Smoothed dilated convolutions for improved dense prediction

Dilated convolutions, also known as atrous convolutions, have been widely explored in deep convolutional neural networks (DCNNs) for various dense prediction tasks. However, dilated convolutions suffer from the gridding artifacts, which hampers the performance. In this work, we propose two simple ye...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 35; no. 4; pp. 1470 - 1496
Main Authors Wang, Zhengyang, Ji, Shuiwang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dilated convolutions, also known as atrous convolutions, have been widely explored in deep convolutional neural networks (DCNNs) for various dense prediction tasks. However, dilated convolutions suffer from the gridding artifacts, which hampers the performance. In this work, we propose two simple yet effective degridding methods by studying a decomposition of dilated convolutions. Unlike existing models, which explore solutions by focusing on a block of cascaded dilated convolutional layers, our methods address the gridding artifacts by smoothing the dilated convolution itself. In addition, we point out that the two degridding approaches are intrinsically related and define separable and shared (SS) operations, which generalize the proposed methods. We further explore SS operations in view of operations on graphs and propose the SS output layer, which is able to smooth the entire DCNNs by only replacing the output layer. We evaluate our degridding methods and the SS output layer thoroughly, and visualize the smoothing effect through effective receptive field analysis. Results show that our methods degridding yield consistent improvements on the performance of dense prediction tasks, while adding negligible amounts of extra training parameters. And the SS output layer improves the performance by 3.3% and contains only 9% training parameters of the original output layer.
AbstractList Dilated convolutions, also known as atrous convolutions, have been widely explored in deep convolutional neural networks (DCNNs) for various dense prediction tasks. However, dilated convolutions suffer from the gridding artifacts, which hampers the performance. In this work, we propose two simple yet effective degridding methods by studying a decomposition of dilated convolutions. Unlike existing models, which explore solutions by focusing on a block of cascaded dilated convolutional layers, our methods address the gridding artifacts by smoothing the dilated convolution itself. In addition, we point out that the two degridding approaches are intrinsically related and define separable and shared (SS) operations, which generalize the proposed methods. We further explore SS operations in view of operations on graphs and propose the SS output layer, which is able to smooth the entire DCNNs by only replacing the output layer. We evaluate our degridding methods and the SS output layer thoroughly, and visualize the smoothing effect through effective receptive field analysis. Results show that our methods degridding yield consistent improvements on the performance of dense prediction tasks, while adding negligible amounts of extra training parameters. And the SS output layer improves the performance by 3.3% and contains only 9% training parameters of the original output layer.
Dilated convolutions, also known as atrous convolutions, have been widely explored in deep convolutional neural networks (DCNNs) for various dense prediction tasks. However, dilated convolutions suffer from the gridding artifacts, which hampers the performance. In this work, we propose two simple yet effective degridding methods by studying a decomposition of dilated convolutions. Unlike existing models, which explore solutions by focusing on a block of cascaded dilated convolutional layers, our methods address the gridding artifacts by smoothing the dilated convolution itself. In addition, we point out that the two degridding approaches are intrinsically related and define separable and shared (SS) operations, which generalize the proposed methods. We further explore SS operations in view of operations on graphs and propose the SS output layer, which is able to smooth the entire DCNNs by only replacing the output layer. We evaluate our degridding methods and the SS output layer thoroughly, and visualize the smoothing effect through effective receptive field analysis. Results show that our methods degridding yield consistent improvements on the performance of dense prediction tasks, while adding negligible amounts of extra training parameters. And the SS output layer improves the performance by 3.3% and contains only 9% training parameters of the original output layer.
Author Ji, Shuiwang
Wang, Zhengyang
Author_xml – sequence: 1
  givenname: Zhengyang
  surname: Wang
  fullname: Wang, Zhengyang
  organization: Texas A&M University
– sequence: 2
  givenname: Shuiwang
  orcidid: 0000-0002-4205-4563
  surname: Ji
  fullname: Ji, Shuiwang
  email: sji@tamu.edu
  organization: Texas A&M University
BookMark eNp9UMFKAzEUDFLBtvoDnhY8R99LNptdPEnRKhQ8qOAtrNlEt2w3NUkL_r1ZVxA89PTm8WbeDDMjk971hpBzhEsEkFcBocCSAkOa1kJQcUSmKCSnUhSvk4R5mVNRIpyQWQhrABCMw5RcP22cix-myZq2q2Oa2vV71-1i6_qQWeezdrP1bj8wTB9MtvWmafVwPiXHtu6COfudc_Jyd_u8uKerx-XD4mZFNccq0rxigFoYYyzoAmTF6qqSJc-1ZaxG1ACNKEppjcY3sCgLbBJgrIDGMiv4nFyMf1OOz50JUa3dzvfJUjGR55xhDjyxypGlvQvBG6t0G-shZ_R12ykENVSlxqpUqkr9VKUGA_ZPuvXtpvZfh0V8FIVE7t-N_0t1QPUNpn99EA
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106076
crossref_primary_10_1007_s13042_024_02159_7
crossref_primary_10_1109_ACCESS_2022_3192605
crossref_primary_10_3390_electronics11244211
crossref_primary_10_12677_CSA_2024_141007
crossref_primary_10_3233_AIC_220187
crossref_primary_10_1007_s12046_023_02188_y
crossref_primary_10_1017_S1431927622012466
crossref_primary_10_1109_TVLSI_2022_3233882
crossref_primary_10_1007_s11517_022_02702_0
crossref_primary_10_1016_j_neucom_2023_03_061
crossref_primary_10_1007_s10489_022_03382_x
crossref_primary_10_1109_TIM_2023_3298653
crossref_primary_10_1002_jbio_202300090
crossref_primary_10_1007_s11554_023_01358_9
crossref_primary_10_1016_j_jag_2023_103632
crossref_primary_10_1007_s00521_022_07553_2
crossref_primary_10_1007_s00530_023_01058_1
crossref_primary_10_1002_mp_17308
crossref_primary_10_3389_fphy_2024_1489245
crossref_primary_10_1155_2024_4337255
crossref_primary_10_3390_s22166054
crossref_primary_10_1049_ipr2_12559
crossref_primary_10_1016_j_trd_2024_104070
crossref_primary_10_34133_plantphenomics_0100
Cites_doi 10.1109/CVPR.2015.7298965
10.1007/s11263-009-0275-4
10.1109/CVPR.2017.576
10.1109/TPAMI.2017.2699184
10.1109/CVPR.2017.351
10.1109/CVPR.2017.195
10.1109/CVPR.2009.5206848
10.1109/ICCV.2011.6126343
10.1145/3219819.3219947
10.1109/78.157290
10.1109/ICIP.2013.6738831
10.1109/WACV.2018.00163
10.1109/WACV.2018.00162
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2017.660
10.1109/CVPR.2015.7298636
10.1109/CVPR.2016.90
10.1145/3219819.3219944
10.1109/CVPR.2017.75
10.1109/CVPR.2016.350
10.1007/978-3-642-33266-1_8
10.1007/978-3-642-75988-8_28
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10618-021-00765-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 1496
ExternalDocumentID 10_1007_s10618_021_00765_5
GrantInformation_xml – fundername: Division of Information and Intelligent Systems
  grantid: 1633359
  funderid: http://dx.doi.org/10.13039/100000145
– fundername: Defense Advanced Research Projects Agency
  grantid: N66001-17-2-4031
  funderid: http://dx.doi.org/10.13039/100000185
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-49201c5eeef0c60792a997834cf22a11c00d5687fec1b0f1761d1b02260df2f53
IEDL.DBID BENPR
ISSN 1384-5810
IngestDate Sat Aug 16 17:22:40 EDT 2025
Tue Jul 01 00:40:32 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Fri Feb 21 02:47:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Dilated convolutions
Gridding artifacts
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-49201c5eeef0c60792a997834cf22a11c00d5687fec1b0f1761d1b02260df2f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4205-4563
PQID 2544321403
PQPubID 43030
PageCount 27
ParticipantIDs proquest_journals_2544321403
crossref_citationtrail_10_1007_s10618_021_00765_5
crossref_primary_10_1007_s10618_021_00765_5
springer_journals_10_1007_s10618_021_00765_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210700
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 7
  year: 2021
  text: 20210700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Gao H, Wang Z, Ji S (2018) Large-scale learnable graph convolutional networks. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1416–1424
Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 1251–1258
Wang P, Chen P, Yuan Y, Liu D, Huang Z, Hou X, Cottrell G (2018) Understanding convolution for semantic segmentation. In: Proceedings of the IEEE winter conference on applications of computer vision. IEEE, pp 1451–1460
Giusti A, Cireşan DC, Masci J, Gambardella LM, Schmidhuber J (2013) Fast image scanning with deep max-pooling convolutional neural networks. In: Proceedings of the IEEE international conference on image processing. IEEE, pp 4034–4038
Mamalet F, Garcia C (2012) Simplifying convnets for fast learning. In: Proceedings of the international conference on artificial neural networks. Springer, pp 58–65
Oord Avd, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499
Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 2881–2890
Holschneider M, Kronland-Martinet R, Morlet J, Tchamitchian P (1990) A real-time algorithm for signal analysis with the help of the wavelet transform. In: Wavelets. Springer, pp 286–297
Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 3431–3440
Monti F, Boscaini D, Masci J, Rodola E, Svoboda J, Bronstein MM (2017) Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 5115–5124
Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, Lecun Y (2014) Overfeat: Integrated recognition, localization and detection using convolutional networks. In: Proceedings of the international conference on learning representations
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al (2016) Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th {\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{$$\end{document}USENIX}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\}$$\end{document} symposium on operating systems design and implementation. pp 265–283
Hamaguchi R, Fujita A, Nemoto K, Imaizumi T, Hikosaka S (2018) Effective use of dilated convolutions for segmenting small object instances in remote sensing imagery. In: Proceedings of the IEEE winter conference on applications of computer vision. IEEE, pp 1442–1450
Yu F, Koltun V, Funkhouser T (2017) Dilated residual networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 472–480
Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2018) Graph attention networks. In: Proceedings of the international conference on learning representations
Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S et al (2017) Speed/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 7310–7311
Papandreou G, Kokkinos I, Savalle PA (2015) Modeling local and global deformations in deep learning: epitomic convolution, multiple instance learning, and sliding window detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 390–399
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 770–778
Li H, Zhao R, Wang X (2014) Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification. arXiv preprint arXiv:1412.4526
Ziegler T, Fritsche M, Kuhn L, Donhauser K (2019) Efficient smoothing of dilated convolutions for image segmentation. arXiv preprint arXiv:1903.07992
Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 248–255
Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: common objects in context. In: Proceedings of the European conference on computer vision. Springer, pp 740–755
EveringhamMVan GoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (voc) challengeInt J Comput Vis201088230333810.1007/s11263-009-0275-4
Hariharan B, Arbeláez P, Bourdev L, Maji S, Malik J (2011) Semantic contours from inverse detectors. In: Proceedings of the IEEE international conference on computer vision. IEEE, pp 991–998
Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B (2016) The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 3213–3223
Dai J, Li Y, He K, Sun J (2016) R-fcn: Object detection via region-based fully convolutional networks. In: Advances in neural information processing systems. pp 379–387
Wang Z, Ji S (2018) Smoothed dilated convolutions for improved dense prediction. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 2486–2495
Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017a) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848
Chen LC, Papandreou G, Schroff F, Adam H (2017b) Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587
Kalchbrenner N, Espeholt L, Simonyan K, Oord Avd, Graves A, Kavukcuoglu K (2016) Neural machine translation in linear time. arXiv preprint arXiv:1610.10099
Luo W, Li Y, Urtasun R, Zemel R (2016) Understanding the effective receptive field in deep convolutional neural networks. In: Advances in neural information processing systems. pp 4898–4906
Yu F, Koltun V (2016) Multi-scale context aggregation by dilated convolutions. In: Proceedings of the international conference on learning representations
ShensaMJThe discrete wavelet transform: wedding the a trous and Mallat algorithmsIEEE Trans Signal Process199240102464248210.1109/78.157290
Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Advances in neural information processing systems. pp 1024–1034
Kalchbrenner N, van den Oord A, Simonyan K, Danihelka I, Vinyals O, Graves A, Kavukcuoglu K (2017) Video pixel networks. In: Proceedings of the international conference on machine learning. pp 1771–1779
GaoHYuanHWangZJiSPixel transposed convolutional networksIEEE Trans Pattern Anal Mach Intell201942512181227
Liu W, Rabinovich A, Berg AC (2015) Parsenet: Looking wider to see better. arXiv preprint arXiv:1506.04579
765_CR15
765_CR37
765_CR16
765_CR17
765_CR18
765_CR11
765_CR33
765_CR12
765_CR34
765_CR13
765_CR35
765_CR14
765_CR36
765_CR31
765_CR32
M Everingham (765_CR8) 2010; 88
765_CR9
765_CR26
765_CR27
765_CR28
765_CR29
765_CR22
765_CR23
765_CR24
765_CR25
765_CR3
765_CR2
765_CR1
765_CR20
765_CR21
765_CR7
765_CR6
765_CR5
765_CR4
MJ Shensa (765_CR30) 1992; 40
H Gao (765_CR10) 2019; 42
765_CR19
References_xml – reference: Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Advances in neural information processing systems. pp 1024–1034
– reference: Monti F, Boscaini D, Masci J, Rodola E, Svoboda J, Bronstein MM (2017) Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 5115–5124
– reference: Ziegler T, Fritsche M, Kuhn L, Donhauser K (2019) Efficient smoothing of dilated convolutions for image segmentation. arXiv preprint arXiv:1903.07992
– reference: Papandreou G, Kokkinos I, Savalle PA (2015) Modeling local and global deformations in deep learning: epitomic convolution, multiple instance learning, and sliding window detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 390–399
– reference: Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017a) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848
– reference: Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 1251–1258
– reference: Liu W, Rabinovich A, Berg AC (2015) Parsenet: Looking wider to see better. arXiv preprint arXiv:1506.04579
– reference: Chen LC, Papandreou G, Schroff F, Adam H (2017b) Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587
– reference: Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B (2016) The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 3213–3223
– reference: Wang Z, Ji S (2018) Smoothed dilated convolutions for improved dense prediction. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 2486–2495
– reference: Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2018) Graph attention networks. In: Proceedings of the international conference on learning representations
– reference: Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S et al (2017) Speed/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 7310–7311
– reference: Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: common objects in context. In: Proceedings of the European conference on computer vision. Springer, pp 740–755
– reference: Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al (2016) Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th {\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{$$\end{document}USENIX}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\}$$\end{document} symposium on operating systems design and implementation. pp 265–283
– reference: Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, Lecun Y (2014) Overfeat: Integrated recognition, localization and detection using convolutional networks. In: Proceedings of the international conference on learning representations
– reference: Dai J, Li Y, He K, Sun J (2016) R-fcn: Object detection via region-based fully convolutional networks. In: Advances in neural information processing systems. pp 379–387
– reference: Giusti A, Cireşan DC, Masci J, Gambardella LM, Schmidhuber J (2013) Fast image scanning with deep max-pooling convolutional neural networks. In: Proceedings of the IEEE international conference on image processing. IEEE, pp 4034–4038
– reference: Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 248–255
– reference: Hariharan B, Arbeláez P, Bourdev L, Maji S, Malik J (2011) Semantic contours from inverse detectors. In: Proceedings of the IEEE international conference on computer vision. IEEE, pp 991–998
– reference: Mamalet F, Garcia C (2012) Simplifying convnets for fast learning. In: Proceedings of the international conference on artificial neural networks. Springer, pp 58–65
– reference: Kalchbrenner N, Espeholt L, Simonyan K, Oord Avd, Graves A, Kavukcuoglu K (2016) Neural machine translation in linear time. arXiv preprint arXiv:1610.10099
– reference: Li H, Zhao R, Wang X (2014) Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification. arXiv preprint arXiv:1412.4526
– reference: EveringhamMVan GoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (voc) challengeInt J Comput Vis201088230333810.1007/s11263-009-0275-4
– reference: Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 2881–2890
– reference: Luo W, Li Y, Urtasun R, Zemel R (2016) Understanding the effective receptive field in deep convolutional neural networks. In: Advances in neural information processing systems. pp 4898–4906
– reference: Oord Avd, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499
– reference: Wang P, Chen P, Yuan Y, Liu D, Huang Z, Hou X, Cottrell G (2018) Understanding convolution for semantic segmentation. In: Proceedings of the IEEE winter conference on applications of computer vision. IEEE, pp 1451–1460
– reference: Kalchbrenner N, van den Oord A, Simonyan K, Danihelka I, Vinyals O, Graves A, Kavukcuoglu K (2017) Video pixel networks. In: Proceedings of the international conference on machine learning. pp 1771–1779
– reference: Yu F, Koltun V, Funkhouser T (2017) Dilated residual networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 472–480
– reference: Hamaguchi R, Fujita A, Nemoto K, Imaizumi T, Hikosaka S (2018) Effective use of dilated convolutions for segmenting small object instances in remote sensing imagery. In: Proceedings of the IEEE winter conference on applications of computer vision. IEEE, pp 1442–1450
– reference: Holschneider M, Kronland-Martinet R, Morlet J, Tchamitchian P (1990) A real-time algorithm for signal analysis with the help of the wavelet transform. In: Wavelets. Springer, pp 286–297
– reference: Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 3431–3440
– reference: Yu F, Koltun V (2016) Multi-scale context aggregation by dilated convolutions. In: Proceedings of the international conference on learning representations
– reference: Gao H, Wang Z, Ji S (2018) Large-scale learnable graph convolutional networks. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1416–1424
– reference: GaoHYuanHWangZJiSPixel transposed convolutional networksIEEE Trans Pattern Anal Mach Intell201942512181227
– reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 770–778
– reference: ShensaMJThe discrete wavelet transform: wedding the a trous and Mallat algorithmsIEEE Trans Signal Process199240102464248210.1109/78.157290
– ident: 765_CR23
  doi: 10.1109/CVPR.2015.7298965
– ident: 765_CR29
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 765_CR8
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-009-0275-4
– ident: 765_CR26
  doi: 10.1109/CVPR.2017.576
– ident: 765_CR2
  doi: 10.1109/TPAMI.2017.2699184
– ident: 765_CR6
– ident: 765_CR19
– ident: 765_CR37
– ident: 765_CR31
– ident: 765_CR17
  doi: 10.1109/CVPR.2017.351
– ident: 765_CR4
  doi: 10.1109/CVPR.2017.195
– ident: 765_CR7
  doi: 10.1109/CVPR.2009.5206848
– ident: 765_CR14
  doi: 10.1109/ICCV.2011.6126343
– ident: 765_CR9
  doi: 10.1145/3219819.3219947
– volume: 40
  start-page: 2464
  issue: 10
  year: 1992
  ident: 765_CR30
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.157290
– ident: 765_CR11
  doi: 10.1109/ICIP.2013.6738831
– ident: 765_CR33
  doi: 10.1109/WACV.2018.00163
– volume: 42
  start-page: 1218
  issue: 5
  year: 2019
  ident: 765_CR10
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: 765_CR27
– ident: 765_CR3
– ident: 765_CR12
  doi: 10.1109/WACV.2018.00162
– ident: 765_CR21
  doi: 10.1007/978-3-319-10602-1_48
– ident: 765_CR1
– ident: 765_CR36
  doi: 10.1109/CVPR.2017.660
– ident: 765_CR28
  doi: 10.1109/CVPR.2015.7298636
– ident: 765_CR15
  doi: 10.1109/CVPR.2016.90
– ident: 765_CR13
– ident: 765_CR18
– ident: 765_CR32
  doi: 10.1145/3219819.3219944
– ident: 765_CR34
– ident: 765_CR35
  doi: 10.1109/CVPR.2017.75
– ident: 765_CR5
  doi: 10.1109/CVPR.2016.350
– ident: 765_CR25
  doi: 10.1007/978-3-642-33266-1_8
– ident: 765_CR22
– ident: 765_CR16
  doi: 10.1007/978-3-642-75988-8_28
– ident: 765_CR20
– ident: 765_CR24
SSID ssj0005230
Score 2.4901443
Snippet Dilated convolutions, also known as atrous convolutions, have been widely explored in deep convolutional neural networks (DCNNs) for various dense prediction...
Dilated convolutions, also known as atrous convolutions, have been widely explored in deep convolutional neural networks (DCNNs) for various dense prediction...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1470
SubjectTerms Artificial Intelligence
Artificial neural networks
Chemistry and Earth Sciences
Computer Science
Convolution
Data Mining and Knowledge Discovery
Decomposition
Deep learning
Information Storage and Retrieval
Neural networks
Parameters
Performance enhancement
Physics
Semantics
Smoothing
Statistics for Engineering
Training
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60InjxURWrVXLwpoEkm2R38VTEUgS9aKG3JZsHFGqVtv5_M9tdW0UFbwt5HCaZzZfM980AXCZSWJcZQROXSipLzalJlaKptqJE5SJ3qB1-eNSDobwfqVEtCps3bPcmJFn9qdfEbppnFCkFGD5SVG3Clop3dyRyDUVvjdiRLLXBmaQq46yWyvw8x9fjaIUxv4VFq9Omvw-7NUwkveW6HsCGn7ZhrynBQGqPbMN2xeC080O4eXp5RTWVI248iQDSESSUNxuLRGxKxtUDAvaId1dP3mYYpMHmIxj2755vB7SujEBtdJkFlXk8t63y3gdmNUtzYXJ8w5E2CGE4t4w5pbM0eMtLFniquYsfEWoxF0RQyTG0pq9TfwJEGWcjClPRWYzU2mQs5DaoXLnElSY3HeCNgQpbpw3H6hWTYpXwGI1aRKMWlVEL1YGrzzFvy6QZf_buNnYvageaF5g5DWsosaQD181arJp_n-30f93PYEdU2wEJuF1oLWbv_jzCjEV5Ue2qD98Axf4
  priority: 102
  providerName: Springer Nature
Title Smoothed dilated convolutions for improved dense prediction
URI https://link.springer.com/article/10.1007/s10618-021-00765-5
https://www.proquest.com/docview/2544321403
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_odvHitzidowdvGkzSJk3xIFM2RXGIOpinkiYtDOY2df7_5nWpU8HdSpPm8F7ee7--T4DjMOLGKs1JaOOIRJlkRMdCkFganmHlIrNYO3zfkzf96HYgBt7h9uHTKiudWCpqOzHoIz_DVlo4VIeGF9M3glOjMLrqR2isQt2pYKVqUL_s9B4efyR5hPM6YRURoRj1ZTO-eE4yRTBFAcNRgojfpmmBN_-ESEvL092EdQ8Zg_acx1uwko-3YaMaxxB46dyB86fXCdZT2cAORw5C2gBTyqurFTh0GgxLFwLucH-veTB9xzANLu9Cv9t5vrohfjYCMU5oZiRKnOU2Is_zghpJ44TrBL04kSk414wZSq2QKi5ywzJasFgy6x4c2KK24IUI96A2nozzfQiEtsbhMOHERUdSakWLxBQiETa0mU50A1hFltT4xuE4v2KULloeIylTR8q0JGUqGnDy_c103jZj6e5mRe3Ui9BHumB4A04rDiyW_z_tYPlph7DGS6Zjym0TarP3z_zIAYtZ1oJV1b1uQb19_XLXafm75N72efsLB5fKyQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB6KHvTiW6zPHPSkwSSb7AMREbVWbXtRwduaTbIgaFu1Iv4pf6OZ7a5VQW_eFpLNYfJlZpKZbwZgM5DC2FgLGthIUpmFnOpIKRqFRmTIXOQWucPtTti8luc36qYG7xUXBtMqK51YKGrbM_hGvoultLCpDgsO-o8Uu0ZhdLVqoTGExYV7e_VXtuf9s2O_v1tCNE6ujpq07CpAjYfbgMrE2zyjnHM5MyGLEqETfP-QJhdCc24YsyqMo9wZnrGc-3u-9R_eTWE2Fzl2ifAqf1wG3pIjM71x-iWlJBiykmNJVcxZSdIpqXohjykmRGDwS1H13RCOvNsfAdnCzjVmYKp0UMnhEFGzUHPdOZiumj-QUhfMw97lQw_ZW5bYu3vvsFqCCewVkIn3hcld8WCBM_xd2ZH-EwaFcHgBrv9FZosw1u113RIQpa3xXp_yh1PLMNQxyxOTq0TZwGY60XXglVhSU5Ypx24Z9-mowDKKMvWiTAtRpqoO25__9IdFOv6cvVpJOy0P7HM6glcddqodGA3_vtry36ttwETzqt1KW2edixWYFAUAMNl3FcYGTy9uzbs0g2y9wBGB2_8G7gdSKAHT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB6hICEuLYVWDU8f4EQtbO96H0IIUUjEM4pokbhtvX5IkWgSIAj1r_XX4dl4SYtEbrmtZK8P48_jbzwvgO0oFtpkStDIpDGNy4RTlUpJ00SLEjMXucHc4atOcnoTn9_K2zn4W-fCYFhlrRMrRW0GGt_I97CUFjbVYdGeC2ER3ZP24fCeYgcp9LTW7TTGELmwf569-fZ4cHbi93pHiHbr5_EpDR0GqPbQG9E49_efltZax3TC0lyoHN9CYu2EUJxrxoxMstRZzUvmuLf5jf_wlIUZJxx2jPDqfz5Fq6gB899bne71PwEm0ThHOYupzDgLKTshcS_hGcXwCHSFSSr_vxYnXPeNe7a69dpL8CHQVXI0xtcnmLP9ZfhYt4IgQTOswP6P3wPM5TLE9O48fTUEw9lrWBPPjEmver7AGd5ytmT4gC4iHP4MNzOR2hdo9Ad9-xWIVEZ7Dij9UVVxkqiMuVw7mUsTmVLlqgm8FkuhQ9Fy7J1xV0zKLaMoCy_KohJlIZuw-_rPcFyyY-rs9VraRTi-j8UEbE34Vu_AZPj91Vanr7YFCx60xeVZ52INFkW1_xj5uw6N0cOT3fD8ZlRuBiAR-DVr7L4A3fIHZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoothed+dilated+convolutions+for+improved+dense+prediction&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Wang+Zhengyang&rft.au=Ji+Shuiwang&rft.date=2021-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=35&rft.issue=4&rft.spage=1470&rft.epage=1496&rft_id=info:doi/10.1007%2Fs10618-021-00765-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon