Discretisation of an Oldroyd-B viscoelastic fluid flow using a Lie derivative formulation
In this article, we present a numerical method for the Stokes flow of an Oldroyd-B fluid. The viscoelastic stress evolves according to a constitutive law formulated in terms of the upper convected time derivative. A finite difference method is used to discretise along fluid trajectories to approxima...
Saved in:
Published in | Advances in computational mathematics Vol. 51; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Nature B.V
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, we present a numerical method for the Stokes flow of an Oldroyd-B fluid. The viscoelastic stress evolves according to a constitutive law formulated in terms of the upper convected time derivative. A finite difference method is used to discretise along fluid trajectories to approximate the advection and deformation terms of the upper convected derivative in a simple, cheap and cohesive manner, as well as ensuring that the discrete conformation tensor is positive definite. A full implementation with coupling to the fluid flow is presented, along with a detailed discussion of the issues that arise with such schemes. We demonstrate the performance of this method with detailed numerical experiments in a lid-driven cavity setup. Numerical results are benchmarked against published data, and the method is shown to perform well in this challenging case. |
---|---|
AbstractList | In this article, we present a numerical method for the Stokes flow of an Oldroyd-B fluid. The viscoelastic stress evolves according to a constitutive law formulated in terms of the upper convected time derivative. A finite difference method is used to discretise along fluid trajectories to approximate the advection and deformation terms of the upper convected derivative in a simple, cheap and cohesive manner, as well as ensuring that the discrete conformation tensor is positive definite. A full implementation with coupling to the fluid flow is presented, along with a detailed discussion of the issues that arise with such schemes. We demonstrate the performance of this method with detailed numerical experiments in a lid-driven cavity setup. Numerical results are benchmarked against published data, and the method is shown to perform well in this challenging case. |
ArticleNumber | 1 |
Author | Ashby, Ben S. Pryer, Tristan |
Author_xml | – sequence: 1 givenname: Ben S. orcidid: 0009-0002-3628-4052 surname: Ashby fullname: Ashby, Ben S. – sequence: 2 givenname: Tristan orcidid: 0000-0003-4499-0563 surname: Pryer fullname: Pryer, Tristan |
BookMark | eNp9UDtPwzAQtlCRaAt_gMkSs-HsOHE8QnlKlbrAwGS5sY1cpXGxk9L-e0zLxMByd7rvcadvgkZd6CxClxSuKYC4SRQ45wQYJxQYpWR3gsa0FIzIDIzyDFQSQav6DE1SWgGArEQ5Ru_3PjXR9j7p3ocOB4d1hxetiWFvyB3eZjjYVqfeN9i1gze5hi88JN99YI3n3mJjo99m-dZiF-J6aA9W5-jU6TbZi98-RW-PD6-zZzJfPL3MbuekKajsCV8CLUpZlwyEMBU4V0pgtTXMskYYuyytkSCpM0bktS6ZA8oKJzXjUMiqmKKro-8mhs_Bpl6twhC7fFIVlFdcVrySmVUfWU0MKUXrVOP7w5991L5VFNRPkOoYpMpBqkOQapel7I90E_1ax_1_om9X-HhS |
CitedBy_id | crossref_primary_10_1093_imanum_drae103 |
Cites_doi | 10.1063/5.0034589 10.1007/978-94-009-6213-2_3 10.1016/S0377-0257(01)00137-9 10.1063/1.857891 10.1002/fld.752 10.1016/j.jnnfm.2004.08.008 10.1016/j.jnnfm.2016.03.001 10.1016/j.camwa.2020.02.022 10.1016/0021-9991(82)90058-4 10.1016/j.jnnfm.2021.104668 10.1002/fld.4195 10.1016/B978-0-444-53047-9.00004-6 10.1063/1.869430 10.1016/j.cma.2005.04.008 10.1002/fld.1919 10.1016/S0045-7825(02)00630-8 10.1016/j.jnnfm.2014.08.005 10.1016/j.compfluid.2004.12.004 10.4171/owr/2006/14 10.56021/9781421407944 10.1007/s00162-018-0476-y 10.1016/S0045-7825(00)00307-8 10.1007/978-3-642-11795-4_19 10.1016/j.jnnfm.2005.01.002 10.1137/S0036142905444482 10.1016/0021-8928(70)90006-7 10.1016/S0377-0257(03)00096-X 10.1137/20M1364990 10.1051/m2an/2009008 10.1063/1.869631 10.1098/rspa.1950.0035 10.1007/BF01396435 10.1016/j.jnnfm.2021.104573 10.1007/s002110100364 10.1007/BF01396329 10.1016/j.jnnfm.2015.05.003 10.1016/j.jnnfm.2004.12.003 10.1137/1.9780898719413 10.1093/acprof:oso/9780199678792.001.0001 10.1016/j.jnnfm.2016.12.002 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10444-024-10211-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1572-9044 |
ExternalDocumentID | 10_1007_s10444_024_10211_x |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX ABRTQ |
ID | FETCH-LOGICAL-c319t-4b01359852077d60ff59028ed2e2c7deb5ed9091fdd728ea52f0123f9a2403963 |
ISSN | 1019-7168 |
IngestDate | Fri Jul 25 10:40:07 EDT 2025 Tue Jul 01 05:39:59 EDT 2025 Thu Apr 24 23:02:12 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c319t-4b01359852077d60ff59028ed2e2c7deb5ed9091fdd728ea52f0123f9a2403963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0002-3628-4052 0000-0003-4499-0563 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10444-024-10211-x.pdf |
PQID | 3146496469 |
PQPubID | 2043875 |
ParticipantIDs | proquest_journals_3146496469 crossref_citationtrail_10_1007_s10444_024_10211_x crossref_primary_10_1007_s10444_024_10211_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Advances in computational mathematics |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | 10211_CR29 10211_CR28 10211_CR27 10211_CR15 10211_CR37 10211_CR14 10211_CR36 10211_CR13 10211_CR35 10211_CR12 10211_CR34 10211_CR11 10211_CR33 10211_CR10 10211_CR32 10211_CR31 10211_CR30 10211_CR19 10211_CR18 10211_CR17 10211_CR39 10211_CR16 10211_CR38 10211_CR40 10211_CR2 10211_CR1 10211_CR8 10211_CR26 10211_CR7 10211_CR25 10211_CR24 10211_CR9 10211_CR23 10211_CR45 10211_CR4 10211_CR22 10211_CR44 10211_CR3 10211_CR21 10211_CR43 10211_CR6 10211_CR20 10211_CR42 10211_CR5 10211_CR41 |
References_xml | – ident: 10211_CR45 doi: 10.1063/5.0034589 – ident: 10211_CR22 doi: 10.1007/978-94-009-6213-2_3 – ident: 10211_CR35 doi: 10.1016/S0377-0257(01)00137-9 – ident: 10211_CR1 doi: 10.1063/1.857891 – ident: 10211_CR12 doi: 10.1002/fld.752 – ident: 10211_CR15 doi: 10.1016/j.jnnfm.2004.08.008 – ident: 10211_CR43 doi: 10.1016/j.jnnfm.2016.03.001 – ident: 10211_CR11 – ident: 10211_CR2 doi: 10.1016/j.camwa.2020.02.022 – ident: 10211_CR13 – ident: 10211_CR4 – ident: 10211_CR17 doi: 10.1016/0021-9991(82)90058-4 – ident: 10211_CR21 doi: 10.1016/j.jnnfm.2021.104668 – ident: 10211_CR29 doi: 10.1002/fld.4195 – ident: 10211_CR26 doi: 10.1016/B978-0-444-53047-9.00004-6 – ident: 10211_CR33 doi: 10.1063/1.869430 – ident: 10211_CR25 doi: 10.1016/j.cma.2005.04.008 – ident: 10211_CR34 doi: 10.1002/fld.1919 – ident: 10211_CR38 – ident: 10211_CR27 doi: 10.1016/S0045-7825(02)00630-8 – ident: 10211_CR19 doi: 10.1016/j.jnnfm.2014.08.005 – ident: 10211_CR9 doi: 10.1016/j.compfluid.2004.12.004 – ident: 10211_CR20 doi: 10.4171/owr/2006/14 – ident: 10211_CR18 doi: 10.56021/9781421407944 – ident: 10211_CR24 doi: 10.1007/s00162-018-0476-y – ident: 10211_CR6 doi: 10.1016/S0045-7825(00)00307-8 – ident: 10211_CR7 doi: 10.1007/978-3-642-11795-4_19 – ident: 10211_CR23 doi: 10.1016/j.jnnfm.2005.01.002 – ident: 10211_CR5 doi: 10.1137/S0036142905444482 – ident: 10211_CR42 doi: 10.1016/0021-8928(70)90006-7 – ident: 10211_CR28 doi: 10.1016/S0377-0257(03)00096-X – ident: 10211_CR30 doi: 10.1137/20M1364990 – ident: 10211_CR8 doi: 10.1051/m2an/2009008 – ident: 10211_CR32 doi: 10.1063/1.869631 – ident: 10211_CR3 – ident: 10211_CR31 doi: 10.1098/rspa.1950.0035 – ident: 10211_CR37 doi: 10.1007/BF01396435 – ident: 10211_CR40 doi: 10.1016/j.jnnfm.2021.104573 – ident: 10211_CR41 doi: 10.1007/s002110100364 – ident: 10211_CR44 doi: 10.1007/BF01396329 – ident: 10211_CR10 doi: 10.1016/j.jnnfm.2015.05.003 – ident: 10211_CR16 doi: 10.1016/j.jnnfm.2004.12.003 – ident: 10211_CR39 doi: 10.1137/1.9780898719413 – ident: 10211_CR14 doi: 10.1093/acprof:oso/9780199678792.001.0001 – ident: 10211_CR36 doi: 10.1016/j.jnnfm.2016.12.002 |
SSID | ssj0009675 |
Score | 2.381529 |
Snippet | In this article, we present a numerical method for the Stokes flow of an Oldroyd-B fluid. The viscoelastic stress evolves according to a constitutive law... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Finite difference method Fluid flow Mathematical analysis Numerical methods Stokes flow Stokes law (fluid mechanics) Tensors Viscoelastic fluids |
Title | Discretisation of an Oldroyd-B viscoelastic fluid flow using a Lie derivative formulation |
URI | https://www.proquest.com/docview/3146496469 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELaWctkL7FNbYFc-cKuMGsdOmmPLUqEVlEsrlZPl2I6EVBJUUl6_nrHjJC27QgsXK3LSJvJnj2fGM98gdDgwA-1OGBMwl4kVeETKMCWx41qhodLSJiefT6LTGfsz5_O2Np_LLinTI_X0z7yS96AKfYCrzZJ9A7LNn0IHXAO-0ALC0P4Xxr-vYNGb0kfkuCP9vHex0MviUZNR7w5uFwbUY0vKmi1WVxra4r63cv4BCfa4TZpauvpmFfn3tS_mta6yDqsoARc3q1wNiNp_eN1Qvm44Dyiv441fOA9tZLQ9r2iSW5wsBO2PgDlViUfj5WNMAdaKsrEWoJ4xdm2i_CWX-3WeMmMMvoERW1E8IA_tLlSfvE8uxHh2diamJ_PpFtqmoP3TDtoejkejScumHDkG5eYLfTaUz4l88Y5NjWNzw3VaxPQT2vHqPx5WWH5GH0z-Be16UwB7QXv7FV1uQouLDMscN9DidWixgxZbaLGDFksM0OIWWrwG7Tc0G59Mj0-Jr4JBFIjHkjDrqebJgNN-HOuon2WOccdoaqiKtUm50bDQgkzrGLolp5nVk7NEWqpFkK_fUScvcvMDYRZJFWpjBgFTjCueBlkcRgZMRlt9hSddFNQjJZSniLeVShaiJbe2oytgdIUbXfHQRb3mNzcVQcqrTx_UAAi_kG5FCLs1SyIWJXuv395HH9tJfIA65XJlfoJOWKa__Ax5BqKPYTc |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discretisation+of+an+Oldroyd-B+viscoelastic+fluid+flow+using+a+Lie+derivative+formulation&rft.jtitle=Advances+in+computational+mathematics&rft.date=2025-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=51&rft.issue=1&rft_id=info:doi/10.1007%2Fs10444-024-10211-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon |