Cross-UNet: dual-branch infrared and visible image fusion framework based on cross-convolution and attention mechanism
Existing infrared and visible image fusion methods suffer from edge information loss, artifact introduction, and image distortion. Therefore, a dual-branch network model based on the attention mechanism, Cross-UNet, is proposed in this paper for infrared and visible image fusion. First, the encoder...
Saved in:
Published in | The Visual computer Vol. 39; no. 10; pp. 4801 - 4818 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Existing infrared and visible image fusion methods suffer from edge information loss, artifact introduction, and image distortion. Therefore, a dual-branch network model based on the attention mechanism, Cross-UNet, is proposed in this paper for infrared and visible image fusion. First, the encoder part adopts an asymmetric convolution kernel, which can simultaneously obtain local detail information and global structural information of the source image from different directions. Second, in order to fuse the dual-branch image features of different scales, a dual-attention mechanism is added to the fusion block. Finally, the decoder adopts an attention model with a large receptive field to enhance the ability to judge the importance of features, thereby improving the fusion quality. On the public datasets of TNO, RoadScene, and Country, the results are fully compared with nine other advanced fusion methods both qualitatively and quantitatively. The results show that the model in this paper has superior performance and high stability. |
---|---|
AbstractList | Existing infrared and visible image fusion methods suffer from edge information loss, artifact introduction, and image distortion. Therefore, a dual-branch network model based on the attention mechanism, Cross-UNet, is proposed in this paper for infrared and visible image fusion. First, the encoder part adopts an asymmetric convolution kernel, which can simultaneously obtain local detail information and global structural information of the source image from different directions. Second, in order to fuse the dual-branch image features of different scales, a dual-attention mechanism is added to the fusion block. Finally, the decoder adopts an attention model with a large receptive field to enhance the ability to judge the importance of features, thereby improving the fusion quality. On the public datasets of TNO, RoadScene, and Country, the results are fully compared with nine other advanced fusion methods both qualitatively and quantitatively. The results show that the model in this paper has superior performance and high stability. |
Author | Li, Jinjiang Hua, Zhen Wang, Xuejiao |
Author_xml | – sequence: 1 givenname: Xuejiao surname: Wang fullname: Wang, Xuejiao organization: School of Computer Science and Technology, Shandong Technology and Business University, Institute of Network Technology (INT) – sequence: 2 givenname: Zhen surname: Hua fullname: Hua, Zhen email: huazhen@sdtbu.edu.cn organization: School of Information and electronic engineering, Shandong Technology and Business University – sequence: 3 givenname: Jinjiang orcidid: 0000-0002-2080-8678 surname: Li fullname: Li, Jinjiang organization: School of Computer Science and Technology, Shandong Technology and Business University, Institute of Network Technology (INT) |
BookMark | eNp9kMtOwzAQRS1UJNrCD7CKxNowtpM4YYcqXhKCDV1bjuO0KYld7KSIv8dJkJBYdDEajX3PPO4CzYw1GqFLAtcEgN94AMYJBkpDpDTD6Qmak5hRTBlJZmgOhGeY8iw_QwvvdxBqHudzdFg56z1ev-ruNip72eDCSaO2UW0qJ50uI2nK6FD7umh0VLdyo6Oq97U1Ufhv9Zd1H1EhfRCGJzU2U9YcbNN3g2igZddpM1atVltpat-eo9NKNl5f_OYlWj_cv6-e8Mvb4_Pq7gUrRvIOx5KzIivTAiqVE6U1i3VBqCpjoFWqEgZpnhFKY8hzVQFLIEspSJZwppOyALZEV1PfvbOfvfad2NnemTBS0JxkwAcgqOikGvd3uhJ7F05134KAGPwVk78i-CtGf0UaoOwfpOpODmd2TtbNcZRNqA9zzEa7v62OUD_2xpJd |
CitedBy_id | crossref_primary_10_1007_s00371_023_02834_w crossref_primary_10_1007_s00371_024_03273_x crossref_primary_10_3389_fphy_2023_1180100 crossref_primary_10_3390_su152215920 crossref_primary_10_1364_JOSAA_492002 crossref_primary_10_3390_app14010114 crossref_primary_10_1007_s00371_023_02780_7 crossref_primary_10_1016_j_jrmge_2024_09_051 crossref_primary_10_1007_s11760_022_02392_z crossref_primary_10_3390_rs16244781 crossref_primary_10_3389_fphy_2023_1214206 crossref_primary_10_1016_j_optlastec_2024_111666 |
Cites_doi | 10.1016/j.infrared.2022.104041 10.1109/TPAMI.2011.109 10.1016/j.inffus.2019.07.011 10.1016/j.bspc.2021.103357 10.1007/s00371-021-02396-9 10.1109/CVPR42600.2020.00325 10.21437/Interspeech.2016-686 10.1007/s00371-022-02438-w 10.1109/CVPR.2011.5995637 10.1016/j.optlastec.2021.107787 10.1016/j.knosys.2021.107087 10.1016/j.neucom.2021.06.009 10.3390/rs13030335 10.1007/s00371-022-02410-8 10.1109/JSEN.2021.3073568 10.1109/TCSVT.2021.3109895 10.1109/TCSVT.2021.3138431 10.1109/TIP.2019.2905537 10.1007/s00371-022-02441-1 10.1016/j.neucom.2022.02.025 10.1109/ICPR48806.2021.9412293 10.1609/aaai.v34i07.6975 10.1016/j.inffus.2018.09.004 10.1016/j.inffus.2021.02.023 10.1016/j.ins.2017.09.010 10.1016/j.cviu.2022.103407 10.1109/TIP.2022.3203223 10.1109/TIP.2018.2887342 10.1109/ICCV.2019.00069 10.1016/j.infrared.2019.03.030 10.1016/j.media.2017.06.014 10.1016/j.inffus.2021.02.008 10.1109/JSEN.2021.3090021 10.1109/CVPR.2016.308 10.1109/TNNLS.2020.3019893 10.1016/j.patcog.2020.107756 10.1109/JSTARS.2021.3065987 10.1109/CVPR.2018.00745 10.1109/CVPR.2018.00813 10.1016/j.inffus.2022.03.007 10.1109/CVPR42600.2020.00406 10.1109/ICASSP.2019.8682386 10.1109/TPAMI.2020.3012548 10.1109/TIP.2020.2975984 10.1109/TIM.2020.3005230 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00371-022-02628-6 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1432-2315 |
EndPage | 4818 |
ExternalDocumentID | 10_1007_s00371_022_02628_6 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61972235; 12001327 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 61772319; 62002200 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-4a73b8d6b0fc91cee34eb12cd402f6c5306981224099cf03508620a3573e5db03 |
IEDL.DBID | BENPR |
ISSN | 0178-2789 |
IngestDate | Fri Jul 25 23:39:13 EDT 2025 Tue Jul 01 01:05:52 EDT 2025 Thu Apr 24 22:58:57 EDT 2025 Fri Feb 21 02:41:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Attention mechanism Cross-convolution Image fusion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-4a73b8d6b0fc91cee34eb12cd402f6c5306981224099cf03508620a3573e5db03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2080-8678 |
PQID | 2918070862 |
PQPubID | 2043737 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2918070862 crossref_primary_10_1007_s00371_022_02628_6 crossref_citationtrail_10_1007_s00371_022_02628_6 springer_journals_10_1007_s00371_022_02628_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231000 2023-10-00 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 20231000 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | International Journal of Computer Graphics |
PublicationTitle | The Visual computer |
PublicationTitleAbbrev | Vis Comput |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | YinWHeKXuDLuoYGongJSignificant target analysis and detail preserving based infrared and visible image fusionInfrared Phys. Technol.202212110404110.1016/j.infrared.2022.104041 Cai, W., Cai, D., Huang, S., Li, M.: Utterance-level end-to-end language identification using attention-based cnn-blstm. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp 5991–5995 (2019) Hou, Q., Zhang, L., Cheng, M.M., Feng, J.: Strip pooling: Rethinking spatial pooling for scene parsing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 4003–4012 (2020) MaJYuWLiangPLiCJiangJFusiongan: a generative adversarial network for infrared and visible image fusionInf. Fusion201948112610.1016/j.inffus.2018.09.004 LiXZhouFTanHJoint image fusion and denoising via three-layer decomposition and sparse representationKnowl.-Based Syst.202122410708710.1016/j.knosys.2021.107087 Wang, X., Wu, K., Zhang, Y., Xiao, Y., Xu, P.: A gan-based denoising method for chinese stele and rubbing calligraphic image. Vis. Comput. pp. 1–12 (2022) XuHGongMTianXHuangJMaJCufd: An encoder-decoder network for visible and infrared image fusion based on common and unique feature decompositionComput. Vis. Image Underst.202221810340710.1016/j.cviu.2022.103407 Yang, F., Zhang, Q.: Depth aware image dehazing, pp. 1–9. The Visual Computer (2021) Cai, W., Wei, Z.: Remote sensing image classification based on a cross-attention mechanism and graph convolution. IEEE Geosci. Remote Sens. Lett. (2020) Brown, M., Süsstrunk, S.: Multi-spectral sift for scene category recognition. In: CVPR 2011, IEEE, pp 177–184 (2011) Toet, A., et al.: Tno image fusion dataset<\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<$$\end{document}https://figshare.com/articles. TN_Image_Fusion_Dataset/1008029 (2014) Zhang, H., Xu, H., Xiao, Y., Guo, X., Ma, J.: Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 34, pp. 12797–12804 (2020) Fu, Y., Wu, X.J.: A dual-branch network for infrared and visible image fusion. In: 2020 25th International Conference on Pattern Recognition (ICPR), IEEE, pp 10675–10680 (2021) ZhangWSuiXGuGChenQCaoHInfrared thermal imaging super-resolution via multiscale spatio-temporal feature fusion networkIEEE Sens. J.20212117191761918510.1109/JSEN.2021.3090021 Wang, Z., Wang, J., Wu, Y., Xu, J., Zhang, X.: Unfusion: A unified multi-scale densely connected network for infrared and visible image fusion. IEEE Trans. Circ. Syst. Video Technol. (2021) LiHWuXJDensefuse: a fusion approach to infrared and visible imagesIEEE Trans. Image Process.201828526142623392519310.1109/TIP.2018.2887342 YuQGaoYZhengYZhuJDaiYShiYCrossover-net: leveraging vertical-horizontal crossover relation for robust medical image segmentationPattern Recogn.202111310775610.1016/j.patcog.2020.107756 YuQShiYSunJGaoYZhuJDaiYCrossbar-net: a novel convolutional neural network for kidney tumor segmentation in ct imagesIEEE Trans. Image Process.201928840604074397693010.1109/TIP.2019.290553707122962 Yu, Q., Qi, L., Zhou, L., Wang, L., Yin, Y., Shi, Y., Wang, W., Gao, Y.: Crosslink-net: Double-branch encoder segmentation network via fusing vertical and horizontal convolutions. arXiv preprint arXiv:2107.11517 (2021) LiuCYangBLiYZhangXPangLAn information retention and feature transmission network for infrared and visible image fusionIEEE Sens. J.20212113149501495910.1109/JSEN.2021.3073568 SongADuanHPeiHDingLTriple-discriminator generative adversarial network for infrared and visible image fusionNeurocomputing202248318319410.1016/j.neucom.2022.02.025 ZhuZYinHChaiYLiYQiGA novel multi-modality image fusion method based on image decomposition and sparse representationInf. Sci.2018432516529375819610.1016/j.ins.2017.09.010 LiHWuXJKittlerJRfn-nest: an end-to-end residual fusion network for infrared and visible imagesInf. Fusion202173728610.1016/j.inffus.2021.02.023 WangSZhouMLiuZLiuZGuDZangYDongDGevaertOTianJCentral focused convolutional neural networks: developing a data-driven model for lung nodule segmentationMed. Image Anal.20174017218310.1016/j.media.2017.06.014 LiHWuXJDurraniTNestfuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention modelsIEEE Trans. Instrum. Meas.202069129645965610.1109/TIM.2020.3005230 Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141 (2018) Guo, M.H., Lu, C.Z., Liu, Z.N., Cheng, M.M., Hu, S.M. Visual attention network. arXiv preprint arXiv:2202.09741 (2022) YangBWangLWongDFShiSTuZContext-aware self-attention networks for natural language processingNeurocomputing202145815716910.1016/j.neucom.2021.06.009 Nozaripour, A., Soltanizadeh, H.: Image classification via convolutional sparse coding. Vis. Comput. pp 1–14 (2022) GalassiALippiMTorroniPAttention in natural language processingIEEE Trans. Neural Netw. Learn. Syst.202032104291430810.1109/TNNLS.2020.3019893 QingYLiuWHyperspectral image classification based on multi-scale residual network with attention mechanismRemote Sensing202113333510.3390/rs13030335 Lu, R., Gao, F., Yang, X., Fan, J., Li, D.: A novel infrared and visible image fusion method based on multi-level saliency integration. Vis. Comput. pp 1–15 (2022) LiuZBlaschEXueZZhaoJLaganiereRWuWObjective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative studyIEEE Trans. Pattern Anal. Mach. Intell.20113419410910.1109/TPAMI.2011.109 Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: Ccnet: Criss-cross attention for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 603–612 (2019) MaJZhangHShaoZLiangPXuHGanmcc: a generative adversarial network with multiclassification constraints for infrared and visible image fusionIEEE Trans. Instrum. Meas.202070114 ZhangYLiuYSunPYanHZhaoXZhangLIfcnn: a general image fusion framework based on convolutional neural networkInf. Fusion2020549911810.1016/j.inffus.2019.07.011 Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018) YousifASOmarZSheikhUUAn improved approach for medical image fusion using sparse representation and siamese convolutional neural networkBiomed. Signal Process. Control20227210335710.1016/j.bspc.2021.103357 LiHWuXJKittlerJMdlatlrr: a novel decomposition method for infrared and visible image fusionIEEE Trans. Image Process.2020294733474610.1109/TIP.2020.297598407586208 WangZBaiXHigh frequency assisted fusion for infrared and visible images through sparse representationInfrared Phys. Technol.20199821222210.1016/j.infrared.2019.03.030 ChenXLiuLKongXThe fusion of infrared and visible images via decomposition-based structure transfer and local saliency detectionOpt. Laser Technol.202214910778710.1016/j.optlastec.2021.107787 LiGLinYQuXAn infrared and visible image fusion method based on multi-scale transformation and norm optimizationInf. Fusion20217110912910.1016/j.inffus.2021.02.008 TangLYuanJZhangHJiangXMaJPiafusion: a progressive infrared and visible image fusion network based on illumination awareInf, Fusion202283799210.1016/j.inffus.2022.03.007 Geng, W., Wang, W., Zhao, Y., Cai, X., Xu, B., Xinyuan, C., et al.: End-to-end language identification using attention-based recurrent neural networks. In: Interspeech, pp 2944–2948 (2016) Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: Bam: Bottleneck attention module. arXiv preprint arXiv:1807.06514 (2018) Aghamaleki, J.A., Ghorbani, A.: Image fusion using dual tree discrete wavelet transform and weights optimization. Vis. Comput. pp 1–11 (2022) XueZYuXLiuBTanXWeiXHresnetam: Hierarchical residual network with attention mechanism for hyperspectral image classificationIEEE J. Select. Top. Appl. Earth Observ. Remote Sensing2021143566358010.1109/JSTARS.2021.3065987 XuHMaJJiangJGuoXLingHU2fusion: A unified unsupervised image fusion networkIEEE Trans. Pattern Anal. Mach. Intell.202044150251810.1109/TPAMI.2020.3012548 Liu, Y., Jia, Q., Fan, X., Wang, S., Ma, S., Gao, W.: Cross-srn: structure-preserving super-resolution network with cross convolution. IEEE Trans. Circ. Syst. Video Technol. (2021) Liu, Y., Sun, G., Qiu, Y., Zhang, L., Chhatkuli, A., Van Gool, L.: Transformer in convolutional neural networks. arXiv preprint arXiv:2106.03180 (2021) Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2818–2826 (2016) Zhang, Z., Lan, C., Zeng, W., Jin, X., Chen, Z.: Relation-aware global attention for person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 3186–3195 (2020) G Li (2628_CR2) 2021; 71 L Tang (2628_CR20) 2022; 83 S Wang (2628_CR22) 2017; 40 J Ma (2628_CR11) 2019; 48 Q Yu (2628_CR30) 2021; 113 2628_CR39 A Galassi (2628_CR31) 2020; 32 2628_CR37 2628_CR38 X Chen (2628_CR5) 2022; 149 2628_CR33 2628_CR34 H Li (2628_CR14) 2018; 28 Y Zhang (2628_CR18) 2020; 54 Z Xue (2628_CR36) 2021; 14 Y Qing (2628_CR35) 2021; 13 2628_CR29 H Xu (2628_CR19) 2022; 218 2628_CR26 2628_CR27 2628_CR24 2628_CR25 2628_CR23 W Zhang (2628_CR3) 2021; 21 2628_CR21 W Yin (2628_CR4) 2022; 121 X Li (2628_CR10) 2021; 224 H Xu (2628_CR46) 2020; 44 2628_CR17 B Yang (2628_CR32) 2021; 458 H Li (2628_CR15) 2020; 69 2628_CR51 Q Yu (2628_CR28) 2019; 28 AS Yousif (2628_CR9) 2022; 72 Z Liu (2628_CR50) 2011; 34 Z Wang (2628_CR7) 2019; 98 2628_CR8 J Ma (2628_CR12) 2020; 70 H Li (2628_CR16) 2021; 73 A Song (2628_CR13) 2022; 483 2628_CR1 H Li (2628_CR52) 2020; 29 C Liu (2628_CR49) 2021; 21 2628_CR48 2628_CR47 2628_CR44 2628_CR45 2628_CR42 2628_CR43 Z Zhu (2628_CR6) 2018; 432 2628_CR40 2628_CR41 |
References_xml | – reference: Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: Bam: Bottleneck attention module. arXiv preprint arXiv:1807.06514 (2018) – reference: Zhang, H., Xu, H., Xiao, Y., Guo, X., Ma, J.: Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 34, pp. 12797–12804 (2020) – reference: Guo, M.H., Lu, C.Z., Liu, Z.N., Cheng, M.M., Hu, S.M. Visual attention network. arXiv preprint arXiv:2202.09741 (2022) – reference: Wang, Z., Wang, J., Wu, Y., Xu, J., Zhang, X.: Unfusion: A unified multi-scale densely connected network for infrared and visible image fusion. IEEE Trans. Circ. Syst. Video Technol. (2021) – reference: LiuCYangBLiYZhangXPangLAn information retention and feature transmission network for infrared and visible image fusionIEEE Sens. J.20212113149501495910.1109/JSEN.2021.3073568 – reference: Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018) – reference: LiXZhouFTanHJoint image fusion and denoising via three-layer decomposition and sparse representationKnowl.-Based Syst.202122410708710.1016/j.knosys.2021.107087 – reference: XuHMaJJiangJGuoXLingHU2fusion: A unified unsupervised image fusion networkIEEE Trans. Pattern Anal. Mach. Intell.202044150251810.1109/TPAMI.2020.3012548 – reference: ChenXLiuLKongXThe fusion of infrared and visible images via decomposition-based structure transfer and local saliency detectionOpt. Laser Technol.202214910778710.1016/j.optlastec.2021.107787 – reference: Lu, R., Gao, F., Yang, X., Fan, J., Li, D.: A novel infrared and visible image fusion method based on multi-level saliency integration. Vis. Comput. pp 1–15 (2022) – reference: Yang, F., Zhang, Q.: Depth aware image dehazing, pp. 1–9. The Visual Computer (2021) – reference: Geng, W., Wang, W., Zhao, Y., Cai, X., Xu, B., Xinyuan, C., et al.: End-to-end language identification using attention-based recurrent neural networks. In: Interspeech, pp 2944–2948 (2016) – reference: YangBWangLWongDFShiSTuZContext-aware self-attention networks for natural language processingNeurocomputing202145815716910.1016/j.neucom.2021.06.009 – reference: GalassiALippiMTorroniPAttention in natural language processingIEEE Trans. Neural Netw. Learn. Syst.202032104291430810.1109/TNNLS.2020.3019893 – reference: ZhangYLiuYSunPYanHZhaoXZhangLIfcnn: a general image fusion framework based on convolutional neural networkInf. Fusion2020549911810.1016/j.inffus.2019.07.011 – reference: Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: Ccnet: Criss-cross attention for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 603–612 (2019) – reference: Aghamaleki, J.A., Ghorbani, A.: Image fusion using dual tree discrete wavelet transform and weights optimization. Vis. Comput. pp 1–11 (2022) – reference: Liu, Y., Jia, Q., Fan, X., Wang, S., Ma, S., Gao, W.: Cross-srn: structure-preserving super-resolution network with cross convolution. IEEE Trans. Circ. Syst. Video Technol. (2021) – reference: WangSZhouMLiuZLiuZGuDZangYDongDGevaertOTianJCentral focused convolutional neural networks: developing a data-driven model for lung nodule segmentationMed. Image Anal.20174017218310.1016/j.media.2017.06.014 – reference: ZhangWSuiXGuGChenQCaoHInfrared thermal imaging super-resolution via multiscale spatio-temporal feature fusion networkIEEE Sens. J.20212117191761918510.1109/JSEN.2021.3090021 – reference: LiGLinYQuXAn infrared and visible image fusion method based on multi-scale transformation and norm optimizationInf. Fusion20217110912910.1016/j.inffus.2021.02.008 – reference: XuHGongMTianXHuangJMaJCufd: An encoder-decoder network for visible and infrared image fusion based on common and unique feature decompositionComput. Vis. Image Underst.202221810340710.1016/j.cviu.2022.103407 – reference: Brown, M., Süsstrunk, S.: Multi-spectral sift for scene category recognition. In: CVPR 2011, IEEE, pp 177–184 (2011) – reference: XueZYuXLiuBTanXWeiXHresnetam: Hierarchical residual network with attention mechanism for hyperspectral image classificationIEEE J. Select. Top. Appl. Earth Observ. Remote Sensing2021143566358010.1109/JSTARS.2021.3065987 – reference: Fu, Y., Wu, X.J.: A dual-branch network for infrared and visible image fusion. In: 2020 25th International Conference on Pattern Recognition (ICPR), IEEE, pp 10675–10680 (2021) – reference: YuQShiYSunJGaoYZhuJDaiYCrossbar-net: a novel convolutional neural network for kidney tumor segmentation in ct imagesIEEE Trans. Image Process.201928840604074397693010.1109/TIP.2019.290553707122962 – reference: Yu, Q., Qi, L., Zhou, L., Wang, L., Yin, Y., Shi, Y., Wang, W., Gao, Y.: Crosslink-net: Double-branch encoder segmentation network via fusing vertical and horizontal convolutions. arXiv preprint arXiv:2107.11517 (2021) – reference: Toet, A., et al.: Tno image fusion dataset<\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<$$\end{document}https://figshare.com/articles. TN_Image_Fusion_Dataset/1008029 (2014) – reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2818–2826 (2016) – reference: MaJYuWLiangPLiCJiangJFusiongan: a generative adversarial network for infrared and visible image fusionInf. Fusion201948112610.1016/j.inffus.2018.09.004 – reference: Zhang, Z., Lan, C., Zeng, W., Jin, X., Chen, Z.: Relation-aware global attention for person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 3186–3195 (2020) – reference: YousifASOmarZSheikhUUAn improved approach for medical image fusion using sparse representation and siamese convolutional neural networkBiomed. Signal Process. Control20227210335710.1016/j.bspc.2021.103357 – reference: Cai, W., Cai, D., Huang, S., Li, M.: Utterance-level end-to-end language identification using attention-based cnn-blstm. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp 5991–5995 (2019) – reference: SongADuanHPeiHDingLTriple-discriminator generative adversarial network for infrared and visible image fusionNeurocomputing202248318319410.1016/j.neucom.2022.02.025 – reference: LiHWuXJKittlerJRfn-nest: an end-to-end residual fusion network for infrared and visible imagesInf. Fusion202173728610.1016/j.inffus.2021.02.023 – reference: LiuZBlaschEXueZZhaoJLaganiereRWuWObjective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative studyIEEE Trans. Pattern Anal. Mach. Intell.20113419410910.1109/TPAMI.2011.109 – reference: Nozaripour, A., Soltanizadeh, H.: Image classification via convolutional sparse coding. Vis. Comput. pp 1–14 (2022) – reference: MaJZhangHShaoZLiangPXuHGanmcc: a generative adversarial network with multiclassification constraints for infrared and visible image fusionIEEE Trans. Instrum. Meas.202070114 – reference: YinWHeKXuDLuoYGongJSignificant target analysis and detail preserving based infrared and visible image fusionInfrared Phys. Technol.202212110404110.1016/j.infrared.2022.104041 – reference: Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141 (2018) – reference: Liu, Y., Sun, G., Qiu, Y., Zhang, L., Chhatkuli, A., Van Gool, L.: Transformer in convolutional neural networks. arXiv preprint arXiv:2106.03180 (2021) – reference: LiHWuXJDensefuse: a fusion approach to infrared and visible imagesIEEE Trans. Image Process.201828526142623392519310.1109/TIP.2018.2887342 – reference: ZhuZYinHChaiYLiYQiGA novel multi-modality image fusion method based on image decomposition and sparse representationInf. Sci.2018432516529375819610.1016/j.ins.2017.09.010 – reference: Cai, W., Wei, Z.: Remote sensing image classification based on a cross-attention mechanism and graph convolution. IEEE Geosci. Remote Sens. Lett. (2020) – reference: Hou, Q., Zhang, L., Cheng, M.M., Feng, J.: Strip pooling: Rethinking spatial pooling for scene parsing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 4003–4012 (2020) – reference: YuQGaoYZhengYZhuJDaiYShiYCrossover-net: leveraging vertical-horizontal crossover relation for robust medical image segmentationPattern Recogn.202111310775610.1016/j.patcog.2020.107756 – reference: QingYLiuWHyperspectral image classification based on multi-scale residual network with attention mechanismRemote Sensing202113333510.3390/rs13030335 – reference: WangZBaiXHigh frequency assisted fusion for infrared and visible images through sparse representationInfrared Phys. Technol.20199821222210.1016/j.infrared.2019.03.030 – reference: TangLYuanJZhangHJiangXMaJPiafusion: a progressive infrared and visible image fusion network based on illumination awareInf, Fusion202283799210.1016/j.inffus.2022.03.007 – reference: LiHWuXJKittlerJMdlatlrr: a novel decomposition method for infrared and visible image fusionIEEE Trans. Image Process.2020294733474610.1109/TIP.2020.297598407586208 – reference: LiHWuXJDurraniTNestfuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention modelsIEEE Trans. Instrum. Meas.202069129645965610.1109/TIM.2020.3005230 – reference: Wang, X., Wu, K., Zhang, Y., Xiao, Y., Xu, P.: A gan-based denoising method for chinese stele and rubbing calligraphic image. Vis. Comput. pp. 1–12 (2022) – volume: 121 start-page: 104041 year: 2022 ident: 2628_CR4 publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2022.104041 – volume: 34 start-page: 94 issue: 1 year: 2011 ident: 2628_CR50 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.109 – volume: 54 start-page: 99 year: 2020 ident: 2628_CR18 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.07.011 – ident: 2628_CR42 – volume: 72 start-page: 103357 year: 2022 ident: 2628_CR9 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103357 – ident: 2628_CR1 doi: 10.1007/s00371-021-02396-9 – ident: 2628_CR41 doi: 10.1109/CVPR42600.2020.00325 – ident: 2628_CR33 doi: 10.21437/Interspeech.2016-686 – ident: 2628_CR48 doi: 10.1007/s00371-022-02438-w – ident: 2628_CR47 doi: 10.1109/CVPR.2011.5995637 – volume: 149 start-page: 107787 year: 2022 ident: 2628_CR5 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2021.107787 – volume: 224 start-page: 107087 year: 2021 ident: 2628_CR10 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107087 – volume: 458 start-page: 157 year: 2021 ident: 2628_CR32 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.06.009 – volume: 13 start-page: 335 issue: 3 year: 2021 ident: 2628_CR35 publication-title: Remote Sensing doi: 10.3390/rs13030335 – ident: 2628_CR43 doi: 10.1007/s00371-022-02410-8 – volume: 21 start-page: 14950 issue: 13 year: 2021 ident: 2628_CR49 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3073568 – ident: 2628_CR17 doi: 10.1109/TCSVT.2021.3109895 – ident: 2628_CR27 doi: 10.1109/TCSVT.2021.3138431 – volume: 28 start-page: 4060 issue: 8 year: 2019 ident: 2628_CR28 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2905537 – volume: 70 start-page: 1 year: 2020 ident: 2628_CR12 publication-title: IEEE Trans. Instrum. Meas. – ident: 2628_CR8 doi: 10.1007/s00371-022-02441-1 – volume: 483 start-page: 183 year: 2022 ident: 2628_CR13 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.02.025 – ident: 2628_CR21 doi: 10.1109/ICPR48806.2021.9412293 – ident: 2628_CR51 doi: 10.1609/aaai.v34i07.6975 – volume: 48 start-page: 11 year: 2019 ident: 2628_CR11 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.09.004 – volume: 73 start-page: 72 year: 2021 ident: 2628_CR16 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.02.023 – volume: 432 start-page: 516 year: 2018 ident: 2628_CR6 publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.09.010 – volume: 218 start-page: 103407 year: 2022 ident: 2628_CR19 publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2022.103407 – ident: 2628_CR29 doi: 10.1109/TIP.2022.3203223 – volume: 28 start-page: 2614 issue: 5 year: 2018 ident: 2628_CR14 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2887342 – ident: 2628_CR25 doi: 10.1109/ICCV.2019.00069 – ident: 2628_CR40 – volume: 98 start-page: 212 year: 2019 ident: 2628_CR7 publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2019.03.030 – volume: 40 start-page: 172 year: 2017 ident: 2628_CR22 publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.06.014 – ident: 2628_CR44 – volume: 71 start-page: 109 year: 2021 ident: 2628_CR2 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.02.008 – volume: 21 start-page: 19176 issue: 17 year: 2021 ident: 2628_CR3 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3090021 – ident: 2628_CR23 doi: 10.1109/CVPR.2016.308 – volume: 32 start-page: 4291 issue: 10 year: 2020 ident: 2628_CR31 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3019893 – volume: 113 start-page: 107756 year: 2021 ident: 2628_CR30 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2020.107756 – ident: 2628_CR39 – volume: 14 start-page: 3566 year: 2021 ident: 2628_CR36 publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sensing doi: 10.1109/JSTARS.2021.3065987 – ident: 2628_CR45 – ident: 2628_CR37 doi: 10.1109/CVPR.2018.00745 – ident: 2628_CR38 doi: 10.1109/CVPR.2018.00813 – volume: 83 start-page: 79 year: 2022 ident: 2628_CR20 publication-title: Inf, Fusion doi: 10.1016/j.inffus.2022.03.007 – ident: 2628_CR24 – ident: 2628_CR26 doi: 10.1109/CVPR42600.2020.00406 – ident: 2628_CR34 doi: 10.1109/ICASSP.2019.8682386 – volume: 44 start-page: 502 issue: 1 year: 2020 ident: 2628_CR46 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3012548 – volume: 29 start-page: 4733 year: 2020 ident: 2628_CR52 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2975984 – volume: 69 start-page: 9645 issue: 12 year: 2020 ident: 2628_CR15 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.3005230 |
SSID | ssj0017749 |
Score | 2.4542115 |
Snippet | Existing infrared and visible image fusion methods suffer from edge information loss, artifact introduction, and image distortion. Therefore, a dual-branch... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4801 |
SubjectTerms | Algorithms Artificial Intelligence Computer Graphics Computer Science Computer vision Convolution Decomposition Deep learning Dictionaries Image Processing and Computer Vision Infrared imagery Methods Neural networks Original Article Sensors |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60XvTgoyqtVtmDN13Ic5t4K8VSBHsy0FvIZjdYaKO0qb_fme0mVVHBazK7CZmdmW8yL4Abr8gFQQEeZ0LyINKKIyXKlUZziHAi04rqnZ8mYpwEj9NwaovCVnW2ex2SNJq6KXYz3eU4ZZ-j3-BFXOzCXoi-OyVyJd6giR0goDGg10X_iOo8banMz3t8NUdbjPktLGqszegYDi1MZIMNX09gR5dtOKpHMDArkW04-NRP8BTeh_QQnkx0dc-oyIpLmpvxwvAYLSnTnGWlYlROLueazRaoS1ixpv9lrKiTtBjZNcXwknljTmnp9nia1dSP02RIsoWmquHZanEGyejheTjmdrACz1HiKh5kfV9GSkinyGMXzaQfoMr2coXOZCHyEN2IOKKQG8LHvKDYI_o9TuaHfV-HSjr-ObTK11J3gDmaQofa93yh0dNWGZGpMMo8WUTI9S649fdNc9t1nIZfzNOmX7LhSYo8SQ1PUtGF22bN26bnxp_UvZptqZW_VerFboTKDF-7C3c1K7e3f9_t4n_kl7BP8-c32X09aFXLtb5ClFLJa3MoPwCxat3A priority: 102 providerName: Springer Nature |
Title | Cross-UNet: dual-branch infrared and visible image fusion framework based on cross-convolution and attention mechanism |
URI | https://link.springer.com/article/10.1007/s00371-022-02628-6 https://www.proquest.com/docview/2918070862 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8IvOiD8TOiSPrgmzaOjY3OF4OEj2gkxrgEn5Zt7SIJDOTDv9-70oGayGvXNkvveve73hfAlZ0mHkEB7kdezOtCSY4z8V4pVIcIJyIlKd_5ue_1gvrjwB2YB7e5CavMZaIW1HKS0Bv5re3XBLInAvD76SenrlHkXTUtNApQQhEsRBFKD-3-y-vaj4DgRgPgGtpKlPNp0mZ08pyuVscpmh3tEFtw77dq2uDNPy5SrXk6B7BvICNrrmh8CDsqO4K9H4UEj-GrRTvyoK8Wd4yyq3hMDTM-GPLPjELMWZRJRnnk8Uix4RiFCEuX9FDG0jw6i5FCkwyH9O9xikc3fKlXUyFOHRrJxorShYfz8QkEnfZbq8dNRwWe4FVb8HrUcGIhvdhKE7-G-tGpo6y2E4lWZOolLtoPviBfG-LGJCWnI563FTluw1GujC3nFIrZJFNnwCxFPkPl2I6n0MSWEU2TrojsOBVI7jLU8sMME1NunLpejMJ1oWRNgBAJEGoChF4ZrtdrpqtiG1tnV3IahebizcMNm5ThJqfb5vP_u51v3-0CdqnR_CqMrwLFxWypLhGOLOIqFESnW4VSs_v-1K4aDsTRwG5-A6xB32A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHtSD8RlR1D3oSTfSJ8XEGIMiyOMEibfadreRBApC0fin_I3OLC2oidy4tttt0_l255udF8CZHgY2UQFe8myfm44UHEfiupKoDpFOeFJQvnOzZVc75tOz9ZyBrzQXhsIq0z1RbdRiENAZ-ZVe0hyEJxLw2-Ebp65R5F1NW2hMYVGXnx9oso1vavco33Ndrzy0y1WedBXgAcIt5qZXNHxH2H4hDEoa6gjDxP1KDwRaUqEdWMihSw75m5A7BSE53vCdBc-wioa0hF8wcN4VWDUN1OSUmV55nHktkEopuq2hZUYZpkmSjkrVU7XxOMXOo9WjO9z-rQjn7PaPQ1bpucoWbCYEld1NEbUNGRntwMaPsoW78F6mGXmnJeNrRrlc3Kf2HK8M0TqigHbmRYJR1rrfk6zbxy2LhRM6lmNhGgvGSH0KhpfU53GKfk9WgXqayn6qQEzWl5Sc3B3396CzlD-9D9loEMkDYAVJHkpp6IYt0aAXHg0TluPpfugguHKgpT_TDZLi5tRjo-fOyjIrAbgoAFcJwLVzcDF7Zjgt7bFwdD6VkZss87E7B2UOLlO5zW__P9vh4tlOYa3abjbcRq1VP4J1anE_DSDMQzYeTeQxEqHYP1HoY_CybLh_A4-VFgo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYGSAgOPAaI8cwBThCtSx90SBwQY9oYTByYtFtpm1RM2srECoh_xU_ETh88BEgcuLZpG8V2_Ln25wDsiSh0CArwuu8E3HKV5DgS7UqhO0Q44StJfOerrtPqWRd9u1-C15wLo6vd85RkymmgLk1xUh3LqFoQ33SnOU6V6BhDCJc7WVllR708Y9A2OWk3UML7QjTPb85aPDtXgIeocAm3_CMzcKUTGFFYr6GXMC3csUQoMZaKnNBGFF13KeOE6CmMKPWGsN_wTfvIVLYMDBPfOwUzFrGP0YJ64rTIWyCY0oC7hrEZcUwzms73c_7sCt_x7ZeUrPZ0zSVYyCAqO011ahlKKi7DYn78A8t2gzLMf-hluAJPZ_QR3uuq5JgRwYsHdGbHHUMVfqAqd-bHkhGVPRgqNhjhPsaiR_pXx6K8QIyRT5UML-kZcyqJz0xDP029QHV1JhspYiwPJqNV6P3L4q_BdHwfq3VghqK0pTKF6SiM8qVPw6Tt-iKIXNS4CtTy9fXCrOM5Hbwx9IpezVomHsrE0zLxnAocFM-M034fv47eysXmZbY_8US95uJGitOuwGEuyvfbP79t42_Dd2H2utH0LtvdzibMCQRfaZHhFkwnD49qG8FSEuxo_WRw-98G8Qb77h2F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-UNet%3A+dual-branch+infrared+and+visible+image+fusion+framework+based+on+cross-convolution+and+attention+mechanism&rft.jtitle=The+Visual+computer&rft.au=Wang%2C+Xuejiao&rft.au=Hua%2C+Zhen&rft.au=Li%2C+Jinjiang&rft.date=2023-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=39&rft.issue=10&rft.spage=4801&rft.epage=4818&rft_id=info:doi/10.1007%2Fs00371-022-02628-6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |