A robust semi-supervised deep learning approach for emotion recognition using EEG signals

Many deep learning models are recently proposed for Electroencephalography (EEG) classification tasks. However, they are full-supervised and require large amounts of labeled data. Labeling EEG signals is a time-consuming and expensive process needing many trials and careful analysis by the experts....

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 15; no. 10; pp. 4445 - 4458
Main Authors Al-Asadi, Ahmed Waleed, Salehpour, Pedram, Aghdasi, Hadi S.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-024-02158-8

Cover

Abstract Many deep learning models are recently proposed for Electroencephalography (EEG) classification tasks. However, they are full-supervised and require large amounts of labeled data. Labeling EEG signals is a time-consuming and expensive process needing many trials and careful analysis by the experts. Recently, many modern semi-supervised methods are proposed that require less supervised information to achieve competitive performance with that of supervised ones, but they are mainly developed in the computer vision domain and adapting these methods for EEG applications is an open issue. This paper presents a robust semi-supervised deep Learning method. To this end, we design appropriate augmentations for EEG signals leading to promising results in a low-supervised setting. Especially, compared to naïve Gaussian noise used in previous work, the proposed strong augmentation boosts the performance of our method by a large margin. We also enhance our method by utilizing distribution alignment and relative confidence threshold techniques. We carry out several experiments on the Database for Emotion Analysis using Physiological dataset in both valence/arousal emotion recognition tasks. The results confirm that the proposed method leverage the unlabeled information effectively and significantly outperforms the peer methods.
AbstractList Many deep learning models are recently proposed for Electroencephalography (EEG) classification tasks. However, they are full-supervised and require large amounts of labeled data. Labeling EEG signals is a time-consuming and expensive process needing many trials and careful analysis by the experts. Recently, many modern semi-supervised methods are proposed that require less supervised information to achieve competitive performance with that of supervised ones, but they are mainly developed in the computer vision domain and adapting these methods for EEG applications is an open issue. This paper presents a robust semi-supervised deep Learning method. To this end, we design appropriate augmentations for EEG signals leading to promising results in a low-supervised setting. Especially, compared to naïve Gaussian noise used in previous work, the proposed strong augmentation boosts the performance of our method by a large margin. We also enhance our method by utilizing distribution alignment and relative confidence threshold techniques. We carry out several experiments on the Database for Emotion Analysis using Physiological dataset in both valence/arousal emotion recognition tasks. The results confirm that the proposed method leverage the unlabeled information effectively and significantly outperforms the peer methods.
Many deep learning models are recently proposed for Electroencephalography (EEG) classification tasks. However, they are full-supervised and require large amounts of labeled data. Labeling EEG signals is a time-consuming and expensive process needing many trials and careful analysis by the experts. Recently, many modern semi-supervised methods are proposed that require less supervised information to achieve competitive performance with that of supervised ones, but they are mainly developed in the computer vision domain and adapting these methods for EEG applications is an open issue. This paper presents a robust semi-supervised deep Learning method. To this end, we design appropriate augmentations for EEG signals leading to promising results in a low-supervised setting. Especially, compared to naïve Gaussian noise used in previous work, the proposed strong augmentation boosts the performance of our method by a large margin. We also enhance our method by utilizing distribution alignment and relative confidence threshold techniques. We carry out several experiments on the Database for Emotion Analysis using Physiological dataset in both valence/arousal emotion recognition tasks. The results confirm that the proposed method leverage the unlabeled information effectively and significantly outperforms the peer methods.
Author Aghdasi, Hadi S.
Salehpour, Pedram
Al-Asadi, Ahmed Waleed
Author_xml – sequence: 1
  givenname: Ahmed Waleed
  surname: Al-Asadi
  fullname: Al-Asadi, Ahmed Waleed
  organization: Computer Engineering Department, Faculty of Electrical and Computer Engineering, University of Tabriz
– sequence: 2
  givenname: Pedram
  orcidid: 0000-0002-1300-7848
  surname: Salehpour
  fullname: Salehpour, Pedram
  email: Psalehpoor@tabrizu.ac.ir
  organization: Computer Engineering Department, Faculty of Electrical and Computer Engineering, University of Tabriz
– sequence: 3
  givenname: Hadi S.
  surname: Aghdasi
  fullname: Aghdasi, Hadi S.
  organization: Computer Engineering Department, Faculty of Electrical and Computer Engineering, University of Tabriz
BookMark eNp9UE1Lw0AQXaSCtfYPeFrwHN2vNJtjKbUKBS8Kelo2ySRuaXfjbiL47900ouChA8O8w3szb94lmlhnAaFrSm4pIdldoJwIlhAmYtNUJvIMTalcREDk6-QXZ_QCzUPYkVgLwjlhU_S2xN4VfehwgINJQt-C_zQBKlwBtHgP2ltjG6zb1jtdvuPaeQwH1xlnsYfSNdYccR8G2nq9wcE0Vu_DFTqv44D5z5yhl_v18-oh2T5tHlfLbVJymneJIKkQuqBEVBkQQTTVoqZap5DJoiA5rXUhRJHGT2GRSuCCUShpzgpWZnVV8xm6GfdGgx89hE7tXO8HB4rHrTzNeS4ji42s0rsQPNSq9eag_ZeiRA0pqjFFFVNUxxTVIJL_RKXp9PBu57XZn5byURriHduA_3N1QvUNrnqIxA
CitedBy_id crossref_primary_10_22399_ijcesen_829
crossref_primary_10_3389_frai_2024_1467051
crossref_primary_10_1088_1402_4896_ad5237
crossref_primary_10_1109_ACCESS_2025_3536549
crossref_primary_10_1088_2631_8695_adb00d
crossref_primary_10_1007_s13042_025_02556_6
Cites_doi 10.3390/e24050577
10.1109/TAFFC.2020.2994159
10.1038/nrn1432
10.3390/app12052527
10.1109/TNSRE.2022.3175464
10.1109/TAFFC.2020.3025777
10.1109/TAFFC.2017.2714671
10.1109/TCDS.2020.2976112
10.1016/j.neuropsychologia.2020.107506
10.1109/ACCESS.2022.3155647
10.1109/TPAMI.2018.2858821
10.1016/j.compbiomed.2021.104696
10.1016/j.neunet.2005.03.004
10.1016/j.bspc.2019.101756
10.1109/TNNLS.2020.3008938
10.1088/1741-2552/aace8c
10.1109/T-AFFC.2011.15
10.1109/ACII52823.2021.9597449
10.1109/IJCNN.2018.8489331
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s13042-024-02158-8
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 4458
ExternalDocumentID 10_1007_s13042_024_02158_8
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
JQ2
ID FETCH-LOGICAL-c319t-40544ab104d7e040a1a4f1aa5e78bb091fab44b5100e658e3421ec192b2c7fdf3
IEDL.DBID AGYKE
ISSN 1868-8071
IngestDate Fri Jul 25 11:12:48 EDT 2025
Tue Jul 01 03:51:05 EDT 2025
Thu Apr 24 22:56:55 EDT 2025
Fri Feb 21 02:38:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords EEG emotion recognition
Virtual adversarial training
Semi-supervised learning
EEG augmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-40544ab104d7e040a1a4f1aa5e78bb091fab44b5100e658e3421ec192b2c7fdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1300-7848
PQID 3104359398
PQPubID 2043904
PageCount 14
ParticipantIDs proquest_journals_3104359398
crossref_primary_10_1007_s13042_024_02158_8
crossref_citationtrail_10_1007_s13042_024_02158_8
springer_journals_10_1007_s13042_024_02158_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241000
2024-10-00
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 20241000
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Berthelot, Carlini, Goodfellow, Papernot, Oliver, Raffel (CR26) 2019; 32
Salama, El-Khoribi, Shoman, Shalaby (CR9) 2018; 9
Rahman, Sarkar, Hossain, Hossain, Islam, Hossain, Quinn, Moni (CR13) 2021; 136
Samavat, Khalili, Ayati, Ayati (CR17) 2022; 10
Zhong, Wang, Miao (CR10) 2020; 13
Peng, Jin, Kong, Nie, Lu, Cichocki (CR21) 2022; 30
Miyato, Maeda, Koyama, Ishii (CR33) 2018; 41
Xu, Liu, Hao, Wen, Huang (CR3) 2010; 27
Alarcao, Fonseca (CR14) 2017; 10
Wang, Wu, Zhang, Xu, Zhang, Wu, Coleman (CR6) 2020; 146
Tao, Li, Song, Cheng, Liu, Wan, Chen (CR8) 2020; 14
CR12
CR32
CR30
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (CR34) 2018; 15
Gao, Wang, Yang, Li, Ma, Chen (CR16) 2020; 13
Zhang, Wang, Hou, Wu, Wang, Okumura, Shinozaki (CR29) 2021; 34
Peng, Kong, Qin, Nie, Fang, Lu, Cichocki (CR19) 2021; 70
Sajjadi, Javanmardi, Tasdizen (CR24) 2016; 29
CR4
Bachman, Alsharif, Precup (CR23) 2014; 27
Li, Shen, Peng, Kong, Lu (CR20) 2022; 69
Luo, Tian, Yu, Chen, Wu (CR31) 2022; 24
Sohn, Berthelot, Carlini, Zhang, Zhang, Raffel, Cubuk, Kurakin, Li (CR11) 2020; 33
CR28
CR27
CR25
CR22
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (CR35) 2011; 3
Dalgleish (CR1) 2004; 5
Ioannou, Raouzaiou, Tzouvaras, Mailis, Karpouzis, Kollias (CR2) 2005; 18
Wei, Chen, Song, Lou, Li (CR5) 2020; 58
Khare, Bajaj (CR7) 2020; 32
Aguiñaga, Delgado, López-López, Téllez (CR15) 2022; 12
Zhao, Tsai, Salakhutdinov, Gordon (CR18) 2019; 32
2158_CR32
2158_CR30
T Miyato (2158_CR33) 2018; 41
M Sajjadi (2158_CR24) 2016; 29
SM Alarcao (2158_CR14) 2017; 10
2158_CR12
F Wang (2158_CR6) 2020; 146
H Zhao (2158_CR18) 2019; 32
X Li (2158_CR20) 2022; 69
SV Ioannou (2158_CR2) 2005; 18
VJ Lawhern (2158_CR34) 2018; 15
A Samavat (2158_CR17) 2022; 10
AR Aguiñaga (2158_CR15) 2022; 12
D Berthelot (2158_CR26) 2019; 32
T Dalgleish (2158_CR1) 2004; 5
SK Khare (2158_CR7) 2020; 32
Y Xu (2158_CR3) 2010; 27
ES Salama (2158_CR9) 2018; 9
B Zhang (2158_CR29) 2021; 34
P Zhong (2158_CR10) 2020; 13
2158_CR25
S Koelstra (2158_CR35) 2011; 3
Y Peng (2158_CR19) 2021; 70
2158_CR22
J Luo (2158_CR31) 2022; 24
Y Peng (2158_CR21) 2022; 30
K Sohn (2158_CR11) 2020; 33
P Bachman (2158_CR23) 2014; 27
C Wei (2158_CR5) 2020; 58
W Tao (2158_CR8) 2020; 14
2158_CR4
Z Gao (2158_CR16) 2020; 13
2158_CR28
2158_CR27
MM Rahman (2158_CR13) 2021; 136
References_xml – ident: CR22
– volume: 24
  start-page: 577
  issue: 5
  year: 2022
  ident: CR31
  article-title: Semi-supervised cross-subject emotion recognition based on stacked denoising autoencoder architecture using a fusion of multi-modal physiological signals
  publication-title: Entropy
  doi: 10.3390/e24050577
– volume: 9
  start-page: 329
  issue: 8
  year: 2018
  end-page: 337
  ident: CR9
  article-title: EEG-based emotion recognition using 3D convolutional neural networks
  publication-title: Int J Adv Comput Sci Appl
– volume: 13
  start-page: 1290
  year: 2020
  end-page: 301
  ident: CR10
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2020.2994159
– volume: 5
  start-page: 583
  issue: 7
  year: 2004
  end-page: 589
  ident: CR1
  article-title: The emotional brain
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn1432
– ident: CR4
– volume: 12
  start-page: 2527
  issue: 5
  year: 2022
  ident: CR15
  article-title: EEG-based emotion recognition using deep learning and M3GP
  publication-title: Appl Sci
  doi: 10.3390/app12052527
– volume: 27
  start-page: 8
  issue: 1
  year: 2010
  end-page: 14
  ident: CR3
  article-title: Analysis of affective ECG signals toward emotion recognition
  publication-title: J Electron
– ident: CR12
– ident: CR30
– volume: 69
  start-page: 3349
  year: 2022
  end-page: 53
  ident: CR20
  article-title: Efficient sample and feature importance mining in semi-supervised EEG emotion recognition
  publication-title: IEEE Trans Circ Syst II Express Br
– volume: 29
  start-page: 1163
  year: 2016
  end-page: 1171
  ident: CR24
  article-title: Regularization with stochastic transformations and perturbations for deep semi-supervised learning
  publication-title: Adv Neural Inf Process Syst
– volume: 30
  start-page: 1288
  year: 2022
  end-page: 97
  ident: CR21
  article-title: OGSSL: a semi-supervised classification model coupled with optimal graph learning for EEG emotion recognition
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2022.3175464
– volume: 14
  start-page: 382
  year: 2020
  end-page: 93
  ident: CR8
  article-title: EEG-based emotion recognition via channel-wise attention and self attention
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2020.3025777
– volume: 10
  start-page: 374
  issue: 3
  year: 2017
  end-page: 393
  ident: CR14
  article-title: Emotions recognition using EEG signals: a survey
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2017.2714671
– volume: 13
  start-page: 945
  issue: 4
  year: 2020
  end-page: 54
  ident: CR16
  article-title: A channel-fused dense convolutional network for EEG-based emotion recognition
  publication-title: IEEE Trans Cogn Dev Syst
  doi: 10.1109/TCDS.2020.2976112
– volume: 34
  start-page: 18408
  year: 2021
  end-page: 19
  ident: CR29
  article-title: Flexmatch: boosting semi-supervised learning with curriculum pseudo labeling
  publication-title: Adv Neural Inf Process Syst
– ident: CR25
– volume: 146
  year: 2020
  ident: CR6
  article-title: Emotion recognition with convolutional neural network and EEG-based EFDMs
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2020.107506
– ident: CR27
– volume: 32
  start-page: 5049
  year: 2019
  end-page: 5059
  ident: CR26
  article-title: Mixmatch: a holistic approach to semi-supervised learning
  publication-title: Adv Neural Inf Process Syst
– volume: 10
  start-page: 24520
  year: 2022
  end-page: 24527
  ident: CR17
  article-title: Deep learning model with adaptive regularization for EEG-based emotion recognition using temporal and frequency features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3155647
– volume: 41
  start-page: 1979
  issue: 8
  year: 2018
  end-page: 1993
  ident: CR33
  article-title: Virtual adversarial training: a regularization method for supervised and semi-supervised learning
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2858821
– volume: 136
  year: 2021
  ident: CR13
  article-title: Recognition of human emotions using EEG signals: a review
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104696
– volume: 18
  start-page: 423
  issue: 4
  year: 2005
  end-page: 435
  ident: CR2
  article-title: Emotion recognition through facial expression analysis based on a neurofuzzy network
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2005.03.004
– volume: 58
  year: 2020
  ident: CR5
  article-title: EEG-based emotion recognition using simple recurrent units network and ensemble learning
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2019.101756
– volume: 32
  start-page: 2901
  year: 2020
  end-page: 2909
  ident: CR7
  article-title: Time-frequency representation and convolutional neural network-based emotion recognition
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.3008938
– volume: 15
  issue: 5
  year: 2018
  ident: CR34
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aace8c
– volume: 3
  start-page: 18
  issue: 1
  year: 2011
  end-page: 31
  ident: CR35
  article-title: Deap: a database for emotion analysis; using physiological signals
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/T-AFFC.2011.15
– volume: 27
  start-page: 3365
  year: 2014
  end-page: 3373
  ident: CR23
  article-title: Learning with pseudo-ensembles
  publication-title: Adv Neural Inf Process Syst
– ident: CR32
– volume: 33
  start-page: 596
  year: 2020
  end-page: 608
  ident: CR11
  article-title: Fixmatch: simplifying semi-supervised learning with consistency and confidence
  publication-title: Adv Neural Inf Process Syst
– ident: CR28
– volume: 70
  start-page: 1
  year: 2021
  end-page: 11
  ident: CR19
  article-title: Self-weighted semi-supervised classification for joint eeg-based emotion recognition and affective activation patterns mining
  publication-title: IEEE Trans Instrum Meas
– volume: 32
  start-page: 11393
  year: 2019
  end-page: 11404
  ident: CR18
  article-title: Learning neural networks with adaptive regularization
  publication-title: Adv Neural Inf Process Syst
– ident: 2158_CR28
– volume: 33
  start-page: 596
  year: 2020
  ident: 2158_CR11
  publication-title: Adv Neural Inf Process Syst
– volume: 15
  issue: 5
  year: 2018
  ident: 2158_CR34
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aace8c
– volume: 10
  start-page: 24520
  year: 2022
  ident: 2158_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3155647
– ident: 2158_CR32
– volume: 14
  start-page: 382
  year: 2020
  ident: 2158_CR8
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2020.3025777
– volume: 70
  start-page: 1
  year: 2021
  ident: 2158_CR19
  publication-title: IEEE Trans Instrum Meas
– ident: 2158_CR22
– volume: 18
  start-page: 423
  issue: 4
  year: 2005
  ident: 2158_CR2
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2005.03.004
– volume: 10
  start-page: 374
  issue: 3
  year: 2017
  ident: 2158_CR14
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2017.2714671
– volume: 30
  start-page: 1288
  year: 2022
  ident: 2158_CR21
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2022.3175464
– volume: 34
  start-page: 18408
  year: 2021
  ident: 2158_CR29
  publication-title: Adv Neural Inf Process Syst
– volume: 27
  start-page: 3365
  year: 2014
  ident: 2158_CR23
  publication-title: Adv Neural Inf Process Syst
– volume: 136
  year: 2021
  ident: 2158_CR13
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104696
– volume: 41
  start-page: 1979
  issue: 8
  year: 2018
  ident: 2158_CR33
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2858821
– volume: 29
  start-page: 1163
  year: 2016
  ident: 2158_CR24
  publication-title: Adv Neural Inf Process Syst
– ident: 2158_CR25
– ident: 2158_CR27
– volume: 32
  start-page: 5049
  year: 2019
  ident: 2158_CR26
  publication-title: Adv Neural Inf Process Syst
– ident: 2158_CR30
  doi: 10.1109/ACII52823.2021.9597449
– volume: 12
  start-page: 2527
  issue: 5
  year: 2022
  ident: 2158_CR15
  publication-title: Appl Sci
  doi: 10.3390/app12052527
– volume: 27
  start-page: 8
  issue: 1
  year: 2010
  ident: 2158_CR3
  publication-title: J Electron
– volume: 69
  start-page: 3349
  year: 2022
  ident: 2158_CR20
  publication-title: IEEE Trans Circ Syst II Express Br
– volume: 13
  start-page: 1290
  year: 2020
  ident: 2158_CR10
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2020.2994159
– volume: 32
  start-page: 11393
  year: 2019
  ident: 2158_CR18
  publication-title: Adv Neural Inf Process Syst
– volume: 24
  start-page: 577
  issue: 5
  year: 2022
  ident: 2158_CR31
  publication-title: Entropy
  doi: 10.3390/e24050577
– volume: 3
  start-page: 18
  issue: 1
  year: 2011
  ident: 2158_CR35
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/T-AFFC.2011.15
– volume: 146
  year: 2020
  ident: 2158_CR6
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2020.107506
– ident: 2158_CR4
  doi: 10.1109/IJCNN.2018.8489331
– volume: 9
  start-page: 329
  issue: 8
  year: 2018
  ident: 2158_CR9
  publication-title: Int J Adv Comput Sci Appl
– volume: 5
  start-page: 583
  issue: 7
  year: 2004
  ident: 2158_CR1
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn1432
– volume: 58
  year: 2020
  ident: 2158_CR5
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2019.101756
– ident: 2158_CR12
– volume: 32
  start-page: 2901
  year: 2020
  ident: 2158_CR7
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.3008938
– volume: 13
  start-page: 945
  issue: 4
  year: 2020
  ident: 2158_CR16
  publication-title: IEEE Trans Cogn Dev Syst
  doi: 10.1109/TCDS.2020.2976112
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.3637865
Snippet Many deep learning models are recently proposed for Electroencephalography (EEG) classification tasks. However, they are full-supervised and require large...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4445
SubjectTerms Algorithms
Arousal
Artificial Intelligence
Classification
Complex Systems
Computational Intelligence
Computer vision
Control
Datasets
Deep learning
Electroencephalography
Emotion recognition
Emotions
Engineering
Entropy
Fourier transforms
Labeling
Machine learning
Mechatronics
Methods
Noise threshold
Normal distribution
Original Article
Pattern Recognition
Random noise
Robotics
Robustness
Semi-supervised learning
Signal classification
Signal processing
Systems Biology
Vision systems
Title A robust semi-supervised deep learning approach for emotion recognition using EEG signals
URI https://link.springer.com/article/10.1007/s13042-024-02158-8
https://www.proquest.com/docview/3104359398
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4B4Vh4YQGBUN27ijAW1IBBMVGqnyHYchIBSkXTh13NOnAYqQOoWxY4j-853n-3zdwDHsbaHR5JRZZSPCxQmqUhiQ4NY-yJsKeUZuzVw_-DfDPjtsDN0l8LSMtq9PJLMLXV12c2uvCn6FGr9lKBiGeodJkJRg3r3enTXK_XIY5ZhpXKznsdzpqnZ3kvLx3dFOKLwheXjZe4-ze8_-umzKiA6d3aau6T-OgzKzhSRKC8X00xd6M85nsdFe7sBaw6jkm6hVJuwZMYNWP3GXNiATWcTUnLiiKtPt2DUJR_vappmJDVvzzSdTqwhSk1MYmMmxCWoeCIljzlBwExMkUeIzCKZ8NkG4z-RXu-a2PASnCDbMOj3Hq9uqEvdQDXO6QyF3uFcKlzrxYFBOyGZ5AmTsmMCoRRilEQqzhUahJZBDGQ83mZGI9pUbR0kceLtQG38Pja7QDwpAqV56GtET9rX0scaLR3ECYoN29sDVgon0o7X3KbXeI0qRmY7lhGOZZSPZST24Gz2zaRg9fi39mEp88jN8DRCWIxIM_RCLD4vRVgV_93a_mLVD2ClbbUgjx88hFr2MTVHiIMy1US1719ePjSd-jdhedDufgEHlfri
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UD-rBCGpEUXvwoNEm61a27kgMigqcIMHT0nYdMVEgbPz_vm4dU6Mm3pa165L3o-9r-_o9hC5jZQ6PBCVSSx8WKFQQnsSaBLHyeehI6WmzNTAY-r0xe5q0J_ZSWFpmu5dHkvlMXV12MytvAjGFmDjFCd9EWwAGuKlbMHY7pRV51PCrVEHW81jOM7XeeXF8eFckI3KfGzZeam_T_PybrxGrgqHfTk7zgHS_j_YsksSdQvV1tKFnDbT7iV-wgerWc1N8Zemlrw_QSwcv53KVZjjV768kXS3MdJHqGMdaL7AtIzHFJds4BliLdVHtB6_zjeDZpMxPcbf7gE0SCJjxIRrfd0d3PWILLBAFnpeBatqMCQkrsjjQ4M2CCpZQIdo64FICkkiEZEyC2zoakIr2mEu1AkwoXRUkceIdodpsPtPHCHuCB1Kx0FeAcZSvhA89HBXECYgXxmsiWgoxUpZ93BTBeIsq3mQj-AgEH-WCj3gT3ay_WRTcG3_2bpW6iawfphGAV8CDoRdC822pr6r599FO_tf9Am33RoN-1H8cPp-iHdeYT57x10K1bLnSZ4BcMnmeG-oHPmTeag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfRB3FScTs2DD4oGlzZr08ehm_Nr-OBgPpV8dQi6jbX7_730Y52igm-lSVO43OV-Se5-h9CpVvbySFAijfRgg0IF4ZE2xNfK40FTStfYo4GnvtcbsPtha7iUxZ9GuxdXkllOg2VpGidXUx1dlYlvdhdOwL8Q67M44atoDZZjajV94LQLjXKp5VopHa7rspRzanEK0_TgXRaYyD1umXlpnlnz82--eq8Skn67RU2dU3cbbeWoErczNaiiFTOuoc0lrsEaquZWHOOznGr6fAe9tvFsIudxgmPz8Ubi-dQuHbHRWBszxXlJiREumMcxQFxssso_eBF7BM82fH6EO51bbANCQKV30aDbebnukbzYAlFghQlMU4sxIWF3pn0Dli2oYBEVomV8LiWgikhIxiSYcNMAajEuc6hRgA-lo_xIR-4eqownY7OPsCu4LxULPAV4R3lKeNCjqXwdgXhhvDqihRBDlTOR24IY72HJoWwFH4Lgw1TwIa-ji8U304yH48_ejWJuwtwm4xCALGDDwA2g-bKYr7L599EO_tf9BK0_33TDx7v-wyHacKz2pMF_DVRJZnNzBCAmkcepnn4Ce5Lipg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+semi-supervised+deep+learning+approach+for+emotion+recognition+using+EEG+signals&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Al-Asadi%2C+Ahmed+Waleed&rft.au=Salehpour%2C+Pedram&rft.au=Aghdasi%2C+Hadi+S.&rft.date=2024-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=15&rft.issue=10&rft.spage=4445&rft.epage=4458&rft_id=info:doi/10.1007%2Fs13042-024-02158-8&rft.externalDocID=10_1007_s13042_024_02158_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon