Discretisation of an Oldroyd-B viscoelastic fluid flow using a Lie derivative formulation

In this article, we present a numerical method for the Stokes flow of an Oldroyd-B fluid. The viscoelastic stress evolves according to a constitutive law formulated in terms of the upper convected time derivative. A finite difference method is used to discretise along fluid trajectories to approxima...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 51; no. 1
Main Authors Ashby, Ben S., Pryer, Tristan
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, we present a numerical method for the Stokes flow of an Oldroyd-B fluid. The viscoelastic stress evolves according to a constitutive law formulated in terms of the upper convected time derivative. A finite difference method is used to discretise along fluid trajectories to approximate the advection and deformation terms of the upper convected derivative in a simple, cheap and cohesive manner, as well as ensuring that the discrete conformation tensor is positive definite. A full implementation with coupling to the fluid flow is presented, along with a detailed discussion of the issues that arise with such schemes. We demonstrate the performance of this method with detailed numerical experiments in a lid-driven cavity setup. Numerical results are benchmarked against published data, and the method is shown to perform well in this challenging case.
AbstractList In this article, we present a numerical method for the Stokes flow of an Oldroyd-B fluid. The viscoelastic stress evolves according to a constitutive law formulated in terms of the upper convected time derivative. A finite difference method is used to discretise along fluid trajectories to approximate the advection and deformation terms of the upper convected derivative in a simple, cheap and cohesive manner, as well as ensuring that the discrete conformation tensor is positive definite. A full implementation with coupling to the fluid flow is presented, along with a detailed discussion of the issues that arise with such schemes. We demonstrate the performance of this method with detailed numerical experiments in a lid-driven cavity setup. Numerical results are benchmarked against published data, and the method is shown to perform well in this challenging case.
ArticleNumber 1
Author Ashby, Ben S.
Pryer, Tristan
Author_xml – sequence: 1
  givenname: Ben S.
  orcidid: 0009-0002-3628-4052
  surname: Ashby
  fullname: Ashby, Ben S.
– sequence: 2
  givenname: Tristan
  orcidid: 0000-0003-4499-0563
  surname: Pryer
  fullname: Pryer, Tristan
BookMark eNp9UDtPwzAQtlCRaAt_gMkSs-HsOHE8QnlKlbrAwGS5sY1cpXGxk9L-e0zLxMByd7rvcadvgkZd6CxClxSuKYC4SRQ45wQYJxQYpWR3gsa0FIzIDIzyDFQSQav6DE1SWgGArEQ5Ru_3PjXR9j7p3ocOB4d1hxetiWFvyB3eZjjYVqfeN9i1gze5hi88JN99YI3n3mJjo99m-dZiF-J6aA9W5-jU6TbZi98-RW-PD6-zZzJfPL3MbuekKajsCV8CLUpZlwyEMBU4V0pgtTXMskYYuyytkSCpM0bktS6ZA8oKJzXjUMiqmKKro-8mhs_Bpl6twhC7fFIVlFdcVrySmVUfWU0MKUXrVOP7w5991L5VFNRPkOoYpMpBqkOQapel7I90E_1ax_1_om9X-HhS
CitedBy_id crossref_primary_10_1093_imanum_drae103
Cites_doi 10.1063/5.0034589
10.1007/978-94-009-6213-2_3
10.1016/S0377-0257(01)00137-9
10.1063/1.857891
10.1002/fld.752
10.1016/j.jnnfm.2004.08.008
10.1016/j.jnnfm.2016.03.001
10.1016/j.camwa.2020.02.022
10.1016/0021-9991(82)90058-4
10.1016/j.jnnfm.2021.104668
10.1002/fld.4195
10.1016/B978-0-444-53047-9.00004-6
10.1063/1.869430
10.1016/j.cma.2005.04.008
10.1002/fld.1919
10.1016/S0045-7825(02)00630-8
10.1016/j.jnnfm.2014.08.005
10.1016/j.compfluid.2004.12.004
10.4171/owr/2006/14
10.56021/9781421407944
10.1007/s00162-018-0476-y
10.1016/S0045-7825(00)00307-8
10.1007/978-3-642-11795-4_19
10.1016/j.jnnfm.2005.01.002
10.1137/S0036142905444482
10.1016/0021-8928(70)90006-7
10.1016/S0377-0257(03)00096-X
10.1137/20M1364990
10.1051/m2an/2009008
10.1063/1.869631
10.1098/rspa.1950.0035
10.1007/BF01396435
10.1016/j.jnnfm.2021.104573
10.1007/s002110100364
10.1007/BF01396329
10.1016/j.jnnfm.2015.05.003
10.1016/j.jnnfm.2004.12.003
10.1137/1.9780898719413
10.1093/acprof:oso/9780199678792.001.0001
10.1016/j.jnnfm.2016.12.002
ContentType Journal Article
Copyright Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s10444-024-10211-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1572-9044
ExternalDocumentID 10_1007_s10444_024_10211_x
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
ABRTQ
ID FETCH-LOGICAL-c319t-4b01359852077d60ff59028ed2e2c7deb5ed9091fdd728ea52f0123f9a2403963
ISSN 1019-7168
IngestDate Fri Jul 25 10:40:07 EDT 2025
Tue Jul 01 05:39:59 EDT 2025
Thu Apr 24 23:02:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-4b01359852077d60ff59028ed2e2c7deb5ed9091fdd728ea52f0123f9a2403963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-3628-4052
0000-0003-4499-0563
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10444-024-10211-x.pdf
PQID 3146496469
PQPubID 2043875
ParticipantIDs proquest_journals_3146496469
crossref_citationtrail_10_1007_s10444_024_10211_x
crossref_primary_10_1007_s10444_024_10211_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References 10211_CR29
10211_CR28
10211_CR27
10211_CR15
10211_CR37
10211_CR14
10211_CR36
10211_CR13
10211_CR35
10211_CR12
10211_CR34
10211_CR11
10211_CR33
10211_CR10
10211_CR32
10211_CR31
10211_CR30
10211_CR19
10211_CR18
10211_CR17
10211_CR39
10211_CR16
10211_CR38
10211_CR40
10211_CR2
10211_CR1
10211_CR8
10211_CR26
10211_CR7
10211_CR25
10211_CR24
10211_CR9
10211_CR23
10211_CR45
10211_CR4
10211_CR22
10211_CR44
10211_CR3
10211_CR21
10211_CR43
10211_CR6
10211_CR20
10211_CR42
10211_CR5
10211_CR41
References_xml – ident: 10211_CR45
  doi: 10.1063/5.0034589
– ident: 10211_CR22
  doi: 10.1007/978-94-009-6213-2_3
– ident: 10211_CR35
  doi: 10.1016/S0377-0257(01)00137-9
– ident: 10211_CR1
  doi: 10.1063/1.857891
– ident: 10211_CR12
  doi: 10.1002/fld.752
– ident: 10211_CR15
  doi: 10.1016/j.jnnfm.2004.08.008
– ident: 10211_CR43
  doi: 10.1016/j.jnnfm.2016.03.001
– ident: 10211_CR11
– ident: 10211_CR2
  doi: 10.1016/j.camwa.2020.02.022
– ident: 10211_CR13
– ident: 10211_CR4
– ident: 10211_CR17
  doi: 10.1016/0021-9991(82)90058-4
– ident: 10211_CR21
  doi: 10.1016/j.jnnfm.2021.104668
– ident: 10211_CR29
  doi: 10.1002/fld.4195
– ident: 10211_CR26
  doi: 10.1016/B978-0-444-53047-9.00004-6
– ident: 10211_CR33
  doi: 10.1063/1.869430
– ident: 10211_CR25
  doi: 10.1016/j.cma.2005.04.008
– ident: 10211_CR34
  doi: 10.1002/fld.1919
– ident: 10211_CR38
– ident: 10211_CR27
  doi: 10.1016/S0045-7825(02)00630-8
– ident: 10211_CR19
  doi: 10.1016/j.jnnfm.2014.08.005
– ident: 10211_CR9
  doi: 10.1016/j.compfluid.2004.12.004
– ident: 10211_CR20
  doi: 10.4171/owr/2006/14
– ident: 10211_CR18
  doi: 10.56021/9781421407944
– ident: 10211_CR24
  doi: 10.1007/s00162-018-0476-y
– ident: 10211_CR6
  doi: 10.1016/S0045-7825(00)00307-8
– ident: 10211_CR7
  doi: 10.1007/978-3-642-11795-4_19
– ident: 10211_CR23
  doi: 10.1016/j.jnnfm.2005.01.002
– ident: 10211_CR5
  doi: 10.1137/S0036142905444482
– ident: 10211_CR42
  doi: 10.1016/0021-8928(70)90006-7
– ident: 10211_CR28
  doi: 10.1016/S0377-0257(03)00096-X
– ident: 10211_CR30
  doi: 10.1137/20M1364990
– ident: 10211_CR8
  doi: 10.1051/m2an/2009008
– ident: 10211_CR32
  doi: 10.1063/1.869631
– ident: 10211_CR3
– ident: 10211_CR31
  doi: 10.1098/rspa.1950.0035
– ident: 10211_CR37
  doi: 10.1007/BF01396435
– ident: 10211_CR40
  doi: 10.1016/j.jnnfm.2021.104573
– ident: 10211_CR41
  doi: 10.1007/s002110100364
– ident: 10211_CR44
  doi: 10.1007/BF01396329
– ident: 10211_CR10
  doi: 10.1016/j.jnnfm.2015.05.003
– ident: 10211_CR16
  doi: 10.1016/j.jnnfm.2004.12.003
– ident: 10211_CR39
  doi: 10.1137/1.9780898719413
– ident: 10211_CR14
  doi: 10.1093/acprof:oso/9780199678792.001.0001
– ident: 10211_CR36
  doi: 10.1016/j.jnnfm.2016.12.002
SSID ssj0009675
Score 2.381529
Snippet In this article, we present a numerical method for the Stokes flow of an Oldroyd-B fluid. The viscoelastic stress evolves according to a constitutive law...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Finite difference method
Fluid flow
Mathematical analysis
Numerical methods
Stokes flow
Stokes law (fluid mechanics)
Tensors
Viscoelastic fluids
Title Discretisation of an Oldroyd-B viscoelastic fluid flow using a Lie derivative formulation
URI https://www.proquest.com/docview/3146496469
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELaWctkL7FNbYFc-cKuMGsdOmmPLUqEVlEsrlZPl2I6EVBJUUl6_nrHjJC27QgsXK3LSJvJnj2fGM98gdDgwA-1OGBMwl4kVeETKMCWx41qhodLSJiefT6LTGfsz5_O2Np_LLinTI_X0z7yS96AKfYCrzZJ9A7LNn0IHXAO-0ALC0P4Xxr-vYNGb0kfkuCP9vHex0MviUZNR7w5uFwbUY0vKmi1WVxra4r63cv4BCfa4TZpauvpmFfn3tS_mta6yDqsoARc3q1wNiNp_eN1Qvm44Dyiv441fOA9tZLQ9r2iSW5wsBO2PgDlViUfj5WNMAdaKsrEWoJ4xdm2i_CWX-3WeMmMMvoERW1E8IA_tLlSfvE8uxHh2diamJ_PpFtqmoP3TDtoejkejScumHDkG5eYLfTaUz4l88Y5NjWNzw3VaxPQT2vHqPx5WWH5GH0z-Be16UwB7QXv7FV1uQouLDMscN9DidWixgxZbaLGDFksM0OIWWrwG7Tc0G59Mj0-Jr4JBFIjHkjDrqebJgNN-HOuon2WOccdoaqiKtUm50bDQgkzrGLolp5nVk7NEWqpFkK_fUScvcvMDYRZJFWpjBgFTjCueBlkcRgZMRlt9hSddFNQjJZSniLeVShaiJbe2oytgdIUbXfHQRb3mNzcVQcqrTx_UAAi_kG5FCLs1SyIWJXuv395HH9tJfIA65XJlfoJOWKa__Ax5BqKPYTc
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discretisation+of+an+Oldroyd-B+viscoelastic+fluid+flow+using+a+Lie+derivative+formulation&rft.jtitle=Advances+in+computational+mathematics&rft.date=2025-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=51&rft.issue=1&rft_id=info:doi/10.1007%2Fs10444-024-10211-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon