Influence of La2O3 content on the structural, mechanical, and radiation-shielding properties of sodium fluoro lead barium borate glasses

The techniques of melt-quenching were used to manufacture 53B 2 O 3 –2NaF–27PbO– ( 20 - x ) BaO– x La 2 O 3 ( 0 ≤ x ≥ 15 ) glass system. To check the status of these samples, the XRD diffractometer procedure was used. The molar volume of the glass system is decreased while density is increased. The...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 32; no. 4; pp. 4651 - 4671
Main Authors El-Rehim, A. F. Abd, Shaaban, Kh. S.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The techniques of melt-quenching were used to manufacture 53B 2 O 3 –2NaF–27PbO– ( 20 - x ) BaO– x La 2 O 3 ( 0 ≤ x ≥ 15 ) glass system. To check the status of these samples, the XRD diffractometer procedure was used. The molar volume of the glass system is decreased while density is increased. The current glass sample's mechanical properties depend on the glass structure. Ultrasonic velocity and elastic modulus (experimental and theoretical) of glass samples were observed to be increased. FT-IR analysis shows that with the increase of La 2 O 3 increases the changes of BO 3 to BO 4 and increases the degree of glass connectivity and the structural units of (BO 3 / 2 F) − tetrahedra are formed. It has been noted that the MAC values of glass samples are decreased to 1 meV, apart from a small increase at 0.1 meV. At low energy, this significant decline and small peak are directly linked to the current photoelectric effect. The sample with the highest La 2 O 3 content is owned the MAC's greatest values. It has been noted that the (HVL) and (TVL) increase with the increase in the photon energy and La 2 O 3 content rendering to the achieved results. It has been noted that the Z eff has the largest values at lower energy and at lowering concentration of La 2 O 3 content. It has been noted that EABFs and EBFs have originally lower values at low energy levels, because the photoelectric effect dominates and BaO is replaced by La 2 O 3 .
AbstractList The techniques of melt-quenching were used to manufacture 53B 2 O 3 –2NaF–27PbO– ( 20 - x ) BaO– x La 2 O 3 ( 0 ≤ x ≥ 15 ) glass system. To check the status of these samples, the XRD diffractometer procedure was used. The molar volume of the glass system is decreased while density is increased. The current glass sample's mechanical properties depend on the glass structure. Ultrasonic velocity and elastic modulus (experimental and theoretical) of glass samples were observed to be increased. FT-IR analysis shows that with the increase of La 2 O 3 increases the changes of BO 3 to BO 4 and increases the degree of glass connectivity and the structural units of (BO 3 / 2 F) − tetrahedra are formed. It has been noted that the MAC values of glass samples are decreased to 1 meV, apart from a small increase at 0.1 meV. At low energy, this significant decline and small peak are directly linked to the current photoelectric effect. The sample with the highest La 2 O 3 content is owned the MAC's greatest values. It has been noted that the (HVL) and (TVL) increase with the increase in the photon energy and La 2 O 3 content rendering to the achieved results. It has been noted that the Z eff has the largest values at lower energy and at lowering concentration of La 2 O 3 content. It has been noted that EABFs and EBFs have originally lower values at low energy levels, because the photoelectric effect dominates and BaO is replaced by La 2 O 3 .
The techniques of melt-quenching were used to manufacture 53B2O3–2NaF–27PbO–(20-x) BaO–x La2O3(0≤x≥15) glass system. To check the status of these samples, the XRD diffractometer procedure was used. The molar volume of the glass system is decreased while density is increased. The current glass sample's mechanical properties depend on the glass structure. Ultrasonic velocity and elastic modulus (experimental and theoretical) of glass samples were observed to be increased. FT-IR analysis shows that with the increase of La2O3 increases the changes of BO3 to BO4 and increases the degree of glass connectivity and the structural units of (BO3/2 F)− tetrahedra are formed. It has been noted that the MAC values of glass samples are decreased to 1 meV, apart from a small increase at 0.1 meV. At low energy, this significant decline and small peak are directly linked to the current photoelectric effect. The sample with the highest La2O3 content is owned the MAC's greatest values. It has been noted that the (HVL) and (TVL) increase with the increase in the photon energy and La2O3 content rendering to the achieved results. It has been noted that the Zeff has the largest values at lower energy and at lowering concentration of La2O3 content. It has been noted that EABFs and EBFs have originally lower values at low energy levels, because the photoelectric effect dominates and BaO is replaced by La2O3.
Author Shaaban, Kh. S.
El-Rehim, A. F. Abd
Author_xml – sequence: 1
  givenname: A. F. Abd
  surname: El-Rehim
  fullname: El-Rehim, A. F. Abd
  organization: Physics Department, Faculty of Science, King Khalid University, Physics Department, Faculty of Education, Ain Shams University
– sequence: 2
  givenname: Kh. S.
  orcidid: 0000-0002-5969-3089
  surname: Shaaban
  fullname: Shaaban, Kh. S.
  email: khamies1078@yahoo.com
  organization: Chemistry Department, Faculty of Science, Al-Azhar University
BookMark eNp9kMtqHDEQRUWwIePHD3glyDZKSo-eVi-DSRzDgDcJZCf0qJ6R6ZEmknqRP8hnp9sTCGRhbUoU99yqulfkIuWEhNxx-MAB-o-Vg-4UAwEMOgGK9W_Ihne9ZEqLHxdkA0PXM9UJ8ZZc1foMAFsl9Yb8fkzjNGPySPNId1Y8SepzapgazYm2A9LayuzbXOz0nh7RH2yKfv3bFGixIdoWc2L1EHEKMe3pqeQTlhaxrpY1hzgf6TIkl0wntIE6W9aWy8U2pPvJ1or1hlyOdqp4-7dek-9fPn-7_8p2Tw-P9592zEs-NKZ6gUINotsKK7duRNWBU4OEoP0YnHQOgAdhx-VtZeBrR-mgubKuC26Q1-Td2XdZ8-eMtZnnPJe0jDSLr9RaDX2_qPRZ5UuuteBofGwvh7Zi42Q4mDV3c87dLLmbl9zNior_0FOJR1t-vQ7JM1QXcdpj-bfVK9Qf_xeZ_Q
CitedBy_id crossref_primary_10_1007_s11664_024_11095_9
crossref_primary_10_1007_s12633_021_01286_y
crossref_primary_10_1007_s12633_022_01702_x
crossref_primary_10_15251_DJNB_2023_182_713
crossref_primary_10_1007_s12633_022_01783_8
crossref_primary_10_1007_s12633_022_02029_3
crossref_primary_10_1007_s12633_021_01309_8
crossref_primary_10_1007_s12633_024_02897_x
crossref_primary_10_1016_j_optmat_2024_115351
crossref_primary_10_1007_s10904_022_02345_6
crossref_primary_10_1007_s00339_022_05348_9
crossref_primary_10_1016_j_optmat_2024_115512
crossref_primary_10_1007_s12633_022_01801_9
crossref_primary_10_1016_j_optmat_2024_115559
crossref_primary_10_1016_j_jmrt_2022_03_090
crossref_primary_10_1016_j_optmat_2022_112898
crossref_primary_10_1088_1402_4896_ad7abc
crossref_primary_10_1007_s10854_021_07158_w
crossref_primary_10_1016_j_radphyschem_2022_109995
crossref_primary_10_1007_s12633_023_02537_w
crossref_primary_10_1016_j_pnucene_2024_105151
crossref_primary_10_1007_s12633_023_02433_3
crossref_primary_10_1007_s00339_022_05732_5
crossref_primary_10_1007_s11664_023_10347_4
crossref_primary_10_1007_s12633_021_01441_5
crossref_primary_10_1007_s10854_021_07530_w
crossref_primary_10_1007_s10904_022_02446_2
crossref_primary_10_1007_s12633_023_02699_7
crossref_primary_10_1515_ract_2024_0297
crossref_primary_10_1016_j_optmat_2024_116057
crossref_primary_10_1016_j_radphyschem_2024_111661
crossref_primary_10_1007_s10854_024_12754_7
crossref_primary_10_1007_s10854_021_05885_8
crossref_primary_10_1016_j_physb_2021_413069
crossref_primary_10_1007_s12633_022_02124_5
crossref_primary_10_1016_j_jallcom_2021_160625
crossref_primary_10_1007_s10854_021_06766_w
crossref_primary_10_1016_j_radphyschem_2023_111086
crossref_primary_10_1016_j_radphyschem_2024_111707
crossref_primary_10_1007_s12633_022_01703_w
crossref_primary_10_1515_ract_2023_0140
crossref_primary_10_1007_s11664_021_08921_9
crossref_primary_10_1007_s12633_022_01784_7
crossref_primary_10_1140_epjp_s13360_023_04079_x
crossref_primary_10_1515_ract_2024_0272
crossref_primary_10_1007_s13369_023_08665_0
crossref_primary_10_1016_j_optmat_2024_115298
crossref_primary_10_1007_s12633_024_02855_7
crossref_primary_10_1016_j_jmrt_2023_01_062
crossref_primary_10_1007_s12633_021_01125_0
crossref_primary_10_1007_s11665_024_10332_w
crossref_primary_10_1007_s12633_024_03217_z
crossref_primary_10_1007_s10904_022_02321_0
crossref_primary_10_1515_ract_2024_0307
crossref_primary_10_1016_j_pnucene_2024_105402
crossref_primary_10_1088_1402_4896_ac4121
crossref_primary_10_1007_s12633_023_02804_w
crossref_primary_10_15251_CL_2022_197_463
crossref_primary_10_1007_s12633_021_01002_w
crossref_primary_10_1007_s12633_021_01481_x
crossref_primary_10_1016_j_radphyschem_2021_109956
crossref_primary_10_1007_s12633_021_01440_6
crossref_primary_10_1140_epjp_s13360_021_01564_z
crossref_primary_10_1016_j_radphyschem_2025_112598
crossref_primary_10_1016_j_optmat_2024_114852
crossref_primary_10_1016_j_optmat_2024_115346
crossref_primary_10_1007_s00339_022_05474_4
crossref_primary_10_1016_j_optmat_2024_115624
crossref_primary_10_1007_s12633_024_02846_8
crossref_primary_10_1007_s12633_024_02900_5
crossref_primary_10_15251_JOR_2024_205_731
crossref_primary_10_1007_s12633_023_02351_4
Cites_doi 10.1016/b978-008043958-7/50019-4
10.1007/s00339-019-3077-8
10.1007/s11082-020-2191-3
10.1016/0022-3093(75)90047-2
10.1007/s10904-020-01574-x
10.1016/j.ijleo.2019.163976
10.1007/s10904-020-01641-3
10.1088/2053-1591/aaaee8
10.1007/s00339-019-2777-4
10.1007/s10904-020-01750-z
10.1016/j.jnoncrysol.2020.120130
10.1016/j.jnoncrysol.2016.09.017
10.1007/s10854-020-03065-8
10.1016/j.ceramint.2020.04.240
10.1007/s40145-014-0107-z
10.1016/j.radphyschem.2019.108496
10.1016/j.ceramint.2020.03.110
10.1007/s10904-020-01640-4
10.1007/s10904-020-01799-w
10.1016/0022-3093(90)91023-k
10.1016/j.ijleo.2017.05.088
10.1007/s00339-019-3265-6
10.1007/s00339-020-03932-5
10.1007/s00339-019-2574-0
10.1016/j.jnoncrysol.2020.120509
10.1016/j.ceramint.2020.10.168
10.1007/s11664-019-07889-x
10.1016/j.ceramint.2020.06.226
10.1007/s10854-020-03261-6
10.1007/s00339-017-1052-9
10.1088/2053-1591/ab3f85
10.1007/s12633-017-9709-8
10.1016/j.saa.2020.118774
10.1016/j.matdes.2015.09.159
10.1016/j.ceramint.2020.03.091
10.1016/j.net.2020.06.034
10.1007/s00339-019-3254-9
10.1007/s10904-020-01650-2
10.1016/j.jnoncrysol.2020.120171
10.1007/s00339-020-04041-z
10.1016/0022-3093(73)90053-7
10.1007/s12633-020-00798-3
10.1007/s00339-019-3166-8
10.1007/s11082-020-02575-3
10.1016/j.ceramint.2019.09.144
10.1016/0025-5408(85)90073-x
10.1016/j.ceramint.2020.08.092
10.1016/j.optmat.2020.110638
10.1016/j.jnoncrysol.2019.119754
10.1007/s12633-016-9519-4
10.1007/s00339-020-03982-9
10.1016/j.ceramint.2020.08.138
10.1016/j.ceramint.2020.10.109
10.1007/s11665-020-04969-6
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
HCIFZ
JG9
KB.
L7M
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
S0W
DOI 10.1007/s10854-020-05204-7
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-482X
EndPage 4671
ExternalDocumentID 10_1007_s10854_020_05204_7
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P62
P9N
PDBOC
PKN
PT4
PT5
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SP
7SR
8BQ
8FD
ABRTQ
DWQXO
F28
FR3
JG9
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-472e2492562a36bfe450b4930d8cfdb3bb001d2affff63d1b3bb48d814ab5db93
IEDL.DBID U2A
ISSN 0957-4522
IngestDate Fri Jul 25 12:10:54 EDT 2025
Tue Jul 01 02:34:58 EDT 2025
Thu Apr 24 23:00:09 EDT 2025
Fri Feb 21 02:49:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-472e2492562a36bfe450b4930d8cfdb3bb001d2affff63d1b3bb48d814ab5db93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5969-3089
PQID 2493884977
PQPubID 326250
PageCount 21
ParticipantIDs proquest_journals_2493884977
crossref_citationtrail_10_1007_s10854_020_05204_7
crossref_primary_10_1007_s10854_020_05204_7
springer_journals_10_1007_s10854_020_05204_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210200
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science. Materials in electronics
PublicationTitleAbbrev J Mater Sci: Mater Electron
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Al-Buriahi, Tekin, Kavaz (CR52) 2019; 125
Shaaban, Koubisy, Zahran (CR25) 2020
Kamitsos, Patsis, Karakassides, Chryssikos (CR37) 1990; 126
Ozturk, Ilik, Kilic (CR44) 2020; 126
Abdel Wahab, Koubisy, Sayyed, Mahmoud, Zatsepin, Makhlouf, Shaaban (CR55) 2020
Al-Buriahi, Tonguç, Perişanoğlu, Kavaz (CR42) 2020
Abdel Wahab, Koubisy, Sayyed, Mahmoud, Zatsepin, Makhlouf, Shaaban (CR45) 2020
Boukhris, Kebaili, Al-Buriahi, Alalawi, Abouhaswa, Tonguc (CR20) 2020; 46
Shaaban, Yousef, Mahmoud (CR24) 2020
Abdelghany, ElBatal (CR39) 2016; 89
Boukhris, Kebaili, Al-Buriahi (CR46) 2020; 126
Wahab, Shaaban (CR16) 2018; 5
Fayad, Shaaban, Abd-Allah (CR31) 2020
Shaaban, Wahab, Shaaban (CR12) 2020; 49
Shakespeare (CR1) 2002
Al-Buriahi, Alajerami, Abouhaswa, Alalawi, Nutaro, Tonguc (CR9) 2020; 544
Yamane, Kawazoe, Inoue, Maeda (CR2) 1985; 20
Abdel Wahab, Shaaban, Yousef (CR36) 2020; 52
Shaaban, Wahab, Shaaban (CR23) 2020; 52
Saudi, Abd-Allah, Shaaban (CR32) 2020; 31
Rammah, Tekin, Sriwunkum, Olarinoye, Alalawi, Al-Buriahi, Tonguc (CR49) 2020
Naseer, Marimuthu, Al-Buriahi, Alalawi, Tekin (CR11) 2020; 47
Sayyed, Akyildirim, Al-Buriahi (CR47) 2020; 126
Abouhaswa, Mhareb, Alalawi, Al-Buriahi (CR10) 2020; 543
Somaily, Shaaban, Makhlouf (CR26) 2020
(CR6) 2020
Ibrahim, ElBatal, Abdelghany (CR21) 2016; 453
Makishima, Mackenzie (CR28) 1975; 17
Al-Buriahi, Abouhaswa, Tekin, Sriwunkum, El-Agawany, Nutaro, Kavaz, Rammah (CR56) 2020; 46
Abd-Allah, Saudi, Shaaban (CR14) 2019; 125
Abdel Wahab, Shaaban, Elsaman (CR19) 2019; 125
Al-Buriahi, Sriwunkum, Arslan (CR51) 2020; 126
Varshneya (CR40) 1994
El-Sharkawy, Shaaban, Elsaman, Allam, El-Taher, Mahmoud (CR17) 2019; 528
Şakar, Özpolat, Alım, Sayyed, Kurudirek (CR22) 2020
El-Maaref, Wahab, Shaaban, Abdelawwad, Koubisy, Börcsök, Yousef (CR35) 2020
Abdel Wahab, El-Maaref, Shaaban, Börcsök, Abdelawwad (CR3) 2020
Al-Buriahi, Somaily, Alalawi (CR8) 2020
Al-Buriahi, Singh, Alalawi, Sriwunkum, Tonguc (CR43) 2020
Shaaban, Abdel Wahab, El-Maaref (CR29) 2020; 31
Shaaban, Abo-Naf, Hassouna (CR13) 2019; 11
Shaaban, Zahran, Yahia (CR30) 2020; 126
Shaaban, El Sayed (CR18) 2020; 203
Al-Buriahi, Bakhsh, Tonguc, Bahadar Khan (CR41) 2020
Stalin, Gaikwad, Al-Buriahi, Srinivasu, Ahmed, Tekin, Rahman (CR7) 2020
Ibrahim, Gomaa, Darwish (CR38) 2014; 3
Al-Buriahi, Mann (CR54) 2019; 6
El-Rehim, Zahran, Yahia (CR48) 2020
Okasha, Marzouk, Hammad, Abdelghany (CR5) 2017; 142
Shaaban, Yousef, Abdel Wahab (CR33) 2020; 29
Shaaban, Saddeek, Sayed (CR4) 2018; 10
Shaaban, Abo-naf, Abd Elnaeim, Hassouna (CR15) 2017
Al-Buriahi, Tonguc (CR53) 2019; 125
El-Rehim, Ali, Zahran (CR34) 2020
Olarinoye, Rammah, Alraddadi, Sriwunkum, Abd El-Rehim, Zahran, Al-Buriahi (CR50) 2020
Makishima, Mackenzie (CR27) 1973; 12
KS Shaaban (5204_CR24) 2020
EI Kamitsos (5204_CR37) 1990; 126
AFA El-Rehim (5204_CR34) 2020
MS Al-Buriahi (5204_CR9) 2020; 544
KA Naseer (5204_CR11) 2020; 47
M Yamane (5204_CR2) 1985; 20
S Ibrahim (5204_CR21) 2016; 453
IO Olarinoye (5204_CR50) 2020
MS Al-Buriahi (5204_CR42) 2020
MS Al-Buriahi (5204_CR53) 2019; 125
YS Rammah (5204_CR49) 2020
MS Al-Buriahi (5204_CR54) 2019; 6
MS Al-Buriahi (5204_CR56) 2020; 46
HA Saudi (5204_CR32) 2020; 31
AK Varshneya (5204_CR40) 1994
AS Abouhaswa (5204_CR10) 2020; 543
S Ozturk (5204_CR44) 2020; 126
AA El-Maaref (5204_CR35) 2020
MS Al-Buriahi (5204_CR52) 2019; 125
S Stalin (5204_CR7) 2020
EA Abdel Wahab (5204_CR45) 2020
A Makishima (5204_CR28) 1975; 17
MS Al-Buriahi (5204_CR41) 2020
M.S. AlBuriahi, H.H. Hegazy, F. Alresheedi, I.O. Olarinoye, H. Algarni, H.O. Tekin, H.A. Saudi (5204_CR6) 2020
I Boukhris (5204_CR20) 2020; 46
MS Al-Buriahi (5204_CR51) 2020; 126
EA Abdel Wahab (5204_CR3) 2020
EA Abdel Wahab (5204_CR36) 2020; 52
MI Sayyed (5204_CR47) 2020; 126
MS Al-Buriahi (5204_CR8) 2020
E Şakar (5204_CR22) 2020
KS Shaaban (5204_CR15) 2017
EA Abdel Wahab (5204_CR19) 2019; 125
AM Fayad (5204_CR31) 2020
KS Shaaban (5204_CR4) 2018; 10
KS Shaaban (5204_CR18) 2020; 203
HH Somaily (5204_CR26) 2020
KS Shaaban (5204_CR12) 2020; 49
I Boukhris (5204_CR46) 2020; 126
WM Abd-Allah (5204_CR14) 2019; 125
KS Shaaban (5204_CR33) 2020; 29
KS Shaaban (5204_CR30) 2020; 126
AA El-Rehim (5204_CR48) 2020
KS Shaaban (5204_CR23) 2020; 52
K Shaaban (5204_CR29) 2020; 31
AM Abdelghany (5204_CR39) 2016; 89
W Shakespeare (5204_CR1) 2002
S Ibrahim (5204_CR38) 2014; 3
EAA Wahab (5204_CR16) 2018; 5
EA Abdel Wahab (5204_CR55) 2020
KS Shaaban (5204_CR25) 2020
MS Al-Buriahi (5204_CR43) 2020
A Makishima (5204_CR27) 1973; 12
A Okasha (5204_CR5) 2017; 142
RM El-Sharkawy (5204_CR17) 2019; 528
KS Shaaban (5204_CR13) 2019; 11
References_xml – year: 2002
  ident: CR1
  article-title: Halide glass
  publication-title: Struct. Chemi. Glasses
  doi: 10.1016/b978-008043958-7/50019-4
– volume: 125
  start-page: 866
  year: 2019
  ident: CR52
  article-title: New transparent rare earth glasses for radiation protection applications
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-3077-8
– volume: 52
  start-page: 125
  year: 2020
  ident: CR23
  article-title: Electronic polarizability, optical basicity and mechanical properties of aluminum lead phosphate glasses
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-020-2191-3
– volume: 17
  start-page: 147
  issue: 2
  year: 1975
  end-page: 157
  ident: CR28
  article-title: Calculation of bulk modulus, shear modulus, and Poisson's ratio of glass
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(75)90047-2
– year: 2020
  ident: CR24
  article-title: Mechanical, structural and crystallization properties in titanate doped phosphate glasses
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01574-x
– volume: 203
  start-page: 163976
  year: 2020
  ident: CR18
  article-title: Optical properties of Bi O doped boro tellurite glasses and glass ceramics
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.163976
– year: 2020
  ident: CR31
  article-title: Structural and optical study of CoO doping in borophosphate host glass and effect of gamma irradiation
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01641-3
– volume: 5
  start-page: 025207
  issue: 2
  year: 2018
  ident: CR16
  article-title: Effects of SnO on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aaaee8
– volume: 125
  start-page: 482
  year: 2019
  ident: CR53
  article-title: Study on gamma-ray buildup factors of bismuth borate glasses
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-2777-4
– year: 2020
  ident: CR8
  article-title: Polarizability, optical basicity, and photon attenuation properties of Ag O–MoO –V O –TeO glasses: the role of silver oxide
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01750-z
– volume: 543
  start-page: 120130
  year: 2020
  ident: CR10
  article-title: Physical, structural, optical, and radiation shielding properties of B O -20Bi O -20Na O -Sb O glasses: role of Sb O
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2020.120130
– volume: 453
  start-page: 16
  year: 2016
  end-page: 22
  ident: CR21
  article-title: Optical character enrichment of NdF – doped lithium fluoroborate glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2016.09.017
– volume: 31
  start-page: 4986
  year: 2020
  end-page: 4996
  ident: CR29
  article-title: Judd-Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses
  publication-title: J. Mater. Sci.: Mater. Electron.
  doi: 10.1007/s10854-020-03065-8
– year: 2020
  ident: CR41
  article-title: Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.240
– volume: 3
  start-page: 155
  issue: 2
  year: 2014
  end-page: 164
  ident: CR38
  article-title: Influence of Fe O on the physical, structural, and electrical properties of sodium lead borate glasses
  publication-title: J. Adv. Ceram.
  doi: 10.1007/s40145-014-0107-z
– year: 2020
  ident: CR22
  article-title: Phy-X / PSD: Development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2019.108496
– year: 2020
  ident: CR42
  article-title: The impact of Gd O on nuclear safety proficiencies of TeO –ZnO–Nb O glasses: a GEANT4 Monte Carlo study
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.110
– year: 2020
  ident: CR25
  article-title: Spectroscopic properties, electronic polarizability, and optical basicity of titanium–cadmium tellurite glasses doped with different amounts of lanthanum
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01640-4
– year: 2020
  ident: CR34
  article-title: Spectroscopic, structural, thermal, and mechanical properties of B O -CeO -PbO glasses
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01799-w
– volume: 126
  start-page: 52
  issue: 1–2
  year: 1990
  end-page: 67
  ident: CR37
  article-title: Infrared reflectance spectra of lithium borate glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(90)91023-k
– volume: 142
  start-page: 125
  year: 2017
  end-page: 133
  ident: CR5
  article-title: Optical character inquest of cobalt containing fluoroborate glass
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.05.088
– volume: 126
  start-page: 88
  year: 2020
  ident: CR47
  article-title: Oxyfluoro-tellurite-zinc glasses and the nuclear-shielding ability under the substitution of AlF3 by ZnO
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-3265-6
– volume: 126
  start-page: 763
  year: 2020
  ident: CR46
  article-title: Effect of lead oxide on the optical properties and radiation shielding efficiency of antimony-sodium-tungsten glasses
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-03932-5
– volume: 125
  start-page: 275
  year: 2019
  ident: CR14
  article-title: Investigation of structural and radiation shielding properties of 40B O –30PbO–(30– ) BaO- ZnO glass system
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-2574-0
– year: 2020
  ident: CR55
  article-title: Novel borosilicate glass system: Na B O -SiO -MnO : synthesis, average electronics polarizability, optical basicity, and gamma-ray shielding features
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2020.120509
– year: 2020
  ident: CR6
  article-title: Effect of CdO addition on photon, electron, and neutron attenuation properties of boro-tellurite glasses
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.10.168
– volume: 49
  start-page: 2040
  year: 2020
  end-page: 2049
  ident: CR12
  article-title: Electronic polarizability, optical basicity, thermal, mechanical and optical investigations of (65B O –30Li O–5Al O ) glasses doped with titanate
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-019-07889-x
– volume: 46
  start-page: 24435
  issue: 15
  year: 2020
  end-page: 24442
  ident: CR20
  article-title: Photon and electron attenuation parameters of phosphate and borate bioactive glasses by using Geant4 simulations
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.06.226
– volume: 31
  start-page: 6963
  year: 2020
  end-page: 6976
  ident: CR32
  article-title: Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste
  publication-title: J. Mater. Sci.: Mater. Electron.
  doi: 10.1007/s10854-020-03261-6
– year: 2017
  ident: CR15
  article-title: Studying effect of MoO on elastic and crystallization behavior of lithium diborate glasses
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-017-1052-9
– year: 2020
  ident: CR45
  article-title: Novel borosilicate glass system: Na B O -SiO -MnO synthesis, average electronics polarizability, optical basicity, and gamma-ray shielding features
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2020.120509
– volume: 6
  start-page: 105206
  issue: 10
  year: 2019
  ident: CR54
  article-title: Radiation shielding investigations for selected tellurite-based glasses belonging to the TNW system
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab3f85
– volume: 10
  start-page: 1973
  year: 2018
  end-page: 1978
  ident: CR4
  article-title: Mechanical and thermal properties of lead borate glasses containing CaO and NaF
  publication-title: Silicon
  doi: 10.1007/s12633-017-9709-8
– year: 2020
  ident: CR35
  article-title: Visible and mid-infrared spectral emissions and radiative rates calculations of Tm doped BBLC glass
  publication-title: Spectrochim. Acta A
  doi: 10.1016/j.saa.2020.118774
– volume: 89
  start-page: 568
  year: 2016
  end-page: 572
  ident: CR39
  article-title: Optical and μ-FTIR mapping: a new approach for structural evaluation of V O -lithium fluoroborate glasses
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.09.159
– year: 2020
  ident: CR43
  article-title: Mechanical features and radiation shielding properties of TeO –Ag O–WO glasses
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.091
– year: 2020
  ident: CR49
  article-title: Investigations on borate glasses within SBC-Bx system for gamma-ray shielding applications
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2020.06.034
– volume: 126
  start-page: 68
  year: 2020
  ident: CR51
  article-title: Investigation of barium borate glasses for radiation shielding applications
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-3254-9
– start-page: 33
  year: 1994
  ident: CR40
  publication-title: Fundamentals of Inorganic Glasses
– year: 2020
  ident: CR26
  article-title: Comparative studies on polarizability, optical basicity and optical properties of lead borosilicate modified with titania
  publication-title: J. Inorg. Organomet. Polym
  doi: 10.1007/s10904-020-01650-2
– volume: 544
  start-page: 120171
  year: 2020
  ident: CR9
  article-title: Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2020.120171
– volume: 126
  start-page: 844
  year: 2020
  ident: CR44
  article-title: Ta O -doped zinc-borate glasses: physical, structural, optical, thermal, and radiation shielding properties
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-04041-z
– volume: 12
  start-page: 35
  issue: 1
  year: 1973
  end-page: 45
  ident: CR27
  article-title: Direct calculation of Young's modulus of glass
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(73)90053-7
– year: 2020
  ident: CR48
  article-title: Radiation, crystallization, and physical properties of cadmium borate glasses
  publication-title: Silicon
  doi: 10.1007/s12633-020-00798-3
– volume: 125
  start-page: 869
  year: 2019
  ident: CR19
  article-title: Radiation shielding, and physical properties of lead borate glass doped ZrO nanoparticles
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-3166-8
– volume: 52
  start-page: 458
  year: 2020
  ident: CR36
  article-title: Enhancement of optical and mechanical properties of sodium silicate glasses using zirconia
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-020-02575-3
– volume: 46
  start-page: 1711
  issue: 2
  year: 2020
  end-page: 1721
  ident: CR56
  article-title: Structure, optical, gamma-ray and neutron shielding properties of NiO doped B O –BaCO –Li O glass systems
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.09.144
– volume: 20
  start-page: 905
  issue: 8
  year: 1985
  end-page: 911
  ident: CR2
  article-title: IR transparency of the glass of ZnCl -KBr-PbBr system
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(85)90073-x
– year: 2020
  ident: CR50
  article-title: The effects of La O addition on mechanical and nuclear shielding properties for zinc borate glasses in Monte Carlo simulation
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.08.092
– year: 2020
  ident: CR3
  article-title: Lithium cadmium phosphate glasses doped Sm as a host material for near-IR laser applications
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.110638
– volume: 528
  start-page: 119754
  year: 2019
  ident: CR17
  article-title: Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B O -(20–x) CdO based on nano metal oxides
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2019.119754
– volume: 11
  start-page: 2421
  year: 2019
  end-page: 2428
  ident: CR13
  article-title: Physical and structural properties of lithium borate glasses containing MoO
  publication-title: Silicon
  doi: 10.1007/s12633-016-9519-4
– volume: 126
  start-page: 804
  year: 2020
  ident: CR30
  article-title: Mechanical and radiation-shielding properties of B O –P O –Li O–MoO glasses
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-03982-9
– volume: 47
  start-page: 329
  issue: 1
  year: 2020
  end-page: 340
  ident: CR11
  article-title: Influence of Bi O concentration on barium-telluro-borate glasses: physical, structural and radiation-shielding properties
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.08.138
– year: 2020
  ident: CR7
  article-title: Influence of Bi O /WO substitution on the optical, mechanical, chemical durability and gamma ray shielding properties of lithium-borate glasses
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.10.109
– volume: 29
  start-page: 4549
  year: 2020
  end-page: 4558
  ident: CR33
  article-title: Investigation of crystallization and mechanical characteristics of glass and glass-ceramic with the compositions Fe O -35SiO -35B O -10Al O -(20– ) Na O
  publication-title: J. Mater. Eng. Perform
  doi: 10.1007/s11665-020-04969-6
– volume: 11
  start-page: 2421
  year: 2019
  ident: 5204_CR13
  publication-title: Silicon
  doi: 10.1007/s12633-016-9519-4
– year: 2002
  ident: 5204_CR1
  publication-title: Struct. Chemi. Glasses
  doi: 10.1016/b978-008043958-7/50019-4
– volume: 528
  start-page: 119754
  year: 2019
  ident: 5204_CR17
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2019.119754
– year: 2017
  ident: 5204_CR15
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-017-1052-9
– year: 2020
  ident: 5204_CR31
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01641-3
– volume: 126
  start-page: 844
  year: 2020
  ident: 5204_CR44
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-04041-z
– volume: 3
  start-page: 155
  issue: 2
  year: 2014
  ident: 5204_CR38
  publication-title: J. Adv. Ceram.
  doi: 10.1007/s40145-014-0107-z
– volume: 125
  start-page: 482
  year: 2019
  ident: 5204_CR53
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-2777-4
– volume: 126
  start-page: 68
  year: 2020
  ident: 5204_CR51
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-3254-9
– year: 2020
  ident: 5204_CR50
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.08.092
– volume: 126
  start-page: 88
  year: 2020
  ident: 5204_CR47
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-3265-6
– volume: 31
  start-page: 6963
  year: 2020
  ident: 5204_CR32
  publication-title: J. Mater. Sci.: Mater. Electron.
  doi: 10.1007/s10854-020-03261-6
– year: 2020
  ident: 5204_CR43
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.091
– year: 2020
  ident: 5204_CR26
  publication-title: J. Inorg. Organomet. Polym
  doi: 10.1007/s10904-020-01650-2
– volume: 142
  start-page: 125
  year: 2017
  ident: 5204_CR5
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.05.088
– volume: 52
  start-page: 125
  year: 2020
  ident: 5204_CR23
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-020-2191-3
– volume: 46
  start-page: 24435
  issue: 15
  year: 2020
  ident: 5204_CR20
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.06.226
– volume: 17
  start-page: 147
  issue: 2
  year: 1975
  ident: 5204_CR28
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(75)90047-2
– volume: 49
  start-page: 2040
  year: 2020
  ident: 5204_CR12
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-019-07889-x
– year: 2020
  ident: 5204_CR8
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01750-z
– volume: 31
  start-page: 4986
  year: 2020
  ident: 5204_CR29
  publication-title: J. Mater. Sci.: Mater. Electron.
  doi: 10.1007/s10854-020-03065-8
– volume: 126
  start-page: 804
  year: 2020
  ident: 5204_CR30
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-03982-9
– year: 2020
  ident: 5204_CR48
  publication-title: Silicon
  doi: 10.1007/s12633-020-00798-3
– volume: 20
  start-page: 905
  issue: 8
  year: 1985
  ident: 5204_CR2
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(85)90073-x
– year: 2020
  ident: 5204_CR42
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.110
– volume: 29
  start-page: 4549
  year: 2020
  ident: 5204_CR33
  publication-title: J. Mater. Eng. Perform
  doi: 10.1007/s11665-020-04969-6
– start-page: 33
  volume-title: Fundamentals of Inorganic Glasses
  year: 1994
  ident: 5204_CR40
– volume: 203
  start-page: 163976
  year: 2020
  ident: 5204_CR18
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.163976
– volume: 12
  start-page: 35
  issue: 1
  year: 1973
  ident: 5204_CR27
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(73)90053-7
– year: 2020
  ident: 5204_CR35
  publication-title: Spectrochim. Acta A
  doi: 10.1016/j.saa.2020.118774
– volume: 125
  start-page: 275
  year: 2019
  ident: 5204_CR14
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-2574-0
– year: 2020
  ident: 5204_CR55
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2020.120509
– volume: 544
  start-page: 120171
  year: 2020
  ident: 5204_CR9
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2020.120171
– year: 2020
  ident: 5204_CR7
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.10.109
– volume: 126
  start-page: 763
  year: 2020
  ident: 5204_CR46
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-03932-5
– year: 2020
  ident: 5204_CR25
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01640-4
– volume: 89
  start-page: 568
  year: 2016
  ident: 5204_CR39
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.09.159
– volume: 10
  start-page: 1973
  year: 2018
  ident: 5204_CR4
  publication-title: Silicon
  doi: 10.1007/s12633-017-9709-8
– volume: 5
  start-page: 025207
  issue: 2
  year: 2018
  ident: 5204_CR16
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aaaee8
– volume: 125
  start-page: 866
  year: 2019
  ident: 5204_CR52
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-3077-8
– volume: 6
  start-page: 105206
  issue: 10
  year: 2019
  ident: 5204_CR54
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab3f85
– volume: 543
  start-page: 120130
  year: 2020
  ident: 5204_CR10
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2020.120130
– year: 2020
  ident: 5204_CR6
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.10.168
– year: 2020
  ident: 5204_CR34
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01799-w
– year: 2020
  ident: 5204_CR45
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2020.120509
– year: 2020
  ident: 5204_CR3
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.110638
– year: 2020
  ident: 5204_CR24
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01574-x
– year: 2020
  ident: 5204_CR41
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.240
– volume: 52
  start-page: 458
  year: 2020
  ident: 5204_CR36
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-020-02575-3
– volume: 46
  start-page: 1711
  issue: 2
  year: 2020
  ident: 5204_CR56
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.09.144
– volume: 453
  start-page: 16
  year: 2016
  ident: 5204_CR21
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2016.09.017
– volume: 126
  start-page: 52
  issue: 1–2
  year: 1990
  ident: 5204_CR37
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(90)91023-k
– volume: 47
  start-page: 329
  issue: 1
  year: 2020
  ident: 5204_CR11
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.08.138
– year: 2020
  ident: 5204_CR22
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2019.108496
– year: 2020
  ident: 5204_CR49
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2020.06.034
– volume: 125
  start-page: 869
  year: 2019
  ident: 5204_CR19
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-3166-8
SSID ssj0006438
Score 2.5378695
Snippet The techniques of melt-quenching were used to manufacture 53B 2 O 3 –2NaF–27PbO– ( 20 - x ) BaO– x La 2 O 3 ( 0 ≤ x ≥ 15 ) glass system. To check the status of...
The techniques of melt-quenching were used to manufacture 53B2O3–2NaF–27PbO–(20-x) BaO–x La2O3(0≤x≥15) glass system. To check the status of these samples, the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4651
SubjectTerms Barium oxides
Characterization and Evaluation of Materials
Chemistry and Materials Science
Energy
Energy levels
Fluorides
Infrared analysis
Lanthanum oxides
Materials Science
Mechanical properties
Modulus of elasticity
Molar volume
Optical and Electronic Materials
Optical properties
Photoelectric effect
Photoelectricity
Radiation
Radiation shielding
Tetrahedra
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu8AB8RSDgXLgxiLWJN2yEwK0CRAMhJi0W9U8KpC2dqzjP_Czsbt0AyTWYx-ulM-xncT-TMiZsq4Vtq1iCfg_WKA4x7CdFRPayBB9jHFYjfzYb90O5P0wHPoNt9ynVZY2sTDUNjO4R34BywShlIRw5XLywbBrFJ6u-hYa66QKJlipCqled_vPLwtbDP5Wzdn2kN2bc18244vnVCgZLp8wF0Sy9m_XtIw3_xyRFp6nt022fMhIr-YY75A1l-6SzR9Egnvk667sNUKzhD7E_ElQTEIHj0KzlEKQR-dEsUiy0aBjh_W-CE-DxqmlUyQoQIRY_oYZbSCTTnCXfop0qygyz-z755jCT7JpRkegGFTDKhtuFTrkaBGFu3yfDHrd15tb5nssMAOTb8ZkmzskDYQwKBYtnThASMNQN60yidVCY1RleZzA1RI2wDtSWRXIWIdWd8QBqaRZ6g4J1dxyp1GUMLLTNHEzCTuBcjbhxgoT1EhQDm9kPAE59sEYRUvqZIQkAkiiApKoXSPni28mc_qNlW_XS9QiPxXzaKk4NdIokVw-_l_a0Wppx2SDY35LkcFdJxVA0Z1AgDLTp14LvwFsSuMm
  priority: 102
  providerName: ProQuest
Title Influence of La2O3 content on the structural, mechanical, and radiation-shielding properties of sodium fluoro lead barium borate glasses
URI https://link.springer.com/article/10.1007/s10854-020-05204-7
https://www.proquest.com/docview/2493884977
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BucABsYqyVD5wo5Ya22ndY0Et-yJEJThF8RKBVBLUlH_gs5lJEwoIkMglkeNMlDw78xzPPAPsa-fbYcdpnqD_wwGK95yWs-LSWBWSj7GespEvr9onQ3V2H96XSWF5Fe1eTUkWX-pPyW46VJyGOxS7oXhnHhbwQFAg11D0Pr6_6GP1VGGPFL2FKFNlfrbx1R3NOOa3adHC2wxWYLmkiaw3xXUV5ny6BkufxAPX4e20Wl-EZQm7iMW1ZBR4jl6EZSlDYsem4rAkrNFkz55yfAmSJotTx8YkSkCo8PyRotjQJnuhP_Njklglk3nmnl6fGd4kG2dshI2BGRxZY1HRbjwrmLfPN2A46N8dnfByXQVuscNNuOoIT0KBSH1i2TaJR1SM6sqW0zZxRhpiUk7ECW5t6QIqUdrpQMUmdKYrN6GWZqnfAmaEE96QKWlVt2XjVhJ2A-1dIqyTNqhDUL3eyJai47T2xSiaySUTJBFCEhWQRJ06HHxc8zKV3Piz9m6FWlR2vzzCp5NaK-S2dWhWSM5O_25t-3_Vd2BRUIxLEcW9CzVE1e8hSZmYBszrwXEDFnrHD-d93B_2r25uG0VLfQddQ-KL
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V4UB7qHhVTSkwBziRVePddbI9IISAkNC0XFqpN9f7sFopsUNchPoP-mv4jcz40QASudXHtT22dj7vzHhnvgF4bXwYxENvREb2jwKUEAS3sxLKOh2zjXGBq5GPTwbjM_31PD7fgF9tLQynVbZrYrVQ-8LxP_IDChOUMZrclfeL74K7RvHuattCo4bFUbj5SSFb-W7yifT7RsrR59OPY9F0FRCO4HYt9FAGpskjw5-qgc0CvZMl4X1vXOatsuxHeJlmdAyUj3hEG28indrYWyZfoiX_gVZkybkyffTlbuUn625qbj_mEpeyKdJpSvVMrAUHa5x5osXwb0O48m7_2ZCt7NzoEWw3Dip-qBH1GDZC_gS2_qAtfAq3k7azCRYZTlP5TSGnvJP9wiJHcimxpqVlSo8ezgNXFzMYepjmHpdMh8B4EOUl58-RTFzwnsCSyV1ZZFn4qx9zpIcUywJnBEO0FNPTUIXYgJXPH8pncHYvc78DnbzIwy6glV4Gy6KU04d9l_az-DAywWfSeeWiLkTt9CauoTvnrhuzZEXUzCpJSCVJpZJk2IW3d_csarKPtVfvt1pLmg-_TFYw7UKv1eTq9P-l7a2X9goejk-Pp8l0cnL0HDYlZ9ZUueP70CGNhhfkGl3blxUeES7u-wP4DYteH9E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9xADLbQIlXlUNEWxLa0-EBP7IjNZLIZDhVqCyuWx4IQSNxC5hFRCZJlQ1X1H_Cb-utq58HSSuVGjpPEicZfxnbG_gywrp0fRLHTIiP7RwGK94LbWYnQWBWxjbGeq5GPxoO9c7V_EV3Mwe-2FobTKts1sVqoXWH5H_kmhQmh1orclc2sSYs42RluT24Fd5Dinda2nUYNkQP_6yeFb-Xn0Q7p-pOUw92zb3ui6TAgLEHvTqhYeqbMIycgDQcm8_R-hh7Ud9pmzoSGfQon04yOQegCHlHa6UClJnKGiZho-Z-POSrqwPzX3fHJ6YMdIFuva6Y_ZhaXsinZaQr3dKQEh26ch6JE_LdZnPm6_2zPVlZvuAivGncVv9T4eg1zPn8DC49IDN_C_ajtc4JFhoepPA6RE-DJmmGRIzmYWJPUMsFHD2881xozNHqY5g6nTI7A6BDlFWfTkUyc8A7BlKleWWRZuO8_bpAeUkwLvCZQoqEIn4Yq_HqsIgBfLsH5s8z-MnTyIvcrgEY66Q2LCq3a6tu0n0VbgfYuk9aFNuhC0E5vYhvyc-7BcZ3MaJtZJQmpJKlUksRd2Hi4Z1JTfzx59WqrtaRZBspkBtou9FpNzk7_X9q7p6WtwQsCf3I4Gh-8h5eS02yqRPJV6JBC_Qfyk-7MxwaQCJfP_Q38AbMAJWM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+La2O3+content+on+the+structural%2C+mechanical%2C+and+radiation-shielding+properties+of+sodium+fluoro+lead+barium+borate+glasses&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=El-Rehim%2C+A.+F.+Abd&rft.au=Shaaban%2C+Kh.+S.&rft.date=2021-02-01&rft.pub=Springer+US&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=32&rft.issue=4&rft.spage=4651&rft.epage=4671&rft_id=info:doi/10.1007%2Fs10854-020-05204-7&rft.externalDocID=10_1007_s10854_020_05204_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon