Efficient fingerprint features for gender recognition

After a crime scene, accurate gender recognition by fingerprint analysis is vital for detectives because precise gender recognition highly limits the search space. For extracting high quality features from fingerprint images, each image should be preprocessed. The preprocessing stages include segmen...

Full description

Saved in:
Bibliographic Details
Published inMultidimensional systems and signal processing Vol. 33; no. 1; pp. 81 - 97
Main Authors Jalali, Shima, Boostani, Reza, Mohammadi, Mokhtar
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0923-6082
1573-0824
DOI10.1007/s11045-021-00789-6

Cover

Loading…
Abstract After a crime scene, accurate gender recognition by fingerprint analysis is vital for detectives because precise gender recognition highly limits the search space. For extracting high quality features from fingerprint images, each image should be preprocessed. The preprocessing stages include segmentation, normalization, filtering, binarization, and thinning. Next, different features from various domains are elicited from each image. The suggested features are ridge count, minutiae points, discrete cosine transform, entropy, local binary pattern and ridge thickness valley thickness ratio features. Each feature and the combination of features for one and five fingers are separately applied to six efficient classifiers for gender recognition. The best result implies 99% accuracy with the ridge count for all five fingers. A combination of features for each finger in the best case provides 91% gender recognition accuracy. The combination of our candidate features for each finger is compared to singular value decomposition (SVD), discrete wavelet transform (DWT), and the combination of SVD and DWT. Our results statistically ( p value < 0.05) outperform the compared methods.
AbstractList After a crime scene, accurate gender recognition by fingerprint analysis is vital for detectives because precise gender recognition highly limits the search space. For extracting high quality features from fingerprint images, each image should be preprocessed. The preprocessing stages include segmentation, normalization, filtering, binarization, and thinning. Next, different features from various domains are elicited from each image. The suggested features are ridge count, minutiae points, discrete cosine transform, entropy, local binary pattern and ridge thickness valley thickness ratio features. Each feature and the combination of features for one and five fingers are separately applied to six efficient classifiers for gender recognition. The best result implies 99% accuracy with the ridge count for all five fingers. A combination of features for each finger in the best case provides 91% gender recognition accuracy. The combination of our candidate features for each finger is compared to singular value decomposition (SVD), discrete wavelet transform (DWT), and the combination of SVD and DWT. Our results statistically ( p value < 0.05) outperform the compared methods.
After a crime scene, accurate gender recognition by fingerprint analysis is vital for detectives because precise gender recognition highly limits the search space. For extracting high quality features from fingerprint images, each image should be preprocessed. The preprocessing stages include segmentation, normalization, filtering, binarization, and thinning. Next, different features from various domains are elicited from each image. The suggested features are ridge count, minutiae points, discrete cosine transform, entropy, local binary pattern and ridge thickness valley thickness ratio features. Each feature and the combination of features for one and five fingers are separately applied to six efficient classifiers for gender recognition. The best result implies 99% accuracy with the ridge count for all five fingers. A combination of features for each finger in the best case provides 91% gender recognition accuracy. The combination of our candidate features for each finger is compared to singular value decomposition (SVD), discrete wavelet transform (DWT), and the combination of SVD and DWT. Our results statistically (p value < 0.05) outperform the compared methods.
Author Mohammadi, Mokhtar
Jalali, Shima
Boostani, Reza
Author_xml – sequence: 1
  givenname: Shima
  surname: Jalali
  fullname: Jalali, Shima
  email: shima.jalali67@gmail.com
  organization: CSE and IT Department, Electrical and Computer Engineering Faculty, Shiraz University
– sequence: 2
  givenname: Reza
  surname: Boostani
  fullname: Boostani, Reza
  organization: CSE and IT Department, Electrical and Computer Engineering Faculty, Shiraz University
– sequence: 3
  givenname: Mokhtar
  surname: Mohammadi
  fullname: Mohammadi, Mokhtar
  organization: Department of Information Technology, College of Engineering and Computer Science, Lebanese French University
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqP52CS7RynVCgUveg7Z3UlJqUlN0oP_3qwrCB7KHDIvzJNMngWa-eABoVtK7ikh6iFRSmqBCaO4xKbF8gLNqVAck4bVMzQnLeNYlnCFFintCSkYlXMk1ta63oHPlXV-B_EY3diDyacIqbIhVjvwA8QqQh923mUX_DW6tOaQ4Ob3XKL3p_XbaoO3r88vq8ct7jltM64bA8qCKMUoE9BJacQASjRqGJjhwFgjODW9YO3QdqqzrazVALazyihl-BLdTfceY_g8Qcp6H07Rlyc1k5xKqYhsy1QzTfUxpBTB6t5lM-6Zo3EHTYkeJelJki6S9I8kLQvK_qHl_x8mfp2H-ASlUVZx9rfVGeob2aZ73g
CitedBy_id crossref_primary_10_3390_electronics12173608
crossref_primary_10_1109_JIOT_2024_3381428
crossref_primary_10_1007_s00500_022_06886_3
crossref_primary_10_1007_s00521_022_07894_y
crossref_primary_10_1002_cpe_7619
crossref_primary_10_1007_s13198_024_02488_4
Cites_doi 10.1049/iet-ipr.2017.0545
10.1016/j.scient.2011.09.020
10.1049/bme2.12000
10.1016/j.eswa.2021.115010
10.3390/sym13050750
10.1016/j.patcog.2020.107323
10.1142/S0218001420500020
10.1016/j.ins.2015.04.013
10.1016/j.patcog.2006.10.014
10.1016/j.media.2020.101843
10.1109/ACCESS.2020.3011025
10.1016/j.apacoust.2019.05.019
10.1016/j.compbiomed.2009.12.006
10.1109/ICACCS48705.2020.9074196
10.1109/ICCUBEA.2015.141
10.1109/ICCUBEA.2015.133
10.1007/978-981-15-6067-5_21
10.1109/PowerAfrica49420.2020.9219846
10.1007/978-981-15-8462-6_89
10.1049/ic.2016.0072
10.1007/978-3-642-37463-0_25
10.1145/3400286.3418237
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s11045-021-00789-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-0824
EndPage 97
ExternalDocumentID 10_1007_s11045_021_00789_6
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-48ae7fe5e5e2125eb66a5de7587dd2a3e228531ac529d9b7bf9647defbf7a77a3
IEDL.DBID U2A
ISSN 0923-6082
IngestDate Fri Jul 25 11:16:53 EDT 2025
Tue Jul 01 02:06:52 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Fri Feb 21 02:47:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Feature extraction
Fingerprint
Gender recognition
Entropy
Ridges
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-48ae7fe5e5e2125eb66a5de7587dd2a3e228531ac529d9b7bf9647defbf7a77a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2631667069
PQPubID 2043747
PageCount 17
ParticipantIDs proquest_journals_2631667069
crossref_citationtrail_10_1007_s11045_021_00789_6
crossref_primary_10_1007_s11045_021_00789_6
springer_journals_10_1007_s11045_021_00789_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Multidimensional systems and signal processing
PublicationTitleAbbrev Multidim Syst Sign Process
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Jayakala (CR15) 2021; 12
CR17
Sabeti, Boostani, Davoodi (CR28) 2017; 12
Bahmed, Ould Mammar (CR4) 2021; 10
CR16
Sujatha, Sundar, Deivendran, Indumathi (CR31) 2021
Hassan Mohamed Hassan (CR13) 2019
CR34
CR11
CR32
Deshmukh, Patil (CR7) 2020
CR30
Peralta, Galar, Triguero, Paternain, García, Barrenechea, Benítez, Bustince, Herrera (CR26) 2015; 315
Kho, Teoh, Lee, Kim (CR19) 2020; 103
Moayedi, Azimifar, Boostani, Katebi (CR22) 2010; 40
Lei, Lin (CR20) 2020; 8
Tuncer, Dogan (CR33) 2019; 155
Deng, Huang, Wang, Huang (CR6) 2017; 2017
Kaur, Mazumdar (CR18) 2012; 3
Iloanusi, Ejiogu (CR14) 2020; 29
Sharifnia, Boostani (CR29) 2020; 34
Afrasiabi, Boostani, Masnadi-Shirazi, Nezam (CR1) 2021; 180
CR3
Gornale, Patil, Veersheety (CR12) 2016; 975
Alimardani, Boostani (CR2) 2018; 30
CR9
CR27
Deypir, Boostani, Zoughi (CR8) 2012; 19
CR24
CR23
Nebli, Rekik (CR25) 2020; 67
Militello (CR21) 2021; 13
Chand, Sarangi (CR5) 2013; 4
Fierrez, Ortega-Garcia, Toledano, Gonzalez-Rodriguez (CR10) 2007; 40
E Sujatha (789_CR31) 2021
789_CR24
789_CR27
789_CR3
JB Kho (789_CR19) 2020; 103
F Moayedi (789_CR22) 2010; 40
789_CR23
M Hassan Mohamed Hassan (789_CR13) 2019
G Jayakala (789_CR15) 2021; 12
A Nebli (789_CR25) 2020; 67
S Deng (789_CR6) 2017; 2017
C Militello (789_CR21) 2021; 13
P Chand (789_CR5) 2013; 4
ON Iloanusi (789_CR14) 2020; 29
S Gornale (789_CR12) 2016; 975
789_CR17
S Afrasiabi (789_CR1) 2021; 180
M Deypir (789_CR8) 2012; 19
M Sabeti (789_CR28) 2017; 12
789_CR16
789_CR32
F Alimardani (789_CR2) 2018; 30
789_CR11
789_CR34
789_CR30
789_CR9
J Fierrez (789_CR10) 2007; 40
D Peralta (789_CR26) 2015; 315
F Bahmed (789_CR4) 2021; 10
E Sharifnia (789_CR29) 2020; 34
DK Deshmukh (789_CR7) 2020
W Lei (789_CR20) 2020; 8
R Kaur (789_CR18) 2012; 3
T Tuncer (789_CR33) 2019; 155
References_xml – volume: 12
  start-page: 1249
  issue: 10
  year: 2021
  end-page: 1256
  ident: CR15
  article-title: Gender classification based on fingerprint analysis
  publication-title: Turkish Journal of Computer and Mathematics Education (TURCOMAT)
– volume: 12
  start-page: 179
  issue: 2
  year: 2017
  end-page: 187
  ident: CR28
  article-title: Improved particle swarm optimisation to estimate bone age
  publication-title: IET Image Processing
  doi: 10.1049/iet-ipr.2017.0545
– volume: 19
  start-page: 654
  issue: 3
  year: 2012
  end-page: 661
  ident: CR8
  article-title: Ensemble based multi-linear discriminant analysis with boosting and nearest neighbor
  publication-title: Scientia Iranica
  doi: 10.1016/j.scient.2011.09.020
– volume: 29
  start-page: 209
  issue: 5
  year: 2020
  end-page: 219
  ident: CR14
  article-title: Gender classification from fused multi-fingerprint types
  publication-title: Information Security Journal: A Global Perspective
– volume: 10
  start-page: 65
  issue: 1
  year: 2021
  end-page: 73
  ident: CR4
  article-title: Basic finger inner-knuckle print: A new hand biometric modality
  publication-title: IET Biometrics
  doi: 10.1049/bme2.12000
– volume: 30
  start-page: 1850019
  issue: 03
  year: 2018
  ident: CR2
  article-title: Improvement of the performance of fingerprint verification using a combinatorial approach
  publication-title: Biomedical Engineering: Applications, Basis and Communications
– ident: CR16
– ident: CR30
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 6
  ident: CR6
  article-title: Radio frequency fingerprint extraction based on multidimension permutation entropy
  publication-title: International Journal of Antennas and Propagation
– volume: 180
  start-page: 115010
  year: 2021
  ident: CR1
  article-title: An EEG based hierarchical classification strategy to differentiate five intensities of pain
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115010
– volume: 975
  start-page: 8887
  year: 2016
  ident: CR12
  article-title: Fingerprint based gender identification using discrete wavelet transform and gabor filters
  publication-title: International Journal of Computer Applications
– volume: 13
  start-page: 750
  issue: 5
  year: 2021
  ident: CR21
  article-title: Fingerprint classification based on deep learning approaches: Experimental findings and comparisons
  publication-title: Symmetry
  doi: 10.3390/sym13050750
– volume: 4
  start-page: 445
  issue: 3
  year: 2013
  ident: CR5
  article-title: A novel method for gender classification using DWT and SVD techniques
  publication-title: International Journal of Computer Technology and Applications
– volume: 103
  start-page: 107323
  year: 2020
  ident: CR19
  article-title: Bit-string representation of a fingerprint image by normalized local structures
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107323
– ident: CR27
– ident: CR23
– volume: 34
  start-page: 2050002
  issue: 03
  year: 2020
  ident: CR29
  article-title: Instance-based cost-sensitive boosting
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S0218001420500020
– volume: 315
  start-page: 67
  year: 2015
  end-page: 87
  ident: CR26
  article-title: A survey on fingerprint minutiae-based local matching for verification and identification: Taxonomy and experimental evaluation
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.04.013
– start-page: 267
  year: 2021
  end-page: 283
  ident: CR31
  publication-title: Multimodal biometric algorithm using IRIS, finger vein, finger print with hybrid GA
– volume: 40
  start-page: 1389
  issue: 4
  year: 2007
  end-page: 1392
  ident: CR10
  article-title: BioSec baseline corpus: A multimodal biometric database
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2006.10.014
– ident: CR3
– volume: 67
  start-page: 101843
  year: 2020
  ident: CR25
  article-title: Adversarial brain multiplex prediction from a single brain network with application to gender fingerprinting
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101843
– start-page: 318
  year: 2020
  end-page: 325
  ident: CR7
  publication-title: Fingerprint-based gender classification by using neural network model
– ident: CR17
– ident: CR11
– ident: CR9
– year: 2019
  ident: CR13
  publication-title: Verify identity using fingerprint identification
– ident: CR32
– ident: CR34
– volume: 3
  start-page: 295
  issue: 1
  year: 2012
  ident: CR18
  article-title: Fingerprint based gender identification using frequency domain analysis
  publication-title: International Journal of Advances in Engineering & Technology
– volume: 8
  start-page: 132694
  year: 2020
  end-page: 132702
  ident: CR20
  article-title: A novel dynamic fingerprint segmentation method based on fuzzy c-means and genetic algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011025
– volume: 155
  start-page: 75
  year: 2019
  end-page: 83
  ident: CR33
  article-title: A novel octopus based Parkinson’s disease and gender recognition method using vowels
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2019.05.019
– ident: CR24
– volume: 40
  start-page: 373
  issue: 4
  year: 2010
  end-page: 383
  ident: CR22
  article-title: Contourlet-based mammography mass classification using the SVM family
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2009.12.006
– volume: 8
  start-page: 132694
  year: 2020
  ident: 789_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011025
– volume: 155
  start-page: 75
  year: 2019
  ident: 789_CR33
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2019.05.019
– volume: 34
  start-page: 2050002
  issue: 03
  year: 2020
  ident: 789_CR29
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S0218001420500020
– ident: 789_CR24
– volume: 103
  start-page: 107323
  year: 2020
  ident: 789_CR19
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107323
– ident: 789_CR23
  doi: 10.1109/ICACCS48705.2020.9074196
– volume: 2017
  start-page: 1
  year: 2017
  ident: 789_CR6
  publication-title: International Journal of Antennas and Propagation
– volume: 4
  start-page: 445
  issue: 3
  year: 2013
  ident: 789_CR5
  publication-title: International Journal of Computer Technology and Applications
– ident: 789_CR32
  doi: 10.1109/ICCUBEA.2015.141
– volume: 180
  start-page: 115010
  year: 2021
  ident: 789_CR1
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115010
– volume: 13
  start-page: 750
  issue: 5
  year: 2021
  ident: 789_CR21
  publication-title: Symmetry
  doi: 10.3390/sym13050750
– volume: 40
  start-page: 373
  issue: 4
  year: 2010
  ident: 789_CR22
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2009.12.006
– start-page: 267
  volume-title: Multimodal biometric algorithm using IRIS, finger vein, finger print with hybrid GA
  year: 2021
  ident: 789_CR31
– volume: 315
  start-page: 67
  year: 2015
  ident: 789_CR26
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.04.013
– ident: 789_CR30
  doi: 10.1109/ICCUBEA.2015.133
– volume: 12
  start-page: 179
  issue: 2
  year: 2017
  ident: 789_CR28
  publication-title: IET Image Processing
  doi: 10.1049/iet-ipr.2017.0545
– volume: 12
  start-page: 1249
  issue: 10
  year: 2021
  ident: 789_CR15
  publication-title: Turkish Journal of Computer and Mathematics Education (TURCOMAT)
– ident: 789_CR17
  doi: 10.1007/978-981-15-6067-5_21
– ident: 789_CR9
  doi: 10.1109/PowerAfrica49420.2020.9219846
– volume-title: Verify identity using fingerprint identification
  year: 2019
  ident: 789_CR13
– start-page: 318
  volume-title: Fingerprint-based gender classification by using neural network model
  year: 2020
  ident: 789_CR7
– volume: 29
  start-page: 209
  issue: 5
  year: 2020
  ident: 789_CR14
  publication-title: Information Security Journal: A Global Perspective
– volume: 67
  start-page: 101843
  year: 2020
  ident: 789_CR25
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101843
– ident: 789_CR34
  doi: 10.1007/978-981-15-8462-6_89
– volume: 975
  start-page: 8887
  year: 2016
  ident: 789_CR12
  publication-title: International Journal of Computer Applications
– ident: 789_CR3
  doi: 10.1049/ic.2016.0072
– volume: 3
  start-page: 295
  issue: 1
  year: 2012
  ident: 789_CR18
  publication-title: International Journal of Advances in Engineering & Technology
– volume: 40
  start-page: 1389
  issue: 4
  year: 2007
  ident: 789_CR10
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2006.10.014
– ident: 789_CR16
  doi: 10.1007/978-3-642-37463-0_25
– ident: 789_CR27
  doi: 10.1145/3400286.3418237
– volume: 30
  start-page: 1850019
  issue: 03
  year: 2018
  ident: 789_CR2
  publication-title: Biomedical Engineering: Applications, Basis and Communications
– ident: 789_CR11
– volume: 10
  start-page: 65
  issue: 1
  year: 2021
  ident: 789_CR4
  publication-title: IET Biometrics
  doi: 10.1049/bme2.12000
– volume: 19
  start-page: 654
  issue: 3
  year: 2012
  ident: 789_CR8
  publication-title: Scientia Iranica
  doi: 10.1016/j.scient.2011.09.020
SSID ssj0010016
Score 2.277248
Snippet After a crime scene, accurate gender recognition by fingerprint analysis is vital for detectives because precise gender recognition highly limits the search...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 81
SubjectTerms Artificial Intelligence
Biometric recognition systems
Circuits and Systems
Crime
Discrete cosine transform
Discrete Wavelet Transform
Electrical Engineering
Engineering
Feature extraction
Feature recognition
Fingerprints
Gender
Image quality
Image segmentation
Signal,Image and Speech Processing
Singular value decomposition
Thickness ratio
Wavelet transforms
Title Efficient fingerprint features for gender recognition
URI https://link.springer.com/article/10.1007/s11045-021-00789-6
https://www.proquest.com/docview/2631667069
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8CA-BSFUmVgA0utndj12KKWCkQnKpUp8icLShEt_5-zmzSAAAllSKQ4N5zt3LPu3juAS9enxuDSIZZzT1LvOelrJolRGtG5pdJEuaaHKZ_M0rt5Ni9JYcuq2r1KScY_dU12w5NDYBPj8TdopBO-Dc0Mz-6hkG9GB5vcQUAxUWGPMsIxwpVUmZ9tfA1HNcb8lhaN0Wa8D3slTEwG63k9gC1XHMLuJ_HAI8hGUf0Bg0bio41gCp9dlOpcJohGk-fYKC7ZVAktimOYjUePNxNSNkEgBnfHiqR95YR3GV4YZTKnOVeZdQjzhbVUMUcpRtyeMhmVVmqhfeCWWue1F0oIxU6gUSwKdwqJUIgujOWsK3WquJdSS8-88F2ltGK2Bb3KF7kpFcJDo4qXvNY2Dv7L0X959F_OW3C1-eZ1rY_x5-h25eK83CvLnHLW41x0uWzBdeX2-vXv1s7-N_wcdmjgLsQCsjY0Vm_v7gIRxUp3oDkYD4fTcL99uh914oL6ABwmxEc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHNSDbyOK2oM3XQPbdpc9EgOiPE6Q4KnZpwcNGIGLv97p0oISNSG9NOl20p2d7XyTmfkW4NrWqNZoOsQw5kjkHCM1FQqipUJ0bqjQnq6p22OtQfQ0jIdZU9gkr3bPU5L-T71sdsPIIe0mxvA35UgnbBOKEcbgUQGK9YfndmORPUhxjOfYoyFh6OOyZpnfpfx0SEuUuZIY9f6muQeD_EvnZSavd7OputOfKySO605lH3YzABrU5xZzABt2dAg732gJjyBueF4JdEeB82JT6XhvPQnoJECcG7z4I-iCRf3ReHQMg2ajf98i2fEKROO-m5KoJi13NsYL_VdsFWMyNhYDCG4MlaGlFH15VeqYCiMUVy7tWjXWKccl5zI8gcJoPLKnEHCJuEUbFlaEiiRzQijhQsddRUolQ1OCaq7jRGfc4-kRGG_JkjU5VUmCKkm8ShJWgpvFO-9z5o1_R5fzpUuyXThJKAurjPEKEyW4zVdi-fhvaWfrDb-CrVa_20k6j732OWzTtEPCl6mVoTD9mNkLxC1TdZmZ6RegiOEe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BKyEYeCPKMwMbuA8nsesRQUuhUDFQqUyRnwygtIKw8Oux3aQtFSAhlCVSHDs5n3Wf5fu-AzjRTSyldR2kCDEoMoagpggZklxYdK4wk16u6a5HOv3oZhAPZlj8Ptu9OJIccxqcSlOa1UbK1KbEN7uLcMxiuxV2eumILEI5cuLsJSifXz12W5OTBIdpvN4eDhGx8S4nznzfy9fgNEWcc4ekPva014AXXz1OOXmuvmeiKj_mBB3_81vrsJoD0-B87EkbsKDTTViZkSvcgrjl9SZsf4HxQ7iR7L324qBvgcW_wZMvTRdM8pKG6Tb0262Hiw7Kyy4gaddjhqIm19To2F42rsVaEMJjpe3GgiqFeagxtjG-wWWMmWKCCuPYrEobYSinlIc7UEqHqd6FgHKLZ6QiYZ2JiBPDmGAmNNTUORc8VBVoFPZOZK5J7kpjvCRTNWVnksSaJPEmSUgFTifvjMaKHL-2PiimMclX51uCSdgghNYJq8BZMSvTxz_3tve35sewdH_ZTm6ve919WMaOOOGz1w6glL2-60MLZzJxlHvsJxi26gI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+fingerprint+features+for+gender+recognition&rft.jtitle=Multidimensional+systems+and+signal+processing&rft.au=Jalali+Shima&rft.au=Boostani+Reza&rft.au=Mohammadi+Mokhtar&rft.date=2022-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0923-6082&rft.eissn=1573-0824&rft.volume=33&rft.issue=1&rft.spage=81&rft.epage=97&rft_id=info:doi/10.1007%2Fs11045-021-00789-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-6082&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-6082&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-6082&client=summon