Efficient fingerprint features for gender recognition
After a crime scene, accurate gender recognition by fingerprint analysis is vital for detectives because precise gender recognition highly limits the search space. For extracting high quality features from fingerprint images, each image should be preprocessed. The preprocessing stages include segmen...
Saved in:
Published in | Multidimensional systems and signal processing Vol. 33; no. 1; pp. 81 - 97 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0923-6082 1573-0824 |
DOI | 10.1007/s11045-021-00789-6 |
Cover
Loading…
Abstract | After a crime scene, accurate gender recognition by fingerprint analysis is vital for detectives because precise gender recognition highly limits the search space. For extracting high quality features from fingerprint images, each image should be preprocessed. The preprocessing stages include segmentation, normalization, filtering, binarization, and thinning. Next, different features from various domains are elicited from each image. The suggested features are ridge count, minutiae points, discrete cosine transform, entropy, local binary pattern and ridge thickness valley thickness ratio features. Each feature and the combination of features for one and five fingers are separately applied to six efficient classifiers for gender recognition. The best result implies 99% accuracy with the ridge count for all five fingers. A combination of features for each finger in the best case provides 91% gender recognition accuracy. The combination of our candidate features for each finger is compared to singular value decomposition (SVD), discrete wavelet transform (DWT), and the combination of SVD and DWT. Our results statistically (
p
value < 0.05) outperform the compared methods. |
---|---|
AbstractList | After a crime scene, accurate gender recognition by fingerprint analysis is vital for detectives because precise gender recognition highly limits the search space. For extracting high quality features from fingerprint images, each image should be preprocessed. The preprocessing stages include segmentation, normalization, filtering, binarization, and thinning. Next, different features from various domains are elicited from each image. The suggested features are ridge count, minutiae points, discrete cosine transform, entropy, local binary pattern and ridge thickness valley thickness ratio features. Each feature and the combination of features for one and five fingers are separately applied to six efficient classifiers for gender recognition. The best result implies 99% accuracy with the ridge count for all five fingers. A combination of features for each finger in the best case provides 91% gender recognition accuracy. The combination of our candidate features for each finger is compared to singular value decomposition (SVD), discrete wavelet transform (DWT), and the combination of SVD and DWT. Our results statistically (
p
value < 0.05) outperform the compared methods. After a crime scene, accurate gender recognition by fingerprint analysis is vital for detectives because precise gender recognition highly limits the search space. For extracting high quality features from fingerprint images, each image should be preprocessed. The preprocessing stages include segmentation, normalization, filtering, binarization, and thinning. Next, different features from various domains are elicited from each image. The suggested features are ridge count, minutiae points, discrete cosine transform, entropy, local binary pattern and ridge thickness valley thickness ratio features. Each feature and the combination of features for one and five fingers are separately applied to six efficient classifiers for gender recognition. The best result implies 99% accuracy with the ridge count for all five fingers. A combination of features for each finger in the best case provides 91% gender recognition accuracy. The combination of our candidate features for each finger is compared to singular value decomposition (SVD), discrete wavelet transform (DWT), and the combination of SVD and DWT. Our results statistically (p value < 0.05) outperform the compared methods. |
Author | Mohammadi, Mokhtar Jalali, Shima Boostani, Reza |
Author_xml | – sequence: 1 givenname: Shima surname: Jalali fullname: Jalali, Shima email: shima.jalali67@gmail.com organization: CSE and IT Department, Electrical and Computer Engineering Faculty, Shiraz University – sequence: 2 givenname: Reza surname: Boostani fullname: Boostani, Reza organization: CSE and IT Department, Electrical and Computer Engineering Faculty, Shiraz University – sequence: 3 givenname: Mokhtar surname: Mohammadi fullname: Mohammadi, Mokhtar organization: Department of Information Technology, College of Engineering and Computer Science, Lebanese French University |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqP52CS7RynVCgUveg7Z3UlJqUlN0oP_3qwrCB7KHDIvzJNMngWa-eABoVtK7ikh6iFRSmqBCaO4xKbF8gLNqVAck4bVMzQnLeNYlnCFFintCSkYlXMk1ta63oHPlXV-B_EY3diDyacIqbIhVjvwA8QqQh923mUX_DW6tOaQ4Ob3XKL3p_XbaoO3r88vq8ct7jltM64bA8qCKMUoE9BJacQASjRqGJjhwFgjODW9YO3QdqqzrazVALazyihl-BLdTfceY_g8Qcp6H07Rlyc1k5xKqYhsy1QzTfUxpBTB6t5lM-6Zo3EHTYkeJelJki6S9I8kLQvK_qHl_x8mfp2H-ASlUVZx9rfVGeob2aZ73g |
CitedBy_id | crossref_primary_10_3390_electronics12173608 crossref_primary_10_1109_JIOT_2024_3381428 crossref_primary_10_1007_s00500_022_06886_3 crossref_primary_10_1007_s00521_022_07894_y crossref_primary_10_1002_cpe_7619 crossref_primary_10_1007_s13198_024_02488_4 |
Cites_doi | 10.1049/iet-ipr.2017.0545 10.1016/j.scient.2011.09.020 10.1049/bme2.12000 10.1016/j.eswa.2021.115010 10.3390/sym13050750 10.1016/j.patcog.2020.107323 10.1142/S0218001420500020 10.1016/j.ins.2015.04.013 10.1016/j.patcog.2006.10.014 10.1016/j.media.2020.101843 10.1109/ACCESS.2020.3011025 10.1016/j.apacoust.2019.05.019 10.1016/j.compbiomed.2009.12.006 10.1109/ICACCS48705.2020.9074196 10.1109/ICCUBEA.2015.141 10.1109/ICCUBEA.2015.133 10.1007/978-981-15-6067-5_21 10.1109/PowerAfrica49420.2020.9219846 10.1007/978-981-15-8462-6_89 10.1049/ic.2016.0072 10.1007/978-3-642-37463-0_25 10.1145/3400286.3418237 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11045-021-00789-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-0824 |
EndPage | 97 |
ExternalDocumentID | 10_1007_s11045_021_00789_6 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z83 Z88 Z8M Z8R Z8W Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-48ae7fe5e5e2125eb66a5de7587dd2a3e228531ac529d9b7bf9647defbf7a77a3 |
IEDL.DBID | U2A |
ISSN | 0923-6082 |
IngestDate | Fri Jul 25 11:16:53 EDT 2025 Tue Jul 01 02:06:52 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Fri Feb 21 02:47:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Feature extraction Fingerprint Gender recognition Entropy Ridges |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-48ae7fe5e5e2125eb66a5de7587dd2a3e228531ac529d9b7bf9647defbf7a77a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2631667069 |
PQPubID | 2043747 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2631667069 crossref_citationtrail_10_1007_s11045_021_00789_6 crossref_primary_10_1007_s11045_021_00789_6 springer_journals_10_1007_s11045_021_00789_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal |
PublicationTitle | Multidimensional systems and signal processing |
PublicationTitleAbbrev | Multidim Syst Sign Process |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Jayakala (CR15) 2021; 12 CR17 Sabeti, Boostani, Davoodi (CR28) 2017; 12 Bahmed, Ould Mammar (CR4) 2021; 10 CR16 Sujatha, Sundar, Deivendran, Indumathi (CR31) 2021 Hassan Mohamed Hassan (CR13) 2019 CR34 CR11 CR32 Deshmukh, Patil (CR7) 2020 CR30 Peralta, Galar, Triguero, Paternain, García, Barrenechea, Benítez, Bustince, Herrera (CR26) 2015; 315 Kho, Teoh, Lee, Kim (CR19) 2020; 103 Moayedi, Azimifar, Boostani, Katebi (CR22) 2010; 40 Lei, Lin (CR20) 2020; 8 Tuncer, Dogan (CR33) 2019; 155 Deng, Huang, Wang, Huang (CR6) 2017; 2017 Kaur, Mazumdar (CR18) 2012; 3 Iloanusi, Ejiogu (CR14) 2020; 29 Sharifnia, Boostani (CR29) 2020; 34 Afrasiabi, Boostani, Masnadi-Shirazi, Nezam (CR1) 2021; 180 CR3 Gornale, Patil, Veersheety (CR12) 2016; 975 Alimardani, Boostani (CR2) 2018; 30 CR9 CR27 Deypir, Boostani, Zoughi (CR8) 2012; 19 CR24 CR23 Nebli, Rekik (CR25) 2020; 67 Militello (CR21) 2021; 13 Chand, Sarangi (CR5) 2013; 4 Fierrez, Ortega-Garcia, Toledano, Gonzalez-Rodriguez (CR10) 2007; 40 E Sujatha (789_CR31) 2021 789_CR24 789_CR27 789_CR3 JB Kho (789_CR19) 2020; 103 F Moayedi (789_CR22) 2010; 40 789_CR23 M Hassan Mohamed Hassan (789_CR13) 2019 G Jayakala (789_CR15) 2021; 12 A Nebli (789_CR25) 2020; 67 S Deng (789_CR6) 2017; 2017 C Militello (789_CR21) 2021; 13 P Chand (789_CR5) 2013; 4 ON Iloanusi (789_CR14) 2020; 29 S Gornale (789_CR12) 2016; 975 789_CR17 S Afrasiabi (789_CR1) 2021; 180 M Deypir (789_CR8) 2012; 19 M Sabeti (789_CR28) 2017; 12 789_CR16 789_CR32 F Alimardani (789_CR2) 2018; 30 789_CR11 789_CR34 789_CR30 789_CR9 J Fierrez (789_CR10) 2007; 40 D Peralta (789_CR26) 2015; 315 F Bahmed (789_CR4) 2021; 10 E Sharifnia (789_CR29) 2020; 34 DK Deshmukh (789_CR7) 2020 W Lei (789_CR20) 2020; 8 R Kaur (789_CR18) 2012; 3 T Tuncer (789_CR33) 2019; 155 |
References_xml | – volume: 12 start-page: 1249 issue: 10 year: 2021 end-page: 1256 ident: CR15 article-title: Gender classification based on fingerprint analysis publication-title: Turkish Journal of Computer and Mathematics Education (TURCOMAT) – volume: 12 start-page: 179 issue: 2 year: 2017 end-page: 187 ident: CR28 article-title: Improved particle swarm optimisation to estimate bone age publication-title: IET Image Processing doi: 10.1049/iet-ipr.2017.0545 – volume: 19 start-page: 654 issue: 3 year: 2012 end-page: 661 ident: CR8 article-title: Ensemble based multi-linear discriminant analysis with boosting and nearest neighbor publication-title: Scientia Iranica doi: 10.1016/j.scient.2011.09.020 – volume: 29 start-page: 209 issue: 5 year: 2020 end-page: 219 ident: CR14 article-title: Gender classification from fused multi-fingerprint types publication-title: Information Security Journal: A Global Perspective – volume: 10 start-page: 65 issue: 1 year: 2021 end-page: 73 ident: CR4 article-title: Basic finger inner-knuckle print: A new hand biometric modality publication-title: IET Biometrics doi: 10.1049/bme2.12000 – volume: 30 start-page: 1850019 issue: 03 year: 2018 ident: CR2 article-title: Improvement of the performance of fingerprint verification using a combinatorial approach publication-title: Biomedical Engineering: Applications, Basis and Communications – ident: CR16 – ident: CR30 – volume: 2017 start-page: 1 year: 2017 end-page: 6 ident: CR6 article-title: Radio frequency fingerprint extraction based on multidimension permutation entropy publication-title: International Journal of Antennas and Propagation – volume: 180 start-page: 115010 year: 2021 ident: CR1 article-title: An EEG based hierarchical classification strategy to differentiate five intensities of pain publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115010 – volume: 975 start-page: 8887 year: 2016 ident: CR12 article-title: Fingerprint based gender identification using discrete wavelet transform and gabor filters publication-title: International Journal of Computer Applications – volume: 13 start-page: 750 issue: 5 year: 2021 ident: CR21 article-title: Fingerprint classification based on deep learning approaches: Experimental findings and comparisons publication-title: Symmetry doi: 10.3390/sym13050750 – volume: 4 start-page: 445 issue: 3 year: 2013 ident: CR5 article-title: A novel method for gender classification using DWT and SVD techniques publication-title: International Journal of Computer Technology and Applications – volume: 103 start-page: 107323 year: 2020 ident: CR19 article-title: Bit-string representation of a fingerprint image by normalized local structures publication-title: Pattern Recognition doi: 10.1016/j.patcog.2020.107323 – ident: CR27 – ident: CR23 – volume: 34 start-page: 2050002 issue: 03 year: 2020 ident: CR29 article-title: Instance-based cost-sensitive boosting publication-title: International Journal of Pattern Recognition and Artificial Intelligence doi: 10.1142/S0218001420500020 – volume: 315 start-page: 67 year: 2015 end-page: 87 ident: CR26 article-title: A survey on fingerprint minutiae-based local matching for verification and identification: Taxonomy and experimental evaluation publication-title: Information Sciences doi: 10.1016/j.ins.2015.04.013 – start-page: 267 year: 2021 end-page: 283 ident: CR31 publication-title: Multimodal biometric algorithm using IRIS, finger vein, finger print with hybrid GA – volume: 40 start-page: 1389 issue: 4 year: 2007 end-page: 1392 ident: CR10 article-title: BioSec baseline corpus: A multimodal biometric database publication-title: Pattern Recognition doi: 10.1016/j.patcog.2006.10.014 – ident: CR3 – volume: 67 start-page: 101843 year: 2020 ident: CR25 article-title: Adversarial brain multiplex prediction from a single brain network with application to gender fingerprinting publication-title: Medical Image Analysis doi: 10.1016/j.media.2020.101843 – start-page: 318 year: 2020 end-page: 325 ident: CR7 publication-title: Fingerprint-based gender classification by using neural network model – ident: CR17 – ident: CR11 – ident: CR9 – year: 2019 ident: CR13 publication-title: Verify identity using fingerprint identification – ident: CR32 – ident: CR34 – volume: 3 start-page: 295 issue: 1 year: 2012 ident: CR18 article-title: Fingerprint based gender identification using frequency domain analysis publication-title: International Journal of Advances in Engineering & Technology – volume: 8 start-page: 132694 year: 2020 end-page: 132702 ident: CR20 article-title: A novel dynamic fingerprint segmentation method based on fuzzy c-means and genetic algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011025 – volume: 155 start-page: 75 year: 2019 end-page: 83 ident: CR33 article-title: A novel octopus based Parkinson’s disease and gender recognition method using vowels publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2019.05.019 – ident: CR24 – volume: 40 start-page: 373 issue: 4 year: 2010 end-page: 383 ident: CR22 article-title: Contourlet-based mammography mass classification using the SVM family publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2009.12.006 – volume: 8 start-page: 132694 year: 2020 ident: 789_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011025 – volume: 155 start-page: 75 year: 2019 ident: 789_CR33 publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2019.05.019 – volume: 34 start-page: 2050002 issue: 03 year: 2020 ident: 789_CR29 publication-title: International Journal of Pattern Recognition and Artificial Intelligence doi: 10.1142/S0218001420500020 – ident: 789_CR24 – volume: 103 start-page: 107323 year: 2020 ident: 789_CR19 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2020.107323 – ident: 789_CR23 doi: 10.1109/ICACCS48705.2020.9074196 – volume: 2017 start-page: 1 year: 2017 ident: 789_CR6 publication-title: International Journal of Antennas and Propagation – volume: 4 start-page: 445 issue: 3 year: 2013 ident: 789_CR5 publication-title: International Journal of Computer Technology and Applications – ident: 789_CR32 doi: 10.1109/ICCUBEA.2015.141 – volume: 180 start-page: 115010 year: 2021 ident: 789_CR1 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115010 – volume: 13 start-page: 750 issue: 5 year: 2021 ident: 789_CR21 publication-title: Symmetry doi: 10.3390/sym13050750 – volume: 40 start-page: 373 issue: 4 year: 2010 ident: 789_CR22 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2009.12.006 – start-page: 267 volume-title: Multimodal biometric algorithm using IRIS, finger vein, finger print with hybrid GA year: 2021 ident: 789_CR31 – volume: 315 start-page: 67 year: 2015 ident: 789_CR26 publication-title: Information Sciences doi: 10.1016/j.ins.2015.04.013 – ident: 789_CR30 doi: 10.1109/ICCUBEA.2015.133 – volume: 12 start-page: 179 issue: 2 year: 2017 ident: 789_CR28 publication-title: IET Image Processing doi: 10.1049/iet-ipr.2017.0545 – volume: 12 start-page: 1249 issue: 10 year: 2021 ident: 789_CR15 publication-title: Turkish Journal of Computer and Mathematics Education (TURCOMAT) – ident: 789_CR17 doi: 10.1007/978-981-15-6067-5_21 – ident: 789_CR9 doi: 10.1109/PowerAfrica49420.2020.9219846 – volume-title: Verify identity using fingerprint identification year: 2019 ident: 789_CR13 – start-page: 318 volume-title: Fingerprint-based gender classification by using neural network model year: 2020 ident: 789_CR7 – volume: 29 start-page: 209 issue: 5 year: 2020 ident: 789_CR14 publication-title: Information Security Journal: A Global Perspective – volume: 67 start-page: 101843 year: 2020 ident: 789_CR25 publication-title: Medical Image Analysis doi: 10.1016/j.media.2020.101843 – ident: 789_CR34 doi: 10.1007/978-981-15-8462-6_89 – volume: 975 start-page: 8887 year: 2016 ident: 789_CR12 publication-title: International Journal of Computer Applications – ident: 789_CR3 doi: 10.1049/ic.2016.0072 – volume: 3 start-page: 295 issue: 1 year: 2012 ident: 789_CR18 publication-title: International Journal of Advances in Engineering & Technology – volume: 40 start-page: 1389 issue: 4 year: 2007 ident: 789_CR10 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2006.10.014 – ident: 789_CR16 doi: 10.1007/978-3-642-37463-0_25 – ident: 789_CR27 doi: 10.1145/3400286.3418237 – volume: 30 start-page: 1850019 issue: 03 year: 2018 ident: 789_CR2 publication-title: Biomedical Engineering: Applications, Basis and Communications – ident: 789_CR11 – volume: 10 start-page: 65 issue: 1 year: 2021 ident: 789_CR4 publication-title: IET Biometrics doi: 10.1049/bme2.12000 – volume: 19 start-page: 654 issue: 3 year: 2012 ident: 789_CR8 publication-title: Scientia Iranica doi: 10.1016/j.scient.2011.09.020 |
SSID | ssj0010016 |
Score | 2.277248 |
Snippet | After a crime scene, accurate gender recognition by fingerprint analysis is vital for detectives because precise gender recognition highly limits the search... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 81 |
SubjectTerms | Artificial Intelligence Biometric recognition systems Circuits and Systems Crime Discrete cosine transform Discrete Wavelet Transform Electrical Engineering Engineering Feature extraction Feature recognition Fingerprints Gender Image quality Image segmentation Signal,Image and Speech Processing Singular value decomposition Thickness ratio Wavelet transforms |
Title | Efficient fingerprint features for gender recognition |
URI | https://link.springer.com/article/10.1007/s11045-021-00789-6 https://www.proquest.com/docview/2631667069 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8CA-BSFUmVgA0utndj12KKWCkQnKpUp8icLShEt_5-zmzSAAAllSKQ4N5zt3LPu3juAS9enxuDSIZZzT1LvOelrJolRGtG5pdJEuaaHKZ_M0rt5Ni9JYcuq2r1KScY_dU12w5NDYBPj8TdopBO-Dc0Mz-6hkG9GB5vcQUAxUWGPMsIxwpVUmZ9tfA1HNcb8lhaN0Wa8D3slTEwG63k9gC1XHMLuJ_HAI8hGUf0Bg0bio41gCp9dlOpcJohGk-fYKC7ZVAktimOYjUePNxNSNkEgBnfHiqR95YR3GV4YZTKnOVeZdQjzhbVUMUcpRtyeMhmVVmqhfeCWWue1F0oIxU6gUSwKdwqJUIgujOWsK3WquJdSS8-88F2ltGK2Bb3KF7kpFcJDo4qXvNY2Dv7L0X959F_OW3C1-eZ1rY_x5-h25eK83CvLnHLW41x0uWzBdeX2-vXv1s7-N_wcdmjgLsQCsjY0Vm_v7gIRxUp3oDkYD4fTcL99uh914oL6ABwmxEc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHNSDbyOK2oM3XQPbdpc9EgOiPE6Q4KnZpwcNGIGLv97p0oISNSG9NOl20p2d7XyTmfkW4NrWqNZoOsQw5kjkHCM1FQqipUJ0bqjQnq6p22OtQfQ0jIdZU9gkr3bPU5L-T71sdsPIIe0mxvA35UgnbBOKEcbgUQGK9YfndmORPUhxjOfYoyFh6OOyZpnfpfx0SEuUuZIY9f6muQeD_EvnZSavd7OputOfKySO605lH3YzABrU5xZzABt2dAg732gJjyBueF4JdEeB82JT6XhvPQnoJECcG7z4I-iCRf3ReHQMg2ajf98i2fEKROO-m5KoJi13NsYL_VdsFWMyNhYDCG4MlaGlFH15VeqYCiMUVy7tWjXWKccl5zI8gcJoPLKnEHCJuEUbFlaEiiRzQijhQsddRUolQ1OCaq7jRGfc4-kRGG_JkjU5VUmCKkm8ShJWgpvFO-9z5o1_R5fzpUuyXThJKAurjPEKEyW4zVdi-fhvaWfrDb-CrVa_20k6j732OWzTtEPCl6mVoTD9mNkLxC1TdZmZ6RegiOEe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BKyEYeCPKMwMbuA8nsesRQUuhUDFQqUyRnwygtIKw8Oux3aQtFSAhlCVSHDs5n3Wf5fu-AzjRTSyldR2kCDEoMoagpggZklxYdK4wk16u6a5HOv3oZhAPZlj8Ptu9OJIccxqcSlOa1UbK1KbEN7uLcMxiuxV2eumILEI5cuLsJSifXz12W5OTBIdpvN4eDhGx8S4nznzfy9fgNEWcc4ekPva014AXXz1OOXmuvmeiKj_mBB3_81vrsJoD0-B87EkbsKDTTViZkSvcgrjl9SZsf4HxQ7iR7L324qBvgcW_wZMvTRdM8pKG6Tb0262Hiw7Kyy4gaddjhqIm19To2F42rsVaEMJjpe3GgiqFeagxtjG-wWWMmWKCCuPYrEobYSinlIc7UEqHqd6FgHKLZ6QiYZ2JiBPDmGAmNNTUORc8VBVoFPZOZK5J7kpjvCRTNWVnksSaJPEmSUgFTifvjMaKHL-2PiimMclX51uCSdgghNYJq8BZMSvTxz_3tve35sewdH_ZTm6ve919WMaOOOGz1w6glL2-60MLZzJxlHvsJxi26gI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+fingerprint+features+for+gender+recognition&rft.jtitle=Multidimensional+systems+and+signal+processing&rft.au=Jalali+Shima&rft.au=Boostani+Reza&rft.au=Mohammadi+Mokhtar&rft.date=2022-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0923-6082&rft.eissn=1573-0824&rft.volume=33&rft.issue=1&rft.spage=81&rft.epage=97&rft_id=info:doi/10.1007%2Fs11045-021-00789-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-6082&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-6082&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-6082&client=summon |