjIlMkQQyNRUO5nk5g1Ou-dQbUEiXQxFjQkgbSDb3ES33JPe0LgXnYMG0myg3TqMlTTzZTEQSOYiLC-Cb0HCEYEkdyJmSg_FMoZ9NMnwFJfREkDmM85Th5xqCJJA194fgRb5r7bg3cQkZxYqeII5nFJN7MP0a5xkaucS7X2K_B9fqb2WqGxta364XoY2tPi3ij_RrcFOrYPP5_tfPtq13ArocBdF5UVofycv6lLw3KWMoGlHiv34BKq9duD_Haf3_qNuwPZp6OvNY3Rp3QTg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xFEDBjVhOF1CBRRLbiRcJIQQsy1mBRBfs2KFZhQUWIX6Kb2Qmm7CABB1tDheTl5k39sw8gA2MCDYMvMU0VTsuYx9w453ixjrq8XEutLShf3kVt2_k2a26HYL3uheGyiprn1g6aveQ0R75DoYWhalBkuj97iMn1Sg6Xa0lNPqwOPdvr5iyPe-dHuH33Yyi1vH1YZtXqgI8Q7j1uLRhHGVRLqyOvDCGNi3jvJm5MM6Tps4j28yNlIFTJqFkII4CYxSpLGplrHQC1x2GUSkwklNneuvk89QiVpWIrg44RuKwatLpt-qF1AgTUMsQchLJxfdAOGC3Pw5kyzjXmobJiqCygz6iZmDIF7MwVYs_sMoXzMLEl0mGc7B75H2XVRIU9wyZMOugG2GHBKon5nyvLPkqmCkcy4ixU4lSiYp5uPkXAy7ASPFQ-EVguTAyC5TSuaY5N8hdsjwWJhCJbuL1sAFhbaM0q2aWk3RGJx1MWya7pmjXtLRrKhqw9flOtz-x48-nV2rTp9Xf-5wOsNaA7fpzDG7_vtrS36utw1j7-vIivTi9Ol-G8YhS97KcbQVGek8vfhX5Tc-ulaBicPffKP4AVBYHEA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1BkBAcgNJWhAbqQzm1FvvlXQcJISBEUEqEqiJxW-y13Uu0CUkQ4q_11zGz8RJAKjeu--HD7NuZN_bMPIBvGBF0GFiNaao0PEltwJU1gittqMfHmFDThv5FLz29Sn5ei-s5-Ff3wlBZZe0TK0dtBgXtke9iaBGYGmSZ3HW-LOKy0z0Y3nJSkKKT1lpOYwqRc_twj-nbeP-sg996J4q6J3-OT7lXGOAFQm_CEx2mURG5WMvIxkrRBmbq2oUJU5e1pYt026kkCYxQGSUGaRQoJUhxUQqlExPjuvOwkFFW1ICFo5Pe5e-nM4xUeEldGXCMy6Fv2Zk27oXUFhNQAxEylITHL8PijOu-Op6tol53DVY8XWWHU3x9gDlbrsNqLQXBvGdYh-Vncw0_wl7H2iHzghR_GfJi1kenwo4JYiNm7KQqACuZKg0riL9TwVKFkU9w9S4m_AyNclDaDWAuVkkRCCGdpKk3yGQKl8YqiDPZxuthE8LaRnnhJ5iTkEY_n81eJrvmaNe8smseN-H70zvD6fyON59u1abP_b88zmfIa8KP-nPMbv9_tc23V_sKi4jg_NdZ7_wLLEWUx1e1bS1oTEZ3dgvJzkRve1QxuHlvID8CNOkMog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+lung+Cancer+detection+and+classification&rft.jtitle=Multimedia+tools+and+applications&rft.au=Asuntha%2C+A.&rft.au=Srinivasan%2C+Andy&rft.date=2020-03-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=11-12&rft.spage=7731&rft.epage=7762&rft_id=info:doi/10.1007%2Fs11042-019-08394-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_019_08394_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |