A robust semi-supervised deep learning approach for emotion recognition using EEG signals
Many deep learning models are recently proposed for Electroencephalography (EEG) classification tasks. However, they are full-supervised and require large amounts of labeled data. Labeling EEG signals is a time-consuming and expensive process needing many trials and careful analysis by the experts....
Saved in:
Published in | International journal of machine learning and cybernetics Vol. 15; no. 10; pp. 4445 - 4458 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1868-8071 1868-808X |
DOI | 10.1007/s13042-024-02158-8 |
Cover
Abstract | Many deep learning models are recently proposed for Electroencephalography (EEG) classification tasks. However, they are full-supervised and require large amounts of labeled data. Labeling EEG signals is a time-consuming and expensive process needing many trials and careful analysis by the experts. Recently, many modern semi-supervised methods are proposed that require less supervised information to achieve competitive performance with that of supervised ones, but they are mainly developed in the computer vision domain and adapting these methods for EEG applications is an open issue. This paper presents a robust semi-supervised deep Learning method. To this end, we design appropriate augmentations for EEG signals leading to promising results in a low-supervised setting. Especially, compared to naïve Gaussian noise used in previous work, the proposed strong augmentation boosts the performance of our method by a large margin. We also enhance our method by utilizing
distribution alignment
and
relative confidence threshold
techniques. We carry out several experiments on the Database for Emotion Analysis using Physiological dataset in both valence/arousal emotion recognition tasks. The results confirm that the proposed method leverage the unlabeled information effectively and significantly outperforms the peer methods. |
---|---|
AbstractList | Many deep learning models are recently proposed for Electroencephalography (EEG) classification tasks. However, they are full-supervised and require large amounts of labeled data. Labeling EEG signals is a time-consuming and expensive process needing many trials and careful analysis by the experts. Recently, many modern semi-supervised methods are proposed that require less supervised information to achieve competitive performance with that of supervised ones, but they are mainly developed in the computer vision domain and adapting these methods for EEG applications is an open issue. This paper presents a robust semi-supervised deep Learning method. To this end, we design appropriate augmentations for EEG signals leading to promising results in a low-supervised setting. Especially, compared to naïve Gaussian noise used in previous work, the proposed strong augmentation boosts the performance of our method by a large margin. We also enhance our method by utilizing distribution alignment and relative confidence threshold techniques. We carry out several experiments on the Database for Emotion Analysis using Physiological dataset in both valence/arousal emotion recognition tasks. The results confirm that the proposed method leverage the unlabeled information effectively and significantly outperforms the peer methods. Many deep learning models are recently proposed for Electroencephalography (EEG) classification tasks. However, they are full-supervised and require large amounts of labeled data. Labeling EEG signals is a time-consuming and expensive process needing many trials and careful analysis by the experts. Recently, many modern semi-supervised methods are proposed that require less supervised information to achieve competitive performance with that of supervised ones, but they are mainly developed in the computer vision domain and adapting these methods for EEG applications is an open issue. This paper presents a robust semi-supervised deep Learning method. To this end, we design appropriate augmentations for EEG signals leading to promising results in a low-supervised setting. Especially, compared to naïve Gaussian noise used in previous work, the proposed strong augmentation boosts the performance of our method by a large margin. We also enhance our method by utilizing distribution alignment and relative confidence threshold techniques. We carry out several experiments on the Database for Emotion Analysis using Physiological dataset in both valence/arousal emotion recognition tasks. The results confirm that the proposed method leverage the unlabeled information effectively and significantly outperforms the peer methods. |
Author | Aghdasi, Hadi S. Salehpour, Pedram Al-Asadi, Ahmed Waleed |
Author_xml | – sequence: 1 givenname: Ahmed Waleed surname: Al-Asadi fullname: Al-Asadi, Ahmed Waleed organization: Computer Engineering Department, Faculty of Electrical and Computer Engineering, University of Tabriz – sequence: 2 givenname: Pedram orcidid: 0000-0002-1300-7848 surname: Salehpour fullname: Salehpour, Pedram email: Psalehpoor@tabrizu.ac.ir organization: Computer Engineering Department, Faculty of Electrical and Computer Engineering, University of Tabriz – sequence: 3 givenname: Hadi S. surname: Aghdasi fullname: Aghdasi, Hadi S. organization: Computer Engineering Department, Faculty of Electrical and Computer Engineering, University of Tabriz |
BookMark | eNp9UE1Lw0AQXaSCtfYPeFrwHN2vNJtjKbUKBS8Kelo2ySRuaXfjbiL47900ouChA8O8w3szb94lmlhnAaFrSm4pIdldoJwIlhAmYtNUJvIMTalcREDk6-QXZ_QCzUPYkVgLwjlhU_S2xN4VfehwgINJQt-C_zQBKlwBtHgP2ltjG6zb1jtdvuPaeQwH1xlnsYfSNdYccR8G2nq9wcE0Vu_DFTqv44D5z5yhl_v18-oh2T5tHlfLbVJymneJIKkQuqBEVBkQQTTVoqZap5DJoiA5rXUhRJHGT2GRSuCCUShpzgpWZnVV8xm6GfdGgx89hE7tXO8HB4rHrTzNeS4ji42s0rsQPNSq9eag_ZeiRA0pqjFFFVNUxxTVIJL_RKXp9PBu57XZn5byURriHduA_3N1QvUNrnqIxA |
CitedBy_id | crossref_primary_10_22399_ijcesen_829 crossref_primary_10_3389_frai_2024_1467051 crossref_primary_10_1088_1402_4896_ad5237 crossref_primary_10_1109_ACCESS_2025_3536549 crossref_primary_10_1088_2631_8695_adb00d crossref_primary_10_1007_s13042_025_02556_6 |
Cites_doi | 10.3390/e24050577 10.1109/TAFFC.2020.2994159 10.1038/nrn1432 10.3390/app12052527 10.1109/TNSRE.2022.3175464 10.1109/TAFFC.2020.3025777 10.1109/TAFFC.2017.2714671 10.1109/TCDS.2020.2976112 10.1016/j.neuropsychologia.2020.107506 10.1109/ACCESS.2022.3155647 10.1109/TPAMI.2018.2858821 10.1016/j.compbiomed.2021.104696 10.1016/j.neunet.2005.03.004 10.1016/j.bspc.2019.101756 10.1109/TNNLS.2020.3008938 10.1088/1741-2552/aace8c 10.1109/T-AFFC.2011.15 10.1109/ACII52823.2021.9597449 10.1109/IJCNN.2018.8489331 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s13042-024-02158-8 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1868-808X |
EndPage | 4458 |
ExternalDocumentID | 10_1007_s13042_024_02158_8 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ JQ2 |
ID | FETCH-LOGICAL-c319t-40544ab104d7e040a1a4f1aa5e78bb091fab44b5100e658e3421ec192b2c7fdf3 |
IEDL.DBID | AGYKE |
ISSN | 1868-8071 |
IngestDate | Fri Jul 25 11:12:48 EDT 2025 Tue Jul 01 03:51:05 EDT 2025 Thu Apr 24 22:56:55 EDT 2025 Fri Feb 21 02:38:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | EEG emotion recognition Virtual adversarial training Semi-supervised learning EEG augmentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-40544ab104d7e040a1a4f1aa5e78bb091fab44b5100e658e3421ec192b2c7fdf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1300-7848 |
PQID | 3104359398 |
PQPubID | 2043904 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3104359398 crossref_primary_10_1007_s13042_024_02158_8 crossref_citationtrail_10_1007_s13042_024_02158_8 springer_journals_10_1007_s13042_024_02158_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241000 2024-10-00 20241001 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 20241000 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | International journal of machine learning and cybernetics |
PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Berthelot, Carlini, Goodfellow, Papernot, Oliver, Raffel (CR26) 2019; 32 Salama, El-Khoribi, Shoman, Shalaby (CR9) 2018; 9 Rahman, Sarkar, Hossain, Hossain, Islam, Hossain, Quinn, Moni (CR13) 2021; 136 Samavat, Khalili, Ayati, Ayati (CR17) 2022; 10 Zhong, Wang, Miao (CR10) 2020; 13 Peng, Jin, Kong, Nie, Lu, Cichocki (CR21) 2022; 30 Miyato, Maeda, Koyama, Ishii (CR33) 2018; 41 Xu, Liu, Hao, Wen, Huang (CR3) 2010; 27 Alarcao, Fonseca (CR14) 2017; 10 Wang, Wu, Zhang, Xu, Zhang, Wu, Coleman (CR6) 2020; 146 Tao, Li, Song, Cheng, Liu, Wan, Chen (CR8) 2020; 14 CR12 CR32 CR30 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (CR34) 2018; 15 Gao, Wang, Yang, Li, Ma, Chen (CR16) 2020; 13 Zhang, Wang, Hou, Wu, Wang, Okumura, Shinozaki (CR29) 2021; 34 Peng, Kong, Qin, Nie, Fang, Lu, Cichocki (CR19) 2021; 70 Sajjadi, Javanmardi, Tasdizen (CR24) 2016; 29 CR4 Bachman, Alsharif, Precup (CR23) 2014; 27 Li, Shen, Peng, Kong, Lu (CR20) 2022; 69 Luo, Tian, Yu, Chen, Wu (CR31) 2022; 24 Sohn, Berthelot, Carlini, Zhang, Zhang, Raffel, Cubuk, Kurakin, Li (CR11) 2020; 33 CR28 CR27 CR25 CR22 Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (CR35) 2011; 3 Dalgleish (CR1) 2004; 5 Ioannou, Raouzaiou, Tzouvaras, Mailis, Karpouzis, Kollias (CR2) 2005; 18 Wei, Chen, Song, Lou, Li (CR5) 2020; 58 Khare, Bajaj (CR7) 2020; 32 Aguiñaga, Delgado, López-López, Téllez (CR15) 2022; 12 Zhao, Tsai, Salakhutdinov, Gordon (CR18) 2019; 32 2158_CR32 2158_CR30 T Miyato (2158_CR33) 2018; 41 M Sajjadi (2158_CR24) 2016; 29 SM Alarcao (2158_CR14) 2017; 10 2158_CR12 F Wang (2158_CR6) 2020; 146 H Zhao (2158_CR18) 2019; 32 X Li (2158_CR20) 2022; 69 SV Ioannou (2158_CR2) 2005; 18 VJ Lawhern (2158_CR34) 2018; 15 A Samavat (2158_CR17) 2022; 10 AR Aguiñaga (2158_CR15) 2022; 12 D Berthelot (2158_CR26) 2019; 32 T Dalgleish (2158_CR1) 2004; 5 SK Khare (2158_CR7) 2020; 32 Y Xu (2158_CR3) 2010; 27 ES Salama (2158_CR9) 2018; 9 B Zhang (2158_CR29) 2021; 34 P Zhong (2158_CR10) 2020; 13 2158_CR25 S Koelstra (2158_CR35) 2011; 3 Y Peng (2158_CR19) 2021; 70 2158_CR22 J Luo (2158_CR31) 2022; 24 Y Peng (2158_CR21) 2022; 30 K Sohn (2158_CR11) 2020; 33 P Bachman (2158_CR23) 2014; 27 C Wei (2158_CR5) 2020; 58 W Tao (2158_CR8) 2020; 14 2158_CR4 Z Gao (2158_CR16) 2020; 13 2158_CR28 2158_CR27 MM Rahman (2158_CR13) 2021; 136 |
References_xml | – ident: CR22 – volume: 24 start-page: 577 issue: 5 year: 2022 ident: CR31 article-title: Semi-supervised cross-subject emotion recognition based on stacked denoising autoencoder architecture using a fusion of multi-modal physiological signals publication-title: Entropy doi: 10.3390/e24050577 – volume: 9 start-page: 329 issue: 8 year: 2018 end-page: 337 ident: CR9 article-title: EEG-based emotion recognition using 3D convolutional neural networks publication-title: Int J Adv Comput Sci Appl – volume: 13 start-page: 1290 year: 2020 end-page: 301 ident: CR10 article-title: EEG-based emotion recognition using regularized graph neural networks publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2020.2994159 – volume: 5 start-page: 583 issue: 7 year: 2004 end-page: 589 ident: CR1 article-title: The emotional brain publication-title: Nat Rev Neurosci doi: 10.1038/nrn1432 – ident: CR4 – volume: 12 start-page: 2527 issue: 5 year: 2022 ident: CR15 article-title: EEG-based emotion recognition using deep learning and M3GP publication-title: Appl Sci doi: 10.3390/app12052527 – volume: 27 start-page: 8 issue: 1 year: 2010 end-page: 14 ident: CR3 article-title: Analysis of affective ECG signals toward emotion recognition publication-title: J Electron – ident: CR12 – ident: CR30 – volume: 69 start-page: 3349 year: 2022 end-page: 53 ident: CR20 article-title: Efficient sample and feature importance mining in semi-supervised EEG emotion recognition publication-title: IEEE Trans Circ Syst II Express Br – volume: 29 start-page: 1163 year: 2016 end-page: 1171 ident: CR24 article-title: Regularization with stochastic transformations and perturbations for deep semi-supervised learning publication-title: Adv Neural Inf Process Syst – volume: 30 start-page: 1288 year: 2022 end-page: 97 ident: CR21 article-title: OGSSL: a semi-supervised classification model coupled with optimal graph learning for EEG emotion recognition publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2022.3175464 – volume: 14 start-page: 382 year: 2020 end-page: 93 ident: CR8 article-title: EEG-based emotion recognition via channel-wise attention and self attention publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2020.3025777 – volume: 10 start-page: 374 issue: 3 year: 2017 end-page: 393 ident: CR14 article-title: Emotions recognition using EEG signals: a survey publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2017.2714671 – volume: 13 start-page: 945 issue: 4 year: 2020 end-page: 54 ident: CR16 article-title: A channel-fused dense convolutional network for EEG-based emotion recognition publication-title: IEEE Trans Cogn Dev Syst doi: 10.1109/TCDS.2020.2976112 – volume: 34 start-page: 18408 year: 2021 end-page: 19 ident: CR29 article-title: Flexmatch: boosting semi-supervised learning with curriculum pseudo labeling publication-title: Adv Neural Inf Process Syst – ident: CR25 – volume: 146 year: 2020 ident: CR6 article-title: Emotion recognition with convolutional neural network and EEG-based EFDMs publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2020.107506 – ident: CR27 – volume: 32 start-page: 5049 year: 2019 end-page: 5059 ident: CR26 article-title: Mixmatch: a holistic approach to semi-supervised learning publication-title: Adv Neural Inf Process Syst – volume: 10 start-page: 24520 year: 2022 end-page: 24527 ident: CR17 article-title: Deep learning model with adaptive regularization for EEG-based emotion recognition using temporal and frequency features publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3155647 – volume: 41 start-page: 1979 issue: 8 year: 2018 end-page: 1993 ident: CR33 article-title: Virtual adversarial training: a regularization method for supervised and semi-supervised learning publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2858821 – volume: 136 year: 2021 ident: CR13 article-title: Recognition of human emotions using EEG signals: a review publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104696 – volume: 18 start-page: 423 issue: 4 year: 2005 end-page: 435 ident: CR2 article-title: Emotion recognition through facial expression analysis based on a neurofuzzy network publication-title: Neural Netw doi: 10.1016/j.neunet.2005.03.004 – volume: 58 year: 2020 ident: CR5 article-title: EEG-based emotion recognition using simple recurrent units network and ensemble learning publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2019.101756 – volume: 32 start-page: 2901 year: 2020 end-page: 2909 ident: CR7 article-title: Time-frequency representation and convolutional neural network-based emotion recognition publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.3008938 – volume: 15 issue: 5 year: 2018 ident: CR34 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: J Neural Eng doi: 10.1088/1741-2552/aace8c – volume: 3 start-page: 18 issue: 1 year: 2011 end-page: 31 ident: CR35 article-title: Deap: a database for emotion analysis; using physiological signals publication-title: IEEE Trans Affect Comput doi: 10.1109/T-AFFC.2011.15 – volume: 27 start-page: 3365 year: 2014 end-page: 3373 ident: CR23 article-title: Learning with pseudo-ensembles publication-title: Adv Neural Inf Process Syst – ident: CR32 – volume: 33 start-page: 596 year: 2020 end-page: 608 ident: CR11 article-title: Fixmatch: simplifying semi-supervised learning with consistency and confidence publication-title: Adv Neural Inf Process Syst – ident: CR28 – volume: 70 start-page: 1 year: 2021 end-page: 11 ident: CR19 article-title: Self-weighted semi-supervised classification for joint eeg-based emotion recognition and affective activation patterns mining publication-title: IEEE Trans Instrum Meas – volume: 32 start-page: 11393 year: 2019 end-page: 11404 ident: CR18 article-title: Learning neural networks with adaptive regularization publication-title: Adv Neural Inf Process Syst – ident: 2158_CR28 – volume: 33 start-page: 596 year: 2020 ident: 2158_CR11 publication-title: Adv Neural Inf Process Syst – volume: 15 issue: 5 year: 2018 ident: 2158_CR34 publication-title: J Neural Eng doi: 10.1088/1741-2552/aace8c – volume: 10 start-page: 24520 year: 2022 ident: 2158_CR17 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3155647 – ident: 2158_CR32 – volume: 14 start-page: 382 year: 2020 ident: 2158_CR8 publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2020.3025777 – volume: 70 start-page: 1 year: 2021 ident: 2158_CR19 publication-title: IEEE Trans Instrum Meas – ident: 2158_CR22 – volume: 18 start-page: 423 issue: 4 year: 2005 ident: 2158_CR2 publication-title: Neural Netw doi: 10.1016/j.neunet.2005.03.004 – volume: 10 start-page: 374 issue: 3 year: 2017 ident: 2158_CR14 publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2017.2714671 – volume: 30 start-page: 1288 year: 2022 ident: 2158_CR21 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2022.3175464 – volume: 34 start-page: 18408 year: 2021 ident: 2158_CR29 publication-title: Adv Neural Inf Process Syst – volume: 27 start-page: 3365 year: 2014 ident: 2158_CR23 publication-title: Adv Neural Inf Process Syst – volume: 136 year: 2021 ident: 2158_CR13 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104696 – volume: 41 start-page: 1979 issue: 8 year: 2018 ident: 2158_CR33 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2858821 – volume: 29 start-page: 1163 year: 2016 ident: 2158_CR24 publication-title: Adv Neural Inf Process Syst – ident: 2158_CR25 – ident: 2158_CR27 – volume: 32 start-page: 5049 year: 2019 ident: 2158_CR26 publication-title: Adv Neural Inf Process Syst – ident: 2158_CR30 doi: 10.1109/ACII52823.2021.9597449 – volume: 12 start-page: 2527 issue: 5 year: 2022 ident: 2158_CR15 publication-title: Appl Sci doi: 10.3390/app12052527 – volume: 27 start-page: 8 issue: 1 year: 2010 ident: 2158_CR3 publication-title: J Electron – volume: 69 start-page: 3349 year: 2022 ident: 2158_CR20 publication-title: IEEE Trans Circ Syst II Express Br – volume: 13 start-page: 1290 year: 2020 ident: 2158_CR10 publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2020.2994159 – volume: 32 start-page: 11393 year: 2019 ident: 2158_CR18 publication-title: Adv Neural Inf Process Syst – volume: 24 start-page: 577 issue: 5 year: 2022 ident: 2158_CR31 publication-title: Entropy doi: 10.3390/e24050577 – volume: 3 start-page: 18 issue: 1 year: 2011 ident: 2158_CR35 publication-title: IEEE Trans Affect Comput doi: 10.1109/T-AFFC.2011.15 – volume: 146 year: 2020 ident: 2158_CR6 publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2020.107506 – ident: 2158_CR4 doi: 10.1109/IJCNN.2018.8489331 – volume: 9 start-page: 329 issue: 8 year: 2018 ident: 2158_CR9 publication-title: Int J Adv Comput Sci Appl – volume: 5 start-page: 583 issue: 7 year: 2004 ident: 2158_CR1 publication-title: Nat Rev Neurosci doi: 10.1038/nrn1432 – volume: 58 year: 2020 ident: 2158_CR5 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2019.101756 – ident: 2158_CR12 – volume: 32 start-page: 2901 year: 2020 ident: 2158_CR7 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.3008938 – volume: 13 start-page: 945 issue: 4 year: 2020 ident: 2158_CR16 publication-title: IEEE Trans Cogn Dev Syst doi: 10.1109/TCDS.2020.2976112 |
SSID | ssj0000603302 ssib031263576 ssib033405570 |
Score | 2.3637865 |
Snippet | Many deep learning models are recently proposed for Electroencephalography (EEG) classification tasks. However, they are full-supervised and require large... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4445 |
SubjectTerms | Algorithms Arousal Artificial Intelligence Classification Complex Systems Computational Intelligence Computer vision Control Datasets Deep learning Electroencephalography Emotion recognition Emotions Engineering Entropy Fourier transforms Labeling Machine learning Mechatronics Methods Noise threshold Normal distribution Original Article Pattern Recognition Random noise Robotics Robustness Semi-supervised learning Signal classification Signal processing Systems Biology Vision systems |
Title | A robust semi-supervised deep learning approach for emotion recognition using EEG signals |
URI | https://link.springer.com/article/10.1007/s13042-024-02158-8 https://www.proquest.com/docview/3104359398 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4B4Vh4YQGBUN27ijAW1IBBMVGqnyHYchIBSkXTh13NOnAYqQOoWxY4j-853n-3zdwDHsbaHR5JRZZSPCxQmqUhiQ4NY-yJsKeUZuzVw_-DfDPjtsDN0l8LSMtq9PJLMLXV12c2uvCn6FGr9lKBiGeodJkJRg3r3enTXK_XIY5ZhpXKznsdzpqnZ3kvLx3dFOKLwheXjZe4-ze8_-umzKiA6d3aau6T-OgzKzhSRKC8X00xd6M85nsdFe7sBaw6jkm6hVJuwZMYNWP3GXNiATWcTUnLiiKtPt2DUJR_vappmJDVvzzSdTqwhSk1MYmMmxCWoeCIljzlBwExMkUeIzCKZ8NkG4z-RXu-a2PASnCDbMOj3Hq9uqEvdQDXO6QyF3uFcKlzrxYFBOyGZ5AmTsmMCoRRilEQqzhUahJZBDGQ83mZGI9pUbR0kceLtQG38Pja7QDwpAqV56GtET9rX0scaLR3ECYoN29sDVgon0o7X3KbXeI0qRmY7lhGOZZSPZST24Gz2zaRg9fi39mEp88jN8DRCWIxIM_RCLD4vRVgV_93a_mLVD2ClbbUgjx88hFr2MTVHiIMy1US1719ePjSd-jdhedDufgEHlfri |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UD-rBCGpEUXvwoNEm61a27kgMigqcIMHT0nYdMVEgbPz_vm4dU6Mm3pa165L3o-9r-_o9hC5jZQ6PBCVSSx8WKFQQnsSaBLHyeehI6WmzNTAY-r0xe5q0J_ZSWFpmu5dHkvlMXV12MytvAjGFmDjFCd9EWwAGuKlbMHY7pRV51PCrVEHW81jOM7XeeXF8eFckI3KfGzZeam_T_PybrxGrgqHfTk7zgHS_j_YsksSdQvV1tKFnDbT7iV-wgerWc1N8Zemlrw_QSwcv53KVZjjV768kXS3MdJHqGMdaL7AtIzHFJds4BliLdVHtB6_zjeDZpMxPcbf7gE0SCJjxIRrfd0d3PWILLBAFnpeBatqMCQkrsjjQ4M2CCpZQIdo64FICkkiEZEyC2zoakIr2mEu1AkwoXRUkceIdodpsPtPHCHuCB1Kx0FeAcZSvhA89HBXECYgXxmsiWgoxUpZ93BTBeIsq3mQj-AgEH-WCj3gT3ay_WRTcG3_2bpW6iawfphGAV8CDoRdC822pr6r599FO_tf9Am33RoN-1H8cPp-iHdeYT57x10K1bLnSZ4BcMnmeG-oHPmTeag |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfRB3FScTs2DD4oGlzZr08ehm_Nr-OBgPpV8dQi6jbX7_730Y52igm-lSVO43OV-Se5-h9CpVvbySFAijfRgg0IF4ZE2xNfK40FTStfYo4GnvtcbsPtha7iUxZ9GuxdXkllOg2VpGidXUx1dlYlvdhdOwL8Q67M44atoDZZjajV94LQLjXKp5VopHa7rspRzanEK0_TgXRaYyD1umXlpnlnz82--eq8Skn67RU2dU3cbbeWoErczNaiiFTOuoc0lrsEaquZWHOOznGr6fAe9tvFsIudxgmPz8Ubi-dQuHbHRWBszxXlJiREumMcxQFxssso_eBF7BM82fH6EO51bbANCQKV30aDbebnukbzYAlFghQlMU4sxIWF3pn0Dli2oYBEVomV8LiWgikhIxiSYcNMAajEuc6hRgA-lo_xIR-4eqownY7OPsCu4LxULPAV4R3lKeNCjqXwdgXhhvDqihRBDlTOR24IY72HJoWwFH4Lgw1TwIa-ji8U304yH48_ejWJuwtwm4xCALGDDwA2g-bKYr7L599EO_tf9BK0_33TDx7v-wyHacKz2pMF_DVRJZnNzBCAmkcepnn4Ce5Lipg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+semi-supervised+deep+learning+approach+for+emotion+recognition+using+EEG+signals&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Al-Asadi%2C+Ahmed+Waleed&rft.au=Salehpour%2C+Pedram&rft.au=Aghdasi%2C+Hadi+S.&rft.date=2024-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=15&rft.issue=10&rft.spage=4445&rft.epage=4458&rft_id=info:doi/10.1007%2Fs13042-024-02158-8&rft.externalDocID=10_1007_s13042_024_02158_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |