Numerical study of electroosmosis-induced alterations in peristaltic pumping of couple stress hybrid nanofluids through microchannel
This paper presents a computational modeling approach to analyze the peristaltic pumping of couple stress hybrid nanofluids regulated by the electroosmosis mechanism through a microchannel. The effects of applied magnetic field, Joule heating and buoyancy have also been computed. In this analytical...
Saved in:
Published in | Indian journal of physics Vol. 95; no. 11; pp. 2411 - 2421 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.11.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a computational modeling approach to analyze the peristaltic pumping of couple stress hybrid nanofluids regulated by the electroosmosis mechanism through a microchannel. The effects of applied magnetic field, Joule heating and buoyancy have also been computed. In this analytical model, water-based titanium dioxide (TiO
2
) and silver (Ag) hybrid nanofluids have been considered. For more relevant physical problem, the axial velocity slip and thermal slip conditions have also been introduced. The nonlinear differential equations are simplified by considering the Hückel–Debye approximations as well as lubrication theory, and then the equations have been solved numerically by Mathematica 10 software via the NDsolve commands. The pertinent influences of key parameters on the axial velocity, nanoparticle temperature, Nusselt number and streamlines in the microchannel have been visualized graphically. It is observed that an increase in the thermal Grashof number produces a maximum axial velocity, and temperature of nanoparticles for both water–titanium dioxide and water–silver nanofluids. The maximum axial velocity and nanoparticle temperature occur in water–titanium dioxide as compared with water–silver. The outcomes of this model shall be very useful in the designs of smart electro-peristaltic pumps for thermal systems and drug delivery systems. |
---|---|
AbstractList | This paper presents a computational modeling approach to analyze the peristaltic pumping of couple stress hybrid nanofluids regulated by the electroosmosis mechanism through a microchannel. The effects of applied magnetic field, Joule heating and buoyancy have also been computed. In this analytical model, water-based titanium dioxide (TiO2) and silver (Ag) hybrid nanofluids have been considered. For more relevant physical problem, the axial velocity slip and thermal slip conditions have also been introduced. The nonlinear differential equations are simplified by considering the Hückel–Debye approximations as well as lubrication theory, and then the equations have been solved numerically by Mathematica 10 software via the NDsolve commands. The pertinent influences of key parameters on the axial velocity, nanoparticle temperature, Nusselt number and streamlines in the microchannel have been visualized graphically. It is observed that an increase in the thermal Grashof number produces a maximum axial velocity, and temperature of nanoparticles for both water–titanium dioxide and water–silver nanofluids. The maximum axial velocity and nanoparticle temperature occur in water–titanium dioxide as compared with water–silver. The outcomes of this model shall be very useful in the designs of smart electro-peristaltic pumps for thermal systems and drug delivery systems. This paper presents a computational modeling approach to analyze the peristaltic pumping of couple stress hybrid nanofluids regulated by the electroosmosis mechanism through a microchannel. The effects of applied magnetic field, Joule heating and buoyancy have also been computed. In this analytical model, water-based titanium dioxide (TiO 2 ) and silver (Ag) hybrid nanofluids have been considered. For more relevant physical problem, the axial velocity slip and thermal slip conditions have also been introduced. The nonlinear differential equations are simplified by considering the Hückel–Debye approximations as well as lubrication theory, and then the equations have been solved numerically by Mathematica 10 software via the NDsolve commands. The pertinent influences of key parameters on the axial velocity, nanoparticle temperature, Nusselt number and streamlines in the microchannel have been visualized graphically. It is observed that an increase in the thermal Grashof number produces a maximum axial velocity, and temperature of nanoparticles for both water–titanium dioxide and water–silver nanofluids. The maximum axial velocity and nanoparticle temperature occur in water–titanium dioxide as compared with water–silver. The outcomes of this model shall be very useful in the designs of smart electro-peristaltic pumps for thermal systems and drug delivery systems. |
Author | Gnaneswara Reddy, M. Kumar, Rakesh Tripathi, Dharmendra Prakash, J. |
Author_xml | – sequence: 1 givenname: Dharmendra orcidid: 0000-0003-4798-1021 surname: Tripathi fullname: Tripathi, Dharmendra email: dtripathi@nituk.ac.in organization: Department of Mathematics, National Institute of Technology Uttarakhand – sequence: 2 givenname: J. surname: Prakash fullname: Prakash, J. organization: Department of Mathematics, Avvaiyar Government College for Women – sequence: 3 givenname: M. surname: Gnaneswara Reddy fullname: Gnaneswara Reddy, M. organization: Department of Mathematics, Acharya Nagarjuna University Campus – sequence: 4 givenname: Rakesh surname: Kumar fullname: Kumar, Rakesh organization: Department of Mechanical Engineering, Manipal University Jaipur |
BookMark | eNp9kE9r3DAQxUVJoUnaL9CToGelI9my5GMJTVIIySU5C1mWdhVsydWfw977waPsFgo95DTD8H4zb94FOgsxWIS-UriiAOJ7pmzoJQEGBOgIA4EP6BxG0ZNR9vzs2HeE9lx-Qhc5vwAMIxX8HP15qKtN3ugF51LnA44O28WakmLMa8w-Ex_mauyM9VJs0sXHkLEPeGtYLm3oDd7quvmwe4NNrNti27Jkc8b7w5T8jIMO0S3VzxmXfYp1t8erNymavQ7BLp_RR6eXbL_8rZfo-ebn0_UduX-8_XX9456Yjo6F9Lpn3SS4EYPrQHLLux6cdtJoJ6QVTBo-iG4yTM49ByonbiYYmdWOUTfJ7hJ9O-3dUvxdbS7qJdYU2knFuOTARybGppInVTOYc7JOGV-Of5ek_aIoqLfM1Slz1TJXx8wVNJT9h27Jrzod3oe6E5SbOOxs-ufqHeoVKCuaHw |
CitedBy_id | crossref_primary_10_1142_S021797922350025X crossref_primary_10_1177_22808000221125870 crossref_primary_10_1016_j_mseb_2022_115886 crossref_primary_10_1108_HFF_11_2020_0694 crossref_primary_10_1007_s00396_024_05286_3 crossref_primary_10_1080_10407790_2023_2211731 crossref_primary_10_1016_j_mseb_2022_116250 crossref_primary_10_1007_s00419_021_01990_6 crossref_primary_10_1515_nleng_2022_0287 crossref_primary_10_1002_htj_22457 crossref_primary_10_3389_fchem_2022_960349 crossref_primary_10_1016_j_mtcomm_2022_104532 crossref_primary_10_1063_5_0215302 crossref_primary_10_1002_htj_22450 crossref_primary_10_1080_10407782_2023_2260948 crossref_primary_10_1002_htj_22490 crossref_primary_10_1177_09544089221076592 crossref_primary_10_1177_09544062231196075 crossref_primary_10_1080_10407782_2024_2355367 crossref_primary_10_1080_17455030_2022_2056261 crossref_primary_10_1007_s12648_022_02326_y crossref_primary_10_1016_j_icheatmasstransfer_2021_105877 crossref_primary_10_1002_zamm_202300771 crossref_primary_10_1016_j_tsep_2024_102680 crossref_primary_10_1002_jccs_202200400 crossref_primary_10_1007_s43153_021_00196_1 crossref_primary_10_1080_10407790_2023_2262120 crossref_primary_10_1016_j_jocs_2022_101696 crossref_primary_10_1007_s12648_021_02132_y crossref_primary_10_1016_j_applthermaleng_2024_124465 crossref_primary_10_1142_S0217979225500110 crossref_primary_10_1177_09544089231161306 crossref_primary_10_1615_JPorMedia_2023044926 crossref_primary_10_1007_s12206_022_0321_5 crossref_primary_10_1007_s12043_024_02768_5 crossref_primary_10_1016_j_amc_2022_127110 crossref_primary_10_1007_s12043_021_02136_7 crossref_primary_10_1002_zamm_202100112 crossref_primary_10_1007_s13367_021_0029_6 crossref_primary_10_1002_zamm_202200284 crossref_primary_10_1002_htj_22631 crossref_primary_10_1002_htj_22797 crossref_primary_10_1007_s40819_022_01393_3 crossref_primary_10_1080_02286203_2022_2122928 crossref_primary_10_1080_01496395_2024_2447310 crossref_primary_10_3389_fmats_2023_1139284 crossref_primary_10_1177_16878132241252328 crossref_primary_10_1088_1361_6528_acfb15 crossref_primary_10_3390_nano12101615 crossref_primary_10_1002_zamm_202300838 crossref_primary_10_1002_htj_22848 crossref_primary_10_1016_j_asej_2024_103181 crossref_primary_10_1080_16583655_2022_2087396 crossref_primary_10_1515_ntrev_2022_0496 crossref_primary_10_1515_nleng_2022_0031 crossref_primary_10_1016_j_cjph_2022_08_006 crossref_primary_10_3390_mi13030374 |
Cites_doi | 10.1007/s11242-011-9920-9 10.1016/j.jtbi.2015.06.022 10.1063/1.4921085 10.1089/jop.2012.0232 10.1002/jbm.b.33275 10.1007/s12648-017-1132-x 10.1063/1.4926368 10.1016/j.mvr.2017.06.004 10.1007/s12043-019-1873-5 10.1140/epjp/i2017-11469-9 10.1007/s13204-013-0255-4 10.1016/S0096-3003(03)00672-6 10.1016/S0013-4686(03)00350-5 10.1016/j.ces.2015.04.036 10.1016/j.aej.2017.05.027 10.1007/s13204-020-01286-1 10.1016/j.cmpb.2019.105136 10.1155/2012/169642 10.1007/s13204-015-0431-9 10.1016/j.jbiomech.2004.05.017 10.3109/10717544.2010.483257 10.1021/i160003a005 10.1016/j.molliq.2015.05.058 10.1002/elps.201800353 10.1016/j.bulcan.2017.02.003 10.1007/s13204-015-0447-1 10.1088/0022-3727/39/24/038 10.1007/s13204-013-0205-1 10.1007/s13204-019-01148-5 10.1142/S0219519412500881 10.1007/s11012-017-0795-x 10.1002/adfm.201807173 10.1115/1.4001457 10.1007/s13204-017-0564-0 10.1108/HFF-04-2014-0111 10.1017/S0022112071000958 10.1016/j.physa.2019.123512 10.1007/s12648-018-1209-1 10.1242/jeb.202.6.661 10.1016/S0924-4247(99)00302-7 10.1016/j.ijengsci.2016.07.002 10.1155/2015/163832 10.1016/j.mbs.2013.07.012 10.1016/j.apt.2017.12.009 10.1016/0021-9290(88)90133-9 10.1016/j.ijbiomac.2014.10.055 10.1007/s12648-018-1215-3 10.1016/j.mvr.2015.10.004 10.1016/j.ijthermalsci.2014.07.009 10.1140/epjp/i2017-11416-x 10.1139/cjp-2018-0715 10.1016/0021-9290(71)90036-4 10.1140/epjp/s13360-020-00185-2 10.1016/j.mvr.2018.11.012 10.1016/j.jmmm.2015.06.052 10.1007/s12010-014-1231-5 |
ContentType | Journal Article |
Copyright | Indian Association for the Cultivation of Science 2020 Indian Association for the Cultivation of Science 2020. |
Copyright_xml | – notice: Indian Association for the Cultivation of Science 2020 – notice: Indian Association for the Cultivation of Science 2020. |
DBID | AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1007/s12648-020-01906-0 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 0974-9845 |
EndPage | 2421 |
ExternalDocumentID | 10_1007_s12648_020_01906_0 |
GroupedDBID | -EM 04Q 04W 06D 0R~ 0VY 203 29I 29~ 2JN 2KG 2VQ 30V 3V. 406 408 5GY 5VS 67Z 8FE 8FG 8G5 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABXPI ACAOD ACCUX ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARMRJ AXYYD AYJHY AZQEC BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CSCUP C~6 DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GUQSH H13 HCIFZ HG6 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXC IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M2O M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P62 P9T PQQKQ PROAC PT4 R9I RLLFE ROL RSV S1Z S27 S3B SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 Z45 Z7X Z7Y ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7U5 8FD ABRTQ H8D L7M |
ID | FETCH-LOGICAL-c319t-4a423b75c76f3085e5340faf8caf78e728c5673bc28d45018b5cb092eaf21fb83 |
IEDL.DBID | U2A |
ISSN | 0973-1458 |
IngestDate | Fri Jul 25 03:56:29 EDT 2025 Thu Apr 24 23:00:10 EDT 2025 Tue Jul 01 03:02:33 EDT 2025 Fri Feb 21 02:47:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Couple stress fluid Numerical simulation Magnetohydrodynamics Peristalsis Electroosmosis Joule heating |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-4a423b75c76f3085e5340faf8caf78e728c5673bc28d45018b5cb092eaf21fb83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4798-1021 |
PQID | 2585059279 |
PQPubID | 2034531 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2585059279 crossref_citationtrail_10_1007_s12648_020_01906_0 crossref_primary_10_1007_s12648_020_01906_0 springer_journals_10_1007_s12648_020_01906_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: West Bengal |
PublicationTitle | Indian journal of physics |
PublicationTitleAbbrev | Indian J Phys |
PublicationYear | 2021 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | TripathiDYadavAAnwar BégOEur. Phys. J. Plus2017132173 TripathiDTrans. Porous Med.201292559 K Venugopal Reddy, O D Makinde and M Gnaneswara Reddy Indian J..Phys.92 1439 (2018) X Cao et al Adv. Functi. Mater. 1807173 (2019) MuthuramanPRamkumarKKimDHAppl. Biochem. Biotechnol.20141742851 FarooqSKhanMIWaqasMHayatTAlsaediAAppl. Nanosci.2020103472019ApNan..10..347F TripathiDAbhileshBRavinderJAnwar BégOKumar TiwariAMicrovasc. Res.201711465 K Ramesh and M Devakar J. Fluids2015 (2015) K J Quillin J. Exp. Biol .202 661 (1999) LewHSFungYCLowensteinCBJ. Biomech.19714297 PrakashJTripathiDAnwar BégOAppl. Nanosci.20201016932020ApNan..10.1693P JangJLeeSSSensor Actuat. A: Phys.20008084 ShehzadSAAbbasiFMHayatTAlsaadiFJ Mol Liquids2015209723 NarlaVKTripathiDMicrovasc. Res.201912325 PrakashGChakrabortyJBandopadhyayAChakrabortySMicrovasc. Res.201610341 MaxwellJCA Treatise on Electricity and Magnetism1904CambridgeOxford University Press05.0556.01 Q Wu, H Zhang, M Chen, Y Zhang, J Huang, Z Xu and W Wang J. Biomed. Mater. Res. B Appl. Biomater.103 908 (2014) AbbasNMalikMYNadeemSComput. Methods Prog. Biomed.2020185105136 ChakrabortySElectrophoresis201940180 MekheimerKSAppl. Math. Comput.20041537632066149 EscandónJSantiagoFBautistaOMéndezFInt. J. Therm. Sci.201486246 RameshKDevakarMJ. Magn. Magn. Mater.20153943352015JMMM..394..335R ChakrabortySPaulDJ. Phys. D: Appl. Phys.20063953642006JPhD...39.5364C TripathiDBégOAJ. Mech. Med. Bio.2012121250088 TripathiDBhushanSAnwar BégOAlex. Eng. J.2018571349 A Sohail, Z Ahmad, O A Bég, S Arshad and L Sherin Bull. Cancer104 452 (2017) NoreenSRashidiMMQasimMAppl. Nanosci.201771932017ApNan...7..193N AkbarNSRazaMEllahiRAppl. Nanosci.201663592016ApNan...6..359A SeyfoddinAShawJAl-KassasRDrug Deliv.201017467 HamiltonRLCrosserOKEC Fundam.19621187 H Sadaf and S. Nadeem. Can. J. Phys.98 1 (2020) NadeemAMalikMYNadeemSAlarifi IbrahimMEur. Phys. J. Plus2020135145 BhattiMMZeeshanATripathiDEllahiRIndian J. Phys.20189244234302018InJPh..92..423B BokkaKKJesudasonECWarburtonDLubkinSRJ. Theor. Biol.20153823782015JThBi.382..378B S Seok, C D Onal, R Wood, D Rus and S Kim Proc. IEEE Int. Conf. Robotics and Automation (ICRA) (2010) W Ehrfeld Electrochim. Acta48 2857 (2003) PrakashJSharmaATripathiDPramana-J. Phys.20209442020Prama..94....4P PendletonAKarPKunduSHoussamySLiangHJ. Tribol.2010132031201 EllahiRRiazANadeemSAppl. Nanosci.201447532014ApNan...4..753E TripathiDJhorarRAnwar BégOShawSMeccanica20185320793802334 JianYJChangLAIP Adv.201550571212015AIPA....5e7121J KambhampatiSPKannanRMJ. Ocul. Pharmacol. Ther.201329151 N Abbas, S Nadeem and M Y Malik. Phys. A: Stat. Mech. Appl.https://doi.org/10.1016/j.physa.2019.123512 (2020) FungYCYinFCPJ. Fluid Mech.197147931971JFM....47...93Y TripathiDSharmaAAnwar BégOAdv. Powder Technol.201829639 HayatTAbbasiFMAhmadBInt. Numer. Methods Heat Fluid Flow2015251868 ArchanaDSinghBKDuttaJDuttaPChitosanPVPInt. J. Biol. Macromol.20157349 E V Mangan, D A Kingsley, R D Quinn and H J Chiel Proc. IEEE Int. Conf. Robotics and Automation (ICRA) 347 (2002) A Afsar Khan, R Ellahi and K Vafai Adv. Math. Phys.2012 (2012) AbbasiFMHayatTAlsaadiFDobaiAMGaoHAIP Adv.201550771042015AIPA....5g7104A KothandapaniMPrakashJAppl. Nanosci.201663232016ApNan...6..323K MishraMRamachandra RaoAJ. Biomech.200438779 Bar-cohenYChatigZPiezoelectrically-Actuated Miniature Peristaltic Pump1991CaliforniaCaltech- Jet Propulsion Laboratory FarinaASFusiLFasanoACeretainARossoFInt. J. Eng. Sci.2016107112 S Ahmad, S Nadeem, N Muhammad and M Naveed Khan J. Therm. Anal. Calorimetry (2020) 1–13 JhorarRTripathiDBhattiMMEllahiRIndian J. Phys.201892122912382018InJPh..92.1229J Prakash SharmaRRajuMCMakindeODKrishna ReddyPRChandra ReddyPInt. J. Appl. Mech. Eng.201922827 AkbarNSAppl. Nanosci.201446632014ApNan...4..663A P Mohan Krishna, N Sandeep and R Prakash Sharma Eur. Phys. Jl.Plus132 202 (2017) ShuklaJBChandraPSharmaRRadhakrishnamacharyaGJ. Biomech.198821947 MikityukMProbl. Ecol. Med.20111542 D Tripathi and O A Beg Math. Biosci.246 72 (2013) JianYJSiDQChangLLiuQSChem. Eng. Sci.201513412 G Prakash (1906_CR24) 2016; 103 1906_CR27 Y Bar-cohen (1906_CR1) 1991 A Pendleton (1906_CR36) 2010; 132 AS Farina (1906_CR5) 2016; 107 YJ Jian (1906_CR21) 2015; 5 S Farooq (1906_CR49) 2020; 10 HS Lew (1906_CR9) 1971; 4 YC Fung (1906_CR11) 1971; 47 MM Bhatti (1906_CR31) 2018; 92 SP Kambhampati (1906_CR39) 2013; 29 M Mikityuk (1906_CR38) 2011; 15 R Ellahi (1906_CR45) 2014; 4 1906_CR18 1906_CR17 VK Narla (1906_CR33) 2019; 123 1906_CR59 1906_CR14 1906_CR58 1906_CR12 JB Shukla (1906_CR4) 1988; 21 S Chakraborty (1906_CR34) 2019; 40 NS Akbar (1906_CR46) 2016; 6 J Jang (1906_CR19) 2000; 80 D Tripathi (1906_CR29) 2018; 57 M Kothandapani (1906_CR47) 2016; 6 J Prakash (1906_CR54) 2020; 10 1906_CR63 1906_CR61 D Tripathi (1906_CR15) 2012; 92 D Archana (1906_CR42) 2015; 73 D Tripathi (1906_CR26) 2017; 132 SA Shehzad (1906_CR53) 2015; 209 KS Mekheimer (1906_CR10) 2004; 153 D Tripathi (1906_CR50) 2018; 29 S Noreen (1906_CR48) 2017; 7 M Mishra (1906_CR2) 2004; 38 A Seyfoddin (1906_CR37) 2010; 17 YJ Jian (1906_CR22) 2015; 134 RL Hamilton (1906_CR51) 1962; 1 NS Akbar (1906_CR44) 2014; 4 R Jhorar (1906_CR32) 2018; 92 J Prakash (1906_CR28) 2020; 94 J Escandón (1906_CR23) 2014; 86 A Nadeem (1906_CR57) 2020; 135 1906_CR35 K Ramesh (1906_CR13) 2015; 394 JC Maxwell (1906_CR52) 1904 D Tripathi (1906_CR16) 2012; 12 1906_CR8 D Tripathi (1906_CR25) 2017; 114 R Prakash Sharma (1906_CR60) 2019; 22 S Chakraborty (1906_CR20) 2006; 39 P Muthuraman (1906_CR40) 2014; 174 KK Bokka (1906_CR3) 2015; 382 N Abbas (1906_CR62) 2020; 185 1906_CR43 D Tripathi (1906_CR30) 2018; 53 1906_CR41 1906_CR6 T Hayat (1906_CR55) 2015; 25 1906_CR7 FM Abbasi (1906_CR56) 2015; 5 |
References_xml | – reference: BokkaKKJesudasonECWarburtonDLubkinSRJ. Theor. Biol.20153823782015JThBi.382..378B – reference: MishraMRamachandra RaoAJ. Biomech.200438779 – reference: LewHSFungYCLowensteinCBJ. Biomech.19714297 – reference: JianYJChangLAIP Adv.201550571212015AIPA....5e7121J – reference: TripathiDAbhileshBRavinderJAnwar BégOKumar TiwariAMicrovasc. Res.201711465 – reference: A Sohail, Z Ahmad, O A Bég, S Arshad and L Sherin Bull. Cancer104 452 (2017) – reference: ShehzadSAAbbasiFMHayatTAlsaadiFJ Mol Liquids2015209723 – reference: H Sadaf and S. Nadeem. Can. J. Phys.98 1 (2020) – reference: AbbasNMalikMYNadeemSComput. Methods Prog. Biomed.2020185105136 – reference: A Afsar Khan, R Ellahi and K Vafai Adv. Math. Phys.2012 (2012) – reference: MuthuramanPRamkumarKKimDHAppl. Biochem. Biotechnol.20141742851 – reference: E V Mangan, D A Kingsley, R D Quinn and H J Chiel Proc. IEEE Int. Conf. Robotics and Automation (ICRA) 347 (2002) – reference: RameshKDevakarMJ. Magn. Magn. Mater.20153943352015JMMM..394..335R – reference: PrakashJTripathiDAnwar BégOAppl. Nanosci.20201016932020ApNan..10.1693P – reference: Q Wu, H Zhang, M Chen, Y Zhang, J Huang, Z Xu and W Wang J. Biomed. Mater. Res. B Appl. Biomater.103 908 (2014) – reference: TripathiDJhorarRAnwar BégOShawSMeccanica20185320793802334 – reference: HayatTAbbasiFMAhmadBInt. Numer. Methods Heat Fluid Flow2015251868 – reference: ShuklaJBChandraPSharmaRRadhakrishnamacharyaGJ. Biomech.198821947 – reference: Prakash SharmaRRajuMCMakindeODKrishna ReddyPRChandra ReddyPInt. J. Appl. Mech. Eng.201922827 – reference: TripathiDBhushanSAnwar BégOAlex. Eng. J.2018571349 – reference: JianYJSiDQChangLLiuQSChem. Eng. Sci.201513412 – reference: TripathiDBégOAJ. Mech. Med. Bio.2012121250088 – reference: MekheimerKSAppl. Math. Comput.20041537632066149 – reference: EllahiRRiazANadeemSAppl. Nanosci.201447532014ApNan...4..753E – reference: HamiltonRLCrosserOKEC Fundam.19621187 – reference: FungYCYinFCPJ. Fluid Mech.197147931971JFM....47...93Y – reference: BhattiMMZeeshanATripathiDEllahiRIndian J. Phys.20189244234302018InJPh..92..423B – reference: P Mohan Krishna, N Sandeep and R Prakash Sharma Eur. Phys. Jl.Plus132 202 (2017) – reference: Bar-cohenYChatigZPiezoelectrically-Actuated Miniature Peristaltic Pump1991CaliforniaCaltech- Jet Propulsion Laboratory – reference: ArchanaDSinghBKDuttaJDuttaPChitosanPVPInt. J. Biol. Macromol.20157349 – reference: X Cao et al Adv. Functi. Mater. 1807173 (2019) – reference: NarlaVKTripathiDMicrovasc. Res.201912325 – reference: AbbasiFMHayatTAlsaadiFDobaiAMGaoHAIP Adv.201550771042015AIPA....5g7104A – reference: D Tripathi and O A Beg Math. Biosci.246 72 (2013) – reference: S Ahmad, S Nadeem, N Muhammad and M Naveed Khan J. Therm. Anal. Calorimetry (2020) 1–13 – reference: S Seok, C D Onal, R Wood, D Rus and S Kim Proc. IEEE Int. Conf. Robotics and Automation (ICRA) (2010) – reference: TripathiDTrans. Porous Med.201292559 – reference: N Abbas, S Nadeem and M Y Malik. Phys. A: Stat. Mech. Appl.https://doi.org/10.1016/j.physa.2019.123512 (2020) – reference: K Ramesh and M Devakar J. Fluids2015 (2015) – reference: ChakrabortySElectrophoresis201940180 – reference: SeyfoddinAShawJAl-KassasRDrug Deliv.201017467 – reference: FarinaASFusiLFasanoACeretainARossoFInt. J. Eng. Sci.2016107112 – reference: TripathiDSharmaAAnwar BégOAdv. Powder Technol.201829639 – reference: AkbarNSAppl. Nanosci.201446632014ApNan...4..663A – reference: KambhampatiSPKannanRMJ. Ocul. Pharmacol. Ther.201329151 – reference: MikityukMProbl. Ecol. Med.20111542 – reference: PendletonAKarPKunduSHoussamySLiangHJ. Tribol.2010132031201 – reference: JhorarRTripathiDBhattiMMEllahiRIndian J. Phys.201892122912382018InJPh..92.1229J – reference: NadeemAMalikMYNadeemSAlarifi IbrahimMEur. Phys. J. Plus2020135145 – reference: EscandónJSantiagoFBautistaOMéndezFInt. J. Therm. Sci.201486246 – reference: FarooqSKhanMIWaqasMHayatTAlsaediAAppl. Nanosci.2020103472019ApNan..10..347F – reference: TripathiDYadavAAnwar BégOEur. Phys. J. Plus2017132173 – reference: ChakrabortySPaulDJ. Phys. D: Appl. Phys.20063953642006JPhD...39.5364C – reference: KothandapaniMPrakashJAppl. Nanosci.201663232016ApNan...6..323K – reference: MaxwellJCA Treatise on Electricity and Magnetism1904CambridgeOxford University Press05.0556.01 – reference: PrakashJSharmaATripathiDPramana-J. Phys.20209442020Prama..94....4P – reference: NoreenSRashidiMMQasimMAppl. Nanosci.201771932017ApNan...7..193N – reference: K Venugopal Reddy, O D Makinde and M Gnaneswara Reddy Indian J..Phys.92 1439 (2018) – reference: AkbarNSRazaMEllahiRAppl. Nanosci.201663592016ApNan...6..359A – reference: K J Quillin J. Exp. Biol .202 661 (1999) – reference: PrakashGChakrabortyJBandopadhyayAChakrabortySMicrovasc. Res.201610341 – reference: W Ehrfeld Electrochim. Acta48 2857 (2003) – reference: JangJLeeSSSensor Actuat. A: Phys.20008084 – volume: 92 start-page: 559 year: 2012 ident: 1906_CR15 publication-title: Trans. Porous Med. doi: 10.1007/s11242-011-9920-9 – volume: 382 start-page: 378 year: 2015 ident: 1906_CR3 publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2015.06.022 – volume: 5 start-page: 057121 year: 2015 ident: 1906_CR21 publication-title: AIP Adv. doi: 10.1063/1.4921085 – volume: 29 start-page: 151 year: 2013 ident: 1906_CR39 publication-title: J. Ocul. Pharmacol. Ther. doi: 10.1089/jop.2012.0232 – ident: 1906_CR41 doi: 10.1002/jbm.b.33275 – volume: 92 start-page: 423 issue: 4 year: 2018 ident: 1906_CR31 publication-title: Indian J. Phys. doi: 10.1007/s12648-017-1132-x – volume: 5 start-page: 077104 year: 2015 ident: 1906_CR56 publication-title: AIP Adv. doi: 10.1063/1.4926368 – volume: 114 start-page: 65 year: 2017 ident: 1906_CR25 publication-title: Microvasc. Res. doi: 10.1016/j.mvr.2017.06.004 – ident: 1906_CR63 – volume: 94 start-page: 4 year: 2020 ident: 1906_CR28 publication-title: Pramana-J. Phys. doi: 10.1007/s12043-019-1873-5 – ident: 1906_CR61 doi: 10.1140/epjp/i2017-11469-9 – volume: 4 start-page: 753 year: 2014 ident: 1906_CR45 publication-title: Appl. Nanosci. doi: 10.1007/s13204-013-0255-4 – volume-title: Piezoelectrically-Actuated Miniature Peristaltic Pump year: 1991 ident: 1906_CR1 – volume: 153 start-page: 763 year: 2004 ident: 1906_CR10 publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(03)00672-6 – ident: 1906_CR18 doi: 10.1016/S0013-4686(03)00350-5 – volume: 134 start-page: 12 year: 2015 ident: 1906_CR22 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2015.04.036 – volume: 57 start-page: 1349 year: 2018 ident: 1906_CR29 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2017.05.027 – volume: 10 start-page: 1693 year: 2020 ident: 1906_CR54 publication-title: Appl. Nanosci. doi: 10.1007/s13204-020-01286-1 – volume: 185 start-page: 105136 year: 2020 ident: 1906_CR62 publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2019.105136 – ident: 1906_CR12 doi: 10.1155/2012/169642 – volume: 6 start-page: 323 year: 2016 ident: 1906_CR47 publication-title: Appl. Nanosci. doi: 10.1007/s13204-015-0431-9 – volume: 38 start-page: 779 year: 2004 ident: 1906_CR2 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.05.017 – volume: 17 start-page: 467 year: 2010 ident: 1906_CR37 publication-title: Drug Deliv. doi: 10.3109/10717544.2010.483257 – volume: 1 start-page: 187 year: 1962 ident: 1906_CR51 publication-title: EC Fundam. doi: 10.1021/i160003a005 – volume: 209 start-page: 723 year: 2015 ident: 1906_CR53 publication-title: J Mol Liquids doi: 10.1016/j.molliq.2015.05.058 – volume: 40 start-page: 180 year: 2019 ident: 1906_CR34 publication-title: Electrophoresis doi: 10.1002/elps.201800353 – volume: 22 start-page: 827 year: 2019 ident: 1906_CR60 publication-title: Int. J. Appl. Mech. Eng. – ident: 1906_CR43 doi: 10.1016/j.bulcan.2017.02.003 – volume: 6 start-page: 359 year: 2016 ident: 1906_CR46 publication-title: Appl. Nanosci. doi: 10.1007/s13204-015-0447-1 – volume: 39 start-page: 5364 year: 2006 ident: 1906_CR20 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/39/24/038 – volume: 4 start-page: 663 year: 2014 ident: 1906_CR44 publication-title: Appl. Nanosci. doi: 10.1007/s13204-013-0205-1 – volume: 10 start-page: 347 year: 2020 ident: 1906_CR49 publication-title: Appl. Nanosci. doi: 10.1007/s13204-019-01148-5 – volume: 12 start-page: 1250088 year: 2012 ident: 1906_CR16 publication-title: J. Mech. Med. Bio. doi: 10.1142/S0219519412500881 – volume: 53 start-page: 2079 year: 2018 ident: 1906_CR30 publication-title: Meccanica doi: 10.1007/s11012-017-0795-x – ident: 1906_CR8 – ident: 1906_CR35 doi: 10.1002/adfm.201807173 – volume: 132 start-page: 031201 year: 2010 ident: 1906_CR36 publication-title: J. Tribol. doi: 10.1115/1.4001457 – volume: 7 start-page: 193 year: 2017 ident: 1906_CR48 publication-title: Appl. Nanosci. doi: 10.1007/s13204-017-0564-0 – volume: 25 start-page: 1868 year: 2015 ident: 1906_CR55 publication-title: Int. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-04-2014-0111 – volume: 47 start-page: 93 year: 1971 ident: 1906_CR11 publication-title: J. Fluid Mech. doi: 10.1017/S0022112071000958 – ident: 1906_CR59 doi: 10.1016/j.physa.2019.123512 – ident: 1906_CR27 doi: 10.1007/s12648-018-1209-1 – ident: 1906_CR7 doi: 10.1242/jeb.202.6.661 – volume: 80 start-page: 84 year: 2000 ident: 1906_CR19 publication-title: Sensor Actuat. A: Phys. doi: 10.1016/S0924-4247(99)00302-7 – volume: 107 start-page: 1 year: 2016 ident: 1906_CR5 publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2016.07.002 – ident: 1906_CR14 doi: 10.1155/2015/163832 – ident: 1906_CR17 doi: 10.1016/j.mbs.2013.07.012 – volume: 29 start-page: 639 year: 2018 ident: 1906_CR50 publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2017.12.009 – volume: 21 start-page: 947 year: 1988 ident: 1906_CR4 publication-title: J. Biomech. doi: 10.1016/0021-9290(88)90133-9 – volume: 73 start-page: 49 year: 2015 ident: 1906_CR42 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2014.10.055 – volume: 92 start-page: 1229 year: 2018 ident: 1906_CR32 publication-title: Indian J. Phys. doi: 10.1007/s12648-018-1215-3 – volume: 15 start-page: 42 year: 2011 ident: 1906_CR38 publication-title: Probl. Ecol. Med. – volume: 103 start-page: 41 year: 2016 ident: 1906_CR24 publication-title: Microvasc. Res. doi: 10.1016/j.mvr.2015.10.004 – volume: 86 start-page: 246 year: 2014 ident: 1906_CR23 publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2014.07.009 – volume: 132 start-page: 173 year: 2017 ident: 1906_CR26 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2017-11416-x – volume-title: A Treatise on Electricity and Magnetism year: 1904 ident: 1906_CR52 – ident: 1906_CR58 doi: 10.1139/cjp-2018-0715 – volume: 4 start-page: 297 year: 1971 ident: 1906_CR9 publication-title: J. Biomech. doi: 10.1016/0021-9290(71)90036-4 – ident: 1906_CR6 – volume: 135 start-page: 145 year: 2020 ident: 1906_CR57 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00185-2 – volume: 123 start-page: 25 year: 2019 ident: 1906_CR33 publication-title: Microvasc. Res. doi: 10.1016/j.mvr.2018.11.012 – volume: 394 start-page: 335 year: 2015 ident: 1906_CR13 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.06.052 – volume: 174 start-page: 2851 year: 2014 ident: 1906_CR40 publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-014-1231-5 |
SSID | ssj0069175 |
Score | 2.4814382 |
Snippet | This paper presents a computational modeling approach to analyze the peristaltic pumping of couple stress hybrid nanofluids regulated by the electroosmosis... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2411 |
SubjectTerms | Astrophysics and Astroparticles Drug delivery systems Electroosmosis Fluid flow Grashof number Mathematical models Microchannels Nanofluids Nanoparticles Nonlinear differential equations Ohmic dissipation Original Paper Peristaltic pumps Physics Physics and Astronomy Pumping Resistance heating Silver Slip Titanium Titanium dioxide Velocity |
Title | Numerical study of electroosmosis-induced alterations in peristaltic pumping of couple stress hybrid nanofluids through microchannel |
URI | https://link.springer.com/article/10.1007/s12648-020-01906-0 https://www.proquest.com/docview/2585059279 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86EbyInzi_yMGbBrq2adPjJs6huJODeSpJmuCgtsNuB-_-4b6Xtg5FBU-lNGmhv3y8l_f7vUfIhdK-0Uoqxk2YsNAGGRNZ5DEdGeS8h5mn8BzyYRyNJuHdlE8bUVjVst3bkKRbqVdiNyRjMXR3UP8MfvA62eDguyORa-L32_U3AgfEEReTOGC9kItGKvPzO75uRysb81tY1O02wx2y3ZiJtF_jukvWTLFHNh1dU1f75H28rCMtOXX5YWlpaVPQpqxeympWMfC1AbWMunB4fSxHZwWdu9TMEnNu0DlACV_HzrpcznNDa-UIfX5DHRctZFHafDnLKtqU86EvyN9DsXBh8gMyGd48Xo9YU0-BaZhoCxZKsJ1UzHUc2QBMLcOD0LPSCi1tLEzsC82jOAD4RBZioj_FtfIS30jr96wSwSHpFGVhjgi1mVVSBFIYMAGCxCq4hbGA0qhYcy67pNf-1lQ3ycax5kWertIkIxQpQJE6KFKvSy4_-8zrVBt_tj5t0UqbaVelPjg_YC_6cdIlVy2Cq8e_v-34f81PyJaP3BanSTwlncXr0pyBcbJQ52SjPxwMxni9fbq_OXdj8wOITuGL |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46Eb2IP3E6NQdvGujapk2PQxxTt5022K0kaYKD2ha7Hrz7h_uStg5FBY-lSQr98uO9vPd9D6FrIV0lBReEKj8ivvYSwpLAITJQJufdTxxh7iEn02A09x8XdNGQwso2270NSdqdek12M8lYxLg7hv8MfvAm2gJjgJm5PHcH7f4bgANiExej0CN9n7KGKvPzGF-Po7WN-S0sak-b4T7aa8xEPKhxPUAbKjtE2zZdU5ZH6H1a1ZGWFFt9WJxr3BS0ycuXvFyWBHxtQC3BNhxeX8vhZYYLK83MjeYGLgBK-LrpLPOqSBWumSP4-c3wuHDGs1yn1TIpcVPOB7-Y_D1DFs5Ueozmw_vZ3Yg09RSIhIW2Ij6H3yVCKsNAe2BqKer5juaaSa5DpkKXSRqEHsDHEt8I_QkqhRO5imu3rwXzTlAnyzN1irBOtODM40yBCeBFWsAjzAVDjQolpbyL-u1vjWUjNm5qXqTxWibZQBEDFLGFIna66OazT1FLbfzZuteiFTfLroxdcH7AXnTDqItuWwTXr38f7ex_za_Qzmg2Gcfjh-nTOdp1TZ6L5Sf2UGf1WqkLMFRW4tLOyw8t7uFu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXoIiouVaFFXWiLD9yotdnETpxjVVi1fKw4sNLeItux1ZWySUSSQ-_8cGacpEsrQOIYxXakPH_MeOa9IeSdNqE1WmkmLE8Zd1HOZB4HzMQWc955Hmi8h_y6jK9X_NNarH9j8fts9zEk2XMaUKWpbGd17mY74hsmZjF0fZALDT7xHnnKkQ0MM3oVXo57cQzOiE9iTJOIzbmQA23mz2M8PJp29uajEKk_eRaH5GAwGellj_EL8sSWL8kzn7ppmiPyc9n1UZeCeq1YWjk6FLepmm3VbBoGfjcgmFMfGu-v6OimpLWXaVaov0FrgBW-jp1N1dWFpT2LhN7eIaeLlqqsXNFt8oYOpX3oFnP5kDhc2uKYrBYfv19ds6G2AjOw6FrGFdhROhEmiV0EZpcVEQ-cctIol0ibhNKIOIkASplzFP3TwuggDa1y4dxpGb0ik7Iq7QmhLndayUhJC-ZAlDoNjzAvkCaVGCHUlMzH35qZQXgc618U2U4yGaHIAIrMQ5EFU_L-vk_dy278s_XpiFY2LMEmC8ERAtsxTNIpuRgR3L3--2iv_6_5W7L_7cMi-3Kz_PyGPA8x5cVTFU_JpP3R2TOwWVp97qflLwJl5aE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+study+of+electroosmosis-induced+alterations+in+peristaltic+pumping+of+couple+stress+hybrid+nanofluids+through+microchannel&rft.jtitle=Indian+journal+of+physics&rft.au=Tripathi%2C+Dharmendra&rft.au=Prakash%2C+J.&rft.au=Gnaneswara+Reddy%2C+M.&rft.au=Kumar%2C+Rakesh&rft.date=2021-11-01&rft.issn=0973-1458&rft.eissn=0974-9845&rft.volume=95&rft.issue=11&rft.spage=2411&rft.epage=2421&rft_id=info:doi/10.1007%2Fs12648-020-01906-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12648_020_01906_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-1458&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-1458&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-1458&client=summon |