Numerical study of electroosmosis-induced alterations in peristaltic pumping of couple stress hybrid nanofluids through microchannel

This paper presents a computational modeling approach to analyze the peristaltic pumping of couple stress hybrid nanofluids regulated by the electroosmosis mechanism through a microchannel. The effects of applied magnetic field, Joule heating and buoyancy have also been computed. In this analytical...

Full description

Saved in:
Bibliographic Details
Published inIndian journal of physics Vol. 95; no. 11; pp. 2411 - 2421
Main Authors Tripathi, Dharmendra, Prakash, J., Gnaneswara Reddy, M., Kumar, Rakesh
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.11.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a computational modeling approach to analyze the peristaltic pumping of couple stress hybrid nanofluids regulated by the electroosmosis mechanism through a microchannel. The effects of applied magnetic field, Joule heating and buoyancy have also been computed. In this analytical model, water-based titanium dioxide (TiO 2 ) and silver (Ag) hybrid nanofluids have been considered. For more relevant physical problem, the axial velocity slip and thermal slip conditions have also been introduced. The nonlinear differential equations are simplified by considering the Hückel–Debye approximations as well as lubrication theory, and then the equations have been solved numerically by Mathematica 10 software via the NDsolve commands. The pertinent influences of key parameters on the axial velocity, nanoparticle temperature, Nusselt number and streamlines in the microchannel have been visualized graphically. It is observed that an increase in the thermal Grashof number produces a maximum axial velocity, and temperature of nanoparticles for both water–titanium dioxide and water–silver nanofluids. The maximum axial velocity and nanoparticle temperature occur in water–titanium dioxide as compared with water–silver. The outcomes of this model shall be very useful in the designs of smart electro-peristaltic pumps for thermal systems and drug delivery systems.
AbstractList This paper presents a computational modeling approach to analyze the peristaltic pumping of couple stress hybrid nanofluids regulated by the electroosmosis mechanism through a microchannel. The effects of applied magnetic field, Joule heating and buoyancy have also been computed. In this analytical model, water-based titanium dioxide (TiO2) and silver (Ag) hybrid nanofluids have been considered. For more relevant physical problem, the axial velocity slip and thermal slip conditions have also been introduced. The nonlinear differential equations are simplified by considering the Hückel–Debye approximations as well as lubrication theory, and then the equations have been solved numerically by Mathematica 10 software via the NDsolve commands. The pertinent influences of key parameters on the axial velocity, nanoparticle temperature, Nusselt number and streamlines in the microchannel have been visualized graphically. It is observed that an increase in the thermal Grashof number produces a maximum axial velocity, and temperature of nanoparticles for both water–titanium dioxide and water–silver nanofluids. The maximum axial velocity and nanoparticle temperature occur in water–titanium dioxide as compared with water–silver. The outcomes of this model shall be very useful in the designs of smart electro-peristaltic pumps for thermal systems and drug delivery systems.
This paper presents a computational modeling approach to analyze the peristaltic pumping of couple stress hybrid nanofluids regulated by the electroosmosis mechanism through a microchannel. The effects of applied magnetic field, Joule heating and buoyancy have also been computed. In this analytical model, water-based titanium dioxide (TiO 2 ) and silver (Ag) hybrid nanofluids have been considered. For more relevant physical problem, the axial velocity slip and thermal slip conditions have also been introduced. The nonlinear differential equations are simplified by considering the Hückel–Debye approximations as well as lubrication theory, and then the equations have been solved numerically by Mathematica 10 software via the NDsolve commands. The pertinent influences of key parameters on the axial velocity, nanoparticle temperature, Nusselt number and streamlines in the microchannel have been visualized graphically. It is observed that an increase in the thermal Grashof number produces a maximum axial velocity, and temperature of nanoparticles for both water–titanium dioxide and water–silver nanofluids. The maximum axial velocity and nanoparticle temperature occur in water–titanium dioxide as compared with water–silver. The outcomes of this model shall be very useful in the designs of smart electro-peristaltic pumps for thermal systems and drug delivery systems.
Author Gnaneswara Reddy, M.
Kumar, Rakesh
Tripathi, Dharmendra
Prakash, J.
Author_xml – sequence: 1
  givenname: Dharmendra
  orcidid: 0000-0003-4798-1021
  surname: Tripathi
  fullname: Tripathi, Dharmendra
  email: dtripathi@nituk.ac.in
  organization: Department of Mathematics, National Institute of Technology Uttarakhand
– sequence: 2
  givenname: J.
  surname: Prakash
  fullname: Prakash, J.
  organization: Department of Mathematics, Avvaiyar Government College for Women
– sequence: 3
  givenname: M.
  surname: Gnaneswara Reddy
  fullname: Gnaneswara Reddy, M.
  organization: Department of Mathematics, Acharya Nagarjuna University Campus
– sequence: 4
  givenname: Rakesh
  surname: Kumar
  fullname: Kumar, Rakesh
  organization: Department of Mechanical Engineering, Manipal University Jaipur
BookMark eNp9kE9r3DAQxUVJoUnaL9CToGelI9my5GMJTVIIySU5C1mWdhVsydWfw977waPsFgo95DTD8H4zb94FOgsxWIS-UriiAOJ7pmzoJQEGBOgIA4EP6BxG0ZNR9vzs2HeE9lx-Qhc5vwAMIxX8HP15qKtN3ugF51LnA44O28WakmLMa8w-Ex_mauyM9VJs0sXHkLEPeGtYLm3oDd7quvmwe4NNrNti27Jkc8b7w5T8jIMO0S3VzxmXfYp1t8erNymavQ7BLp_RR6eXbL_8rZfo-ebn0_UduX-8_XX9456Yjo6F9Lpn3SS4EYPrQHLLux6cdtJoJ6QVTBo-iG4yTM49ByonbiYYmdWOUTfJ7hJ9O-3dUvxdbS7qJdYU2knFuOTARybGppInVTOYc7JOGV-Of5ek_aIoqLfM1Slz1TJXx8wVNJT9h27Jrzod3oe6E5SbOOxs-ufqHeoVKCuaHw
CitedBy_id crossref_primary_10_1142_S021797922350025X
crossref_primary_10_1177_22808000221125870
crossref_primary_10_1016_j_mseb_2022_115886
crossref_primary_10_1108_HFF_11_2020_0694
crossref_primary_10_1007_s00396_024_05286_3
crossref_primary_10_1080_10407790_2023_2211731
crossref_primary_10_1016_j_mseb_2022_116250
crossref_primary_10_1007_s00419_021_01990_6
crossref_primary_10_1515_nleng_2022_0287
crossref_primary_10_1002_htj_22457
crossref_primary_10_3389_fchem_2022_960349
crossref_primary_10_1016_j_mtcomm_2022_104532
crossref_primary_10_1063_5_0215302
crossref_primary_10_1002_htj_22450
crossref_primary_10_1080_10407782_2023_2260948
crossref_primary_10_1002_htj_22490
crossref_primary_10_1177_09544089221076592
crossref_primary_10_1177_09544062231196075
crossref_primary_10_1080_10407782_2024_2355367
crossref_primary_10_1080_17455030_2022_2056261
crossref_primary_10_1007_s12648_022_02326_y
crossref_primary_10_1016_j_icheatmasstransfer_2021_105877
crossref_primary_10_1002_zamm_202300771
crossref_primary_10_1016_j_tsep_2024_102680
crossref_primary_10_1002_jccs_202200400
crossref_primary_10_1007_s43153_021_00196_1
crossref_primary_10_1080_10407790_2023_2262120
crossref_primary_10_1016_j_jocs_2022_101696
crossref_primary_10_1007_s12648_021_02132_y
crossref_primary_10_1016_j_applthermaleng_2024_124465
crossref_primary_10_1142_S0217979225500110
crossref_primary_10_1177_09544089231161306
crossref_primary_10_1615_JPorMedia_2023044926
crossref_primary_10_1007_s12206_022_0321_5
crossref_primary_10_1007_s12043_024_02768_5
crossref_primary_10_1016_j_amc_2022_127110
crossref_primary_10_1007_s12043_021_02136_7
crossref_primary_10_1002_zamm_202100112
crossref_primary_10_1007_s13367_021_0029_6
crossref_primary_10_1002_zamm_202200284
crossref_primary_10_1002_htj_22631
crossref_primary_10_1002_htj_22797
crossref_primary_10_1007_s40819_022_01393_3
crossref_primary_10_1080_02286203_2022_2122928
crossref_primary_10_1080_01496395_2024_2447310
crossref_primary_10_3389_fmats_2023_1139284
crossref_primary_10_1177_16878132241252328
crossref_primary_10_1088_1361_6528_acfb15
crossref_primary_10_3390_nano12101615
crossref_primary_10_1002_zamm_202300838
crossref_primary_10_1002_htj_22848
crossref_primary_10_1016_j_asej_2024_103181
crossref_primary_10_1080_16583655_2022_2087396
crossref_primary_10_1515_ntrev_2022_0496
crossref_primary_10_1515_nleng_2022_0031
crossref_primary_10_1016_j_cjph_2022_08_006
crossref_primary_10_3390_mi13030374
Cites_doi 10.1007/s11242-011-9920-9
10.1016/j.jtbi.2015.06.022
10.1063/1.4921085
10.1089/jop.2012.0232
10.1002/jbm.b.33275
10.1007/s12648-017-1132-x
10.1063/1.4926368
10.1016/j.mvr.2017.06.004
10.1007/s12043-019-1873-5
10.1140/epjp/i2017-11469-9
10.1007/s13204-013-0255-4
10.1016/S0096-3003(03)00672-6
10.1016/S0013-4686(03)00350-5
10.1016/j.ces.2015.04.036
10.1016/j.aej.2017.05.027
10.1007/s13204-020-01286-1
10.1016/j.cmpb.2019.105136
10.1155/2012/169642
10.1007/s13204-015-0431-9
10.1016/j.jbiomech.2004.05.017
10.3109/10717544.2010.483257
10.1021/i160003a005
10.1016/j.molliq.2015.05.058
10.1002/elps.201800353
10.1016/j.bulcan.2017.02.003
10.1007/s13204-015-0447-1
10.1088/0022-3727/39/24/038
10.1007/s13204-013-0205-1
10.1007/s13204-019-01148-5
10.1142/S0219519412500881
10.1007/s11012-017-0795-x
10.1002/adfm.201807173
10.1115/1.4001457
10.1007/s13204-017-0564-0
10.1108/HFF-04-2014-0111
10.1017/S0022112071000958
10.1016/j.physa.2019.123512
10.1007/s12648-018-1209-1
10.1242/jeb.202.6.661
10.1016/S0924-4247(99)00302-7
10.1016/j.ijengsci.2016.07.002
10.1155/2015/163832
10.1016/j.mbs.2013.07.012
10.1016/j.apt.2017.12.009
10.1016/0021-9290(88)90133-9
10.1016/j.ijbiomac.2014.10.055
10.1007/s12648-018-1215-3
10.1016/j.mvr.2015.10.004
10.1016/j.ijthermalsci.2014.07.009
10.1140/epjp/i2017-11416-x
10.1139/cjp-2018-0715
10.1016/0021-9290(71)90036-4
10.1140/epjp/s13360-020-00185-2
10.1016/j.mvr.2018.11.012
10.1016/j.jmmm.2015.06.052
10.1007/s12010-014-1231-5
ContentType Journal Article
Copyright Indian Association for the Cultivation of Science 2020
Indian Association for the Cultivation of Science 2020.
Copyright_xml – notice: Indian Association for the Cultivation of Science 2020
– notice: Indian Association for the Cultivation of Science 2020.
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1007/s12648-020-01906-0
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 0974-9845
EndPage 2421
ExternalDocumentID 10_1007_s12648_020_01906_0
GroupedDBID -EM
04Q
04W
06D
0R~
0VY
203
29I
29~
2JN
2KG
2VQ
30V
3V.
406
408
5GY
5VS
67Z
8FE
8FG
8G5
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABXPI
ACAOD
ACCUX
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARMRJ
AXYYD
AYJHY
AZQEC
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CSCUP
C~6
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GUQSH
H13
HCIFZ
HG6
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M2O
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P62
P9T
PQQKQ
PROAC
PT4
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
Z45
Z7X
Z7Y
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7U5
8FD
ABRTQ
H8D
L7M
ID FETCH-LOGICAL-c319t-4a423b75c76f3085e5340faf8caf78e728c5673bc28d45018b5cb092eaf21fb83
IEDL.DBID U2A
ISSN 0973-1458
IngestDate Fri Jul 25 03:56:29 EDT 2025
Thu Apr 24 23:00:10 EDT 2025
Tue Jul 01 03:02:33 EDT 2025
Fri Feb 21 02:47:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Couple stress fluid
Numerical simulation
Magnetohydrodynamics
Peristalsis
Electroosmosis
Joule heating
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-4a423b75c76f3085e5340faf8caf78e728c5673bc28d45018b5cb092eaf21fb83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4798-1021
PQID 2585059279
PQPubID 2034531
PageCount 11
ParticipantIDs proquest_journals_2585059279
crossref_citationtrail_10_1007_s12648_020_01906_0
crossref_primary_10_1007_s12648_020_01906_0
springer_journals_10_1007_s12648_020_01906_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: West Bengal
PublicationTitle Indian journal of physics
PublicationTitleAbbrev Indian J Phys
PublicationYear 2021
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References TripathiDYadavAAnwar BégOEur. Phys. J. Plus2017132173
TripathiDTrans. Porous Med.201292559
K Venugopal Reddy, O D Makinde and M Gnaneswara Reddy Indian J..Phys.92 1439 (2018)
X Cao et al Adv. Functi. Mater. 1807173 (2019)
MuthuramanPRamkumarKKimDHAppl. Biochem. Biotechnol.20141742851
FarooqSKhanMIWaqasMHayatTAlsaediAAppl. Nanosci.2020103472019ApNan..10..347F
TripathiDAbhileshBRavinderJAnwar BégOKumar TiwariAMicrovasc. Res.201711465
K Ramesh and M Devakar J. Fluids2015 (2015)
K J Quillin J. Exp. Biol .202 661 (1999)
LewHSFungYCLowensteinCBJ. Biomech.19714297
PrakashJTripathiDAnwar BégOAppl. Nanosci.20201016932020ApNan..10.1693P
JangJLeeSSSensor Actuat. A: Phys.20008084
ShehzadSAAbbasiFMHayatTAlsaadiFJ Mol Liquids2015209723
NarlaVKTripathiDMicrovasc. Res.201912325
PrakashGChakrabortyJBandopadhyayAChakrabortySMicrovasc. Res.201610341
MaxwellJCA Treatise on Electricity and Magnetism1904CambridgeOxford University Press05.0556.01
Q Wu, H Zhang, M Chen, Y Zhang, J Huang, Z Xu and W Wang J. Biomed. Mater. Res. B Appl. Biomater.103 908 (2014)
AbbasNMalikMYNadeemSComput. Methods Prog. Biomed.2020185105136
ChakrabortySElectrophoresis201940180
MekheimerKSAppl. Math. Comput.20041537632066149
EscandónJSantiagoFBautistaOMéndezFInt. J. Therm. Sci.201486246
RameshKDevakarMJ. Magn. Magn. Mater.20153943352015JMMM..394..335R
ChakrabortySPaulDJ. Phys. D: Appl. Phys.20063953642006JPhD...39.5364C
TripathiDBégOAJ. Mech. Med. Bio.2012121250088
TripathiDBhushanSAnwar BégOAlex. Eng. J.2018571349
A Sohail, Z Ahmad, O A Bég, S Arshad and L Sherin Bull. Cancer104 452 (2017)
NoreenSRashidiMMQasimMAppl. Nanosci.201771932017ApNan...7..193N
AkbarNSRazaMEllahiRAppl. Nanosci.201663592016ApNan...6..359A
SeyfoddinAShawJAl-KassasRDrug Deliv.201017467
HamiltonRLCrosserOKEC Fundam.19621187
H Sadaf and S. Nadeem. Can. J. Phys.98 1 (2020)
NadeemAMalikMYNadeemSAlarifi IbrahimMEur. Phys. J. Plus2020135145
BhattiMMZeeshanATripathiDEllahiRIndian J. Phys.20189244234302018InJPh..92..423B
BokkaKKJesudasonECWarburtonDLubkinSRJ. Theor. Biol.20153823782015JThBi.382..378B
S Seok, C D Onal, R Wood, D Rus and S Kim Proc. IEEE Int. Conf. Robotics and Automation (ICRA) (2010)
W Ehrfeld Electrochim. Acta48 2857 (2003)
PrakashJSharmaATripathiDPramana-J. Phys.20209442020Prama..94....4P
PendletonAKarPKunduSHoussamySLiangHJ. Tribol.2010132031201
EllahiRRiazANadeemSAppl. Nanosci.201447532014ApNan...4..753E
TripathiDJhorarRAnwar BégOShawSMeccanica20185320793802334
JianYJChangLAIP Adv.201550571212015AIPA....5e7121J
KambhampatiSPKannanRMJ. Ocul. Pharmacol. Ther.201329151
N Abbas, S Nadeem and M Y Malik. Phys. A: Stat. Mech. Appl.https://doi.org/10.1016/j.physa.2019.123512 (2020)
FungYCYinFCPJ. Fluid Mech.197147931971JFM....47...93Y
TripathiDSharmaAAnwar BégOAdv. Powder Technol.201829639
HayatTAbbasiFMAhmadBInt. Numer. Methods Heat Fluid Flow2015251868
ArchanaDSinghBKDuttaJDuttaPChitosanPVPInt. J. Biol. Macromol.20157349
E V Mangan, D A Kingsley, R D Quinn and H J Chiel Proc. IEEE Int. Conf. Robotics and Automation (ICRA) 347 (2002)
A Afsar Khan, R Ellahi and K Vafai Adv. Math. Phys.2012 (2012)
AbbasiFMHayatTAlsaadiFDobaiAMGaoHAIP Adv.201550771042015AIPA....5g7104A
KothandapaniMPrakashJAppl. Nanosci.201663232016ApNan...6..323K
MishraMRamachandra RaoAJ. Biomech.200438779
Bar-cohenYChatigZPiezoelectrically-Actuated Miniature Peristaltic Pump1991CaliforniaCaltech- Jet Propulsion Laboratory
FarinaASFusiLFasanoACeretainARossoFInt. J. Eng. Sci.2016107112
S Ahmad, S Nadeem, N Muhammad and M Naveed Khan J. Therm. Anal. Calorimetry (2020) 1–13
JhorarRTripathiDBhattiMMEllahiRIndian J. Phys.201892122912382018InJPh..92.1229J
Prakash SharmaRRajuMCMakindeODKrishna ReddyPRChandra ReddyPInt. J. Appl. Mech. Eng.201922827
AkbarNSAppl. Nanosci.201446632014ApNan...4..663A
P Mohan Krishna, N Sandeep and R Prakash Sharma Eur. Phys. Jl.Plus132 202 (2017)
ShuklaJBChandraPSharmaRRadhakrishnamacharyaGJ. Biomech.198821947
MikityukMProbl. Ecol. Med.20111542
D Tripathi and O A Beg Math. Biosci.246 72 (2013)
JianYJSiDQChangLLiuQSChem. Eng. Sci.201513412
G Prakash (1906_CR24) 2016; 103
1906_CR27
Y Bar-cohen (1906_CR1) 1991
A Pendleton (1906_CR36) 2010; 132
AS Farina (1906_CR5) 2016; 107
YJ Jian (1906_CR21) 2015; 5
S Farooq (1906_CR49) 2020; 10
HS Lew (1906_CR9) 1971; 4
YC Fung (1906_CR11) 1971; 47
MM Bhatti (1906_CR31) 2018; 92
SP Kambhampati (1906_CR39) 2013; 29
M Mikityuk (1906_CR38) 2011; 15
R Ellahi (1906_CR45) 2014; 4
1906_CR18
1906_CR17
VK Narla (1906_CR33) 2019; 123
1906_CR59
1906_CR14
1906_CR58
1906_CR12
JB Shukla (1906_CR4) 1988; 21
S Chakraborty (1906_CR34) 2019; 40
NS Akbar (1906_CR46) 2016; 6
J Jang (1906_CR19) 2000; 80
D Tripathi (1906_CR29) 2018; 57
M Kothandapani (1906_CR47) 2016; 6
J Prakash (1906_CR54) 2020; 10
1906_CR63
1906_CR61
D Tripathi (1906_CR15) 2012; 92
D Archana (1906_CR42) 2015; 73
D Tripathi (1906_CR26) 2017; 132
SA Shehzad (1906_CR53) 2015; 209
KS Mekheimer (1906_CR10) 2004; 153
D Tripathi (1906_CR50) 2018; 29
S Noreen (1906_CR48) 2017; 7
M Mishra (1906_CR2) 2004; 38
A Seyfoddin (1906_CR37) 2010; 17
YJ Jian (1906_CR22) 2015; 134
RL Hamilton (1906_CR51) 1962; 1
NS Akbar (1906_CR44) 2014; 4
R Jhorar (1906_CR32) 2018; 92
J Prakash (1906_CR28) 2020; 94
J Escandón (1906_CR23) 2014; 86
A Nadeem (1906_CR57) 2020; 135
1906_CR35
K Ramesh (1906_CR13) 2015; 394
JC Maxwell (1906_CR52) 1904
D Tripathi (1906_CR16) 2012; 12
1906_CR8
D Tripathi (1906_CR25) 2017; 114
R Prakash Sharma (1906_CR60) 2019; 22
S Chakraborty (1906_CR20) 2006; 39
P Muthuraman (1906_CR40) 2014; 174
KK Bokka (1906_CR3) 2015; 382
N Abbas (1906_CR62) 2020; 185
1906_CR43
D Tripathi (1906_CR30) 2018; 53
1906_CR41
1906_CR6
T Hayat (1906_CR55) 2015; 25
1906_CR7
FM Abbasi (1906_CR56) 2015; 5
References_xml – reference: BokkaKKJesudasonECWarburtonDLubkinSRJ. Theor. Biol.20153823782015JThBi.382..378B
– reference: MishraMRamachandra RaoAJ. Biomech.200438779
– reference: LewHSFungYCLowensteinCBJ. Biomech.19714297
– reference: JianYJChangLAIP Adv.201550571212015AIPA....5e7121J
– reference: TripathiDAbhileshBRavinderJAnwar BégOKumar TiwariAMicrovasc. Res.201711465
– reference: A Sohail, Z Ahmad, O A Bég, S Arshad and L Sherin Bull. Cancer104 452 (2017)
– reference: ShehzadSAAbbasiFMHayatTAlsaadiFJ Mol Liquids2015209723
– reference: H Sadaf and S. Nadeem. Can. J. Phys.98 1 (2020)
– reference: AbbasNMalikMYNadeemSComput. Methods Prog. Biomed.2020185105136
– reference: A Afsar Khan, R Ellahi and K Vafai Adv. Math. Phys.2012 (2012)
– reference: MuthuramanPRamkumarKKimDHAppl. Biochem. Biotechnol.20141742851
– reference: E V Mangan, D A Kingsley, R D Quinn and H J Chiel Proc. IEEE Int. Conf. Robotics and Automation (ICRA) 347 (2002)
– reference: RameshKDevakarMJ. Magn. Magn. Mater.20153943352015JMMM..394..335R
– reference: PrakashJTripathiDAnwar BégOAppl. Nanosci.20201016932020ApNan..10.1693P
– reference: Q Wu, H Zhang, M Chen, Y Zhang, J Huang, Z Xu and W Wang J. Biomed. Mater. Res. B Appl. Biomater.103 908 (2014)
– reference: TripathiDJhorarRAnwar BégOShawSMeccanica20185320793802334
– reference: HayatTAbbasiFMAhmadBInt. Numer. Methods Heat Fluid Flow2015251868
– reference: ShuklaJBChandraPSharmaRRadhakrishnamacharyaGJ. Biomech.198821947
– reference: Prakash SharmaRRajuMCMakindeODKrishna ReddyPRChandra ReddyPInt. J. Appl. Mech. Eng.201922827
– reference: TripathiDBhushanSAnwar BégOAlex. Eng. J.2018571349
– reference: JianYJSiDQChangLLiuQSChem. Eng. Sci.201513412
– reference: TripathiDBégOAJ. Mech. Med. Bio.2012121250088
– reference: MekheimerKSAppl. Math. Comput.20041537632066149
– reference: EllahiRRiazANadeemSAppl. Nanosci.201447532014ApNan...4..753E
– reference: HamiltonRLCrosserOKEC Fundam.19621187
– reference: FungYCYinFCPJ. Fluid Mech.197147931971JFM....47...93Y
– reference: BhattiMMZeeshanATripathiDEllahiRIndian J. Phys.20189244234302018InJPh..92..423B
– reference: P Mohan Krishna, N Sandeep and R Prakash Sharma Eur. Phys. Jl.Plus132 202 (2017)
– reference: Bar-cohenYChatigZPiezoelectrically-Actuated Miniature Peristaltic Pump1991CaliforniaCaltech- Jet Propulsion Laboratory
– reference: ArchanaDSinghBKDuttaJDuttaPChitosanPVPInt. J. Biol. Macromol.20157349
– reference: X Cao et al Adv. Functi. Mater. 1807173 (2019)
– reference: NarlaVKTripathiDMicrovasc. Res.201912325
– reference: AbbasiFMHayatTAlsaadiFDobaiAMGaoHAIP Adv.201550771042015AIPA....5g7104A
– reference: D Tripathi and O A Beg Math. Biosci.246 72 (2013)
– reference: S Ahmad, S Nadeem, N Muhammad and M Naveed Khan J. Therm. Anal. Calorimetry (2020) 1–13
– reference: S Seok, C D Onal, R Wood, D Rus and S Kim Proc. IEEE Int. Conf. Robotics and Automation (ICRA) (2010)
– reference: TripathiDTrans. Porous Med.201292559
– reference: N Abbas, S Nadeem and M Y Malik. Phys. A: Stat. Mech. Appl.https://doi.org/10.1016/j.physa.2019.123512 (2020)
– reference: K Ramesh and M Devakar J. Fluids2015 (2015)
– reference: ChakrabortySElectrophoresis201940180
– reference: SeyfoddinAShawJAl-KassasRDrug Deliv.201017467
– reference: FarinaASFusiLFasanoACeretainARossoFInt. J. Eng. Sci.2016107112
– reference: TripathiDSharmaAAnwar BégOAdv. Powder Technol.201829639
– reference: AkbarNSAppl. Nanosci.201446632014ApNan...4..663A
– reference: KambhampatiSPKannanRMJ. Ocul. Pharmacol. Ther.201329151
– reference: MikityukMProbl. Ecol. Med.20111542
– reference: PendletonAKarPKunduSHoussamySLiangHJ. Tribol.2010132031201
– reference: JhorarRTripathiDBhattiMMEllahiRIndian J. Phys.201892122912382018InJPh..92.1229J
– reference: NadeemAMalikMYNadeemSAlarifi IbrahimMEur. Phys. J. Plus2020135145
– reference: EscandónJSantiagoFBautistaOMéndezFInt. J. Therm. Sci.201486246
– reference: FarooqSKhanMIWaqasMHayatTAlsaediAAppl. Nanosci.2020103472019ApNan..10..347F
– reference: TripathiDYadavAAnwar BégOEur. Phys. J. Plus2017132173
– reference: ChakrabortySPaulDJ. Phys. D: Appl. Phys.20063953642006JPhD...39.5364C
– reference: KothandapaniMPrakashJAppl. Nanosci.201663232016ApNan...6..323K
– reference: MaxwellJCA Treatise on Electricity and Magnetism1904CambridgeOxford University Press05.0556.01
– reference: PrakashJSharmaATripathiDPramana-J. Phys.20209442020Prama..94....4P
– reference: NoreenSRashidiMMQasimMAppl. Nanosci.201771932017ApNan...7..193N
– reference: K Venugopal Reddy, O D Makinde and M Gnaneswara Reddy Indian J..Phys.92 1439 (2018)
– reference: AkbarNSRazaMEllahiRAppl. Nanosci.201663592016ApNan...6..359A
– reference: K J Quillin J. Exp. Biol .202 661 (1999)
– reference: PrakashGChakrabortyJBandopadhyayAChakrabortySMicrovasc. Res.201610341
– reference: W Ehrfeld Electrochim. Acta48 2857 (2003)
– reference: JangJLeeSSSensor Actuat. A: Phys.20008084
– volume: 92
  start-page: 559
  year: 2012
  ident: 1906_CR15
  publication-title: Trans. Porous Med.
  doi: 10.1007/s11242-011-9920-9
– volume: 382
  start-page: 378
  year: 2015
  ident: 1906_CR3
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2015.06.022
– volume: 5
  start-page: 057121
  year: 2015
  ident: 1906_CR21
  publication-title: AIP Adv.
  doi: 10.1063/1.4921085
– volume: 29
  start-page: 151
  year: 2013
  ident: 1906_CR39
  publication-title: J. Ocul. Pharmacol. Ther.
  doi: 10.1089/jop.2012.0232
– ident: 1906_CR41
  doi: 10.1002/jbm.b.33275
– volume: 92
  start-page: 423
  issue: 4
  year: 2018
  ident: 1906_CR31
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-017-1132-x
– volume: 5
  start-page: 077104
  year: 2015
  ident: 1906_CR56
  publication-title: AIP Adv.
  doi: 10.1063/1.4926368
– volume: 114
  start-page: 65
  year: 2017
  ident: 1906_CR25
  publication-title: Microvasc. Res.
  doi: 10.1016/j.mvr.2017.06.004
– ident: 1906_CR63
– volume: 94
  start-page: 4
  year: 2020
  ident: 1906_CR28
  publication-title: Pramana-J. Phys.
  doi: 10.1007/s12043-019-1873-5
– ident: 1906_CR61
  doi: 10.1140/epjp/i2017-11469-9
– volume: 4
  start-page: 753
  year: 2014
  ident: 1906_CR45
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-013-0255-4
– volume-title: Piezoelectrically-Actuated Miniature Peristaltic Pump
  year: 1991
  ident: 1906_CR1
– volume: 153
  start-page: 763
  year: 2004
  ident: 1906_CR10
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(03)00672-6
– ident: 1906_CR18
  doi: 10.1016/S0013-4686(03)00350-5
– volume: 134
  start-page: 12
  year: 2015
  ident: 1906_CR22
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2015.04.036
– volume: 57
  start-page: 1349
  year: 2018
  ident: 1906_CR29
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2017.05.027
– volume: 10
  start-page: 1693
  year: 2020
  ident: 1906_CR54
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-020-01286-1
– volume: 185
  start-page: 105136
  year: 2020
  ident: 1906_CR62
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2019.105136
– ident: 1906_CR12
  doi: 10.1155/2012/169642
– volume: 6
  start-page: 323
  year: 2016
  ident: 1906_CR47
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-015-0431-9
– volume: 38
  start-page: 779
  year: 2004
  ident: 1906_CR2
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.05.017
– volume: 17
  start-page: 467
  year: 2010
  ident: 1906_CR37
  publication-title: Drug Deliv.
  doi: 10.3109/10717544.2010.483257
– volume: 1
  start-page: 187
  year: 1962
  ident: 1906_CR51
  publication-title: EC Fundam.
  doi: 10.1021/i160003a005
– volume: 209
  start-page: 723
  year: 2015
  ident: 1906_CR53
  publication-title: J Mol Liquids
  doi: 10.1016/j.molliq.2015.05.058
– volume: 40
  start-page: 180
  year: 2019
  ident: 1906_CR34
  publication-title: Electrophoresis
  doi: 10.1002/elps.201800353
– volume: 22
  start-page: 827
  year: 2019
  ident: 1906_CR60
  publication-title: Int. J. Appl. Mech. Eng.
– ident: 1906_CR43
  doi: 10.1016/j.bulcan.2017.02.003
– volume: 6
  start-page: 359
  year: 2016
  ident: 1906_CR46
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-015-0447-1
– volume: 39
  start-page: 5364
  year: 2006
  ident: 1906_CR20
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/39/24/038
– volume: 4
  start-page: 663
  year: 2014
  ident: 1906_CR44
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-013-0205-1
– volume: 10
  start-page: 347
  year: 2020
  ident: 1906_CR49
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-019-01148-5
– volume: 12
  start-page: 1250088
  year: 2012
  ident: 1906_CR16
  publication-title: J. Mech. Med. Bio.
  doi: 10.1142/S0219519412500881
– volume: 53
  start-page: 2079
  year: 2018
  ident: 1906_CR30
  publication-title: Meccanica
  doi: 10.1007/s11012-017-0795-x
– ident: 1906_CR8
– ident: 1906_CR35
  doi: 10.1002/adfm.201807173
– volume: 132
  start-page: 031201
  year: 2010
  ident: 1906_CR36
  publication-title: J. Tribol.
  doi: 10.1115/1.4001457
– volume: 7
  start-page: 193
  year: 2017
  ident: 1906_CR48
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-017-0564-0
– volume: 25
  start-page: 1868
  year: 2015
  ident: 1906_CR55
  publication-title: Int. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-04-2014-0111
– volume: 47
  start-page: 93
  year: 1971
  ident: 1906_CR11
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112071000958
– ident: 1906_CR59
  doi: 10.1016/j.physa.2019.123512
– ident: 1906_CR27
  doi: 10.1007/s12648-018-1209-1
– ident: 1906_CR7
  doi: 10.1242/jeb.202.6.661
– volume: 80
  start-page: 84
  year: 2000
  ident: 1906_CR19
  publication-title: Sensor Actuat. A: Phys.
  doi: 10.1016/S0924-4247(99)00302-7
– volume: 107
  start-page: 1
  year: 2016
  ident: 1906_CR5
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2016.07.002
– ident: 1906_CR14
  doi: 10.1155/2015/163832
– ident: 1906_CR17
  doi: 10.1016/j.mbs.2013.07.012
– volume: 29
  start-page: 639
  year: 2018
  ident: 1906_CR50
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2017.12.009
– volume: 21
  start-page: 947
  year: 1988
  ident: 1906_CR4
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(88)90133-9
– volume: 73
  start-page: 49
  year: 2015
  ident: 1906_CR42
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2014.10.055
– volume: 92
  start-page: 1229
  year: 2018
  ident: 1906_CR32
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-018-1215-3
– volume: 15
  start-page: 42
  year: 2011
  ident: 1906_CR38
  publication-title: Probl. Ecol. Med.
– volume: 103
  start-page: 41
  year: 2016
  ident: 1906_CR24
  publication-title: Microvasc. Res.
  doi: 10.1016/j.mvr.2015.10.004
– volume: 86
  start-page: 246
  year: 2014
  ident: 1906_CR23
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2014.07.009
– volume: 132
  start-page: 173
  year: 2017
  ident: 1906_CR26
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2017-11416-x
– volume-title: A Treatise on Electricity and Magnetism
  year: 1904
  ident: 1906_CR52
– ident: 1906_CR58
  doi: 10.1139/cjp-2018-0715
– volume: 4
  start-page: 297
  year: 1971
  ident: 1906_CR9
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(71)90036-4
– ident: 1906_CR6
– volume: 135
  start-page: 145
  year: 2020
  ident: 1906_CR57
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00185-2
– volume: 123
  start-page: 25
  year: 2019
  ident: 1906_CR33
  publication-title: Microvasc. Res.
  doi: 10.1016/j.mvr.2018.11.012
– volume: 394
  start-page: 335
  year: 2015
  ident: 1906_CR13
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2015.06.052
– volume: 174
  start-page: 2851
  year: 2014
  ident: 1906_CR40
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-014-1231-5
SSID ssj0069175
Score 2.4814382
Snippet This paper presents a computational modeling approach to analyze the peristaltic pumping of couple stress hybrid nanofluids regulated by the electroosmosis...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2411
SubjectTerms Astrophysics and Astroparticles
Drug delivery systems
Electroosmosis
Fluid flow
Grashof number
Mathematical models
Microchannels
Nanofluids
Nanoparticles
Nonlinear differential equations
Ohmic dissipation
Original Paper
Peristaltic pumps
Physics
Physics and Astronomy
Pumping
Resistance heating
Silver
Slip
Titanium
Titanium dioxide
Velocity
Title Numerical study of electroosmosis-induced alterations in peristaltic pumping of couple stress hybrid nanofluids through microchannel
URI https://link.springer.com/article/10.1007/s12648-020-01906-0
https://www.proquest.com/docview/2585059279
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86EbyInzi_yMGbBrq2adPjJs6huJODeSpJmuCgtsNuB-_-4b6Xtg5FBU-lNGmhv3y8l_f7vUfIhdK-0Uoqxk2YsNAGGRNZ5DEdGeS8h5mn8BzyYRyNJuHdlE8bUVjVst3bkKRbqVdiNyRjMXR3UP8MfvA62eDguyORa-L32_U3AgfEEReTOGC9kItGKvPzO75uRysb81tY1O02wx2y3ZiJtF_jukvWTLFHNh1dU1f75H28rCMtOXX5YWlpaVPQpqxeympWMfC1AbWMunB4fSxHZwWdu9TMEnNu0DlACV_HzrpcznNDa-UIfX5DHRctZFHafDnLKtqU86EvyN9DsXBh8gMyGd48Xo9YU0-BaZhoCxZKsJ1UzHUc2QBMLcOD0LPSCi1tLEzsC82jOAD4RBZioj_FtfIS30jr96wSwSHpFGVhjgi1mVVSBFIYMAGCxCq4hbGA0qhYcy67pNf-1lQ3ycax5kWertIkIxQpQJE6KFKvSy4_-8zrVBt_tj5t0UqbaVelPjg_YC_6cdIlVy2Cq8e_v-34f81PyJaP3BanSTwlncXr0pyBcbJQ52SjPxwMxni9fbq_OXdj8wOITuGL
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46Eb2IP3E6NQdvGujapk2PQxxTt5022K0kaYKD2ha7Hrz7h_uStg5FBY-lSQr98uO9vPd9D6FrIV0lBReEKj8ivvYSwpLAITJQJufdTxxh7iEn02A09x8XdNGQwso2270NSdqdek12M8lYxLg7hv8MfvAm2gJjgJm5PHcH7f4bgANiExej0CN9n7KGKvPzGF-Po7WN-S0sak-b4T7aa8xEPKhxPUAbKjtE2zZdU5ZH6H1a1ZGWFFt9WJxr3BS0ycuXvFyWBHxtQC3BNhxeX8vhZYYLK83MjeYGLgBK-LrpLPOqSBWumSP4-c3wuHDGs1yn1TIpcVPOB7-Y_D1DFs5Ueozmw_vZ3Yg09RSIhIW2Ij6H3yVCKsNAe2BqKer5juaaSa5DpkKXSRqEHsDHEt8I_QkqhRO5imu3rwXzTlAnyzN1irBOtODM40yBCeBFWsAjzAVDjQolpbyL-u1vjWUjNm5qXqTxWibZQBEDFLGFIna66OazT1FLbfzZuteiFTfLroxdcH7AXnTDqItuWwTXr38f7ex_za_Qzmg2Gcfjh-nTOdp1TZ6L5Sf2UGf1WqkLMFRW4tLOyw8t7uFu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXoIiouVaFFXWiLD9yotdnETpxjVVi1fKw4sNLeItux1ZWySUSSQ-_8cGacpEsrQOIYxXakPH_MeOa9IeSdNqE1WmkmLE8Zd1HOZB4HzMQWc955Hmi8h_y6jK9X_NNarH9j8fts9zEk2XMaUKWpbGd17mY74hsmZjF0fZALDT7xHnnKkQ0MM3oVXo57cQzOiE9iTJOIzbmQA23mz2M8PJp29uajEKk_eRaH5GAwGellj_EL8sSWL8kzn7ppmiPyc9n1UZeCeq1YWjk6FLepmm3VbBoGfjcgmFMfGu-v6OimpLWXaVaov0FrgBW-jp1N1dWFpT2LhN7eIaeLlqqsXNFt8oYOpX3oFnP5kDhc2uKYrBYfv19ds6G2AjOw6FrGFdhROhEmiV0EZpcVEQ-cctIol0ibhNKIOIkASplzFP3TwuggDa1y4dxpGb0ik7Iq7QmhLndayUhJC-ZAlDoNjzAvkCaVGCHUlMzH35qZQXgc618U2U4yGaHIAIrMQ5EFU_L-vk_dy278s_XpiFY2LMEmC8ERAtsxTNIpuRgR3L3--2iv_6_5W7L_7cMi-3Kz_PyGPA8x5cVTFU_JpP3R2TOwWVp97qflLwJl5aE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+study+of+electroosmosis-induced+alterations+in+peristaltic+pumping+of+couple+stress+hybrid+nanofluids+through+microchannel&rft.jtitle=Indian+journal+of+physics&rft.au=Tripathi%2C+Dharmendra&rft.au=Prakash%2C+J.&rft.au=Gnaneswara+Reddy%2C+M.&rft.au=Kumar%2C+Rakesh&rft.date=2021-11-01&rft.issn=0973-1458&rft.eissn=0974-9845&rft.volume=95&rft.issue=11&rft.spage=2411&rft.epage=2421&rft_id=info:doi/10.1007%2Fs12648-020-01906-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12648_020_01906_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-1458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-1458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-1458&client=summon