Towards Adversarially Superior Malware Detection Models: An Adversary Aware Proactive Approach using Adversarial Attacks and Defenses

The android ecosystem (smartphones, tablets, etc.) has grown manifold in the last decade. However, the exponential surge of android malware is threatening the ecosystem. Literature suggests that android malware can be detected using machine and deep learning classifiers; however, these detection mod...

Full description

Saved in:
Bibliographic Details
Published inInformation systems frontiers Vol. 25; no. 2; pp. 567 - 587
Main Authors Rathore, Hemant, Samavedhi, Adithya, Sahay, Sanjay K., Sewak, Mohit
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The android ecosystem (smartphones, tablets, etc.) has grown manifold in the last decade. However, the exponential surge of android malware is threatening the ecosystem. Literature suggests that android malware can be detected using machine and deep learning classifiers; however, these detection models might be vulnerable to adversarial attacks. This work investigates the adversarial robustness of twenty-four diverse malware detection models developed using two features and twelve learning algorithms across four categories (machine learning, bagging classifiers, boosting classifiers, and neural network). We stepped into the adversary’s shoes and proposed two false-negative evasion attacks, namely GradAA and GreedAA , to expose vulnerabilities in the above detection models. The evasion attack agents transform malware applications into adversarial malware applications by adding minimum noise (maximum five perturbations) while maintaining the modified applications’ structural, syntactic, and behavioral integrity. These adversarial malware applications force misclassifications and are predicted as benign by the detection models. The evasion attacks achieved an average fooling rate of 83.34 % (GradAA) and 99.21 % (GreedAA) which reduced the average accuracy from 90.35 % to 55.22 % (GradAA) and 48.29 % (GreedAA) in twenty-four detection models. We also proposed two defense strategies, namely Adversarial Retraining and Correlation Distillation Retraining as countermeasures to protect detection models from adversarial attacks. The defense strategies slightly improved the detection accuracy but drastically enhanced the adversarial robustness of detection models. Finally, investigating the robustness of malware detection models against adversarial attacks is an essential step before their real-world deployment and can help in developing adversarially superior detection models.
AbstractList The android ecosystem (smartphones, tablets, etc.) has grown manifold in the last decade. However, the exponential surge of android malware is threatening the ecosystem. Literature suggests that android malware can be detected using machine and deep learning classifiers; however, these detection models might be vulnerable to adversarial attacks. This work investigates the adversarial robustness of twenty-four diverse malware detection models developed using two features and twelve learning algorithms across four categories (machine learning, bagging classifiers, boosting classifiers, and neural network). We stepped into the adversary’s shoes and proposed two false-negative evasion attacks, namely GradAA and GreedAA, to expose vulnerabilities in the above detection models. The evasion attack agents transform malware applications into adversarial malware applications by adding minimum noise (maximum five perturbations) while maintaining the modified applications’ structural, syntactic, and behavioral integrity. These adversarial malware applications force misclassifications and are predicted as benign by the detection models. The evasion attacks achieved an average fooling rate of 83.34% (GradAA) and 99.21% (GreedAA) which reduced the average accuracy from 90.35% to 55.22% (GradAA) and 48.29% (GreedAA) in twenty-four detection models. We also proposed two defense strategies, namely Adversarial Retraining and Correlation Distillation Retraining as countermeasures to protect detection models from adversarial attacks. The defense strategies slightly improved the detection accuracy but drastically enhanced the adversarial robustness of detection models. Finally, investigating the robustness of malware detection models against adversarial attacks is an essential step before their real-world deployment and can help in developing adversarially superior detection models.
The android ecosystem (smartphones, tablets, etc.) has grown manifold in the last decade. However, the exponential surge of android malware is threatening the ecosystem. Literature suggests that android malware can be detected using machine and deep learning classifiers; however, these detection models might be vulnerable to adversarial attacks. This work investigates the adversarial robustness of twenty-four diverse malware detection models developed using two features and twelve learning algorithms across four categories (machine learning, bagging classifiers, boosting classifiers, and neural network). We stepped into the adversary’s shoes and proposed two false-negative evasion attacks, namely GradAA and GreedAA , to expose vulnerabilities in the above detection models. The evasion attack agents transform malware applications into adversarial malware applications by adding minimum noise (maximum five perturbations) while maintaining the modified applications’ structural, syntactic, and behavioral integrity. These adversarial malware applications force misclassifications and are predicted as benign by the detection models. The evasion attacks achieved an average fooling rate of 83.34 % (GradAA) and 99.21 % (GreedAA) which reduced the average accuracy from 90.35 % to 55.22 % (GradAA) and 48.29 % (GreedAA) in twenty-four detection models. We also proposed two defense strategies, namely Adversarial Retraining and Correlation Distillation Retraining as countermeasures to protect detection models from adversarial attacks. The defense strategies slightly improved the detection accuracy but drastically enhanced the adversarial robustness of detection models. Finally, investigating the robustness of malware detection models against adversarial attacks is an essential step before their real-world deployment and can help in developing adversarially superior detection models.
Author Rathore, Hemant
Sahay, Sanjay K.
Samavedhi, Adithya
Sewak, Mohit
Author_xml – sequence: 1
  givenname: Hemant
  surname: Rathore
  fullname: Rathore, Hemant
  email: hemantr@goa.bits-pilani.ac.in
  organization: BITS Pilani, Department of CS & IS, Goa Campus
– sequence: 2
  givenname: Adithya
  surname: Samavedhi
  fullname: Samavedhi, Adithya
  organization: BITS Pilani, Department of CS & IS, Goa Campus
– sequence: 3
  givenname: Sanjay K.
  surname: Sahay
  fullname: Sahay, Sanjay K.
  organization: BITS Pilani, Department of CS & IS, Goa Campus
– sequence: 4
  givenname: Mohit
  surname: Sewak
  fullname: Sewak, Mohit
  organization: Security, Compliance Research, Microsoft R & D
BookMark eNp9kE1PAjEQhhuDiYD-AU9NPK_2Y7ul3jb4mUA0Ec9Ndzvg4trFdsHA3f9tAaOePM0k87zvzLw91HGNA4ROKTmnhMiLQIlUWUIYSyjhnCabA9SlQrJEpVR1Ys8HMuGcZUeoF8KcEJoxKbroc9J8GG8Dzu0KfDC-MnW9xk_LBfiq8Xhs6jgHfAUtlG3VODxuLNThEufuR7PG-Q569I2J0Apwvlhs-xe8DJWb_TXHedua8jVg42x0nYILEI7R4dTUAU6-ax8931xPhnfJ6OH2fpiPkpJT1SZpagbAytRmBZUZK6zgBWMgBZumxlBV2MwwI6SQVhluVaEGQvFUZKkqMl4C76OzvW-87n0JodXzZuldXKmZVJwJTgY8UmxPlb4JwcNUL3z1Ft_UlOht3Hoft45x613cehNFfC8KEXYz8L_W_6i-AI9vhug
CitedBy_id crossref_primary_10_1007_s10796_023_10372_y
Cites_doi 10.23919/EUSIPCO.2018.8553214
10.1109/ICCC.2019.00014
10.1007/s10796-020-10083-8
10.1007/978-3-319-60876-1_12
10.1371/journal.pone.0231626
10.1145/3439729
10.1016/j.patcog.2020.107584
10.1109/DSN-S52858.2021.00025
10.1109/SPW.2019.00015
10.1109/TII.2017.2789219
10.48550/arXiv.1503.02531
10.1109/SP.2016.41
10.1145/3386252
10.1007/978-3-030-68737-3_3
10.1145/2046684.2046692
10.1145/3417978
10.1007/s10586-020-03083-5
10.1007/978-3-319-66399-9_4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10796-022-10331-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
Library & Information Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
One Business (ProQuest)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Library & Information Science Collection
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1572-9419
EndPage 587
ExternalDocumentID 10_1007_s10796_022_10331_z
GroupedDBID -57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29I
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFDYV
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OAM
OVD
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S27
S3B
SAP
SBE
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
PQBZA
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-44a8e2c4d6b1762bd53b22e752f4aa19bd6a2a5757d9a3d9b9859345649b63ce3
IEDL.DBID AGYKE
ISSN 1387-3326
IngestDate Fri Sep 13 06:26:36 EDT 2024
Thu Sep 12 18:33:27 EDT 2024
Sat Dec 16 12:06:59 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Malware Detection
Adversarial Robustness
Machine Learning
Static Analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-44a8e2c4d6b1762bd53b22e752f4aa19bd6a2a5757d9a3d9b9859345649b63ce3
PQID 2793253083
PQPubID 26108
PageCount 21
ParticipantIDs proquest_journals_2793253083
crossref_primary_10_1007_s10796_022_10331_z
springer_journals_10_1007_s10796_022_10331_z
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle A Journal of Research and Innovation
PublicationTitle Information systems frontiers
PublicationTitleAbbrev Inf Syst Front
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kurakin, A., Goodfellow, I., & Bengio, S. (2016). Adversarial machine learning at scale. International Conference on Learning Representations (ICLR).
LiJSunLYanQLiZSrisa-AnWYeHSignificant permission identification for machine-learning-based android malware detectionIEEE Transactions on Industrial Informatics20181473216322510.1109/TII.2017.2789219
DeldjooYNoiaTDMerraFAA survey on adversarial recommender systems: from attack/defense strategies to generative adversarial networksACM Computing Surveys (CSUR)202154213810.1145/3439729
Grosse, K., Papernot, N., Manoharan, P., Backes, M., & McDaniel, P. (2017). Adversarial examples for malware detection. In European symposium on research in computer security, pp. 62–79. Springer.
Statcounter. (2021). Mobile operating system market share worldwide available: https://gs.statcounter.com/os-market-share/mobile/worldwide. Last Accessed Feb 2022.
WangZSheQWardTEGenerative adversarial networks in computer vision: a survey and taxonomyACM Computing Surveys (CSUR)2021542138
Hispasec Sistemas. (2022). Virustotal Available: https://www.virustotal.com/gui/home Last Accessed February 2022.
McAfee. (2022). Detect me if you can: How cybercriminals are trying harder to appear legitimate and how to spot them Available: https://www.mcafee.com/content/dam/consumer/en-us/docs/reports/rp-mobile-threat-report-feb-2022.pdf. Last Accessed Feb 2022.
Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. International Conference on Learning Representations (ICLR).
Ji, Y., Bowman, B., & Huang, H. H. (2019). Securing malware cognitive systems against adversarial attacks. In 2019 IEEE International conference on cognitive computing (ICCC), pp. 1–9. IEEE.
Kolosnjaji, B., Demontis, A., Biggio, B., Maiorca, D., Giacinto, G., Eckert, C., & Roli, F. (2018). Adversarial malware binaries: Evading deep learning for malware detection in executables. In 2018 26Th european signal processing conference (EUSIPCO), pp. 533–537. IEEE.
Papernot, N., McDaniel, P., Wu, X., Jha, S., & Swami, A. (2016). Distillation as a defense to adversarial perturbations against deep neural networks. In 2016 IEEE Symposium on security and privacy (SP), pp. 582–597. IEEE.
Statista. (2022). Number of apps available in leading app stores Available: https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/. Last Accessed Feb 2022.
TaheriRJavidanRShojafarMVinodPContiMCan machine learning model with static features be fooled: an adversarial machine learning approachCluster Computing20202343233325310.1007/s10586-020-03083-5
FangYZengYLiBLiuLZhangLDeepdetectnet vs rlattacknet: An adversarial method to improve deep learning-based static malware detection modelPlos One2020154e023162610.1371/journal.pone.0231626
Google Play. (2022). Available https://play.google.com/store?hl=en. Last Accessed February 2022.
Statista. (2022). Number of smartphone subscriptions worldwide from 2016 to 2027 Available: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/. Last Accessed Feb 2022.
RathoreHSahaySKNikamPSewakMRobust android malware detection system against adversarial attacks using q-learningInformation Systems Frontiers202123486788210.1007/s10796-020-10083-8
QiuJZhangJLuoWPanLNepalSXiangYA survey of android malware detection with deep neural modelsACM Computing Surveys (CSUR)202053613610.1145/3417978
Rathore, H., Sahay, S. K., Dhillon, J., & Sewak, M. (2021). Designing adversarial attack and defence for robust android malware detection models. In 2021 51St annual IEEE/IFIP international conference on dependable systems and networks-supplemental volume (DSN-s), pp. 29–32. IEEE.
Hu, W., & Tan, Y. (2017). Generating adversarial malware examples for black-box attacks based on gan. arXiv:1702.05983.
Suciu, O., Coull, S. E., & Johns, J. (2019). Exploring adversarial examples in malware detection. In 2019 IEEE Security and privacy workshops (SPW), pp. 8–14. IEEE.
YeYLiTAdjerohDIyengarSSA survey on malware detection using data mining techniquesACM Computing Surveys (CSUR)201750341
Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I., & Tygar, J. D. (2011). Adversarial machine learning. In 4Th ACM workshop on security and artificial intelligence, pp. 43–58.
Rathore, H., Sahay, S. K., Rajvanshi, R., & Sewak, M. (2020). Identification of significant permissions for efficient android malware detection. In International conference on broadband communications, networks and systems (BROADNETS), pp. 33–52. Springer.
Wiśniewski, R., & Tumbleson, C. (2022). Apktool. Available: https://ibotpeaches.github.io/Apktool/. Last Accessed February 2022.
AV-ATLAS. (2022). Total amount of malware and pua under android Available: https://portal.av-atlas.org/malware/statistics/. Last Accessed Feb 2022.
LiDZhangJHuangKUniversal adversarial perturbations against object detectionPattern Recognition202111010758410.1016/j.patcog.2020.107584
Hinton, G., Vinyals, O., & Dean, J. et al. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, 2(7). https://doi.org/10.48550/arXiv.1503.02531
Wei, F., Li, Y., Roy, S., Ou, X., & Zhou, W. (2017). Deep ground truth analysis of current android malware. In International conference on detection of intrusions and malware, and vulnerability assessment, pp. 252–276. Springer.
D Li (10331_CR14) 2021; 110
J Qiu (10331_CR18) 2020; 53
10331_CR12
10331_CR11
H Rathore (10331_CR20) 2021; 23
10331_CR13
10331_CR10
10331_CR29
10331_CR28
10331_CR1
Y Deldjoo (10331_CR2) 2021; 54
10331_CR9
10331_CR23
10331_CR8
10331_CR22
J Li (10331_CR15) 2018; 14
10331_CR25
10331_CR24
10331_CR5
10331_CR4
10331_CR7
10331_CR21
10331_CR6
Y Fang (10331_CR3) 2020; 15
R Taheri (10331_CR26) 2020; 23
10331_CR19
Y Ye (10331_CR30) 2017; 50
10331_CR16
Z Wang (10331_CR27) 2021; 54
10331_CR17
References_xml – ident: 10331_CR12
  doi: 10.23919/EUSIPCO.2018.8553214
– ident: 10331_CR1
– ident: 10331_CR11
  doi: 10.1109/ICCC.2019.00014
– volume: 23
  start-page: 867
  issue: 4
  year: 2021
  ident: 10331_CR20
  publication-title: Information Systems Frontiers
  doi: 10.1007/s10796-020-10083-8
  contributor:
    fullname: H Rathore
– ident: 10331_CR28
  doi: 10.1007/978-3-319-60876-1_12
– volume: 15
  start-page: e0231626
  issue: 4
  year: 2020
  ident: 10331_CR3
  publication-title: Plos One
  doi: 10.1371/journal.pone.0231626
  contributor:
    fullname: Y Fang
– volume: 54
  start-page: 1
  issue: 2
  year: 2021
  ident: 10331_CR2
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3439729
  contributor:
    fullname: Y Deldjoo
– ident: 10331_CR24
– ident: 10331_CR22
– volume: 110
  start-page: 107584
  year: 2021
  ident: 10331_CR14
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107584
  contributor:
    fullname: D Li
– ident: 10331_CR19
  doi: 10.1109/DSN-S52858.2021.00025
– ident: 10331_CR25
  doi: 10.1109/SPW.2019.00015
– volume: 14
  start-page: 3216
  issue: 7
  year: 2018
  ident: 10331_CR15
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2017.2789219
  contributor:
    fullname: J Li
– ident: 10331_CR4
– ident: 10331_CR7
  doi: 10.48550/arXiv.1503.02531
– ident: 10331_CR13
– ident: 10331_CR8
– ident: 10331_CR17
  doi: 10.1109/SP.2016.41
– volume: 54
  start-page: 1
  issue: 2
  year: 2021
  ident: 10331_CR27
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3386252
  contributor:
    fullname: Z Wang
– ident: 10331_CR29
– ident: 10331_CR21
  doi: 10.1007/978-3-030-68737-3_3
– ident: 10331_CR23
– ident: 10331_CR10
  doi: 10.1145/2046684.2046692
– volume: 53
  start-page: 1
  issue: 6
  year: 2020
  ident: 10331_CR18
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3417978
  contributor:
    fullname: J Qiu
– ident: 10331_CR5
– ident: 10331_CR16
– volume: 23
  start-page: 3233
  issue: 4
  year: 2020
  ident: 10331_CR26
  publication-title: Cluster Computing
  doi: 10.1007/s10586-020-03083-5
  contributor:
    fullname: R Taheri
– ident: 10331_CR6
  doi: 10.1007/978-3-319-66399-9_4
– volume: 50
  start-page: 41
  issue: 3
  year: 2017
  ident: 10331_CR30
  publication-title: ACM Computing Surveys (CSUR)
  contributor:
    fullname: Y Ye
– ident: 10331_CR9
SSID ssj0016275
Score 2.377853
Snippet The android ecosystem (smartphones, tablets, etc.) has grown manifold in the last decade. However, the exponential surge of android malware is threatening the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 567
SubjectTerms Algorithms
Business and Management
Classifiers
Control
Deep learning
Distillation
Information systems
IT in Business
Machine learning
Malware
Management of Computing and Information Systems
Neural networks
Operations Research/Decision Theory
Perturbation
Robustness
Smartphones
Systems Theory
Tablet computers
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4gXPRgfEYUzR68aQPdXfrwYqpCiAmEKCTcmn3hhRSk5QB3_7c7Swtoor1uO4fO7Mzszsz3IXQbuswkAcqcVJUIHKYagcNN5HMaVPExRERfwn1Ht-d1hux11ByVUKeYhYG2ysInWketphLuyOvEGBJpUpMx1LmAWwCZ1R9nnw7wR0GdNSfT2EMV4jIo2FaeWr3-26aiAGi89vAFm8rkLPkATT5G59tWXGKcEqWus_oZpLaZ569iqY1B7SN0mCePOFpr-xiVdHKCDnYgBU_R18D2wabYMi2nHOxrssTvC0A0ns5xl0_MusYvOrNNWAkGNrRJ-oCjZPPNEkf2pT6MW4E_xFEOPY6hT_5jVziOsgzm9DFPlJE6NsdinZ6hYbs1eO44OdWCI80ezBzGeKCJZMoTrnGPQjWpIET7TTJmnLuhUB4n3GjVVyGnKhQh4KQBFE0oPCo1PUflZJroC4QlA6pwBQiggnmeCKQyj_SUH9AGV0EV3RX_Np6tETXiLXYyaCI2moitJuJVFdWK3x_nuyuNt7ZQRfeFSrbLf0u7_F_aFdoHNvl1Y04NlbP5Ql-bnCMTN7k5fQOkvtUQ
  priority: 102
  providerName: ProQuest
Title Towards Adversarially Superior Malware Detection Models: An Adversary Aware Proactive Approach using Adversarial Attacks and Defenses
URI https://link.springer.com/article/10.1007/s10796-022-10331-z
https://www.proquest.com/docview/2793253083/abstract/
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5BuSwHYB9oy0s-7G0JamznxS3stiBWBbTbSuwpsmN3D1QpIumB3vnfzLgJLY89kEMixclIsccz4_ibbwC-Jb7EIMDgStXo2JOmE3sKPZ_XEUaNyCNGOf3v6F-EZ0N5fh1cL_K4Hdi92ZF0hnop1y1yeFmOlkMI35utwlpAZalbsJae_v3Vfdo8IOJdt86i-YPhSZ0r87aU5_5oEWS-2Bd17qa3CYMmaWeOMrk5mlb6KJ-95nB8z5dswUYdfrJ0ri8fYcUWn2B9iZTwMzwMHJK2ZK5Wc6lIQ8f37M-UOJEnd6yvxthu2U9bORhXwaie2rg8Zmnx9M49S91DV5SwRRaVpTV5OSOk_b9l4SytKsr0Z6owKHWEC2tbfoFhrzv4cebVxRq8HGdx5UmpYstzaULto4HVJhCacxsFfCSV8hNtQsUV6kVkEiVMohNiWiMym0SHIrdiG1rFpLBfgeWSio0b4hDVMgx1nBs88tBEsegoE7fhezNk2e2ckyNbsC9T52bYuZnr3GzWhr1mVLN6fpYZR7PEA4HxZxsOm1FaNP9f2s77Ht-FD1Sffg712YNWdTe1-xjFVPoAVuPe6UGtu3g96V5c_ca7ff8Sz0OePgLMbu4G
link.rule.ids 315,786,790,11965,12792,21416,27957,27958,33408,33779,36210,41116,41558,42185,42627,43635,43840,44421,52146,52269,74392,74659,75275
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BOwAD4ikKBTywQUQbu3mwoPBSebRCUCS2yI5dliotJAyw87-5c10KSJDVyQ258z3su-8D2IubApMAjZWqVpEndCPyJEY-r8G17FNEDDM67-h0g_aDuHpsPboDt8K1VU58onXUepjRGfmhj4bktzhmDMejZ49Yo-h21VFozEJVcCxVKlA9Oe_e3n3dIxAGry25aCthpuLGZtzwXGgbcH10RZw3vfefoWmab_66IrWR52IJFl3KyJKxjpdhxuQrsPANSHAVPnq2-7Vgll-5kGRVgzd2_0o4xsMX1pEDXDfszJS29SpnxIE2KI5Ykn9988YS-9ItDVmRF2SJAxxn1B3_9F04S8qSpvOZzDVK7WMxbIo1eLg47522PUew4GW480pPCBkZPxM6UE10ikq3uPJ9E7b8vpCyGSsdSF-iLkMdS65jFRM6GgHQxCrgmeHrUMmHudkAlgkiCNeE-6lEEKgo0_hkgQ4j3pA6qsH-5N-mozGORjpFTCZNpKiJ1Goifa9BffL7U7eninRqATU4mKhkuvy3tM3_pe3CXLvXuUlvLrvXWzBPfPLj1pw6VMqXV7ONWUepdpxpfQJbx9RD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZ4SAgGxFOUpwc2iGht58WCIiCUV1WJVmKL7NhlqVJowlB2_jd3rtsCEmR14sF3vjvH330fIcdxQ0ARoOGkqlXkCV2PPAmZz6tzLXuYEcMc_3c8toJmV9w9-88O_1Q6WOUkJtpArQc5_iM_Y-BIzOdQMZz1HCyifZVevL55qCCFN61OTmOeLGKRjWoGUXozvVFANl57-MJNBTWLa6BxbXShheIyCEqcN7yPn0lqVnn-uiy1OShdI6uueKTJ2NrrZM4UG2TlG6XgJvnsWBxsSa3ScinRv_oj-vSOjMaDIX2UfRg39MpUFoRVUFRD65fnNCmm34xoYl9qY7sVxkOaOOpxijj5l--T06SqsE-fykLDrD04Fptyi3TT685l03NSC14Oe7DyhJCRYbnQgWpAeFTa54oxE_qsJ6RsxEoHkkmwaqhjyXWsYuRJQyqaWAU8N3ybLBSDwuwQmguUCtfIAKpEEKgo1_DkgQ4jXpc6qpGTydpmr2NGjWzGnYyWyMASmbVE9lEj-5Plz9zuKrOZL9TI6cQks-G_Z9v9f7YjsgQ-lT3ctu73yDIKy48xOvtkoRq-mwMoPyp1aP3qC5yL1xI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Adversarially+Superior+Malware+Detection+Models%3A+An+Adversary+Aware+Proactive+Approach+using+Adversarial+Attacks+and+Defenses&rft.jtitle=Information+systems+frontiers&rft.au=Rathore%2C+Hemant&rft.au=Samavedhi%2C+Adithya&rft.au=Sahay%2C+Sanjay+K.&rft.au=Sewak%2C+Mohit&rft.date=2023-04-01&rft.pub=Springer+US&rft.issn=1387-3326&rft.eissn=1572-9419&rft.volume=25&rft.issue=2&rft.spage=567&rft.epage=587&rft_id=info:doi/10.1007%2Fs10796-022-10331-z&rft.externalDocID=10_1007_s10796_022_10331_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-3326&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-3326&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-3326&client=summon