An enhanced deep learning method for multi-class brain tumor classification using deep transfer learning
Multi-class brain tumor classification is an important area of research in the field of medical imaging because of the different tumor characteristics. One such challenging problem is the multiclass classification of brain tumors using MR images. Since accuracy is critical in classification, compute...
Saved in:
Published in | Multimedia tools and applications Vol. 82; no. 20; pp. 31709 - 31736 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1380-7501 1573-7721 |
DOI | 10.1007/s11042-023-14828-w |
Cover
Loading…
Abstract | Multi-class brain tumor classification is an important area of research in the field of medical imaging because of the different tumor characteristics. One such challenging problem is the multiclass classification of brain tumors using MR images. Since accuracy is critical in classification, computer vision researchers are introducing a number of techniques; However, achieving high accuracy remains challenging when classifying brain images. Early diagnosis of brain tumor types can activate timely treatment, thereby improving the patient’s chances of survival. In recent years, deep learning models have achieved promising results, especially in classifying brain tumors to help neurologists. This work proposes a deep transfer learning model that accelerates brain tumor detection using MR imaging. In this paper, five popular deep learning architectures are utilized to develop a system for diagnosing brain tumors. The architectures used is this paper are Xception, DenseNet201, DenseNet121, ResNet152V2, and InceptionResNetV2. The final layer of these architectures has been modified with our deep dense block and softmax layer as the output layer to improve the classification accuracy. This article presents two main experiments to assess the effectiveness of the proposed model. First, three-class results using images from patients with glioma, meningioma, and pituitary are discussed. Second, the results of four classes are discussed using images of glioma, meningioma, pituitary and healthy patients. The results show that the proposed model based on Xception architecture is the most suitable deep learning model for detecting brain tumors. It achieves a classification accuracy of 99.67% on the 3-class dataset and 95.87% on the 4-class dataset, which is better than the state-of-the-art methods. In conclusion, the proposed model can provide radiologists with an automated medical diagnostic system to make fast and accurate decisions. |
---|---|
AbstractList | Multi-class brain tumor classification is an important area of research in the field of medical imaging because of the different tumor characteristics. One such challenging problem is the multiclass classification of brain tumors using MR images. Since accuracy is critical in classification, computer vision researchers are introducing a number of techniques; However, achieving high accuracy remains challenging when classifying brain images. Early diagnosis of brain tumor types can activate timely treatment, thereby improving the patient’s chances of survival. In recent years, deep learning models have achieved promising results, especially in classifying brain tumors to help neurologists. This work proposes a deep transfer learning model that accelerates brain tumor detection using MR imaging. In this paper, five popular deep learning architectures are utilized to develop a system for diagnosing brain tumors. The architectures used is this paper are Xception, DenseNet201, DenseNet121, ResNet152V2, and InceptionResNetV2. The final layer of these architectures has been modified with our deep dense block and softmax layer as the output layer to improve the classification accuracy. This article presents two main experiments to assess the effectiveness of the proposed model. First, three-class results using images from patients with glioma, meningioma, and pituitary are discussed. Second, the results of four classes are discussed using images of glioma, meningioma, pituitary and healthy patients. The results show that the proposed model based on Xception architecture is the most suitable deep learning model for detecting brain tumors. It achieves a classification accuracy of 99.67% on the 3-class dataset and 95.87% on the 4-class dataset, which is better than the state-of-the-art methods. In conclusion, the proposed model can provide radiologists with an automated medical diagnostic system to make fast and accurate decisions. |
Author | Tang, Fengxiao Asif, Sohaib Zhao, Ming Zhu, Yusen |
Author_xml | – sequence: 1 givenname: Sohaib surname: Asif fullname: Asif, Sohaib organization: School of Computer Science and Engineering, Central South University – sequence: 2 givenname: Ming surname: Zhao fullname: Zhao, Ming email: meanzhao@csu.edu.cn organization: School of Computer Science and Engineering, Central South University – sequence: 3 givenname: Fengxiao surname: Tang fullname: Tang, Fengxiao email: tangfengxiao@csu.edu.cn organization: School of Computer Science and Engineering, Central South University – sequence: 4 givenname: Yusen surname: Zhu fullname: Zhu, Yusen organization: School of Mathematics, Hunan University |
BookMark | eNp9kE1rwzAMhs3oYG23P7CTYWdv_krsHEvZFxR22c7GcZzWJXE6O6Hs389NxgY7VBcJoeeV9C7AzHfeAnBL8D3BWDxEQjCnCFOGCJdUouMFmJNMMCQEJbNUM4mRyDC5AosY9xiTPKN8DnYrD63faW9sBStrD7CxOnjnt7C1_a6rYN0F2A5N75BpdIywDNp52A9t6o8dVzuje9d5OMQTN6r0QftY2_Ardw0ua91Ee_OTl-Dj6fF9_YI2b8-v69UGGUaKHvGMG2xSMCkotpUsWYkLJooaFzxn3IhMF5KwypoSGyKJqHiZF6SiLC9radgS3E26h9B9Djb2at8NwaeVikpOqRAZydMUnaZM6GIMtlaH4FodvhTB6uSomhxVyVE1OqqOCZL_IOP68fP0rWvOo2xCY9rjtzb8XXWG-gajto6p |
CitedBy_id | crossref_primary_10_1186_s40537_025_01117_6 crossref_primary_10_1007_s11760_024_03166_5 crossref_primary_10_1007_s41870_023_01701_0 crossref_primary_10_32604_cmes_2024_057214 crossref_primary_10_1016_j_bspc_2024_107027 crossref_primary_10_1002_ima_22975 crossref_primary_10_3390_en18051176 crossref_primary_10_1007_s44230_023_00041_3 crossref_primary_10_32604_cmc_2023_040561 crossref_primary_10_1007_s11042_025_20751_z crossref_primary_10_3390_a17060221 crossref_primary_10_1038_s41598_024_77243_7 crossref_primary_10_3389_fninf_2024_1444650 crossref_primary_10_3390_mca30010001 crossref_primary_10_1007_s13721_024_00443_8 crossref_primary_10_1016_j_knosys_2024_112862 crossref_primary_10_1142_S0218001424560056 crossref_primary_10_3390_diagnostics13122110 crossref_primary_10_1016_j_compbiomed_2024_109183 crossref_primary_10_3390_diagnostics15030378 crossref_primary_10_1007_s00521_025_11150_4 crossref_primary_10_1007_s11042_024_19652_4 crossref_primary_10_1093_braincomms_fcae372 crossref_primary_10_1016_j_compbiomed_2024_109542 crossref_primary_10_1007_s11831_024_10091_w crossref_primary_10_1038_s41598_024_66554_4 crossref_primary_10_1007_s11042_025_20668_7 crossref_primary_10_1007_s40998_025_00801_w crossref_primary_10_1007_s11042_023_17139_2 crossref_primary_10_1016_j_bspc_2025_107538 crossref_primary_10_1016_j_compbiomed_2025_109703 crossref_primary_10_1007_s10278_024_01199_3 crossref_primary_10_1016_j_compbiomed_2024_108910 crossref_primary_10_1007_s11042_025_20706_4 crossref_primary_10_3390_diagnostics14040383 crossref_primary_10_1002_ima_23119 crossref_primary_10_1007_s11042_024_19487_z crossref_primary_10_1016_j_bspc_2023_105602 crossref_primary_10_1109_ACCESS_2023_3343126 crossref_primary_10_3390_make6040111 crossref_primary_10_1108_ACI_12_2023_0167 crossref_primary_10_1007_s11042_024_20405_6 crossref_primary_10_1016_j_knosys_2024_111981 |
Cites_doi | 10.1016/j.cogsys.2019.09.007 10.1016/j.compbiomed.2019.103345 10.1109/access.2018.2885639 10.1016/j.patrec.2019.11.034 10.1109/access.2020.3034217 10.3174/ajnr.a5391 10.3390/app10061999 10.1016/j.artmed.2019.101779 10.1016/j.patrec.2017.10.036 10.3233/thc-171341 10.1016/j.bbe.2018.10.004 10.1371/journal.pone.0140381 10.1002/mrm.23165 10.1007/s10916-019-1368-4 10.1016/j.patrec.2019.11.019 10.3390/s22010372 10.1016/j.mehy.2019.109531 10.4236/jbise.2020.136010 10.1109/access.2019.2919122 10.1109/access.2019.2892455 10.1016/j.neuroimage.2016.01.024 10.1109/access.2019.2904145 10.1016/j.mlwa.2020.100003 10.1016/j.compbiomed.2018.06.009 10.3390/healthcare9020153 10.1016/j.jneumeth.2019.108520 10.1007/s00401-016-1545-1 10.1016/j.mehy.2020.109922 10.1016/j.patrec.2019.11.014 10.1007/s11554-019-00852-3 10.3390/app8010027 10.1080/09720502.2020.1723921 10.1016/j.compmedimag.2019.05.001 10.13005/bpj/1511 10.1007/978-3-642-35289-8_26 10.3233/xst-16226 10.1007/s00500-021-05748-8 10.1007/s00034-019-01246-3 10.1002/jemt.23597 10.1016/j.heliyon.2020.e05652 10.1109/tnnls.2020.2995800 10.13005/bpj/1991 10.3390/s21062222 10.1016/j.jocs.2018.12.003 10.31803/tg-20190712095507 10.1007/s11227-020-03572-9 10.1109/ICACA.2016.7887944 10.1109/CVPR.2017.195 10.1109/ICEICE.2017.8191888 10.1109/WICT.2011.6141390 10.1109/ICEEE2.2017.7935845 10.6084/m9.figshare 10.1109/WiSPNET.2018.8538643 10.1109/EIT.2018.8500308 10.1109/CSPC.2017.8305810 10.1109/INDICON.2016.7838875 10.1109/ICOIN.2018.8343231 10.1109/IACC.2017.0146 10.1109/RISE.2017.8378158 10.1155/2021/5513500 10.1109/CVPR.2017.243 10.1109/CVPR.2016.90 10.1609/aaai.v31i1.11231 10.1109/ICICES.2017.8070748 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-023-14828-w |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (subscription) ProQuest Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 31736 |
ExternalDocumentID | 10_1007_s11042_023_14828_w |
GrantInformation_xml | – fundername: Natural Science Foundation of Hunan Province grantid: 2020JJ4757 funderid: http://dx.doi.org/10.13039/501100004735 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-454c0cccc38720ed8b3b09379f094634c75a9813decb0c1817d4b691d236bf8c3 |
IEDL.DBID | 8FG |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 23:17:15 EDT 2025 Tue Jul 01 04:13:19 EDT 2025 Thu Apr 24 23:06:26 EDT 2025 Fri Feb 21 02:42:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | Xception Deep learning Multi-class brain tumor classification Image processing Transfer learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-454c0cccc38720ed8b3b09379f094634c75a9813decb0c1817d4b691d236bf8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2842277516 |
PQPubID | 54626 |
PageCount | 28 |
ParticipantIDs | proquest_journals_2842277516 crossref_primary_10_1007_s11042_023_14828_w crossref_citationtrail_10_1007_s11042_023_14828_w springer_journals_10_1007_s11042_023_14828_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230800 2023-08-00 20230801 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 8 year: 2023 text: 20230800 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Deepak, Ameer (CR17) 2019; 111 Sarhan (CR59) 2020; 13 Seetha, Raja (CR61) 2018; 11 CR39 CR38 CR37 Sharif, Li, Khan, Saleem (CR62) 2020; 129 CR34 Zhou, Scott, Chaudhury, Hall, Goldgof, Yeom, Iv, Ou, Kalpathy-Cramer, Napel (CR74) 2018; 39 Sultan, Salem, Al-Atabany (CR65) 2019; 7 Saba, Mohamed, El-Affendi, Amin, Sharif (CR56) 2020; 59 Kokkalla, Kakarla, Venkateswarlu, Singh (CR36) 2021; 25 Badža, Barjaktarović (CR6) 2020; 10 Rajan, Sundar (CR52) 2019; 43 Khawaldeh, Pervaiz, Rafiq, Alkhawaldeh (CR33) 2018; 8 Sajjad, Khan, Muhammad, Wu, Ullah, Baik (CR57) 2019; 30 Rehman, Khan, Saba, Mehmood, Tariq, Ayesha (CR54) 2021; 84 Salçin (CR58) 2019; 13 Aderghal, Afdel, Benois-Pineau, Catheline (CR1) 2020; 6 Swati, Zhao, Kabir, Ali, Ali, Ahmed, Lu (CR68) 2019; 75 Khan, Rubab, Kashif, Sharif, Muhammad, Shah, Zhang, Satapathy (CR32) 2020; 129 Pashaei, Ghatee, Sajedi (CR48) 2020; 17 Qiu, Yan, Gundreddy, Wang, Cheng, Liu, Zheng (CR51) 2017; 25 CR7 Zhan, Feng, Hong, Lu, Xiao, Zhang (CR73) 2017; 25 CR9 CR49 CR47 CR45 CR43 CR40 Maharjan, Alsadoon, Prasad, Al-Dalain, Alsadoon (CR42) 2020; 330 Amin, Sharif, Yasmin, Fernandes (CR3) 2020; 139 Dunford, Su, Tamang (CR20) 2014; 7 Mehrotra, Ansari, Agrawal, Anand (CR44) 2020; 2 Muhammad, Khan, Del Ser, de Albuquerque (CR46) 2020; 32 Alanazi, Ali, Hussain, Zafar, Mohatram, Irfan, AlRuwaili, Alruwaili, Ali, Albarrak (CR2) 2022; 22 Hemanth, Anitha, Naaji, Geman, Popescu (CR23) 2018; 7 Ruba, Tamilselvi, ParisaBeham, Aparna (CR55) 2020; 13 Suthaharan (CR66) 2016; 36 Kleesiek, Urban, Hubert, Schwarz, Maier-Hein, Bendszus, Biller (CR35) 2016; 129 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR64) 2014; 15 Ullah, Farooq, Lee, An (CR72) 2020; 143 CR18 CR16 CR15 CR13 CR12 Kalaiselvi, Padmapriya (CR28) 2021; 27 Taheri, Gasparovic, Shah, Rosenberg (CR70) 2011; 65 CR10 Louis, Perry, Reifenberger, Von Deimling, Figarella-Branger, Cavenee, Ohgaki, Wiestler, Kleihues, Ellison (CR41) 2016; 131 CR50 Saxena, Maheshwari, Maheshwari (CR60) 2021 Anaraki, Ayati, Kazemi (CR4) 2019; 39 Gumaei, Hassan, Hassan, Alelaiwi, Fortino (CR21) 2019; 7 Khan, Sarfraz, Alhaisoni, Albesher, Wang, Ashraf (CR31) 2020; 8 CR26 CR69 CR24 CR22 Bengio (CR8) 2012 CR63 Swati, Zhao, Kabir, Ali, Ali, Ahmed, Lu (CR67) 2019; 7 Ansari, Mehrotra, Agrawal (CR5) 2020; 23 Rehman, Naz, Razzak, Akram, Imran (CR53) 2020; 39 Khan, Sharif, Akram, Bukhari, Nayak (CR30) 2020; 129 Toğaçar, Ergen, Cömert (CR71) 2020; 134 Cheng, Huang, Cao, Yang, Yang, Yun, Wang, Feng (CR11) 2015; 10 Díaz-Pernas, Martínez-Zarzuela, Antón-Rodríguez, González-Ortega (CR19) 2021; 9 Ioffe, Szegedy (CR25) 2015; 37 Citak-Er, Firat, Kovanlikaya, Ture, Ozturk-Isik (CR14) 2018; 99 Ismael, Mohammed, Hefny (CR27) 2020; 102 Kang, Ullah, Gwak (CR29) 2021; 21 14828_CR16 T Saba (14828_CR56) 2020; 59 14828_CR18 P Rajan (14828_CR52) 2019; 43 14828_CR10 14828_CR12 14828_CR13 MA Khan (14828_CR30) 2020; 129 14828_CR15 A Gumaei (14828_CR21) 2019; 7 FJ Díaz-Pernas (14828_CR19) 2021; 9 14828_CR50 R Mehrotra (14828_CR44) 2020; 2 J Seetha (14828_CR61) 2018; 11 14828_CR9 14828_CR7 HH Sultan (14828_CR65) 2019; 7 14828_CR63 S Ioffe (14828_CR25) 2015; 37 14828_CR22 S Kokkalla (14828_CR36) 2021; 25 DJ Hemanth (14828_CR23) 2018; 7 14828_CR24 AM Sarhan (14828_CR59) 2020; 13 14828_CR69 14828_CR26 MA Khan (14828_CR32) 2020; 129 MM Badža (14828_CR6) 2020; 10 P Saxena (14828_CR60) 2021 N Srivastava (14828_CR64) 2014; 15 14828_CR38 M Zhou (14828_CR74) 2018; 39 14828_CR39 S Taheri (14828_CR70) 2011; 65 S Deepak (14828_CR17) 2019; 111 MF Alanazi (14828_CR2) 2022; 22 Y Qiu (14828_CR51) 2017; 25 MI Sharif (14828_CR62) 2020; 129 M Ansari (14828_CR5) 2020; 23 A Rehman (14828_CR54) 2021; 84 ZNK Swati (14828_CR67) 2019; 7 S Maharjan (14828_CR42) 2020; 330 K Salçin (14828_CR58) 2019; 13 14828_CR34 K Muhammad (14828_CR46) 2020; 32 14828_CR37 A Rehman (14828_CR53) 2020; 39 M Toğaçar (14828_CR71) 2020; 134 MA Khan (14828_CR31) 2020; 8 Z Ullah (14828_CR72) 2020; 143 F Citak-Er (14828_CR14) 2018; 99 T Ruba (14828_CR55) 2020; 13 T Zhan (14828_CR73) 2017; 25 K Aderghal (14828_CR1) 2020; 6 J Kang (14828_CR29) 2021; 21 14828_CR49 S Suthaharan (14828_CR66) 2016; 36 A Pashaei (14828_CR48) 2020; 17 S Khawaldeh (14828_CR33) 2018; 8 14828_CR43 14828_CR45 14828_CR47 SAA Ismael (14828_CR27) 2020; 102 J Amin (14828_CR3) 2020; 139 J Cheng (14828_CR11) 2015; 10 DN Louis (14828_CR41) 2016; 131 R Dunford (14828_CR20) 2014; 7 J Kleesiek (14828_CR35) 2016; 129 14828_CR40 AK Anaraki (14828_CR4) 2019; 39 Y Bengio (14828_CR8) 2012 T Kalaiselvi (14828_CR28) 2021; 27 M Sajjad (14828_CR57) 2019; 30 ZNK Swati (14828_CR68) 2019; 75 |
References_xml | – ident: CR45 – ident: CR22 – volume: 59 start-page: 221 year: 2020 end-page: 230 ident: CR56 article-title: Brain tumor detection using fusion of hand crafted and deep learning features publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2019.09.007 – volume: 111 start-page: 103345 year: 2019 ident: CR17 article-title: Brain tumor classification using deep CNN features via transfer learning publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2019.103345 – volume: 7 start-page: 4275 year: 2018 end-page: 4283 ident: CR23 article-title: A modified deep convolutional neural network for abnormal brain image classification publication-title: IEEE Access doi: 10.1109/access.2018.2885639 – ident: CR49 – volume: 129 start-page: 293 year: 2020 end-page: 303 ident: CR30 article-title: Developed Newton-Raphson based deep features selection framework for skin lesion recognition publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2019.11.034 – volume: 8 start-page: 197969 year: 2020 end-page: 197981 ident: CR31 article-title: StomachNet: optimal deep learning features fusion for stomach abnormalities classification publication-title: IEEE Access doi: 10.1109/access.2020.3034217 – volume: 39 start-page: 208 issue: 2 year: 2018 end-page: 216 ident: CR74 article-title: Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.a5391 – volume: 10 start-page: 1999 issue: 6 year: 2020 ident: CR6 article-title: Classification of brain tumors from MRI images using a convolutional neural network publication-title: Appl Sci doi: 10.3390/app10061999 – ident: CR39 – ident: CR16 – ident: CR12 – volume: 102 start-page: 101779 year: 2020 ident: CR27 article-title: An enhanced deep learning approach for brain cancer MRI images classification using residual networks publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.101779 – volume: 139 start-page: 118 year: 2020 end-page: 127 ident: CR3 article-title: A distinctive approach in brain tumor detection and classification using MRI publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2017.10.036 – year: 2021 ident: CR60 publication-title: Predictive modeling of brain tumor: A Deep learning approach. In: Innovations in Computational Intelligence and Computer Vision, pp. 275–285 – volume: 25 start-page: 377 issue: S1 year: 2017 end-page: 385 ident: CR73 article-title: An automatic glioma grading method based on multi-feature extraction and fusion publication-title: Technol Health Care doi: 10.3233/thc-171341 – volume: 39 start-page: 63 issue: 1 year: 2019 end-page: 74 ident: CR4 article-title: Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms publication-title: Biocybernetics Biomed Eng doi: 10.1016/j.bbe.2018.10.004 – volume: 10 start-page: e0140381 issue: 10 year: 2015 ident: CR11 article-title: Enhanced performance of brain tumor classification via tumor region augmentation and partition publication-title: PLoS One doi: 10.1371/journal.pone.0140381 – volume: 65 start-page: 1036 issue: 4 year: 2011 end-page: 1042 ident: CR70 article-title: Quantitative measurement of blood-brain barrier permeability in human using dynamic contrast-enhanced MRI with fast T1 mapping publication-title: Magn Reson Med doi: 10.1002/mrm.23165 – volume: 43 start-page: 1 issue: 8 year: 2019 end-page: 13 ident: CR52 article-title: Brain tumor detection and segmentation by intensity adjustment publication-title: J Med Syst doi: 10.1007/s10916-019-1368-4 – volume: 129 start-page: 181 year: 2020 end-page: 189 ident: CR62 article-title: Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2019.11.019 – volume: 22 start-page: 372 issue: 1 year: 2022 ident: CR2 article-title: Brain tumor/mass classification framework using magnetic-resonance-imaging-based isolated and developed transfer deep-learning model publication-title: Sensors doi: 10.3390/s22010372 – volume: 134 start-page: 109531 year: 2020 ident: CR71 article-title: BrainMRNet: brain tumor detection using magnetic resonance images with a novel convolutional neural network model publication-title: Med Hypotheses doi: 10.1016/j.mehy.2019.109531 – volume: 13 start-page: 102 issue: 06 year: 2020 end-page: 112 ident: CR59 article-title: Brain tumor classification in magnetic resonance images using deep learning and wavelet transform publication-title: J Biomed Sci Eng doi: 10.4236/jbise.2020.136010 – ident: CR15 – ident: CR50 – volume: 7 start-page: 69215 year: 2019 end-page: 69225 ident: CR65 article-title: Multi-classification of brain tumor images using deep neural network publication-title: IEEE Access doi: 10.1109/access.2019.2919122 – volume: 15 start-page: 1929 issue: 1 year: 2014 end-page: 1958 ident: CR64 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: CR9 – volume: 7 start-page: 17809 year: 2019 end-page: 17822 ident: CR67 article-title: Content-based brain tumor retrieval for MR images using transfer learning publication-title: IEEE Access doi: 10.1109/access.2019.2892455 – volume: 129 start-page: 460 year: 2016 end-page: 469 ident: CR35 article-title: Deep MRI brain extraction: a 3D convolutional neural network for skull stripping publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.01.024 – volume: 7 start-page: 36266 year: 2019 end-page: 36273 ident: CR21 article-title: A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification publication-title: IEEE Access doi: 10.1109/access.2019.2904145 – volume: 27 start-page: 69 year: 2021 end-page: 90 ident: CR28 article-title: Brain tumor diagnostic system—a deep learning application. Machine Vision Inspection Systems, Volume 2 publication-title: Mach Learn Based Approaches – volume: 2 start-page: 100003 year: 2020 ident: CR44 article-title: A transfer learning approach for AI-based classification of brain tumors publication-title: Mach Learn Appl doi: 10.1016/j.mlwa.2020.100003 – ident: CR26 – volume: 99 start-page: 154 year: 2018 end-page: 160 ident: CR14 article-title: Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.06.009 – volume: 9 start-page: 153 issue: 2 year: 2021 ident: CR19 article-title: A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network publication-title: Healthcare doi: 10.3390/healthcare9020153 – volume: 330 start-page: 108520 year: 2020 ident: CR42 article-title: A novel enhanced softmax loss function for brain tumour detection using deep learning publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2019.108520 – ident: CR18 – volume: 131 start-page: 803 issue: 6 year: 2016 end-page: 820 ident: CR41 article-title: The 2016 World Health Organization classification of tumors of the central nervous system: a summary publication-title: Acta Neuropathol doi: 10.1007/s00401-016-1545-1 – ident: CR43 – ident: CR47 – volume: 143 start-page: 109922 year: 2020 ident: CR72 article-title: A hybrid image enhancement based brain MRI images classification technique publication-title: Med Hypotheses doi: 10.1016/j.mehy.2020.109922 – volume: 129 start-page: 77 year: 2020 end-page: 85 ident: CR32 article-title: Lungs cancer classification from CT images: An integrated design of contrast based classical features fusion and selection publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2019.11.014 – volume: 17 start-page: 1051 issue: 4 year: 2020 end-page: 1066 ident: CR48 article-title: Convolution neural network joint with mixture of extreme learning machines for feature extraction and classification of accident images publication-title: J Real-Time Image Proc doi: 10.1007/s11554-019-00852-3 – volume: 8 start-page: 27 issue: 1 year: 2018 ident: CR33 article-title: Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks publication-title: Appl Sci doi: 10.3390/app8010027 – ident: CR37 – ident: CR10 – volume: 23 start-page: 955 issue: 5 year: 2020 end-page: 966 ident: CR5 article-title: Detection and classification of brain tumor in MRI images using wavelet transform and support vector machine publication-title: J Interdiscipl Math doi: 10.1080/09720502.2020.1723921 – volume: 75 start-page: 34 year: 2019 end-page: 46 ident: CR68 article-title: Brain tumor classification for MR images using transfer learning and fine-tuning publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2019.05.001 – volume: 11 start-page: 1457 issue: 3 year: 2018 ident: CR61 article-title: Brain tumor classification using convolutional neural networks publication-title: Biomed Pharma J doi: 10.13005/bpj/1511 – start-page: 437 year: 2012 end-page: 478 ident: CR8 publication-title: Practical recommendations for gradient-based training of deep architectures, In Neural networks: Tricks of the trade doi: 10.1007/978-3-642-35289-8_26 – ident: CR40 – ident: CR63 – volume: 25 start-page: 751 issue: 5 year: 2017 end-page: 763 ident: CR51 article-title: A new approach to develop computer-aided diagnosis scheme of breast mass classification using deep learning technology publication-title: J X-ray Scie Technol doi: 10.3233/xst-16226 – ident: CR69 – volume: 7 start-page: 140 issue: 1 year: 2014 end-page: 148 ident: CR20 article-title: The Pareto Principle publication-title: Plymouth Student Sci – volume: 25 start-page: 8721 issue: 13 year: 2021 end-page: 8729 ident: CR36 article-title: Three-class brain tumor classification using deep dense inception residual network publication-title: Soft Comput doi: 10.1007/s00500-021-05748-8 – volume: 39 start-page: 757 issue: 2 year: 2020 end-page: 775 ident: CR53 article-title: A deep learning-based framework for automatic brain tumors classification using transfer learning publication-title: Circ Syst Signal Process doi: 10.1007/s00034-019-01246-3 – ident: CR38 – ident: CR13 – volume: 84 start-page: 133 issue: 1 year: 2021 end-page: 149 ident: CR54 article-title: Microscopic brain tumor detection and classification using 3D CNN and feature selection architecture publication-title: Microsc Res Tech doi: 10.1002/jemt.23597 – volume: 6 start-page: e05652 issue: 12 year: 2020 ident: CR1 article-title: Improving Alzheimer's stage categorization with Convolutional Neural Network using transfer learning and different magnetic resonance imaging modalities publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e05652 – volume: 37 start-page: 448 year: 2015 end-page: 456 ident: CR25 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift publication-title: Int Conf Mach Learn PMLR – volume: 32 start-page: 507 issue: 2 year: 2020 end-page: 522 ident: CR46 article-title: Deep learning for multigrade brain tumor classification in smart healthcare systems: a prospective survey publication-title: IEEE Trans Neural Netw Learn doi: 10.1109/tnnls.2020.2995800 – ident: CR34 – ident: CR7 – volume: 13 start-page: 1227 issue: 3 year: 2020 end-page: 1237 ident: CR55 article-title: Accurate classification and detection of brain cancer cells in MRI and CT images using nano contrast agents publication-title: Biomed Pharm J doi: 10.13005/bpj/1991 – volume: 21 start-page: 2222 issue: 6 year: 2021 ident: CR29 article-title: MRI-based brain tumor classification using Ensemble of Deep Features and Machine Learning Classifiers publication-title: Sensors doi: 10.3390/s21062222 – volume: 36 start-page: 1 year: 2016 end-page: 12 ident: CR66 article-title: Machine learning models and algorithms for big data classification publication-title: Integr Ser Inf Syst – ident: CR24 – volume: 30 start-page: 174 year: 2019 end-page: 182 ident: CR57 article-title: Multi-grade brain tumor classification using deep CNN with extensive data augmentation publication-title: J Comput Sci doi: 10.1016/j.jocs.2018.12.003 – volume: 13 start-page: 337 issue: 4 year: 2019 end-page: 342 ident: CR58 article-title: Detection and classification of brain tumours from MRI images using faster R-CNN publication-title: Tehnički glasnik doi: 10.31803/tg-20190712095507 – volume: 27 start-page: 69 year: 2021 ident: 14828_CR28 publication-title: Mach Learn Based Approaches – volume: 7 start-page: 4275 year: 2018 ident: 14828_CR23 publication-title: IEEE Access doi: 10.1109/access.2018.2885639 – volume: 8 start-page: 27 issue: 1 year: 2018 ident: 14828_CR33 publication-title: Appl Sci doi: 10.3390/app8010027 – volume: 129 start-page: 77 year: 2020 ident: 14828_CR32 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2019.11.014 – ident: 14828_CR49 doi: 10.1007/s11227-020-03572-9 – volume: 30 start-page: 174 year: 2019 ident: 14828_CR57 publication-title: J Comput Sci doi: 10.1016/j.jocs.2018.12.003 – volume: 75 start-page: 34 year: 2019 ident: 14828_CR68 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2019.05.001 – ident: 14828_CR63 doi: 10.1109/ICACA.2016.7887944 – volume: 129 start-page: 460 year: 2016 ident: 14828_CR35 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.01.024 – ident: 14828_CR13 doi: 10.1109/CVPR.2017.195 – ident: 14828_CR39 doi: 10.1109/ICEICE.2017.8191888 – ident: 14828_CR40 – volume: 2 start-page: 100003 year: 2020 ident: 14828_CR44 publication-title: Mach Learn Appl doi: 10.1016/j.mlwa.2020.100003 – ident: 14828_CR16 doi: 10.1109/WICT.2011.6141390 – volume: 10 start-page: e0140381 issue: 10 year: 2015 ident: 14828_CR11 publication-title: PLoS One doi: 10.1371/journal.pone.0140381 – volume: 102 start-page: 101779 year: 2020 ident: 14828_CR27 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.101779 – volume: 129 start-page: 181 year: 2020 ident: 14828_CR62 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2019.11.019 – ident: 14828_CR38 doi: 10.1109/ICEEE2.2017.7935845 – ident: 14828_CR34 – ident: 14828_CR15 – volume: 39 start-page: 63 issue: 1 year: 2019 ident: 14828_CR4 publication-title: Biocybernetics Biomed Eng doi: 10.1016/j.bbe.2018.10.004 – volume: 25 start-page: 377 issue: S1 year: 2017 ident: 14828_CR73 publication-title: Technol Health Care doi: 10.3233/thc-171341 – volume: 36 start-page: 1 year: 2016 ident: 14828_CR66 publication-title: Integr Ser Inf Syst – ident: 14828_CR12 doi: 10.6084/m9.figshare – start-page: 437 volume-title: Practical recommendations for gradient-based training of deep architectures, In Neural networks: Tricks of the trade year: 2012 ident: 14828_CR8 doi: 10.1007/978-3-642-35289-8_26 – volume: 134 start-page: 109531 year: 2020 ident: 14828_CR71 publication-title: Med Hypotheses doi: 10.1016/j.mehy.2019.109531 – volume: 330 start-page: 108520 year: 2020 ident: 14828_CR42 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2019.108520 – volume: 13 start-page: 102 issue: 06 year: 2020 ident: 14828_CR59 publication-title: J Biomed Sci Eng doi: 10.4236/jbise.2020.136010 – volume: 23 start-page: 955 issue: 5 year: 2020 ident: 14828_CR5 publication-title: J Interdiscipl Math doi: 10.1080/09720502.2020.1723921 – volume: 37 start-page: 448 year: 2015 ident: 14828_CR25 publication-title: Int Conf Mach Learn PMLR – volume: 11 start-page: 1457 issue: 3 year: 2018 ident: 14828_CR61 publication-title: Biomed Pharma J doi: 10.13005/bpj/1511 – ident: 14828_CR18 doi: 10.1109/WiSPNET.2018.8538643 – volume: 22 start-page: 372 issue: 1 year: 2022 ident: 14828_CR2 publication-title: Sensors doi: 10.3390/s22010372 – ident: 14828_CR26 doi: 10.1109/EIT.2018.8500308 – ident: 14828_CR43 doi: 10.1109/CSPC.2017.8305810 – volume: 111 start-page: 103345 year: 2019 ident: 14828_CR17 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2019.103345 – volume: 129 start-page: 293 year: 2020 ident: 14828_CR30 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2019.11.034 – ident: 14828_CR37 doi: 10.1109/INDICON.2016.7838875 – volume: 17 start-page: 1051 issue: 4 year: 2020 ident: 14828_CR48 publication-title: J Real-Time Image Proc doi: 10.1007/s11554-019-00852-3 – ident: 14828_CR9 – volume: 13 start-page: 337 issue: 4 year: 2019 ident: 14828_CR58 publication-title: Tehnički glasnik doi: 10.31803/tg-20190712095507 – ident: 14828_CR50 doi: 10.1109/ICOIN.2018.8343231 – ident: 14828_CR45 doi: 10.1109/IACC.2017.0146 – volume: 59 start-page: 221 year: 2020 ident: 14828_CR56 publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2019.09.007 – ident: 14828_CR10 doi: 10.1109/RISE.2017.8378158 – volume: 9 start-page: 153 issue: 2 year: 2021 ident: 14828_CR19 publication-title: Healthcare doi: 10.3390/healthcare9020153 – volume: 8 start-page: 197969 year: 2020 ident: 14828_CR31 publication-title: IEEE Access doi: 10.1109/access.2020.3034217 – volume: 143 start-page: 109922 year: 2020 ident: 14828_CR72 publication-title: Med Hypotheses doi: 10.1016/j.mehy.2020.109922 – volume: 65 start-page: 1036 issue: 4 year: 2011 ident: 14828_CR70 publication-title: Magn Reson Med doi: 10.1002/mrm.23165 – volume: 32 start-page: 507 issue: 2 year: 2020 ident: 14828_CR46 publication-title: IEEE Trans Neural Netw Learn doi: 10.1109/tnnls.2020.2995800 – volume: 131 start-page: 803 issue: 6 year: 2016 ident: 14828_CR41 publication-title: Acta Neuropathol doi: 10.1007/s00401-016-1545-1 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 14828_CR64 publication-title: J Mach Learn Res – volume: 25 start-page: 751 issue: 5 year: 2017 ident: 14828_CR51 publication-title: J X-ray Scie Technol doi: 10.3233/xst-16226 – volume: 7 start-page: 69215 year: 2019 ident: 14828_CR65 publication-title: IEEE Access doi: 10.1109/access.2019.2919122 – volume: 99 start-page: 154 year: 2018 ident: 14828_CR14 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.06.009 – volume: 39 start-page: 208 issue: 2 year: 2018 ident: 14828_CR74 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.a5391 – ident: 14828_CR47 doi: 10.1155/2021/5513500 – ident: 14828_CR24 doi: 10.1109/CVPR.2017.243 – volume: 43 start-page: 1 issue: 8 year: 2019 ident: 14828_CR52 publication-title: J Med Syst doi: 10.1007/s10916-019-1368-4 – volume: 10 start-page: 1999 issue: 6 year: 2020 ident: 14828_CR6 publication-title: Appl Sci doi: 10.3390/app10061999 – ident: 14828_CR22 doi: 10.1109/CVPR.2016.90 – ident: 14828_CR69 doi: 10.1609/aaai.v31i1.11231 – volume: 139 start-page: 118 year: 2020 ident: 14828_CR3 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2017.10.036 – volume: 7 start-page: 36266 year: 2019 ident: 14828_CR21 publication-title: IEEE Access doi: 10.1109/access.2019.2904145 – volume: 21 start-page: 2222 issue: 6 year: 2021 ident: 14828_CR29 publication-title: Sensors doi: 10.3390/s21062222 – volume: 39 start-page: 757 issue: 2 year: 2020 ident: 14828_CR53 publication-title: Circ Syst Signal Process doi: 10.1007/s00034-019-01246-3 – volume: 13 start-page: 1227 issue: 3 year: 2020 ident: 14828_CR55 publication-title: Biomed Pharm J doi: 10.13005/bpj/1991 – volume: 25 start-page: 8721 issue: 13 year: 2021 ident: 14828_CR36 publication-title: Soft Comput doi: 10.1007/s00500-021-05748-8 – volume: 7 start-page: 17809 year: 2019 ident: 14828_CR67 publication-title: IEEE Access doi: 10.1109/access.2019.2892455 – volume: 84 start-page: 133 issue: 1 year: 2021 ident: 14828_CR54 publication-title: Microsc Res Tech doi: 10.1002/jemt.23597 – volume-title: Predictive modeling of brain tumor: A Deep learning approach. In: Innovations in Computational Intelligence and Computer Vision, pp. 275–285 year: 2021 ident: 14828_CR60 – ident: 14828_CR7 doi: 10.1109/ICICES.2017.8070748 – volume: 6 start-page: e05652 issue: 12 year: 2020 ident: 14828_CR1 publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e05652 – volume: 7 start-page: 140 issue: 1 year: 2014 ident: 14828_CR20 publication-title: Plymouth Student Sci |
SSID | ssj0016524 |
Score | 2.54133 |
Snippet | Multi-class brain tumor classification is an important area of research in the field of medical imaging because of the different tumor characteristics. One... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 31709 |
SubjectTerms | Accuracy Brain Brain cancer Classification Computer Communication Networks Computer Science Computer vision Data Structures and Information Theory Datasets Deep learning Diagnostic systems Glioma Image classification Magnetic resonance imaging Medical imaging Medical research Multimedia Information Systems Special Purpose and Application-Based Systems Track 2: Medical Applications of Multimedia Tumors |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_ovOjBj6k4nZKDNw2kTZu2xyGOIejJwW6hSbPtoHW4jv37vqTpqqKCPabJK-SX1_fC-_gBXPOo4DoXgiK6eEFRAlUq4qHNMs90pBKmQluN_PgkRuPoYRJPfFHYssl2b0KS7k_dFrsFtpQEbQy1vStTut6GnRjv7vZcj8PBJnYgYk9lmzKK9jDwpTI_y_hqjlof81tY1Fmb4SHsezeRDGpcj2DLlF04aCgYiNfILux96id4DPNBSUw5d0F9UhizIJ4UYkZqpmiCLipxOYRUW7eZKMsQQarVK467EZs55MAiNiN-VkupnHeL323EncB4eP98N6KeSoFq1LHKdjbXTOPD0yRkpkgVVww9k2yK1zvBI53EeZYGvDBaMY1WPykQtywoQi7UNNX8FDrlW2nOgBgeKZOrqc5trz8W5JwZ3EqV4UKFt48eBM2OSu37jFu6ixfZdki2KEhEQToU5LoHN5s1i7rLxp-z-w1Q0mvcUqKZDcMkiQPRg9sGvPb179LO_zf9AnYt43ydA9iHTvW-Mpfol1Tqyh3DD9on2ZE priority: 102 providerName: Springer Nature |
Title | An enhanced deep learning method for multi-class brain tumor classification using deep transfer learning |
URI | https://link.springer.com/article/10.1007/s11042-023-14828-w https://www.proquest.com/docview/2842277516 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu8DAG1EoyAMbRCRxmseECupDICqEqFSmKHbcdoC00FT9-9w5TgtINEskJ3Ekfz7f2ff4AC65l3KZ-L6F6OIGRfgoUh53Kco8kp4IbOFSNvJTz-_2vYdBY2AO3GYmrLJcE_VCnU4knZHf4DLqukHQcPzb6adFrFHkXTUUGptQdVDT0AwP252lF8FvGFLb0LZQMzomaaZInXMoMQU1lkWVMENr8VsxrazNPw5SrXfae7BjDEbWLBDehw2VHcBuScbAjGwewPaPyoKHMG5mTGVj7d5nqVJTZughRqzgjGZorDIdTWhJMqCZIK4Ils8_sF23UAyRho1RbPyo6CXXdi7-t-zuCPrt1ut91zKkCpZEacupxrm0JV48DFxbpaHgwkYbJRriRs_nngwaSRQ6PFVS2BL1f5AigpGTutwXw1DyY6hkk0ydAFPcEyoRQ5lQ1T_bSbitcChFhB8K3IfUwClHNJam4jgRX7zHq1rJhEKMKMQahXhRg6vlN9Oi3sbat-slULGRvVm8mik1uC7BWz3-v7fT9b2dwRZxzRfRf3Wo5F9zdY4WSS4u9LS7gGqz8_bYwvtdq_f8gq19t_kNhq7gRQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGYCBRwFRKOABJohI4jSPASEElJa2TFTqFmLHLQOEQlNV_Cl-I3dO0gISbGR04oviO98jvrsP4JA7MZeR6xrIXQxQhItbyuE2ZZkH0hGeKWyqRu7cuY2uc9ur9ebgo6iFobTKQidqRR2_SPpHfopq1LY9r2a558NXg1Cj6HS1gNDIxKKl3icYso3OmlfI3yPbrl_fXzaMHFXAkChuKTX5lqbEi_uebarYF1xgWO8FfYx0XO5IrxYFvsVjJYUp0QB6MX5CYMU2d0XflxzpzsOCw3lAKYR-_WZ6auHWchBd3zTQElt5kU5WqmdRIQxaSIM6b_rG5LshnHm3Pw5ktZ2rr8FK7qCyi0yi1mFOJWVYLcAfWK4LyrD8pZPhBjxeJEwljzqdgMVKDVkORzFgGUY1Q-eY6exFQ5LDzgRhU7B0_IzjeoRylrSYMMrFH2RUUu1X43sLcpvQ_Zfl3oJS8pKobWCKO0JFoi8j6jJoWhE3FS6lCHCiwLinAlaxoqHMO5wT0MZTOOvNTFwIkQuh5kI4qcDxdM4w6-_x59PVglFhvtdH4UwyK3BSMG92-3dqO39TO4DFxn2nHbabd61dWCKc-yzzsAql9G2s9tAbSsW-FkEGD_8t8591YhiP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYGSAgOvBGDATnACSrapuvjgNAEjDfiABK30qTZdoBuQKeJv8avw07TDZDgth7TxlVjx4_G9geww72Uy8T3LeQuBijCxy3lcZeyzCPpicAWLlUj39z65w_e5WP9sQKfZS0MpVWWOlEr6rQr6R_5AapR1w2CuuMftExaxN1J86j3ahGCFJ20lnAahYhcqY8Bhm_vhxcnyOtd122e3h-fWwZhwJIoejk1_Ja2xIuHgWurNBRcYIgfRC2MenzuyaCeRKHDUyWFLdEYBil-TuSkLvdFK5Qc6U7AVMBDm9ATwubZ8ATDrxtA3dC20Co7pmCnKNtzqCgGraVFXThDa_DTKI483V-Hs9rmNRdgzjirrFFI1yJUVLYE8yUQBDN6YQlmv3U1XIZOI2Mq6-jUApYq1WMGmqLNCrxqho4y05mMliTnnQnCqWB5_wXH9QjlL2mRYZSX3y6o5NrHxveW5FbgYSzLvQqTWTdTa8AU94RKREsm1HHQdhJuK1xKEeFEgTFQFZxyRWNpup0T6MZzPOrTTFyIkQux5kI8qMLecE6v6PXx79O1klGx2ffv8UhKq7BfMm90-29q6_9T24ZplPb4-uL2agNmCPK-SEKswWT-1leb6BjlYktLIIOncYv8F2flHLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+enhanced+deep+learning+method+for+multi-class+brain+tumor+classification+using+deep+transfer+learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Asif%2C+Sohaib&rft.au=Zhao%2C+Ming&rft.au=Tang%2C+Fengxiao&rft.au=Zhu%2C+Yusen&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=20&rft.spage=31709&rft.epage=31736&rft_id=info:doi/10.1007%2Fs11042-023-14828-w&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |