Influence of La2O3 content on the structural, mechanical, and radiation-shielding properties of sodium fluoro lead barium borate glasses
The techniques of melt-quenching were used to manufacture 53B 2 O 3 –2NaF–27PbO– ( 20 - x ) BaO– x La 2 O 3 ( 0 ≤ x ≥ 15 ) glass system. To check the status of these samples, the XRD diffractometer procedure was used. The molar volume of the glass system is decreased while density is increased. The...
Saved in:
Published in | Journal of materials science. Materials in electronics Vol. 32; no. 4; pp. 4651 - 4671 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The techniques of melt-quenching were used to manufacture 53B
2
O
3
–2NaF–27PbO–
(
20
-
x
)
BaO–
x
La
2
O
3
(
0
≤
x
≥
15
)
glass system. To check the status of these samples, the XRD diffractometer procedure was used. The molar volume of the glass system is decreased while density is increased. The current glass sample's mechanical properties depend on the glass structure. Ultrasonic velocity and elastic modulus (experimental and theoretical) of glass samples were observed to be increased. FT-IR analysis shows that with the increase of La
2
O
3
increases the changes of BO
3
to BO
4
and increases the degree of glass connectivity and the structural units of (BO
3
/
2
F)
−
tetrahedra are formed. It has been noted that the MAC values of glass samples are decreased to 1 meV, apart from a small increase at 0.1 meV. At low energy, this significant decline and small peak are directly linked to the current photoelectric effect. The sample with the highest La
2
O
3
content is owned the MAC's greatest values. It has been noted that the (HVL) and (TVL) increase with the increase in the photon energy and La
2
O
3
content rendering to the achieved results. It has been noted that the
Z
eff
has the largest values at lower energy and at lowering concentration of La
2
O
3
content. It has been noted that EABFs and EBFs have originally lower values at low energy levels, because the photoelectric effect dominates and BaO is replaced by La
2
O
3
. |
---|---|
AbstractList | The techniques of melt-quenching were used to manufacture 53B
2
O
3
–2NaF–27PbO–
(
20
-
x
)
BaO–
x
La
2
O
3
(
0
≤
x
≥
15
)
glass system. To check the status of these samples, the XRD diffractometer procedure was used. The molar volume of the glass system is decreased while density is increased. The current glass sample's mechanical properties depend on the glass structure. Ultrasonic velocity and elastic modulus (experimental and theoretical) of glass samples were observed to be increased. FT-IR analysis shows that with the increase of La
2
O
3
increases the changes of BO
3
to BO
4
and increases the degree of glass connectivity and the structural units of (BO
3
/
2
F)
−
tetrahedra are formed. It has been noted that the MAC values of glass samples are decreased to 1 meV, apart from a small increase at 0.1 meV. At low energy, this significant decline and small peak are directly linked to the current photoelectric effect. The sample with the highest La
2
O
3
content is owned the MAC's greatest values. It has been noted that the (HVL) and (TVL) increase with the increase in the photon energy and La
2
O
3
content rendering to the achieved results. It has been noted that the
Z
eff
has the largest values at lower energy and at lowering concentration of La
2
O
3
content. It has been noted that EABFs and EBFs have originally lower values at low energy levels, because the photoelectric effect dominates and BaO is replaced by La
2
O
3
. The techniques of melt-quenching were used to manufacture 53B2O3–2NaF–27PbO–(20-x) BaO–x La2O3(0≤x≥15) glass system. To check the status of these samples, the XRD diffractometer procedure was used. The molar volume of the glass system is decreased while density is increased. The current glass sample's mechanical properties depend on the glass structure. Ultrasonic velocity and elastic modulus (experimental and theoretical) of glass samples were observed to be increased. FT-IR analysis shows that with the increase of La2O3 increases the changes of BO3 to BO4 and increases the degree of glass connectivity and the structural units of (BO3/2 F)− tetrahedra are formed. It has been noted that the MAC values of glass samples are decreased to 1 meV, apart from a small increase at 0.1 meV. At low energy, this significant decline and small peak are directly linked to the current photoelectric effect. The sample with the highest La2O3 content is owned the MAC's greatest values. It has been noted that the (HVL) and (TVL) increase with the increase in the photon energy and La2O3 content rendering to the achieved results. It has been noted that the Zeff has the largest values at lower energy and at lowering concentration of La2O3 content. It has been noted that EABFs and EBFs have originally lower values at low energy levels, because the photoelectric effect dominates and BaO is replaced by La2O3. |
Author | Shaaban, Kh. S. El-Rehim, A. F. Abd |
Author_xml | – sequence: 1 givenname: A. F. Abd surname: El-Rehim fullname: El-Rehim, A. F. Abd organization: Physics Department, Faculty of Science, King Khalid University, Physics Department, Faculty of Education, Ain Shams University – sequence: 2 givenname: Kh. S. orcidid: 0000-0002-5969-3089 surname: Shaaban fullname: Shaaban, Kh. S. email: khamies1078@yahoo.com organization: Chemistry Department, Faculty of Science, Al-Azhar University |
BookMark | eNp9kMtqHDEQRUWwIePHD3glyDZKSo-eVi-DSRzDgDcJZCf0qJ6R6ZEmknqRP8hnp9sTCGRhbUoU99yqulfkIuWEhNxx-MAB-o-Vg-4UAwEMOgGK9W_Ihne9ZEqLHxdkA0PXM9UJ8ZZc1foMAFsl9Yb8fkzjNGPySPNId1Y8SepzapgazYm2A9LayuzbXOz0nh7RH2yKfv3bFGixIdoWc2L1EHEKMe3pqeQTlhaxrpY1hzgf6TIkl0wntIE6W9aWy8U2pPvJ1or1hlyOdqp4-7dek-9fPn-7_8p2Tw-P9592zEs-NKZ6gUINotsKK7duRNWBU4OEoP0YnHQOgAdhx-VtZeBrR-mgubKuC26Q1-Td2XdZ8-eMtZnnPJe0jDSLr9RaDX2_qPRZ5UuuteBofGwvh7Zi42Q4mDV3c87dLLmbl9zNior_0FOJR1t-vQ7JM1QXcdpj-bfVK9Qf_xeZ_Q |
CitedBy_id | crossref_primary_10_1007_s11664_024_11095_9 crossref_primary_10_1007_s12633_021_01286_y crossref_primary_10_1007_s12633_022_01702_x crossref_primary_10_15251_DJNB_2023_182_713 crossref_primary_10_1007_s12633_022_01783_8 crossref_primary_10_1007_s12633_022_02029_3 crossref_primary_10_1007_s12633_021_01309_8 crossref_primary_10_1007_s12633_024_02897_x crossref_primary_10_1016_j_optmat_2024_115351 crossref_primary_10_1007_s10904_022_02345_6 crossref_primary_10_1007_s00339_022_05348_9 crossref_primary_10_1016_j_optmat_2024_115512 crossref_primary_10_1007_s12633_022_01801_9 crossref_primary_10_1016_j_optmat_2024_115559 crossref_primary_10_1016_j_jmrt_2022_03_090 crossref_primary_10_1016_j_optmat_2022_112898 crossref_primary_10_1088_1402_4896_ad7abc crossref_primary_10_1007_s10854_021_07158_w crossref_primary_10_1016_j_radphyschem_2022_109995 crossref_primary_10_1007_s12633_023_02537_w crossref_primary_10_1016_j_pnucene_2024_105151 crossref_primary_10_1007_s12633_023_02433_3 crossref_primary_10_1007_s00339_022_05732_5 crossref_primary_10_1007_s11664_023_10347_4 crossref_primary_10_1007_s12633_021_01441_5 crossref_primary_10_1007_s10854_021_07530_w crossref_primary_10_1007_s10904_022_02446_2 crossref_primary_10_1007_s12633_023_02699_7 crossref_primary_10_1515_ract_2024_0297 crossref_primary_10_1016_j_optmat_2024_116057 crossref_primary_10_1016_j_radphyschem_2024_111661 crossref_primary_10_1007_s10854_024_12754_7 crossref_primary_10_1007_s10854_021_05885_8 crossref_primary_10_1016_j_physb_2021_413069 crossref_primary_10_1007_s12633_022_02124_5 crossref_primary_10_1016_j_jallcom_2021_160625 crossref_primary_10_1007_s10854_021_06766_w crossref_primary_10_1016_j_radphyschem_2023_111086 crossref_primary_10_1016_j_radphyschem_2024_111707 crossref_primary_10_1007_s12633_022_01703_w crossref_primary_10_1515_ract_2023_0140 crossref_primary_10_1007_s11664_021_08921_9 crossref_primary_10_1007_s12633_022_01784_7 crossref_primary_10_1140_epjp_s13360_023_04079_x crossref_primary_10_1515_ract_2024_0272 crossref_primary_10_1007_s13369_023_08665_0 crossref_primary_10_1016_j_optmat_2024_115298 crossref_primary_10_1007_s12633_024_02855_7 crossref_primary_10_1016_j_jmrt_2023_01_062 crossref_primary_10_1007_s12633_021_01125_0 crossref_primary_10_1007_s11665_024_10332_w crossref_primary_10_1007_s12633_024_03217_z crossref_primary_10_1007_s10904_022_02321_0 crossref_primary_10_1515_ract_2024_0307 crossref_primary_10_1016_j_pnucene_2024_105402 crossref_primary_10_1088_1402_4896_ac4121 crossref_primary_10_1007_s12633_023_02804_w crossref_primary_10_15251_CL_2022_197_463 crossref_primary_10_1007_s12633_021_01002_w crossref_primary_10_1007_s12633_021_01481_x crossref_primary_10_1016_j_radphyschem_2021_109956 crossref_primary_10_1007_s12633_021_01440_6 crossref_primary_10_1140_epjp_s13360_021_01564_z crossref_primary_10_1016_j_radphyschem_2025_112598 crossref_primary_10_1016_j_optmat_2024_114852 crossref_primary_10_1016_j_optmat_2024_115346 crossref_primary_10_1007_s00339_022_05474_4 crossref_primary_10_1016_j_optmat_2024_115624 crossref_primary_10_1007_s12633_024_02846_8 crossref_primary_10_1007_s12633_024_02900_5 crossref_primary_10_15251_JOR_2024_205_731 crossref_primary_10_1007_s12633_023_02351_4 |
Cites_doi | 10.1016/b978-008043958-7/50019-4 10.1007/s00339-019-3077-8 10.1007/s11082-020-2191-3 10.1016/0022-3093(75)90047-2 10.1007/s10904-020-01574-x 10.1016/j.ijleo.2019.163976 10.1007/s10904-020-01641-3 10.1088/2053-1591/aaaee8 10.1007/s00339-019-2777-4 10.1007/s10904-020-01750-z 10.1016/j.jnoncrysol.2020.120130 10.1016/j.jnoncrysol.2016.09.017 10.1007/s10854-020-03065-8 10.1016/j.ceramint.2020.04.240 10.1007/s40145-014-0107-z 10.1016/j.radphyschem.2019.108496 10.1016/j.ceramint.2020.03.110 10.1007/s10904-020-01640-4 10.1007/s10904-020-01799-w 10.1016/0022-3093(90)91023-k 10.1016/j.ijleo.2017.05.088 10.1007/s00339-019-3265-6 10.1007/s00339-020-03932-5 10.1007/s00339-019-2574-0 10.1016/j.jnoncrysol.2020.120509 10.1016/j.ceramint.2020.10.168 10.1007/s11664-019-07889-x 10.1016/j.ceramint.2020.06.226 10.1007/s10854-020-03261-6 10.1007/s00339-017-1052-9 10.1088/2053-1591/ab3f85 10.1007/s12633-017-9709-8 10.1016/j.saa.2020.118774 10.1016/j.matdes.2015.09.159 10.1016/j.ceramint.2020.03.091 10.1016/j.net.2020.06.034 10.1007/s00339-019-3254-9 10.1007/s10904-020-01650-2 10.1016/j.jnoncrysol.2020.120171 10.1007/s00339-020-04041-z 10.1016/0022-3093(73)90053-7 10.1007/s12633-020-00798-3 10.1007/s00339-019-3166-8 10.1007/s11082-020-02575-3 10.1016/j.ceramint.2019.09.144 10.1016/0025-5408(85)90073-x 10.1016/j.ceramint.2020.08.092 10.1016/j.optmat.2020.110638 10.1016/j.jnoncrysol.2019.119754 10.1007/s12633-016-9519-4 10.1007/s00339-020-03982-9 10.1016/j.ceramint.2020.08.138 10.1016/j.ceramint.2020.10.109 10.1007/s11665-020-04969-6 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO F28 FR3 HCIFZ JG9 KB. L7M P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS S0W |
DOI | 10.1007/s10854-020-05204-7 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection METADEX Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-482X |
EndPage | 4671 |
ExternalDocumentID | 10_1007_s10854_020_05204_7 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P62 P9N PDBOC PKN PT4 PT5 Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8P Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SP 7SR 8BQ 8FD ABRTQ DWQXO F28 FR3 JG9 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-472e2492562a36bfe450b4930d8cfdb3bb001d2affff63d1b3bb48d814ab5db93 |
IEDL.DBID | U2A |
ISSN | 0957-4522 |
IngestDate | Fri Jul 25 12:10:54 EDT 2025 Tue Jul 01 02:34:58 EDT 2025 Thu Apr 24 23:00:09 EDT 2025 Fri Feb 21 02:49:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-472e2492562a36bfe450b4930d8cfdb3bb001d2affff63d1b3bb48d814ab5db93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5969-3089 |
PQID | 2493884977 |
PQPubID | 326250 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2493884977 crossref_citationtrail_10_1007_s10854_020_05204_7 crossref_primary_10_1007_s10854_020_05204_7 springer_journals_10_1007_s10854_020_05204_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210200 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 2 year: 2021 text: 20210200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science. Materials in electronics |
PublicationTitleAbbrev | J Mater Sci: Mater Electron |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Al-Buriahi, Tekin, Kavaz (CR52) 2019; 125 Shaaban, Koubisy, Zahran (CR25) 2020 Kamitsos, Patsis, Karakassides, Chryssikos (CR37) 1990; 126 Ozturk, Ilik, Kilic (CR44) 2020; 126 Abdel Wahab, Koubisy, Sayyed, Mahmoud, Zatsepin, Makhlouf, Shaaban (CR55) 2020 Al-Buriahi, Tonguç, Perişanoğlu, Kavaz (CR42) 2020 Abdel Wahab, Koubisy, Sayyed, Mahmoud, Zatsepin, Makhlouf, Shaaban (CR45) 2020 Boukhris, Kebaili, Al-Buriahi, Alalawi, Abouhaswa, Tonguc (CR20) 2020; 46 Shaaban, Yousef, Mahmoud (CR24) 2020 Abdelghany, ElBatal (CR39) 2016; 89 Boukhris, Kebaili, Al-Buriahi (CR46) 2020; 126 Wahab, Shaaban (CR16) 2018; 5 Fayad, Shaaban, Abd-Allah (CR31) 2020 Shaaban, Wahab, Shaaban (CR12) 2020; 49 Shakespeare (CR1) 2002 Al-Buriahi, Alajerami, Abouhaswa, Alalawi, Nutaro, Tonguc (CR9) 2020; 544 Yamane, Kawazoe, Inoue, Maeda (CR2) 1985; 20 Abdel Wahab, Shaaban, Yousef (CR36) 2020; 52 Shaaban, Wahab, Shaaban (CR23) 2020; 52 Saudi, Abd-Allah, Shaaban (CR32) 2020; 31 Rammah, Tekin, Sriwunkum, Olarinoye, Alalawi, Al-Buriahi, Tonguc (CR49) 2020 Naseer, Marimuthu, Al-Buriahi, Alalawi, Tekin (CR11) 2020; 47 Sayyed, Akyildirim, Al-Buriahi (CR47) 2020; 126 Abouhaswa, Mhareb, Alalawi, Al-Buriahi (CR10) 2020; 543 Somaily, Shaaban, Makhlouf (CR26) 2020 (CR6) 2020 Ibrahim, ElBatal, Abdelghany (CR21) 2016; 453 Makishima, Mackenzie (CR28) 1975; 17 Al-Buriahi, Abouhaswa, Tekin, Sriwunkum, El-Agawany, Nutaro, Kavaz, Rammah (CR56) 2020; 46 Abd-Allah, Saudi, Shaaban (CR14) 2019; 125 Abdel Wahab, Shaaban, Elsaman (CR19) 2019; 125 Al-Buriahi, Sriwunkum, Arslan (CR51) 2020; 126 Varshneya (CR40) 1994 El-Sharkawy, Shaaban, Elsaman, Allam, El-Taher, Mahmoud (CR17) 2019; 528 Şakar, Özpolat, Alım, Sayyed, Kurudirek (CR22) 2020 El-Maaref, Wahab, Shaaban, Abdelawwad, Koubisy, Börcsök, Yousef (CR35) 2020 Abdel Wahab, El-Maaref, Shaaban, Börcsök, Abdelawwad (CR3) 2020 Al-Buriahi, Somaily, Alalawi (CR8) 2020 Al-Buriahi, Singh, Alalawi, Sriwunkum, Tonguc (CR43) 2020 Shaaban, Abdel Wahab, El-Maaref (CR29) 2020; 31 Shaaban, Abo-Naf, Hassouna (CR13) 2019; 11 Shaaban, Zahran, Yahia (CR30) 2020; 126 Shaaban, El Sayed (CR18) 2020; 203 Al-Buriahi, Bakhsh, Tonguc, Bahadar Khan (CR41) 2020 Stalin, Gaikwad, Al-Buriahi, Srinivasu, Ahmed, Tekin, Rahman (CR7) 2020 Ibrahim, Gomaa, Darwish (CR38) 2014; 3 Al-Buriahi, Mann (CR54) 2019; 6 El-Rehim, Zahran, Yahia (CR48) 2020 Okasha, Marzouk, Hammad, Abdelghany (CR5) 2017; 142 Shaaban, Yousef, Abdel Wahab (CR33) 2020; 29 Shaaban, Saddeek, Sayed (CR4) 2018; 10 Shaaban, Abo-naf, Abd Elnaeim, Hassouna (CR15) 2017 Al-Buriahi, Tonguc (CR53) 2019; 125 El-Rehim, Ali, Zahran (CR34) 2020 Olarinoye, Rammah, Alraddadi, Sriwunkum, Abd El-Rehim, Zahran, Al-Buriahi (CR50) 2020 Makishima, Mackenzie (CR27) 1973; 12 KS Shaaban (5204_CR24) 2020 EI Kamitsos (5204_CR37) 1990; 126 AFA El-Rehim (5204_CR34) 2020 MS Al-Buriahi (5204_CR9) 2020; 544 KA Naseer (5204_CR11) 2020; 47 M Yamane (5204_CR2) 1985; 20 S Ibrahim (5204_CR21) 2016; 453 IO Olarinoye (5204_CR50) 2020 MS Al-Buriahi (5204_CR42) 2020 MS Al-Buriahi (5204_CR53) 2019; 125 YS Rammah (5204_CR49) 2020 MS Al-Buriahi (5204_CR54) 2019; 6 MS Al-Buriahi (5204_CR56) 2020; 46 HA Saudi (5204_CR32) 2020; 31 AK Varshneya (5204_CR40) 1994 AS Abouhaswa (5204_CR10) 2020; 543 S Ozturk (5204_CR44) 2020; 126 AA El-Maaref (5204_CR35) 2020 MS Al-Buriahi (5204_CR52) 2019; 125 S Stalin (5204_CR7) 2020 EA Abdel Wahab (5204_CR45) 2020 A Makishima (5204_CR28) 1975; 17 MS Al-Buriahi (5204_CR41) 2020 M.S. AlBuriahi, H.H. Hegazy, F. Alresheedi, I.O. Olarinoye, H. Algarni, H.O. Tekin, H.A. Saudi (5204_CR6) 2020 I Boukhris (5204_CR20) 2020; 46 MS Al-Buriahi (5204_CR51) 2020; 126 EA Abdel Wahab (5204_CR3) 2020 EA Abdel Wahab (5204_CR36) 2020; 52 MI Sayyed (5204_CR47) 2020; 126 MS Al-Buriahi (5204_CR8) 2020 E Şakar (5204_CR22) 2020 KS Shaaban (5204_CR15) 2017 EA Abdel Wahab (5204_CR19) 2019; 125 AM Fayad (5204_CR31) 2020 KS Shaaban (5204_CR4) 2018; 10 KS Shaaban (5204_CR18) 2020; 203 HH Somaily (5204_CR26) 2020 KS Shaaban (5204_CR12) 2020; 49 I Boukhris (5204_CR46) 2020; 126 WM Abd-Allah (5204_CR14) 2019; 125 KS Shaaban (5204_CR33) 2020; 29 KS Shaaban (5204_CR30) 2020; 126 AA El-Rehim (5204_CR48) 2020 KS Shaaban (5204_CR23) 2020; 52 K Shaaban (5204_CR29) 2020; 31 AM Abdelghany (5204_CR39) 2016; 89 W Shakespeare (5204_CR1) 2002 S Ibrahim (5204_CR38) 2014; 3 EAA Wahab (5204_CR16) 2018; 5 EA Abdel Wahab (5204_CR55) 2020 KS Shaaban (5204_CR25) 2020 MS Al-Buriahi (5204_CR43) 2020 A Makishima (5204_CR27) 1973; 12 A Okasha (5204_CR5) 2017; 142 RM El-Sharkawy (5204_CR17) 2019; 528 KS Shaaban (5204_CR13) 2019; 11 |
References_xml | – year: 2002 ident: CR1 article-title: Halide glass publication-title: Struct. Chemi. Glasses doi: 10.1016/b978-008043958-7/50019-4 – volume: 125 start-page: 866 year: 2019 ident: CR52 article-title: New transparent rare earth glasses for radiation protection applications publication-title: Appl. Phys. A doi: 10.1007/s00339-019-3077-8 – volume: 52 start-page: 125 year: 2020 ident: CR23 article-title: Electronic polarizability, optical basicity and mechanical properties of aluminum lead phosphate glasses publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-020-2191-3 – volume: 17 start-page: 147 issue: 2 year: 1975 end-page: 157 ident: CR28 article-title: Calculation of bulk modulus, shear modulus, and Poisson's ratio of glass publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(75)90047-2 – year: 2020 ident: CR24 article-title: Mechanical, structural and crystallization properties in titanate doped phosphate glasses publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/s10904-020-01574-x – volume: 203 start-page: 163976 year: 2020 ident: CR18 article-title: Optical properties of Bi O doped boro tellurite glasses and glass ceramics publication-title: Optik doi: 10.1016/j.ijleo.2019.163976 – year: 2020 ident: CR31 article-title: Structural and optical study of CoO doping in borophosphate host glass and effect of gamma irradiation publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/s10904-020-01641-3 – volume: 5 start-page: 025207 issue: 2 year: 2018 ident: CR16 article-title: Effects of SnO on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aaaee8 – volume: 125 start-page: 482 year: 2019 ident: CR53 article-title: Study on gamma-ray buildup factors of bismuth borate glasses publication-title: Appl. Phys. A doi: 10.1007/s00339-019-2777-4 – year: 2020 ident: CR8 article-title: Polarizability, optical basicity, and photon attenuation properties of Ag O–MoO –V O –TeO glasses: the role of silver oxide publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/s10904-020-01750-z – volume: 543 start-page: 120130 year: 2020 ident: CR10 article-title: Physical, structural, optical, and radiation shielding properties of B O -20Bi O -20Na O -Sb O glasses: role of Sb O publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2020.120130 – volume: 453 start-page: 16 year: 2016 end-page: 22 ident: CR21 article-title: Optical character enrichment of NdF – doped lithium fluoroborate glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2016.09.017 – volume: 31 start-page: 4986 year: 2020 end-page: 4996 ident: CR29 article-title: Judd-Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses publication-title: J. Mater. Sci.: Mater. Electron. doi: 10.1007/s10854-020-03065-8 – year: 2020 ident: CR41 article-title: Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.04.240 – volume: 3 start-page: 155 issue: 2 year: 2014 end-page: 164 ident: CR38 article-title: Influence of Fe O on the physical, structural, and electrical properties of sodium lead borate glasses publication-title: J. Adv. Ceram. doi: 10.1007/s40145-014-0107-z – year: 2020 ident: CR22 article-title: Phy-X / PSD: Development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2019.108496 – year: 2020 ident: CR42 article-title: The impact of Gd O on nuclear safety proficiencies of TeO –ZnO–Nb O glasses: a GEANT4 Monte Carlo study publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.03.110 – year: 2020 ident: CR25 article-title: Spectroscopic properties, electronic polarizability, and optical basicity of titanium–cadmium tellurite glasses doped with different amounts of lanthanum publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/s10904-020-01640-4 – year: 2020 ident: CR34 article-title: Spectroscopic, structural, thermal, and mechanical properties of B O -CeO -PbO glasses publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/s10904-020-01799-w – volume: 126 start-page: 52 issue: 1–2 year: 1990 end-page: 67 ident: CR37 article-title: Infrared reflectance spectra of lithium borate glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(90)91023-k – volume: 142 start-page: 125 year: 2017 end-page: 133 ident: CR5 article-title: Optical character inquest of cobalt containing fluoroborate glass publication-title: Optik doi: 10.1016/j.ijleo.2017.05.088 – volume: 126 start-page: 88 year: 2020 ident: CR47 article-title: Oxyfluoro-tellurite-zinc glasses and the nuclear-shielding ability under the substitution of AlF3 by ZnO publication-title: Appl. Phys. A doi: 10.1007/s00339-019-3265-6 – volume: 126 start-page: 763 year: 2020 ident: CR46 article-title: Effect of lead oxide on the optical properties and radiation shielding efficiency of antimony-sodium-tungsten glasses publication-title: Appl. Phys. A doi: 10.1007/s00339-020-03932-5 – volume: 125 start-page: 275 year: 2019 ident: CR14 article-title: Investigation of structural and radiation shielding properties of 40B O –30PbO–(30– ) BaO- ZnO glass system publication-title: Appl. Phys. A doi: 10.1007/s00339-019-2574-0 – year: 2020 ident: CR55 article-title: Novel borosilicate glass system: Na B O -SiO -MnO : synthesis, average electronics polarizability, optical basicity, and gamma-ray shielding features publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2020.120509 – year: 2020 ident: CR6 article-title: Effect of CdO addition on photon, electron, and neutron attenuation properties of boro-tellurite glasses publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.10.168 – volume: 49 start-page: 2040 year: 2020 end-page: 2049 ident: CR12 article-title: Electronic polarizability, optical basicity, thermal, mechanical and optical investigations of (65B O –30Li O–5Al O ) glasses doped with titanate publication-title: J. Electron. Mater. doi: 10.1007/s11664-019-07889-x – volume: 46 start-page: 24435 issue: 15 year: 2020 end-page: 24442 ident: CR20 article-title: Photon and electron attenuation parameters of phosphate and borate bioactive glasses by using Geant4 simulations publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.06.226 – volume: 31 start-page: 6963 year: 2020 end-page: 6976 ident: CR32 article-title: Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste publication-title: J. Mater. Sci.: Mater. Electron. doi: 10.1007/s10854-020-03261-6 – year: 2017 ident: CR15 article-title: Studying effect of MoO on elastic and crystallization behavior of lithium diborate glasses publication-title: Appl. Phys. A doi: 10.1007/s00339-017-1052-9 – year: 2020 ident: CR45 article-title: Novel borosilicate glass system: Na B O -SiO -MnO synthesis, average electronics polarizability, optical basicity, and gamma-ray shielding features publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2020.120509 – volume: 6 start-page: 105206 issue: 10 year: 2019 ident: CR54 article-title: Radiation shielding investigations for selected tellurite-based glasses belonging to the TNW system publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab3f85 – volume: 10 start-page: 1973 year: 2018 end-page: 1978 ident: CR4 article-title: Mechanical and thermal properties of lead borate glasses containing CaO and NaF publication-title: Silicon doi: 10.1007/s12633-017-9709-8 – year: 2020 ident: CR35 article-title: Visible and mid-infrared spectral emissions and radiative rates calculations of Tm doped BBLC glass publication-title: Spectrochim. Acta A doi: 10.1016/j.saa.2020.118774 – volume: 89 start-page: 568 year: 2016 end-page: 572 ident: CR39 article-title: Optical and μ-FTIR mapping: a new approach for structural evaluation of V O -lithium fluoroborate glasses publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.09.159 – year: 2020 ident: CR43 article-title: Mechanical features and radiation shielding properties of TeO –Ag O–WO glasses publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.03.091 – year: 2020 ident: CR49 article-title: Investigations on borate glasses within SBC-Bx system for gamma-ray shielding applications publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2020.06.034 – volume: 126 start-page: 68 year: 2020 ident: CR51 article-title: Investigation of barium borate glasses for radiation shielding applications publication-title: Appl. Phys. A doi: 10.1007/s00339-019-3254-9 – start-page: 33 year: 1994 ident: CR40 publication-title: Fundamentals of Inorganic Glasses – year: 2020 ident: CR26 article-title: Comparative studies on polarizability, optical basicity and optical properties of lead borosilicate modified with titania publication-title: J. Inorg. Organomet. Polym doi: 10.1007/s10904-020-01650-2 – volume: 544 start-page: 120171 year: 2020 ident: CR9 article-title: Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2020.120171 – volume: 126 start-page: 844 year: 2020 ident: CR44 article-title: Ta O -doped zinc-borate glasses: physical, structural, optical, thermal, and radiation shielding properties publication-title: Appl. Phys. A doi: 10.1007/s00339-020-04041-z – volume: 12 start-page: 35 issue: 1 year: 1973 end-page: 45 ident: CR27 article-title: Direct calculation of Young's modulus of glass publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(73)90053-7 – year: 2020 ident: CR48 article-title: Radiation, crystallization, and physical properties of cadmium borate glasses publication-title: Silicon doi: 10.1007/s12633-020-00798-3 – volume: 125 start-page: 869 year: 2019 ident: CR19 article-title: Radiation shielding, and physical properties of lead borate glass doped ZrO nanoparticles publication-title: Appl. Phys. A doi: 10.1007/s00339-019-3166-8 – volume: 52 start-page: 458 year: 2020 ident: CR36 article-title: Enhancement of optical and mechanical properties of sodium silicate glasses using zirconia publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-020-02575-3 – volume: 46 start-page: 1711 issue: 2 year: 2020 end-page: 1721 ident: CR56 article-title: Structure, optical, gamma-ray and neutron shielding properties of NiO doped B O –BaCO –Li O glass systems publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.09.144 – volume: 20 start-page: 905 issue: 8 year: 1985 end-page: 911 ident: CR2 article-title: IR transparency of the glass of ZnCl -KBr-PbBr system publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(85)90073-x – year: 2020 ident: CR50 article-title: The effects of La O addition on mechanical and nuclear shielding properties for zinc borate glasses in Monte Carlo simulation publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.08.092 – year: 2020 ident: CR3 article-title: Lithium cadmium phosphate glasses doped Sm as a host material for near-IR laser applications publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.110638 – volume: 528 start-page: 119754 year: 2019 ident: CR17 article-title: Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B O -(20–x) CdO based on nano metal oxides publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2019.119754 – volume: 11 start-page: 2421 year: 2019 end-page: 2428 ident: CR13 article-title: Physical and structural properties of lithium borate glasses containing MoO publication-title: Silicon doi: 10.1007/s12633-016-9519-4 – volume: 126 start-page: 804 year: 2020 ident: CR30 article-title: Mechanical and radiation-shielding properties of B O –P O –Li O–MoO glasses publication-title: Appl. Phys. A doi: 10.1007/s00339-020-03982-9 – volume: 47 start-page: 329 issue: 1 year: 2020 end-page: 340 ident: CR11 article-title: Influence of Bi O concentration on barium-telluro-borate glasses: physical, structural and radiation-shielding properties publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.08.138 – year: 2020 ident: CR7 article-title: Influence of Bi O /WO substitution on the optical, mechanical, chemical durability and gamma ray shielding properties of lithium-borate glasses publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.10.109 – volume: 29 start-page: 4549 year: 2020 end-page: 4558 ident: CR33 article-title: Investigation of crystallization and mechanical characteristics of glass and glass-ceramic with the compositions Fe O -35SiO -35B O -10Al O -(20– ) Na O publication-title: J. Mater. Eng. Perform doi: 10.1007/s11665-020-04969-6 – volume: 11 start-page: 2421 year: 2019 ident: 5204_CR13 publication-title: Silicon doi: 10.1007/s12633-016-9519-4 – year: 2002 ident: 5204_CR1 publication-title: Struct. Chemi. Glasses doi: 10.1016/b978-008043958-7/50019-4 – volume: 528 start-page: 119754 year: 2019 ident: 5204_CR17 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2019.119754 – year: 2017 ident: 5204_CR15 publication-title: Appl. Phys. A doi: 10.1007/s00339-017-1052-9 – year: 2020 ident: 5204_CR31 publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/s10904-020-01641-3 – volume: 126 start-page: 844 year: 2020 ident: 5204_CR44 publication-title: Appl. Phys. A doi: 10.1007/s00339-020-04041-z – volume: 3 start-page: 155 issue: 2 year: 2014 ident: 5204_CR38 publication-title: J. Adv. Ceram. doi: 10.1007/s40145-014-0107-z – volume: 125 start-page: 482 year: 2019 ident: 5204_CR53 publication-title: Appl. Phys. A doi: 10.1007/s00339-019-2777-4 – volume: 126 start-page: 68 year: 2020 ident: 5204_CR51 publication-title: Appl. Phys. A doi: 10.1007/s00339-019-3254-9 – year: 2020 ident: 5204_CR50 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.08.092 – volume: 126 start-page: 88 year: 2020 ident: 5204_CR47 publication-title: Appl. Phys. A doi: 10.1007/s00339-019-3265-6 – volume: 31 start-page: 6963 year: 2020 ident: 5204_CR32 publication-title: J. Mater. Sci.: Mater. Electron. doi: 10.1007/s10854-020-03261-6 – year: 2020 ident: 5204_CR43 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.03.091 – year: 2020 ident: 5204_CR26 publication-title: J. Inorg. Organomet. Polym doi: 10.1007/s10904-020-01650-2 – volume: 142 start-page: 125 year: 2017 ident: 5204_CR5 publication-title: Optik doi: 10.1016/j.ijleo.2017.05.088 – volume: 52 start-page: 125 year: 2020 ident: 5204_CR23 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-020-2191-3 – volume: 46 start-page: 24435 issue: 15 year: 2020 ident: 5204_CR20 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.06.226 – volume: 17 start-page: 147 issue: 2 year: 1975 ident: 5204_CR28 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(75)90047-2 – volume: 49 start-page: 2040 year: 2020 ident: 5204_CR12 publication-title: J. Electron. Mater. doi: 10.1007/s11664-019-07889-x – year: 2020 ident: 5204_CR8 publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/s10904-020-01750-z – volume: 31 start-page: 4986 year: 2020 ident: 5204_CR29 publication-title: J. Mater. Sci.: Mater. Electron. doi: 10.1007/s10854-020-03065-8 – volume: 126 start-page: 804 year: 2020 ident: 5204_CR30 publication-title: Appl. Phys. A doi: 10.1007/s00339-020-03982-9 – year: 2020 ident: 5204_CR48 publication-title: Silicon doi: 10.1007/s12633-020-00798-3 – volume: 20 start-page: 905 issue: 8 year: 1985 ident: 5204_CR2 publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(85)90073-x – year: 2020 ident: 5204_CR42 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.03.110 – volume: 29 start-page: 4549 year: 2020 ident: 5204_CR33 publication-title: J. Mater. Eng. Perform doi: 10.1007/s11665-020-04969-6 – start-page: 33 volume-title: Fundamentals of Inorganic Glasses year: 1994 ident: 5204_CR40 – volume: 203 start-page: 163976 year: 2020 ident: 5204_CR18 publication-title: Optik doi: 10.1016/j.ijleo.2019.163976 – volume: 12 start-page: 35 issue: 1 year: 1973 ident: 5204_CR27 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(73)90053-7 – year: 2020 ident: 5204_CR35 publication-title: Spectrochim. Acta A doi: 10.1016/j.saa.2020.118774 – volume: 125 start-page: 275 year: 2019 ident: 5204_CR14 publication-title: Appl. Phys. A doi: 10.1007/s00339-019-2574-0 – year: 2020 ident: 5204_CR55 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2020.120509 – volume: 544 start-page: 120171 year: 2020 ident: 5204_CR9 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2020.120171 – year: 2020 ident: 5204_CR7 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.10.109 – volume: 126 start-page: 763 year: 2020 ident: 5204_CR46 publication-title: Appl. Phys. A doi: 10.1007/s00339-020-03932-5 – year: 2020 ident: 5204_CR25 publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/s10904-020-01640-4 – volume: 89 start-page: 568 year: 2016 ident: 5204_CR39 publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.09.159 – volume: 10 start-page: 1973 year: 2018 ident: 5204_CR4 publication-title: Silicon doi: 10.1007/s12633-017-9709-8 – volume: 5 start-page: 025207 issue: 2 year: 2018 ident: 5204_CR16 publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aaaee8 – volume: 125 start-page: 866 year: 2019 ident: 5204_CR52 publication-title: Appl. Phys. A doi: 10.1007/s00339-019-3077-8 – volume: 6 start-page: 105206 issue: 10 year: 2019 ident: 5204_CR54 publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab3f85 – volume: 543 start-page: 120130 year: 2020 ident: 5204_CR10 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2020.120130 – year: 2020 ident: 5204_CR6 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.10.168 – year: 2020 ident: 5204_CR34 publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/s10904-020-01799-w – year: 2020 ident: 5204_CR45 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2020.120509 – year: 2020 ident: 5204_CR3 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.110638 – year: 2020 ident: 5204_CR24 publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/s10904-020-01574-x – year: 2020 ident: 5204_CR41 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.04.240 – volume: 52 start-page: 458 year: 2020 ident: 5204_CR36 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-020-02575-3 – volume: 46 start-page: 1711 issue: 2 year: 2020 ident: 5204_CR56 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.09.144 – volume: 453 start-page: 16 year: 2016 ident: 5204_CR21 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2016.09.017 – volume: 126 start-page: 52 issue: 1–2 year: 1990 ident: 5204_CR37 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(90)91023-k – volume: 47 start-page: 329 issue: 1 year: 2020 ident: 5204_CR11 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.08.138 – year: 2020 ident: 5204_CR22 publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2019.108496 – year: 2020 ident: 5204_CR49 publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2020.06.034 – volume: 125 start-page: 869 year: 2019 ident: 5204_CR19 publication-title: Appl. Phys. A doi: 10.1007/s00339-019-3166-8 |
SSID | ssj0006438 |
Score | 2.5378695 |
Snippet | The techniques of melt-quenching were used to manufacture 53B
2
O
3
–2NaF–27PbO–
(
20
-
x
)
BaO–
x
La
2
O
3
(
0
≤
x
≥
15
)
glass system. To check the status of... The techniques of melt-quenching were used to manufacture 53B2O3–2NaF–27PbO–(20-x) BaO–x La2O3(0≤x≥15) glass system. To check the status of these samples, the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4651 |
SubjectTerms | Barium oxides Characterization and Evaluation of Materials Chemistry and Materials Science Energy Energy levels Fluorides Infrared analysis Lanthanum oxides Materials Science Mechanical properties Modulus of elasticity Molar volume Optical and Electronic Materials Optical properties Photoelectric effect Photoelectricity Radiation Radiation shielding Tetrahedra |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu8AB8RSDgXLgxiLWJN2yEwK0CRAMhJi0W9U8KpC2dqzjP_Czsbt0AyTWYx-ulM-xncT-TMiZsq4Vtq1iCfg_WKA4x7CdFRPayBB9jHFYjfzYb90O5P0wHPoNt9ynVZY2sTDUNjO4R34BywShlIRw5XLywbBrFJ6u-hYa66QKJlipCqled_vPLwtbDP5Wzdn2kN2bc18244vnVCgZLp8wF0Sy9m_XtIw3_xyRFp6nt022fMhIr-YY75A1l-6SzR9Egnvk667sNUKzhD7E_ElQTEIHj0KzlEKQR-dEsUiy0aBjh_W-CE-DxqmlUyQoQIRY_oYZbSCTTnCXfop0qygyz-z755jCT7JpRkegGFTDKhtuFTrkaBGFu3yfDHrd15tb5nssMAOTb8ZkmzskDYQwKBYtnThASMNQN60yidVCY1RleZzA1RI2wDtSWRXIWIdWd8QBqaRZ6g4J1dxyp1GUMLLTNHEzCTuBcjbhxgoT1EhQDm9kPAE59sEYRUvqZIQkAkiiApKoXSPni28mc_qNlW_XS9QiPxXzaKk4NdIokVw-_l_a0Wppx2SDY35LkcFdJxVA0Z1AgDLTp14LvwFsSuMm priority: 102 providerName: ProQuest |
Title | Influence of La2O3 content on the structural, mechanical, and radiation-shielding properties of sodium fluoro lead barium borate glasses |
URI | https://link.springer.com/article/10.1007/s10854-020-05204-7 https://www.proquest.com/docview/2493884977 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BucABsYqyVD5wo5Ya22ndY0Et-yJEJThF8RKBVBLUlH_gs5lJEwoIkMglkeNMlDw78xzPPAPsa-fbYcdpnqD_wwGK95yWs-LSWBWSj7GespEvr9onQ3V2H96XSWF5Fe1eTUkWX-pPyW46VJyGOxS7oXhnHhbwQFAg11D0Pr6_6GP1VGGPFL2FKFNlfrbx1R3NOOa3adHC2wxWYLmkiaw3xXUV5ny6BkufxAPX4e20Wl-EZQm7iMW1ZBR4jl6EZSlDYsem4rAkrNFkz55yfAmSJotTx8YkSkCo8PyRotjQJnuhP_Njklglk3nmnl6fGd4kG2dshI2BGRxZY1HRbjwrmLfPN2A46N8dnfByXQVuscNNuOoIT0KBSH1i2TaJR1SM6sqW0zZxRhpiUk7ECW5t6QIqUdrpQMUmdKYrN6GWZqnfAmaEE96QKWlVt2XjVhJ2A-1dIqyTNqhDUL3eyJai47T2xSiaySUTJBFCEhWQRJ06HHxc8zKV3Piz9m6FWlR2vzzCp5NaK-S2dWhWSM5O_25t-3_Vd2BRUIxLEcW9CzVE1e8hSZmYBszrwXEDFnrHD-d93B_2r25uG0VLfQddQ-KL |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V4UB7qHhVTSkwBziRVePddbI9IISAkNC0XFqpN9f7sFopsUNchPoP-mv4jcz40QASudXHtT22dj7vzHhnvgF4bXwYxENvREb2jwKUEAS3sxLKOh2zjXGBq5GPTwbjM_31PD7fgF9tLQynVbZrYrVQ-8LxP_IDChOUMZrclfeL74K7RvHuattCo4bFUbj5SSFb-W7yifT7RsrR59OPY9F0FRCO4HYt9FAGpskjw5-qgc0CvZMl4X1vXOatsuxHeJlmdAyUj3hEG28indrYWyZfoiX_gVZkybkyffTlbuUn625qbj_mEpeyKdJpSvVMrAUHa5x5osXwb0O48m7_2ZCt7NzoEWw3Dip-qBH1GDZC_gS2_qAtfAq3k7azCRYZTlP5TSGnvJP9wiJHcimxpqVlSo8ezgNXFzMYepjmHpdMh8B4EOUl58-RTFzwnsCSyV1ZZFn4qx9zpIcUywJnBEO0FNPTUIXYgJXPH8pncHYvc78DnbzIwy6glV4Gy6KU04d9l_az-DAywWfSeeWiLkTt9CauoTvnrhuzZEXUzCpJSCVJpZJk2IW3d_csarKPtVfvt1pLmg-_TFYw7UKv1eTq9P-l7a2X9goejk-Pp8l0cnL0HDYlZ9ZUueP70CGNhhfkGl3blxUeES7u-wP4DYteH9E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9xADLbQIlXlUNEWxLa0-EBP7IjNZLIZDhVqCyuWx4IQSNxC5hFRCZJlQ1X1H_Cb-utq58HSSuVGjpPEicZfxnbG_gywrp0fRLHTIiP7RwGK94LbWYnQWBWxjbGeq5GPxoO9c7V_EV3Mwe-2FobTKts1sVqoXWH5H_kmhQmh1orclc2sSYs42RluT24Fd5Dinda2nUYNkQP_6yeFb-Xn0Q7p-pOUw92zb3ui6TAgLEHvTqhYeqbMIycgDQcm8_R-hh7Ud9pmzoSGfQon04yOQegCHlHa6UClJnKGiZho-Z-POSrqwPzX3fHJ6YMdIFuva6Y_ZhaXsinZaQr3dKQEh26ch6JE_LdZnPm6_2zPVlZvuAivGncVv9T4eg1zPn8DC49IDN_C_ajtc4JFhoepPA6RE-DJmmGRIzmYWJPUMsFHD2881xozNHqY5g6nTI7A6BDlFWfTkUyc8A7BlKleWWRZuO8_bpAeUkwLvCZQoqEIn4Yq_HqsIgBfLsH5s8z-MnTyIvcrgEY66Q2LCq3a6tu0n0VbgfYuk9aFNuhC0E5vYhvyc-7BcZ3MaJtZJQmpJKlUksRd2Hi4Z1JTfzx59WqrtaRZBspkBtou9FpNzk7_X9q7p6WtwQsCf3I4Gh-8h5eS02yqRPJV6JBC_Qfyk-7MxwaQCJfP_Q38AbMAJWM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+La2O3+content+on+the+structural%2C+mechanical%2C+and+radiation-shielding+properties+of+sodium+fluoro+lead+barium+borate+glasses&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=El-Rehim%2C+A.+F.+Abd&rft.au=Shaaban%2C+Kh.+S.&rft.date=2021-02-01&rft.pub=Springer+US&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=32&rft.issue=4&rft.spage=4651&rft.epage=4671&rft_id=info:doi/10.1007%2Fs10854-020-05204-7&rft.externalDocID=10_1007_s10854_020_05204_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon |