Inference for New Environmental Contours Using Extreme Value Analysis

Environmental contours are often used in engineering applications to describe risky combinations of variables according to some definition of an exceedance probability. These contours can be used to both understand multivariate extreme events in environmental processes and mitigate against their eff...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural, biological, and environmental statistics Vol. 30; no. 3; pp. 638 - 662
Main Authors Simpson, Emma S., Tawn, Jonathan A.
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 01.09.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Environmental contours are often used in engineering applications to describe risky combinations of variables according to some definition of an exceedance probability. These contours can be used to both understand multivariate extreme events in environmental processes and mitigate against their effects, e.g. in the design of structures. Such ideas are also useful in other disciplines, with the types of extreme events of interest depending on the context. Despite clear connections with extreme value modelling, much of this methodology has so far not been exploited in the estimation of environmental contours; in this work, we provide a way to unify these areas. We focus on the bivariate case, introducing two new definitions of environmental contours. We develop techniques for their inference which exploit a non-standard radial and angular decomposition of the variables, building on previous work for estimating limit sets. Specifically, we model the upper tails of the radial distribution using a generalised Pareto distribution, with adaptable smoothing of the parameters of this distribution. Our methods work equally well for asymptotically independent and asymptotically dependent variables, so do not require us to distinguish between different joint tail forms. Simulations demonstrate reasonable success of the estimation procedure, and we apply our approach to an air pollution data set, which is of interest in the context of environmental impacts on health. Supplementary materials accompanying this paper appear online.
AbstractList Environmental contours are often used in engineering applications to describe risky combinations of variables according to some definition of an exceedance probability. These contours can be used to both understand multivariate extreme events in environmental processes and mitigate against their effects, e.g. in the design of structures. Such ideas are also useful in other disciplines, with the types of extreme events of interest depending on the context. Despite clear connections with extreme value modelling, much of this methodology has so far not been exploited in the estimation of environmental contours; in this work, we provide a way to unify these areas. We focus on the bivariate case, introducing two new definitions of environmental contours. We develop techniques for their inference which exploit a non-standard radial and angular decomposition of the variables, building on previous work for estimating limit sets. Specifically, we model the upper tails of the radial distribution using a generalised Pareto distribution, with adaptable smoothing of the parameters of this distribution. Our methods work equally well for asymptotically independent and asymptotically dependent variables, so do not require us to distinguish between different joint tail forms. Simulations demonstrate reasonable success of the estimation procedure, and we apply our approach to an air pollution data set, which is of interest in the context of environmental impacts on health.Supplementary materials accompanying this paper appear online.
Environmental contours are often used in engineering applications to describe risky combinations of variables according to some definition of an exceedance probability. These contours can be used to both understand multivariate extreme events in environmental processes and mitigate against their effects, e.g. in the design of structures. Such ideas are also useful in other disciplines, with the types of extreme events of interest depending on the context. Despite clear connections with extreme value modelling, much of this methodology has so far not been exploited in the estimation of environmental contours; in this work, we provide a way to unify these areas. We focus on the bivariate case, introducing two new definitions of environmental contours. We develop techniques for their inference which exploit a non-standard radial and angular decomposition of the variables, building on previous work for estimating limit sets. Specifically, we model the upper tails of the radial distribution using a generalised Pareto distribution, with adaptable smoothing of the parameters of this distribution. Our methods work equally well for asymptotically independent and asymptotically dependent variables, so do not require us to distinguish between different joint tail forms. Simulations demonstrate reasonable success of the estimation procedure, and we apply our approach to an air pollution data set, which is of interest in the context of environmental impacts on health. Supplementary materials accompanying this paper appear online.
Author Tawn, Jonathan A.
Simpson, Emma S.
Author_xml – sequence: 1
  givenname: Emma S.
  orcidid: 0000-0001-9183-5756
  surname: Simpson
  fullname: Simpson, Emma S.
– sequence: 2
  givenname: Jonathan A.
  surname: Tawn
  fullname: Tawn, Jonathan A.
BookMark eNp9kLFOwzAQhi1UJFrgBZgsMRvOvthOxqoKUKmChbJaTuKgVKlT7BTo22MoEwPT3fB_p_--GZn4wTtCrjjccAB9GzkKiQxExgAUF0yckCmXqJlQBU7SDrlkmnN9RmYxbgA4KhBTUi5964LztaPtEOij-6Clf-_C4LfOj7ani8GPwz5Euo6df6Xl5xjc1tEX2-8dnXvbH2IXL8hpa_voLn_nOVnflc-LB7Z6ul8u5itWIy9GlmWqAg6Yo5S2aRF5i7rJoLI2LxrlmjpvnVaiqATIqpJaZGB1VWS1AiW0wnNyfby7C8Pb3sXRbFK3VCIaFMglzwXHlBLHVB2GGINrzS50WxsOhoP51mWOukzSZX50GZGg_A9Ud6Mdu_R-sF3_H_oFoUNvug
CitedBy_id crossref_primary_10_1214_24_EJS2300
Cites_doi 10.1111/rssc.12159
10.1111/1467-9868.00080
10.1093/biomet/77.2.245
10.1080/01621459.2018.1529596
10.1111/j.2517-6161.1991.tb01857.x
10.1080/00401706.2014.998345
10.1016/S0167-7152(01)00124-9
10.1111/j.2517-6161.1991.tb01830.x
10.1017/apr.2021.51
10.1080/15326348708807044
10.1111/j.2517-6161.1990.tb01796.x
10.1016/j.marstruc.2018.03.007
10.2307/2344839
10.1061/JMCEA3.0001848
10.1016/j.coastaleng.2017.03.002
10.1214/17-AOAS1089
10.1016/j.jmva.2010.02.010
10.1002/env.2190
10.2307/1426971
10.1016/j.oceaneng.2021.109504
10.1080/01621459.1960.10483368
10.1016/j.oceaneng.2012.12.034
10.1111/1467-9876.00118
10.1093/biomet/75.3.397
10.3150/12-BEJ471
10.1016/j.strusafe.2014.12.003
10.1093/rfs/hhg058
10.1201/9781315370279
10.2307/3214210
10.1016/j.marstruc.2020.102863
10.1239/aap/1035228000
10.1016/j.jmva.2013.08.018
10.1016/j.oceaneng.2019.106194
10.1007/s10687-022-00437-7
10.1080/01621459.1994.10476870
10.1007/s10687-012-0156-z
10.1023/A:1009963131610
10.2307/3315863
10.1007/s10260-015-0297-8
10.1111/j.1467-9868.2004.02050.x
ContentType Journal Article
Copyright The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
DOI 10.1007/s13253-024-00612-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Environmental Sciences
EISSN 1537-2693
EndPage 662
ExternalDocumentID 10_1007_s13253_024_00612_2
GroupedDBID 06D
0R~
0VX
0VY
199
1N0
203
2AX
2JN
2KG
2LR
2VQ
2XV
3-Y
30V
4.4
406
408
40D
40E
5GY
8UJ
95.
96X
A8Z
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWIL
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
AAZMS
ABAKF
ABAWQ
ABBHK
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFAN
ABFSG
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQDR
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ABXSQ
ABYWD
ACAOD
ACBXY
ACDIW
ACDTI
ACGFS
ACHJO
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACMTB
ACOKC
ACPIV
ACPRK
ACSTC
ACTMH
ACUHS
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADODI
ADRFC
ADTPH
ADULT
ADURQ
ADXHL
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AELLO
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUPB
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFRAH
AFVYC
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGLNM
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIHAF
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARMRJ
ASPBG
AS~
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
BAPOH
BGNMA
CAG
CITATION
COF
CSCUP
D0L
DDRTE
DNIVK
DPUIP
DQDLB
DSRWC
DU5
EBD
EBLON
EBS
ECEWR
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GIFXF
GJIRD
GNWQR
GQ7
GXS
H13
HF~
HGD
HMJXF
HQ6
HRMNR
HVGLF
HZ~
IAO
IEP
IGS
IKXTQ
IPSME
ISR
ITM
IWAJR
I~Z
J-C
J0Z
JAA
JAAYA
JBMMH
JBSCW
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
JZLTJ
KOV
LLZTM
M4Y
ML.
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9R
PT4
R9I
RNS
ROL
RSV
S1Z
S27
S3B
SA0
SHX
SISQX
SJN
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
W48
WK8
Z45
ZMTXR
~KM
ID FETCH-LOGICAL-c319t-446b01038355adf331f37d40baa89d6edc8fe7629b205bb57240a7b94c6062763
ISSN 1085-7117
IngestDate Mon Jul 28 16:11:17 EDT 2025
Thu Jul 24 02:11:29 EDT 2025
Thu Apr 24 22:56:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-446b01038355adf331f37d40baa89d6edc8fe7629b205bb57240a7b94c6062763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9183-5756
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s13253-024-00612-2.pdf
PQID 3231518213
PQPubID 2044458
PageCount 25
ParticipantIDs proquest_journals_3231518213
crossref_primary_10_1007_s13253_024_00612_2
crossref_citationtrail_10_1007_s13253_024_00612_2
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of agricultural, biological, and environmental statistics
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References SG Coles (612_CR8) 1991; 53
EJ Gumbel (612_CR16) 1960; 55
SN Wood (612_CR47) 2017
AW Ledford (612_CR28) 1998; 30
D Castro-Camilo (612_CR6) 2018; 12
WF Eddy (612_CR14) 1981; 13
PJ Northrop (612_CR34) 2017; 66
K Yu (612_CR50) 2001; 54
AW Ledford (612_CR27) 1997; 59
SG Coles (612_CR9) 1994; 43
JHJ Einmahl (612_CR15) 2013; 16
C Keef (612_CR26) 2013; 24
DN Politis (612_CR36) 1994; 89
JL Wadsworth (612_CR45) 2013; 19
N Nolde (612_CR32) 2014; 123
612_CR46
AF Haselsteiner (612_CR18) 2017; 123
612_CR48
JL Wadsworth (612_CR44) 2016; 58
AC Davison (612_CR12) 1990; 52
C Scarrott (612_CR39) 2012; 10
612_CR41
SG Coles (612_CR10) 1999; 2
V Barnett (612_CR2) 1976; 139
AM Hasofer (612_CR20) 1974; 100
JE Heffernan (612_CR22) 2004; 66
AA Balkema (612_CR1) 2010; 101
612_CR35
W Chai (612_CR7) 2018; 60
S-H Poon (612_CR37) 2004; 17
612_CR30
JT Bruun (612_CR4) 1998; 47
AB Huseby (612_CR25) 2015; 54
SJ Sheather (612_CR40) 1991; 53
H Brozius (612_CR3) 1987; 24
CJR Murphy-Barltrop (612_CR31) 2023; 34
E Mackay (612_CR29) 2021; 75
E Ross (612_CR38) 2020; 195
A Hafver (612_CR17) 2022; 25
M Hubert (612_CR23) 2015; 24
BD Youngman (612_CR49) 2019; 114
R Davis (612_CR11) 1987; 3
612_CR21
DJ Dupuis (612_CR13) 2002; 30
AF Haselsteiner (612_CR19) 2021; 236
AB Huseby (612_CR24) 2013; 60
JA Tawn (612_CR43) 1990; 77
JA Tawn (612_CR42) 1988; 75
J-J Cai (612_CR5) 2011; 39
N Nolde (612_CR33) 2022; 54
References_xml – volume: 66
  start-page: 93
  issue: 1
  year: 2017
  ident: 612_CR34
  publication-title: J R Stat Soc Ser C (Appl Stat)
  doi: 10.1111/rssc.12159
– volume: 59
  start-page: 475
  issue: 2
  year: 1997
  ident: 612_CR27
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/1467-9868.00080
– volume: 77
  start-page: 245
  issue: 2
  year: 1990
  ident: 612_CR43
  publication-title: Biometrika
  doi: 10.1093/biomet/77.2.245
– volume: 114
  start-page: 1865
  issue: 528
  year: 2019
  ident: 612_CR49
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2018.1529596
– volume: 53
  start-page: 683
  issue: 3
  year: 1991
  ident: 612_CR40
  publication-title: J R Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1991.tb01857.x
– ident: 612_CR35
– volume: 58
  start-page: 116
  issue: 1
  year: 2016
  ident: 612_CR44
  publication-title: Technometrics
  doi: 10.1080/00401706.2014.998345
– volume: 54
  start-page: 437
  year: 2001
  ident: 612_CR50
  publication-title: Stat Probab Lett
  doi: 10.1016/S0167-7152(01)00124-9
– ident: 612_CR48
– ident: 612_CR21
– volume: 34
  issue: 5
  year: 2023
  ident: 612_CR31
  publication-title: Environmetrics
– volume: 53
  start-page: 377
  issue: 2
  year: 1991
  ident: 612_CR8
  publication-title: J R Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1991.tb01830.x
– ident: 612_CR30
– volume: 54
  start-page: 688
  issue: 3
  year: 2022
  ident: 612_CR33
  publication-title: Adv Appl Probab
  doi: 10.1017/apr.2021.51
– volume: 39
  start-page: 1803
  issue: 3
  year: 2011
  ident: 612_CR5
  publication-title: Ann Stat
– volume: 3
  start-page: 1
  issue: 1
  year: 1987
  ident: 612_CR11
  publication-title: Commun Stat Stoch Models
  doi: 10.1080/15326348708807044
– volume: 52
  start-page: 393
  issue: 3
  year: 1990
  ident: 612_CR12
  publication-title: J R Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1990.tb01796.x
– volume: 60
  start-page: 34
  year: 2018
  ident: 612_CR7
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2018.03.007
– volume: 10
  start-page: 33
  issue: 1
  year: 2012
  ident: 612_CR39
  publication-title: REVSTAT Stat J
– volume: 139
  start-page: 318
  issue: 3
  year: 1976
  ident: 612_CR2
  publication-title: J R Stat Soc Ser A (Gen)
  doi: 10.2307/2344839
– volume: 100
  start-page: 111
  issue: 1
  year: 1974
  ident: 612_CR20
  publication-title: J Eng Mech Div
  doi: 10.1061/JMCEA3.0001848
– volume: 123
  start-page: 42
  year: 2017
  ident: 612_CR18
  publication-title: Coast Eng
  doi: 10.1016/j.coastaleng.2017.03.002
– volume: 12
  start-page: 283
  issue: 1
  year: 2018
  ident: 612_CR6
  publication-title: Ann Appl Stat
  doi: 10.1214/17-AOAS1089
– volume: 101
  start-page: 1738
  issue: 7
  year: 2010
  ident: 612_CR1
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2010.02.010
– volume: 24
  start-page: 13
  issue: 1
  year: 2013
  ident: 612_CR26
  publication-title: Environmetrics
  doi: 10.1002/env.2190
– ident: 612_CR41
– volume: 13
  start-page: 751
  issue: 4
  year: 1981
  ident: 612_CR14
  publication-title: Adv Appl Probab
  doi: 10.2307/1426971
– volume: 236
  year: 2021
  ident: 612_CR19
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2021.109504
– volume: 55
  start-page: 698
  issue: 292
  year: 1960
  ident: 612_CR16
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1960.10483368
– volume: 60
  start-page: 124
  year: 2013
  ident: 612_CR24
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2012.12.034
– volume: 47
  start-page: 405
  issue: 3
  year: 1998
  ident: 612_CR4
  publication-title: J R Stat Soc Ser C (Appl Stat)
  doi: 10.1111/1467-9876.00118
– volume: 75
  start-page: 397
  issue: 3
  year: 1988
  ident: 612_CR42
  publication-title: Biometrika
  doi: 10.1093/biomet/75.3.397
– volume: 19
  start-page: 2689
  issue: 5B
  year: 2013
  ident: 612_CR45
  publication-title: Bernoulli
  doi: 10.3150/12-BEJ471
– volume: 54
  start-page: 32
  year: 2015
  ident: 612_CR25
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2014.12.003
– volume: 17
  start-page: 581
  issue: 2
  year: 2004
  ident: 612_CR37
  publication-title: Rev Financ Stud
  doi: 10.1093/rfs/hhg058
– volume-title: Generalized additive models: an introduction with R
  year: 2017
  ident: 612_CR47
  doi: 10.1201/9781315370279
– ident: 612_CR46
– volume: 24
  start-page: 852
  issue: 4
  year: 1987
  ident: 612_CR3
  publication-title: J Appl Probab
  doi: 10.2307/3214210
– volume: 75
  year: 2021
  ident: 612_CR29
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2020.102863
– volume: 30
  start-page: 197
  issue: 1
  year: 1998
  ident: 612_CR28
  publication-title: Adv Appl Probab
  doi: 10.1239/aap/1035228000
– volume: 123
  start-page: 85
  year: 2014
  ident: 612_CR32
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2013.08.018
– volume: 195
  year: 2020
  ident: 612_CR38
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2019.106194
– volume: 25
  start-page: 451
  year: 2022
  ident: 612_CR17
  publication-title: Extremes
  doi: 10.1007/s10687-022-00437-7
– volume: 89
  start-page: 1303
  issue: 428
  year: 1994
  ident: 612_CR36
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1994.10476870
– volume: 43
  start-page: 1
  issue: 1
  year: 1994
  ident: 612_CR9
  publication-title: J R Stat Soc Ser C (Appl Stat)
– volume: 16
  start-page: 121
  year: 2013
  ident: 612_CR15
  publication-title: Extremes
  doi: 10.1007/s10687-012-0156-z
– volume: 2
  start-page: 339
  issue: 4
  year: 1999
  ident: 612_CR10
  publication-title: Extremes
  doi: 10.1023/A:1009963131610
– volume: 30
  start-page: 17
  issue: 1
  year: 2002
  ident: 612_CR13
  publication-title: Can J Stat
  doi: 10.2307/3315863
– volume: 24
  start-page: 177
  year: 2015
  ident: 612_CR23
  publication-title: Stat Methods Appl
  doi: 10.1007/s10260-015-0297-8
– volume: 66
  start-page: 497
  issue: 3
  year: 2004
  ident: 612_CR22
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/j.1467-9868.2004.02050.x
SSID ssj0013602
Score 2.412722
Snippet Environmental contours are often used in engineering applications to describe risky combinations of variables according to some definition of an exceedance...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 638
SubjectTerms Air pollution
Asymptotic methods
Bivariate analysis
Contours
Dependent variables
Environmental impact
Estimation
Extreme values
Independent variables
Inference
Radial distribution
Title Inference for New Environmental Contours Using Extreme Value Analysis
URI https://www.proquest.com/docview/3231518213
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKUSU4IFhaUSjIB26rVNk4cZLjCqUqqLSXXbQ3y46dqlIbUDcVtL-eGdtxGloqyiVaZfOS5_N4Xt-YkI-lUdLUqYpq3ego5SqLVMlhXmkJ642K66LBjO7XY364TL-sstWQirHskk7t1zf38kr-R6pwDuSKLNlHSDY8FE7Ab5AvHEHCcPwnGX_u2Xq2WBBLFauBt2ajAm0Hz1lPXWFA9avDaOD0mzy_GtqR_MU8laeXoS0HysF1a0KR9gWfZvQuZCa5ps8haHPmS01A215cyOmtKMHPNoTtfTDVBx6SLFRWjQOPWFWNuY5AjLF6FDkN-czRMvdNr1vzKOFuQ8Re-fqkzNlt39xqUu6avvhFmTuVfUffx57_zJIM09FpZE02T6gcNdc-PhEHy6MjsahWiyfkaQJeBarFZTIfkk7cl6j6b_ccK8e0_PMNYztmvIxb22TxkrzwUqNzh5BXZMO0E_J8HiRoJmTLbTp6PSE7I4xQr9zXr0kV4EQBThTgRMeX9nCiFk7Uw4laONEeTttkeVAtPh1GfpeNqAb120UpTFDc7ANM8UzqhrFZw3KdxkrKotTcaJiuBpbMUiVxplSWgw0oc1WmNccW15ztkM32e2veEJo3BViARamUwraTTOlYF0zBneAUxIXZJbN-zETtW9DjTijnYmiejeMsYJyFHWeR7JJpuOeHa8Dy4NV7vSiEn6hrwcCHycCPnrG3D__9jjwbgL5HNrvLK_MebM5OfbBI-Q2iCoCQ
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inference+for+New+Environmental+Contours+Using+Extreme+Value+Analysis&rft.jtitle=Journal+of+agricultural%2C+biological%2C+and+environmental+statistics&rft.au=Simpson%2C+Emma+S&rft.au=Tawn+Jonathan+A&rft.date=2025-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1085-7117&rft.eissn=1537-2693&rft.volume=30&rft.issue=3&rft.spage=638&rft.epage=662&rft_id=info:doi/10.1007%2Fs13253-024-00612-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-7117&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-7117&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-7117&client=summon