An enhanced deep learning method for multi-class brain tumor classification using deep transfer learning

Multi-class brain tumor classification is an important area of research in the field of medical imaging because of the different tumor characteristics. One such challenging problem is the multiclass classification of brain tumors using MR images. Since accuracy is critical in classification, compute...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 82; no. 20; pp. 31709 - 31736
Main Authors Asif, Sohaib, Zhao, Ming, Tang, Fengxiao, Zhu, Yusen
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-023-14828-w

Cover

Loading…
Abstract Multi-class brain tumor classification is an important area of research in the field of medical imaging because of the different tumor characteristics. One such challenging problem is the multiclass classification of brain tumors using MR images. Since accuracy is critical in classification, computer vision researchers are introducing a number of techniques; However, achieving high accuracy remains challenging when classifying brain images. Early diagnosis of brain tumor types can activate timely treatment, thereby improving the patient’s chances of survival. In recent years, deep learning models have achieved promising results, especially in classifying brain tumors to help neurologists. This work proposes a deep transfer learning model that accelerates brain tumor detection using MR imaging. In this paper, five popular deep learning architectures are utilized to develop a system for diagnosing brain tumors. The architectures used is this paper are Xception, DenseNet201, DenseNet121, ResNet152V2, and InceptionResNetV2. The final layer of these architectures has been modified with our deep dense block and softmax layer as the output layer to improve the classification accuracy. This article presents two main experiments to assess the effectiveness of the proposed model. First, three-class results using images from patients with glioma, meningioma, and pituitary are discussed. Second, the results of four classes are discussed using images of glioma, meningioma, pituitary and healthy patients. The results show that the proposed model based on Xception architecture is the most suitable deep learning model for detecting brain tumors. It achieves a classification accuracy of 99.67% on the 3-class dataset and 95.87% on the 4-class dataset, which is better than the state-of-the-art methods. In conclusion, the proposed model can provide radiologists with an automated medical diagnostic system to make fast and accurate decisions.
AbstractList Multi-class brain tumor classification is an important area of research in the field of medical imaging because of the different tumor characteristics. One such challenging problem is the multiclass classification of brain tumors using MR images. Since accuracy is critical in classification, computer vision researchers are introducing a number of techniques; However, achieving high accuracy remains challenging when classifying brain images. Early diagnosis of brain tumor types can activate timely treatment, thereby improving the patient’s chances of survival. In recent years, deep learning models have achieved promising results, especially in classifying brain tumors to help neurologists. This work proposes a deep transfer learning model that accelerates brain tumor detection using MR imaging. In this paper, five popular deep learning architectures are utilized to develop a system for diagnosing brain tumors. The architectures used is this paper are Xception, DenseNet201, DenseNet121, ResNet152V2, and InceptionResNetV2. The final layer of these architectures has been modified with our deep dense block and softmax layer as the output layer to improve the classification accuracy. This article presents two main experiments to assess the effectiveness of the proposed model. First, three-class results using images from patients with glioma, meningioma, and pituitary are discussed. Second, the results of four classes are discussed using images of glioma, meningioma, pituitary and healthy patients. The results show that the proposed model based on Xception architecture is the most suitable deep learning model for detecting brain tumors. It achieves a classification accuracy of 99.67% on the 3-class dataset and 95.87% on the 4-class dataset, which is better than the state-of-the-art methods. In conclusion, the proposed model can provide radiologists with an automated medical diagnostic system to make fast and accurate decisions.
Author Tang, Fengxiao
Asif, Sohaib
Zhao, Ming
Zhu, Yusen
Author_xml – sequence: 1
  givenname: Sohaib
  surname: Asif
  fullname: Asif, Sohaib
  organization: School of Computer Science and Engineering, Central South University
– sequence: 2
  givenname: Ming
  surname: Zhao
  fullname: Zhao, Ming
  email: meanzhao@csu.edu.cn
  organization: School of Computer Science and Engineering, Central South University
– sequence: 3
  givenname: Fengxiao
  surname: Tang
  fullname: Tang, Fengxiao
  email: tangfengxiao@csu.edu.cn
  organization: School of Computer Science and Engineering, Central South University
– sequence: 4
  givenname: Yusen
  surname: Zhu
  fullname: Zhu, Yusen
  organization: School of Mathematics, Hunan University
BookMark eNp9kE1rwzAMhs3oYG23P7CTYWdv_krsHEvZFxR22c7GcZzWJXE6O6Hs389NxgY7VBcJoeeV9C7AzHfeAnBL8D3BWDxEQjCnCFOGCJdUouMFmJNMMCQEJbNUM4mRyDC5AosY9xiTPKN8DnYrD63faW9sBStrD7CxOnjnt7C1_a6rYN0F2A5N75BpdIywDNp52A9t6o8dVzuje9d5OMQTN6r0QftY2_Ardw0ua91Ee_OTl-Dj6fF9_YI2b8-v69UGGUaKHvGMG2xSMCkotpUsWYkLJooaFzxn3IhMF5KwypoSGyKJqHiZF6SiLC9radgS3E26h9B9Djb2at8NwaeVikpOqRAZydMUnaZM6GIMtlaH4FodvhTB6uSomhxVyVE1OqqOCZL_IOP68fP0rWvOo2xCY9rjtzb8XXWG-gajto6p
CitedBy_id crossref_primary_10_1186_s40537_025_01117_6
crossref_primary_10_1007_s11760_024_03166_5
crossref_primary_10_1007_s41870_023_01701_0
crossref_primary_10_32604_cmes_2024_057214
crossref_primary_10_1016_j_bspc_2024_107027
crossref_primary_10_1002_ima_22975
crossref_primary_10_3390_en18051176
crossref_primary_10_1007_s44230_023_00041_3
crossref_primary_10_32604_cmc_2023_040561
crossref_primary_10_1007_s11042_025_20751_z
crossref_primary_10_3390_a17060221
crossref_primary_10_1038_s41598_024_77243_7
crossref_primary_10_3389_fninf_2024_1444650
crossref_primary_10_3390_mca30010001
crossref_primary_10_1007_s13721_024_00443_8
crossref_primary_10_1016_j_knosys_2024_112862
crossref_primary_10_1142_S0218001424560056
crossref_primary_10_3390_diagnostics13122110
crossref_primary_10_1016_j_compbiomed_2024_109183
crossref_primary_10_3390_diagnostics15030378
crossref_primary_10_1007_s00521_025_11150_4
crossref_primary_10_1007_s11042_024_19652_4
crossref_primary_10_1093_braincomms_fcae372
crossref_primary_10_1016_j_compbiomed_2024_109542
crossref_primary_10_1007_s11831_024_10091_w
crossref_primary_10_1038_s41598_024_66554_4
crossref_primary_10_1007_s11042_025_20668_7
crossref_primary_10_1007_s40998_025_00801_w
crossref_primary_10_1007_s11042_023_17139_2
crossref_primary_10_1016_j_bspc_2025_107538
crossref_primary_10_1016_j_compbiomed_2025_109703
crossref_primary_10_1007_s10278_024_01199_3
crossref_primary_10_1016_j_compbiomed_2024_108910
crossref_primary_10_1007_s11042_025_20706_4
crossref_primary_10_3390_diagnostics14040383
crossref_primary_10_1002_ima_23119
crossref_primary_10_1007_s11042_024_19487_z
crossref_primary_10_1016_j_bspc_2023_105602
crossref_primary_10_1109_ACCESS_2023_3343126
crossref_primary_10_3390_make6040111
crossref_primary_10_1108_ACI_12_2023_0167
crossref_primary_10_1007_s11042_024_20405_6
crossref_primary_10_1016_j_knosys_2024_111981
Cites_doi 10.1016/j.cogsys.2019.09.007
10.1016/j.compbiomed.2019.103345
10.1109/access.2018.2885639
10.1016/j.patrec.2019.11.034
10.1109/access.2020.3034217
10.3174/ajnr.a5391
10.3390/app10061999
10.1016/j.artmed.2019.101779
10.1016/j.patrec.2017.10.036
10.3233/thc-171341
10.1016/j.bbe.2018.10.004
10.1371/journal.pone.0140381
10.1002/mrm.23165
10.1007/s10916-019-1368-4
10.1016/j.patrec.2019.11.019
10.3390/s22010372
10.1016/j.mehy.2019.109531
10.4236/jbise.2020.136010
10.1109/access.2019.2919122
10.1109/access.2019.2892455
10.1016/j.neuroimage.2016.01.024
10.1109/access.2019.2904145
10.1016/j.mlwa.2020.100003
10.1016/j.compbiomed.2018.06.009
10.3390/healthcare9020153
10.1016/j.jneumeth.2019.108520
10.1007/s00401-016-1545-1
10.1016/j.mehy.2020.109922
10.1016/j.patrec.2019.11.014
10.1007/s11554-019-00852-3
10.3390/app8010027
10.1080/09720502.2020.1723921
10.1016/j.compmedimag.2019.05.001
10.13005/bpj/1511
10.1007/978-3-642-35289-8_26
10.3233/xst-16226
10.1007/s00500-021-05748-8
10.1007/s00034-019-01246-3
10.1002/jemt.23597
10.1016/j.heliyon.2020.e05652
10.1109/tnnls.2020.2995800
10.13005/bpj/1991
10.3390/s21062222
10.1016/j.jocs.2018.12.003
10.31803/tg-20190712095507
10.1007/s11227-020-03572-9
10.1109/ICACA.2016.7887944
10.1109/CVPR.2017.195
10.1109/ICEICE.2017.8191888
10.1109/WICT.2011.6141390
10.1109/ICEEE2.2017.7935845
10.6084/m9.figshare
10.1109/WiSPNET.2018.8538643
10.1109/EIT.2018.8500308
10.1109/CSPC.2017.8305810
10.1109/INDICON.2016.7838875
10.1109/ICOIN.2018.8343231
10.1109/IACC.2017.0146
10.1109/RISE.2017.8378158
10.1155/2021/5513500
10.1109/CVPR.2017.243
10.1109/CVPR.2016.90
10.1609/aaai.v31i1.11231
10.1109/ICICES.2017.8070748
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-14828-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (subscription)
ProQuest Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 31736
ExternalDocumentID 10_1007_s11042_023_14828_w
GrantInformation_xml – fundername: Natural Science Foundation of Hunan Province
  grantid: 2020JJ4757
  funderid: http://dx.doi.org/10.13039/501100004735
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-454c0cccc38720ed8b3b09379f094634c75a9813decb0c1817d4b691d236bf8c3
IEDL.DBID 8FG
ISSN 1380-7501
IngestDate Fri Jul 25 23:17:15 EDT 2025
Tue Jul 01 04:13:19 EDT 2025
Thu Apr 24 23:06:26 EDT 2025
Fri Feb 21 02:42:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords Xception
Deep learning
Multi-class brain tumor classification
Image processing
Transfer learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-454c0cccc38720ed8b3b09379f094634c75a9813decb0c1817d4b691d236bf8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2842277516
PQPubID 54626
PageCount 28
ParticipantIDs proquest_journals_2842277516
crossref_primary_10_1007_s11042_023_14828_w
crossref_citationtrail_10_1007_s11042_023_14828_w
springer_journals_10_1007_s11042_023_14828_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230800
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 8
  year: 2023
  text: 20230800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Deepak, Ameer (CR17) 2019; 111
Sarhan (CR59) 2020; 13
Seetha, Raja (CR61) 2018; 11
CR39
CR38
CR37
Sharif, Li, Khan, Saleem (CR62) 2020; 129
CR34
Zhou, Scott, Chaudhury, Hall, Goldgof, Yeom, Iv, Ou, Kalpathy-Cramer, Napel (CR74) 2018; 39
Sultan, Salem, Al-Atabany (CR65) 2019; 7
Saba, Mohamed, El-Affendi, Amin, Sharif (CR56) 2020; 59
Kokkalla, Kakarla, Venkateswarlu, Singh (CR36) 2021; 25
Badža, Barjaktarović (CR6) 2020; 10
Rajan, Sundar (CR52) 2019; 43
Khawaldeh, Pervaiz, Rafiq, Alkhawaldeh (CR33) 2018; 8
Sajjad, Khan, Muhammad, Wu, Ullah, Baik (CR57) 2019; 30
Rehman, Khan, Saba, Mehmood, Tariq, Ayesha (CR54) 2021; 84
Salçin (CR58) 2019; 13
Aderghal, Afdel, Benois-Pineau, Catheline (CR1) 2020; 6
Swati, Zhao, Kabir, Ali, Ali, Ahmed, Lu (CR68) 2019; 75
Khan, Rubab, Kashif, Sharif, Muhammad, Shah, Zhang, Satapathy (CR32) 2020; 129
Pashaei, Ghatee, Sajedi (CR48) 2020; 17
Qiu, Yan, Gundreddy, Wang, Cheng, Liu, Zheng (CR51) 2017; 25
CR7
Zhan, Feng, Hong, Lu, Xiao, Zhang (CR73) 2017; 25
CR9
CR49
CR47
CR45
CR43
CR40
Maharjan, Alsadoon, Prasad, Al-Dalain, Alsadoon (CR42) 2020; 330
Amin, Sharif, Yasmin, Fernandes (CR3) 2020; 139
Dunford, Su, Tamang (CR20) 2014; 7
Mehrotra, Ansari, Agrawal, Anand (CR44) 2020; 2
Muhammad, Khan, Del Ser, de Albuquerque (CR46) 2020; 32
Alanazi, Ali, Hussain, Zafar, Mohatram, Irfan, AlRuwaili, Alruwaili, Ali, Albarrak (CR2) 2022; 22
Hemanth, Anitha, Naaji, Geman, Popescu (CR23) 2018; 7
Ruba, Tamilselvi, ParisaBeham, Aparna (CR55) 2020; 13
Suthaharan (CR66) 2016; 36
Kleesiek, Urban, Hubert, Schwarz, Maier-Hein, Bendszus, Biller (CR35) 2016; 129
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR64) 2014; 15
Ullah, Farooq, Lee, An (CR72) 2020; 143
CR18
CR16
CR15
CR13
CR12
Kalaiselvi, Padmapriya (CR28) 2021; 27
Taheri, Gasparovic, Shah, Rosenberg (CR70) 2011; 65
CR10
Louis, Perry, Reifenberger, Von Deimling, Figarella-Branger, Cavenee, Ohgaki, Wiestler, Kleihues, Ellison (CR41) 2016; 131
CR50
Saxena, Maheshwari, Maheshwari (CR60) 2021
Anaraki, Ayati, Kazemi (CR4) 2019; 39
Gumaei, Hassan, Hassan, Alelaiwi, Fortino (CR21) 2019; 7
Khan, Sarfraz, Alhaisoni, Albesher, Wang, Ashraf (CR31) 2020; 8
CR26
CR69
CR24
CR22
Bengio (CR8) 2012
CR63
Swati, Zhao, Kabir, Ali, Ali, Ahmed, Lu (CR67) 2019; 7
Ansari, Mehrotra, Agrawal (CR5) 2020; 23
Rehman, Naz, Razzak, Akram, Imran (CR53) 2020; 39
Khan, Sharif, Akram, Bukhari, Nayak (CR30) 2020; 129
Toğaçar, Ergen, Cömert (CR71) 2020; 134
Cheng, Huang, Cao, Yang, Yang, Yun, Wang, Feng (CR11) 2015; 10
Díaz-Pernas, Martínez-Zarzuela, Antón-Rodríguez, González-Ortega (CR19) 2021; 9
Ioffe, Szegedy (CR25) 2015; 37
Citak-Er, Firat, Kovanlikaya, Ture, Ozturk-Isik (CR14) 2018; 99
Ismael, Mohammed, Hefny (CR27) 2020; 102
Kang, Ullah, Gwak (CR29) 2021; 21
14828_CR16
T Saba (14828_CR56) 2020; 59
14828_CR18
P Rajan (14828_CR52) 2019; 43
14828_CR10
14828_CR12
14828_CR13
MA Khan (14828_CR30) 2020; 129
14828_CR15
A Gumaei (14828_CR21) 2019; 7
FJ Díaz-Pernas (14828_CR19) 2021; 9
14828_CR50
R Mehrotra (14828_CR44) 2020; 2
J Seetha (14828_CR61) 2018; 11
14828_CR9
14828_CR7
HH Sultan (14828_CR65) 2019; 7
14828_CR63
S Ioffe (14828_CR25) 2015; 37
14828_CR22
S Kokkalla (14828_CR36) 2021; 25
DJ Hemanth (14828_CR23) 2018; 7
14828_CR24
AM Sarhan (14828_CR59) 2020; 13
14828_CR69
14828_CR26
MA Khan (14828_CR32) 2020; 129
MM Badža (14828_CR6) 2020; 10
P Saxena (14828_CR60) 2021
N Srivastava (14828_CR64) 2014; 15
14828_CR38
M Zhou (14828_CR74) 2018; 39
14828_CR39
S Taheri (14828_CR70) 2011; 65
S Deepak (14828_CR17) 2019; 111
MF Alanazi (14828_CR2) 2022; 22
Y Qiu (14828_CR51) 2017; 25
MI Sharif (14828_CR62) 2020; 129
M Ansari (14828_CR5) 2020; 23
A Rehman (14828_CR54) 2021; 84
ZNK Swati (14828_CR67) 2019; 7
S Maharjan (14828_CR42) 2020; 330
K Salçin (14828_CR58) 2019; 13
14828_CR34
K Muhammad (14828_CR46) 2020; 32
14828_CR37
A Rehman (14828_CR53) 2020; 39
M Toğaçar (14828_CR71) 2020; 134
MA Khan (14828_CR31) 2020; 8
Z Ullah (14828_CR72) 2020; 143
F Citak-Er (14828_CR14) 2018; 99
T Ruba (14828_CR55) 2020; 13
T Zhan (14828_CR73) 2017; 25
K Aderghal (14828_CR1) 2020; 6
J Kang (14828_CR29) 2021; 21
14828_CR49
S Suthaharan (14828_CR66) 2016; 36
A Pashaei (14828_CR48) 2020; 17
S Khawaldeh (14828_CR33) 2018; 8
14828_CR43
14828_CR45
14828_CR47
SAA Ismael (14828_CR27) 2020; 102
J Amin (14828_CR3) 2020; 139
J Cheng (14828_CR11) 2015; 10
DN Louis (14828_CR41) 2016; 131
R Dunford (14828_CR20) 2014; 7
J Kleesiek (14828_CR35) 2016; 129
14828_CR40
AK Anaraki (14828_CR4) 2019; 39
Y Bengio (14828_CR8) 2012
T Kalaiselvi (14828_CR28) 2021; 27
M Sajjad (14828_CR57) 2019; 30
ZNK Swati (14828_CR68) 2019; 75
References_xml – ident: CR45
– ident: CR22
– volume: 59
  start-page: 221
  year: 2020
  end-page: 230
  ident: CR56
  article-title: Brain tumor detection using fusion of hand crafted and deep learning features
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2019.09.007
– volume: 111
  start-page: 103345
  year: 2019
  ident: CR17
  article-title: Brain tumor classification using deep CNN features via transfer learning
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.103345
– volume: 7
  start-page: 4275
  year: 2018
  end-page: 4283
  ident: CR23
  article-title: A modified deep convolutional neural network for abnormal brain image classification
  publication-title: IEEE Access
  doi: 10.1109/access.2018.2885639
– ident: CR49
– volume: 129
  start-page: 293
  year: 2020
  end-page: 303
  ident: CR30
  article-title: Developed Newton-Raphson based deep features selection framework for skin lesion recognition
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.11.034
– volume: 8
  start-page: 197969
  year: 2020
  end-page: 197981
  ident: CR31
  article-title: StomachNet: optimal deep learning features fusion for stomach abnormalities classification
  publication-title: IEEE Access
  doi: 10.1109/access.2020.3034217
– volume: 39
  start-page: 208
  issue: 2
  year: 2018
  end-page: 216
  ident: CR74
  article-title: Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.a5391
– volume: 10
  start-page: 1999
  issue: 6
  year: 2020
  ident: CR6
  article-title: Classification of brain tumors from MRI images using a convolutional neural network
  publication-title: Appl Sci
  doi: 10.3390/app10061999
– ident: CR39
– ident: CR16
– ident: CR12
– volume: 102
  start-page: 101779
  year: 2020
  ident: CR27
  article-title: An enhanced deep learning approach for brain cancer MRI images classification using residual networks
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.101779
– volume: 139
  start-page: 118
  year: 2020
  end-page: 127
  ident: CR3
  article-title: A distinctive approach in brain tumor detection and classification using MRI
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2017.10.036
– year: 2021
  ident: CR60
  publication-title: Predictive modeling of brain tumor: A Deep learning approach. In: Innovations in Computational Intelligence and Computer Vision, pp. 275–285
– volume: 25
  start-page: 377
  issue: S1
  year: 2017
  end-page: 385
  ident: CR73
  article-title: An automatic glioma grading method based on multi-feature extraction and fusion
  publication-title: Technol Health Care
  doi: 10.3233/thc-171341
– volume: 39
  start-page: 63
  issue: 1
  year: 2019
  end-page: 74
  ident: CR4
  article-title: Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms
  publication-title: Biocybernetics Biomed Eng
  doi: 10.1016/j.bbe.2018.10.004
– volume: 10
  start-page: e0140381
  issue: 10
  year: 2015
  ident: CR11
  article-title: Enhanced performance of brain tumor classification via tumor region augmentation and partition
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0140381
– volume: 65
  start-page: 1036
  issue: 4
  year: 2011
  end-page: 1042
  ident: CR70
  article-title: Quantitative measurement of blood-brain barrier permeability in human using dynamic contrast-enhanced MRI with fast T1 mapping
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.23165
– volume: 43
  start-page: 1
  issue: 8
  year: 2019
  end-page: 13
  ident: CR52
  article-title: Brain tumor detection and segmentation by intensity adjustment
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1368-4
– volume: 129
  start-page: 181
  year: 2020
  end-page: 189
  ident: CR62
  article-title: Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.11.019
– volume: 22
  start-page: 372
  issue: 1
  year: 2022
  ident: CR2
  article-title: Brain tumor/mass classification framework using magnetic-resonance-imaging-based isolated and developed transfer deep-learning model
  publication-title: Sensors
  doi: 10.3390/s22010372
– volume: 134
  start-page: 109531
  year: 2020
  ident: CR71
  article-title: BrainMRNet: brain tumor detection using magnetic resonance images with a novel convolutional neural network model
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2019.109531
– volume: 13
  start-page: 102
  issue: 06
  year: 2020
  end-page: 112
  ident: CR59
  article-title: Brain tumor classification in magnetic resonance images using deep learning and wavelet transform
  publication-title: J Biomed Sci Eng
  doi: 10.4236/jbise.2020.136010
– ident: CR15
– ident: CR50
– volume: 7
  start-page: 69215
  year: 2019
  end-page: 69225
  ident: CR65
  article-title: Multi-classification of brain tumor images using deep neural network
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2919122
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  end-page: 1958
  ident: CR64
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: CR9
– volume: 7
  start-page: 17809
  year: 2019
  end-page: 17822
  ident: CR67
  article-title: Content-based brain tumor retrieval for MR images using transfer learning
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2892455
– volume: 129
  start-page: 460
  year: 2016
  end-page: 469
  ident: CR35
  article-title: Deep MRI brain extraction: a 3D convolutional neural network for skull stripping
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.01.024
– volume: 7
  start-page: 36266
  year: 2019
  end-page: 36273
  ident: CR21
  article-title: A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2904145
– volume: 27
  start-page: 69
  year: 2021
  end-page: 90
  ident: CR28
  article-title: Brain tumor diagnostic system—a deep learning application. Machine Vision Inspection Systems, Volume 2
  publication-title: Mach Learn Based Approaches
– volume: 2
  start-page: 100003
  year: 2020
  ident: CR44
  article-title: A transfer learning approach for AI-based classification of brain tumors
  publication-title: Mach Learn Appl
  doi: 10.1016/j.mlwa.2020.100003
– ident: CR26
– volume: 99
  start-page: 154
  year: 2018
  end-page: 160
  ident: CR14
  article-title: Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.06.009
– volume: 9
  start-page: 153
  issue: 2
  year: 2021
  ident: CR19
  article-title: A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network
  publication-title: Healthcare
  doi: 10.3390/healthcare9020153
– volume: 330
  start-page: 108520
  year: 2020
  ident: CR42
  article-title: A novel enhanced softmax loss function for brain tumour detection using deep learning
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2019.108520
– ident: CR18
– volume: 131
  start-page: 803
  issue: 6
  year: 2016
  end-page: 820
  ident: CR41
  article-title: The 2016 World Health Organization classification of tumors of the central nervous system: a summary
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-016-1545-1
– ident: CR43
– ident: CR47
– volume: 143
  start-page: 109922
  year: 2020
  ident: CR72
  article-title: A hybrid image enhancement based brain MRI images classification technique
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2020.109922
– volume: 129
  start-page: 77
  year: 2020
  end-page: 85
  ident: CR32
  article-title: Lungs cancer classification from CT images: An integrated design of contrast based classical features fusion and selection
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.11.014
– volume: 17
  start-page: 1051
  issue: 4
  year: 2020
  end-page: 1066
  ident: CR48
  article-title: Convolution neural network joint with mixture of extreme learning machines for feature extraction and classification of accident images
  publication-title: J Real-Time Image Proc
  doi: 10.1007/s11554-019-00852-3
– volume: 8
  start-page: 27
  issue: 1
  year: 2018
  ident: CR33
  article-title: Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks
  publication-title: Appl Sci
  doi: 10.3390/app8010027
– ident: CR37
– ident: CR10
– volume: 23
  start-page: 955
  issue: 5
  year: 2020
  end-page: 966
  ident: CR5
  article-title: Detection and classification of brain tumor in MRI images using wavelet transform and support vector machine
  publication-title: J Interdiscipl Math
  doi: 10.1080/09720502.2020.1723921
– volume: 75
  start-page: 34
  year: 2019
  end-page: 46
  ident: CR68
  article-title: Brain tumor classification for MR images using transfer learning and fine-tuning
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2019.05.001
– volume: 11
  start-page: 1457
  issue: 3
  year: 2018
  ident: CR61
  article-title: Brain tumor classification using convolutional neural networks
  publication-title: Biomed Pharma J
  doi: 10.13005/bpj/1511
– start-page: 437
  year: 2012
  end-page: 478
  ident: CR8
  publication-title: Practical recommendations for gradient-based training of deep architectures, In Neural networks: Tricks of the trade
  doi: 10.1007/978-3-642-35289-8_26
– ident: CR40
– ident: CR63
– volume: 25
  start-page: 751
  issue: 5
  year: 2017
  end-page: 763
  ident: CR51
  article-title: A new approach to develop computer-aided diagnosis scheme of breast mass classification using deep learning technology
  publication-title: J X-ray Scie Technol
  doi: 10.3233/xst-16226
– ident: CR69
– volume: 7
  start-page: 140
  issue: 1
  year: 2014
  end-page: 148
  ident: CR20
  article-title: The Pareto Principle
  publication-title: Plymouth Student Sci
– volume: 25
  start-page: 8721
  issue: 13
  year: 2021
  end-page: 8729
  ident: CR36
  article-title: Three-class brain tumor classification using deep dense inception residual network
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-05748-8
– volume: 39
  start-page: 757
  issue: 2
  year: 2020
  end-page: 775
  ident: CR53
  article-title: A deep learning-based framework for automatic brain tumors classification using transfer learning
  publication-title: Circ Syst Signal Process
  doi: 10.1007/s00034-019-01246-3
– ident: CR38
– ident: CR13
– volume: 84
  start-page: 133
  issue: 1
  year: 2021
  end-page: 149
  ident: CR54
  article-title: Microscopic brain tumor detection and classification using 3D CNN and feature selection architecture
  publication-title: Microsc Res Tech
  doi: 10.1002/jemt.23597
– volume: 6
  start-page: e05652
  issue: 12
  year: 2020
  ident: CR1
  article-title: Improving Alzheimer's stage categorization with Convolutional Neural Network using transfer learning and different magnetic resonance imaging modalities
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e05652
– volume: 37
  start-page: 448
  year: 2015
  end-page: 456
  ident: CR25
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: Int Conf Mach Learn PMLR
– volume: 32
  start-page: 507
  issue: 2
  year: 2020
  end-page: 522
  ident: CR46
  article-title: Deep learning for multigrade brain tumor classification in smart healthcare systems: a prospective survey
  publication-title: IEEE Trans Neural Netw Learn
  doi: 10.1109/tnnls.2020.2995800
– ident: CR34
– ident: CR7
– volume: 13
  start-page: 1227
  issue: 3
  year: 2020
  end-page: 1237
  ident: CR55
  article-title: Accurate classification and detection of brain cancer cells in MRI and CT images using nano contrast agents
  publication-title: Biomed Pharm J
  doi: 10.13005/bpj/1991
– volume: 21
  start-page: 2222
  issue: 6
  year: 2021
  ident: CR29
  article-title: MRI-based brain tumor classification using Ensemble of Deep Features and Machine Learning Classifiers
  publication-title: Sensors
  doi: 10.3390/s21062222
– volume: 36
  start-page: 1
  year: 2016
  end-page: 12
  ident: CR66
  article-title: Machine learning models and algorithms for big data classification
  publication-title: Integr Ser Inf Syst
– ident: CR24
– volume: 30
  start-page: 174
  year: 2019
  end-page: 182
  ident: CR57
  article-title: Multi-grade brain tumor classification using deep CNN with extensive data augmentation
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2018.12.003
– volume: 13
  start-page: 337
  issue: 4
  year: 2019
  end-page: 342
  ident: CR58
  article-title: Detection and classification of brain tumours from MRI images using faster R-CNN
  publication-title: Tehnički glasnik
  doi: 10.31803/tg-20190712095507
– volume: 27
  start-page: 69
  year: 2021
  ident: 14828_CR28
  publication-title: Mach Learn Based Approaches
– volume: 7
  start-page: 4275
  year: 2018
  ident: 14828_CR23
  publication-title: IEEE Access
  doi: 10.1109/access.2018.2885639
– volume: 8
  start-page: 27
  issue: 1
  year: 2018
  ident: 14828_CR33
  publication-title: Appl Sci
  doi: 10.3390/app8010027
– volume: 129
  start-page: 77
  year: 2020
  ident: 14828_CR32
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.11.014
– ident: 14828_CR49
  doi: 10.1007/s11227-020-03572-9
– volume: 30
  start-page: 174
  year: 2019
  ident: 14828_CR57
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2018.12.003
– volume: 75
  start-page: 34
  year: 2019
  ident: 14828_CR68
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2019.05.001
– ident: 14828_CR63
  doi: 10.1109/ICACA.2016.7887944
– volume: 129
  start-page: 460
  year: 2016
  ident: 14828_CR35
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.01.024
– ident: 14828_CR13
  doi: 10.1109/CVPR.2017.195
– ident: 14828_CR39
  doi: 10.1109/ICEICE.2017.8191888
– ident: 14828_CR40
– volume: 2
  start-page: 100003
  year: 2020
  ident: 14828_CR44
  publication-title: Mach Learn Appl
  doi: 10.1016/j.mlwa.2020.100003
– ident: 14828_CR16
  doi: 10.1109/WICT.2011.6141390
– volume: 10
  start-page: e0140381
  issue: 10
  year: 2015
  ident: 14828_CR11
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0140381
– volume: 102
  start-page: 101779
  year: 2020
  ident: 14828_CR27
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.101779
– volume: 129
  start-page: 181
  year: 2020
  ident: 14828_CR62
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.11.019
– ident: 14828_CR38
  doi: 10.1109/ICEEE2.2017.7935845
– ident: 14828_CR34
– ident: 14828_CR15
– volume: 39
  start-page: 63
  issue: 1
  year: 2019
  ident: 14828_CR4
  publication-title: Biocybernetics Biomed Eng
  doi: 10.1016/j.bbe.2018.10.004
– volume: 25
  start-page: 377
  issue: S1
  year: 2017
  ident: 14828_CR73
  publication-title: Technol Health Care
  doi: 10.3233/thc-171341
– volume: 36
  start-page: 1
  year: 2016
  ident: 14828_CR66
  publication-title: Integr Ser Inf Syst
– ident: 14828_CR12
  doi: 10.6084/m9.figshare
– start-page: 437
  volume-title: Practical recommendations for gradient-based training of deep architectures, In Neural networks: Tricks of the trade
  year: 2012
  ident: 14828_CR8
  doi: 10.1007/978-3-642-35289-8_26
– volume: 134
  start-page: 109531
  year: 2020
  ident: 14828_CR71
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2019.109531
– volume: 330
  start-page: 108520
  year: 2020
  ident: 14828_CR42
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2019.108520
– volume: 13
  start-page: 102
  issue: 06
  year: 2020
  ident: 14828_CR59
  publication-title: J Biomed Sci Eng
  doi: 10.4236/jbise.2020.136010
– volume: 23
  start-page: 955
  issue: 5
  year: 2020
  ident: 14828_CR5
  publication-title: J Interdiscipl Math
  doi: 10.1080/09720502.2020.1723921
– volume: 37
  start-page: 448
  year: 2015
  ident: 14828_CR25
  publication-title: Int Conf Mach Learn PMLR
– volume: 11
  start-page: 1457
  issue: 3
  year: 2018
  ident: 14828_CR61
  publication-title: Biomed Pharma J
  doi: 10.13005/bpj/1511
– ident: 14828_CR18
  doi: 10.1109/WiSPNET.2018.8538643
– volume: 22
  start-page: 372
  issue: 1
  year: 2022
  ident: 14828_CR2
  publication-title: Sensors
  doi: 10.3390/s22010372
– ident: 14828_CR26
  doi: 10.1109/EIT.2018.8500308
– ident: 14828_CR43
  doi: 10.1109/CSPC.2017.8305810
– volume: 111
  start-page: 103345
  year: 2019
  ident: 14828_CR17
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.103345
– volume: 129
  start-page: 293
  year: 2020
  ident: 14828_CR30
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.11.034
– ident: 14828_CR37
  doi: 10.1109/INDICON.2016.7838875
– volume: 17
  start-page: 1051
  issue: 4
  year: 2020
  ident: 14828_CR48
  publication-title: J Real-Time Image Proc
  doi: 10.1007/s11554-019-00852-3
– ident: 14828_CR9
– volume: 13
  start-page: 337
  issue: 4
  year: 2019
  ident: 14828_CR58
  publication-title: Tehnički glasnik
  doi: 10.31803/tg-20190712095507
– ident: 14828_CR50
  doi: 10.1109/ICOIN.2018.8343231
– ident: 14828_CR45
  doi: 10.1109/IACC.2017.0146
– volume: 59
  start-page: 221
  year: 2020
  ident: 14828_CR56
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2019.09.007
– ident: 14828_CR10
  doi: 10.1109/RISE.2017.8378158
– volume: 9
  start-page: 153
  issue: 2
  year: 2021
  ident: 14828_CR19
  publication-title: Healthcare
  doi: 10.3390/healthcare9020153
– volume: 8
  start-page: 197969
  year: 2020
  ident: 14828_CR31
  publication-title: IEEE Access
  doi: 10.1109/access.2020.3034217
– volume: 143
  start-page: 109922
  year: 2020
  ident: 14828_CR72
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2020.109922
– volume: 65
  start-page: 1036
  issue: 4
  year: 2011
  ident: 14828_CR70
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.23165
– volume: 32
  start-page: 507
  issue: 2
  year: 2020
  ident: 14828_CR46
  publication-title: IEEE Trans Neural Netw Learn
  doi: 10.1109/tnnls.2020.2995800
– volume: 131
  start-page: 803
  issue: 6
  year: 2016
  ident: 14828_CR41
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-016-1545-1
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 14828_CR64
  publication-title: J Mach Learn Res
– volume: 25
  start-page: 751
  issue: 5
  year: 2017
  ident: 14828_CR51
  publication-title: J X-ray Scie Technol
  doi: 10.3233/xst-16226
– volume: 7
  start-page: 69215
  year: 2019
  ident: 14828_CR65
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2919122
– volume: 99
  start-page: 154
  year: 2018
  ident: 14828_CR14
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.06.009
– volume: 39
  start-page: 208
  issue: 2
  year: 2018
  ident: 14828_CR74
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.a5391
– ident: 14828_CR47
  doi: 10.1155/2021/5513500
– ident: 14828_CR24
  doi: 10.1109/CVPR.2017.243
– volume: 43
  start-page: 1
  issue: 8
  year: 2019
  ident: 14828_CR52
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1368-4
– volume: 10
  start-page: 1999
  issue: 6
  year: 2020
  ident: 14828_CR6
  publication-title: Appl Sci
  doi: 10.3390/app10061999
– ident: 14828_CR22
  doi: 10.1109/CVPR.2016.90
– ident: 14828_CR69
  doi: 10.1609/aaai.v31i1.11231
– volume: 139
  start-page: 118
  year: 2020
  ident: 14828_CR3
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2017.10.036
– volume: 7
  start-page: 36266
  year: 2019
  ident: 14828_CR21
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2904145
– volume: 21
  start-page: 2222
  issue: 6
  year: 2021
  ident: 14828_CR29
  publication-title: Sensors
  doi: 10.3390/s21062222
– volume: 39
  start-page: 757
  issue: 2
  year: 2020
  ident: 14828_CR53
  publication-title: Circ Syst Signal Process
  doi: 10.1007/s00034-019-01246-3
– volume: 13
  start-page: 1227
  issue: 3
  year: 2020
  ident: 14828_CR55
  publication-title: Biomed Pharm J
  doi: 10.13005/bpj/1991
– volume: 25
  start-page: 8721
  issue: 13
  year: 2021
  ident: 14828_CR36
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-05748-8
– volume: 7
  start-page: 17809
  year: 2019
  ident: 14828_CR67
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2892455
– volume: 84
  start-page: 133
  issue: 1
  year: 2021
  ident: 14828_CR54
  publication-title: Microsc Res Tech
  doi: 10.1002/jemt.23597
– volume-title: Predictive modeling of brain tumor: A Deep learning approach. In: Innovations in Computational Intelligence and Computer Vision, pp. 275–285
  year: 2021
  ident: 14828_CR60
– ident: 14828_CR7
  doi: 10.1109/ICICES.2017.8070748
– volume: 6
  start-page: e05652
  issue: 12
  year: 2020
  ident: 14828_CR1
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e05652
– volume: 7
  start-page: 140
  issue: 1
  year: 2014
  ident: 14828_CR20
  publication-title: Plymouth Student Sci
SSID ssj0016524
Score 2.54133
Snippet Multi-class brain tumor classification is an important area of research in the field of medical imaging because of the different tumor characteristics. One...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 31709
SubjectTerms Accuracy
Brain
Brain cancer
Classification
Computer Communication Networks
Computer Science
Computer vision
Data Structures and Information Theory
Datasets
Deep learning
Diagnostic systems
Glioma
Image classification
Magnetic resonance imaging
Medical imaging
Medical research
Multimedia Information Systems
Special Purpose and Application-Based Systems
Track 2: Medical Applications of Multimedia
Tumors
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_ovOjBj6k4nZKDNw2kTZu2xyGOIejJwW6hSbPtoHW4jv37vqTpqqKCPabJK-SX1_fC-_gBXPOo4DoXgiK6eEFRAlUq4qHNMs90pBKmQluN_PgkRuPoYRJPfFHYssl2b0KS7k_dFrsFtpQEbQy1vStTut6GnRjv7vZcj8PBJnYgYk9lmzKK9jDwpTI_y_hqjlof81tY1Fmb4SHsezeRDGpcj2DLlF04aCgYiNfILux96id4DPNBSUw5d0F9UhizIJ4UYkZqpmiCLipxOYRUW7eZKMsQQarVK467EZs55MAiNiN-VkupnHeL323EncB4eP98N6KeSoFq1LHKdjbXTOPD0yRkpkgVVww9k2yK1zvBI53EeZYGvDBaMY1WPykQtywoQi7UNNX8FDrlW2nOgBgeKZOrqc5trz8W5JwZ3EqV4UKFt48eBM2OSu37jFu6ixfZdki2KEhEQToU5LoHN5s1i7rLxp-z-w1Q0mvcUqKZDcMkiQPRg9sGvPb179LO_zf9AnYt43ydA9iHTvW-Mpfol1Tqyh3DD9on2ZE
  priority: 102
  providerName: Springer Nature
Title An enhanced deep learning method for multi-class brain tumor classification using deep transfer learning
URI https://link.springer.com/article/10.1007/s11042-023-14828-w
https://www.proquest.com/docview/2842277516
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu8DAG1EoyAMbRCRxmseECupDICqEqFSmKHbcdoC00FT9-9w5TgtINEskJ3Ekfz7f2ff4AC65l3KZ-L6F6OIGRfgoUh53Kco8kp4IbOFSNvJTz-_2vYdBY2AO3GYmrLJcE_VCnU4knZHf4DLqukHQcPzb6adFrFHkXTUUGptQdVDT0AwP252lF8FvGFLb0LZQMzomaaZInXMoMQU1lkWVMENr8VsxrazNPw5SrXfae7BjDEbWLBDehw2VHcBuScbAjGwewPaPyoKHMG5mTGVj7d5nqVJTZughRqzgjGZorDIdTWhJMqCZIK4Ils8_sF23UAyRho1RbPyo6CXXdi7-t-zuCPrt1ut91zKkCpZEacupxrm0JV48DFxbpaHgwkYbJRriRs_nngwaSRQ6PFVS2BL1f5AigpGTutwXw1DyY6hkk0ydAFPcEyoRQ5lQ1T_bSbitcChFhB8K3IfUwClHNJam4jgRX7zHq1rJhEKMKMQahXhRg6vlN9Oi3sbat-slULGRvVm8mik1uC7BWz3-v7fT9b2dwRZxzRfRf3Wo5F9zdY4WSS4u9LS7gGqz8_bYwvtdq_f8gq19t_kNhq7gRQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGYCBRwFRKOABJohI4jSPASEElJa2TFTqFmLHLQOEQlNV_Cl-I3dO0gISbGR04oviO98jvrsP4JA7MZeR6xrIXQxQhItbyuE2ZZkH0hGeKWyqRu7cuY2uc9ur9ebgo6iFobTKQidqRR2_SPpHfopq1LY9r2a558NXg1Cj6HS1gNDIxKKl3icYso3OmlfI3yPbrl_fXzaMHFXAkChuKTX5lqbEi_uebarYF1xgWO8FfYx0XO5IrxYFvsVjJYUp0QB6MX5CYMU2d0XflxzpzsOCw3lAKYR-_WZ6auHWchBd3zTQElt5kU5WqmdRIQxaSIM6b_rG5LshnHm3Pw5ktZ2rr8FK7qCyi0yi1mFOJWVYLcAfWK4LyrD8pZPhBjxeJEwljzqdgMVKDVkORzFgGUY1Q-eY6exFQ5LDzgRhU7B0_IzjeoRylrSYMMrFH2RUUu1X43sLcpvQ_Zfl3oJS8pKobWCKO0JFoi8j6jJoWhE3FS6lCHCiwLinAlaxoqHMO5wT0MZTOOvNTFwIkQuh5kI4qcDxdM4w6-_x59PVglFhvtdH4UwyK3BSMG92-3dqO39TO4DFxn2nHbabd61dWCKc-yzzsAql9G2s9tAbSsW-FkEGD_8t8591YhiP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYGSAgOvBGDATnACSrapuvjgNAEjDfiABK30qTZdoBuQKeJv8avw07TDZDgth7TxlVjx4_G9geww72Uy8T3LeQuBijCxy3lcZeyzCPpicAWLlUj39z65w_e5WP9sQKfZS0MpVWWOlEr6rQr6R_5AapR1w2CuuMftExaxN1J86j3ahGCFJ20lnAahYhcqY8Bhm_vhxcnyOtd122e3h-fWwZhwJIoejk1_Ja2xIuHgWurNBRcYIgfRC2MenzuyaCeRKHDUyWFLdEYBil-TuSkLvdFK5Qc6U7AVMBDm9ATwubZ8ATDrxtA3dC20Co7pmCnKNtzqCgGraVFXThDa_DTKI483V-Hs9rmNRdgzjirrFFI1yJUVLYE8yUQBDN6YQlmv3U1XIZOI2Mq6-jUApYq1WMGmqLNCrxqho4y05mMliTnnQnCqWB5_wXH9QjlL2mRYZSX3y6o5NrHxveW5FbgYSzLvQqTWTdTa8AU94RKREsm1HHQdhJuK1xKEeFEgTFQFZxyRWNpup0T6MZzPOrTTFyIkQux5kI8qMLecE6v6PXx79O1klGx2ffv8UhKq7BfMm90-29q6_9T24ZplPb4-uL2agNmCPK-SEKswWT-1leb6BjlYktLIIOncYv8F2flHLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+enhanced+deep+learning+method+for+multi-class+brain+tumor+classification+using+deep+transfer+learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Asif%2C+Sohaib&rft.au=Zhao%2C+Ming&rft.au=Tang%2C+Fengxiao&rft.au=Zhu%2C+Yusen&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=20&rft.spage=31709&rft.epage=31736&rft_id=info:doi/10.1007%2Fs11042-023-14828-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon