New perspective on fractional Hamiltonian amplitude equation
In this paper, we present a pioneering investigation on the fractional Hamiltonian amplitude equation involving the beta fractional derivative for the first time, addressing a research gap in the field of nonlinear fractional dynamics. Our primary objective is to develop effective analytical techniq...
Saved in:
Published in | Optical and quantum electronics Vol. 55; no. 12 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we present a pioneering investigation on the fractional Hamiltonian amplitude equation involving the beta fractional derivative for the first time, addressing a research gap in the field of nonlinear fractional dynamics. Our primary objective is to develop effective analytical techniques capable of solving the fractional Hamiltonian amplitude equation and obtaining novel soliton solutions. To achieve this, we introduce two advanced methods: the extended fractional rational
sin
e
δ
-
cos
i
n
e
δ
and the fractional rational
sinh
δ
-
cosh
δ
techniques. By employing these cutting-edge approaches, we successfully derive new types of soliton solutions, demonstrating the reliability and efficiency of the proposed methods. Furthermore, the applicability of these techniques extends to various fractional nonlinear evolution models, highlighting their versatility in the realm of fractional dynamics. Finally, we provide a comprehensive presentation of the results, which substantiate the effectiveness of the methods in solving the complex fractional Hamiltonian amplitude equation. |
---|---|
AbstractList | In this paper, we present a pioneering investigation on the fractional Hamiltonian amplitude equation involving the beta fractional derivative for the first time, addressing a research gap in the field of nonlinear fractional dynamics. Our primary objective is to develop effective analytical techniques capable of solving the fractional Hamiltonian amplitude equation and obtaining novel soliton solutions. To achieve this, we introduce two advanced methods: the extended fractional rational
sin
e
δ
-
cos
i
n
e
δ
and the fractional rational
sinh
δ
-
cosh
δ
techniques. By employing these cutting-edge approaches, we successfully derive new types of soliton solutions, demonstrating the reliability and efficiency of the proposed methods. Furthermore, the applicability of these techniques extends to various fractional nonlinear evolution models, highlighting their versatility in the realm of fractional dynamics. Finally, we provide a comprehensive presentation of the results, which substantiate the effectiveness of the methods in solving the complex fractional Hamiltonian amplitude equation. In this paper, we present a pioneering investigation on the fractional Hamiltonian amplitude equation involving the beta fractional derivative for the first time, addressing a research gap in the field of nonlinear fractional dynamics. Our primary objective is to develop effective analytical techniques capable of solving the fractional Hamiltonian amplitude equation and obtaining novel soliton solutions. To achieve this, we introduce two advanced methods: the extended fractional rational sineδ-cosineδ and the fractional rational sinhδ-coshδ techniques. By employing these cutting-edge approaches, we successfully derive new types of soliton solutions, demonstrating the reliability and efficiency of the proposed methods. Furthermore, the applicability of these techniques extends to various fractional nonlinear evolution models, highlighting their versatility in the realm of fractional dynamics. Finally, we provide a comprehensive presentation of the results, which substantiate the effectiveness of the methods in solving the complex fractional Hamiltonian amplitude equation. |
ArticleNumber | 1033 |
Author | Wang, Kang-Le |
Author_xml | – sequence: 1 givenname: Kang-Le surname: Wang fullname: Wang, Kang-Le email: kangle140917@163.com organization: School of Mathematics and Information Science, Henan Polytechnic University |
BookMark | eNp9kE1LxDAQhoOs4O7qH_BU8BydJE2bgBdZ1BUWvSh4C2k6lS792qRV_Pd2t4LgYU8zA88zvLwLMmvaBgm5ZHDNANKbwBgoToELClKApuKEzJlMOVUsfZ-ROQhIqNJMn5FFCFsASGIJc3L7jF9Rhz506PryE6O2iQpvx71tbBWtbV1WfduUtols3VVlP-QY4W6we-CcnBa2CnjxO5fk7eH-dbWmm5fHp9XdhjrBdE8FIlMy1oVwDlBDlliWJ8ypIkmlzvM44yClHI8il1aDygFROJEl3NksdWJJrqa_nW93A4bebNvBj_mC4SpJuYxB6ZFSE-V8G4LHwriyP-TsvS0rw8DsuzJTV2bsyhy6MmJU-T-182Vt_fdxSUxSGOHmA_1fqiPWD9fufi4 |
CitedBy_id | crossref_primary_10_1088_1402_4896_ad16fd crossref_primary_10_1007_s11071_024_09356_7 crossref_primary_10_1016_j_padiff_2023_100589 crossref_primary_10_1142_S0217984924502592 crossref_primary_10_1063_5_0261145 crossref_primary_10_1142_S0218348X24500233 crossref_primary_10_1007_s11082_024_06403_w crossref_primary_10_1142_S0218348X24500270 crossref_primary_10_3390_math11204382 crossref_primary_10_1016_j_compfluid_2024_106233 crossref_primary_10_1140_epjp_s13360_024_05080_8 crossref_primary_10_1016_j_rinp_2023_107208 crossref_primary_10_2298_TSCI230311017F crossref_primary_10_1016_j_rinp_2024_107369 crossref_primary_10_1063_5_0186841 crossref_primary_10_1142_S0218348X23501104 crossref_primary_10_1007_s12346_024_00955_8 crossref_primary_10_1142_S0218348X24500245 crossref_primary_10_1142_S0218348X24500269 crossref_primary_10_1142_S0218348X24500348 crossref_primary_10_1088_1402_4896_ad2966 crossref_primary_10_1016_j_aej_2024_03_074 crossref_primary_10_1142_S0218348X24400401 crossref_primary_10_1142_S021798492450194X crossref_primary_10_1007_s12043_024_02747_w crossref_primary_10_2298_TSCI230325128R |
Cites_doi | 10.1016/j.rinp.2022.105602 10.3390/e17096025 10.1002/mma.6297 10.1143/JPSJ.74.896 10.1007/s12346-023-00785-0 10.1515/phys-2022-0214 10.1016/j.chaos.2022.112253 10.3390/axioms10030203 10.1007/s13137-021-00187-x 10.1016/j.physleta.2022.128429 10.1016/j.matcom.2020.04.005 10.1016/j.apm.2013.11.035 10.1142/S0217979224500541 10.1007/s12346-023-00761-8 10.1007/s11082-022-04344-w 10.1142/S0217979223502193 10.3390/fractalfract6030173 10.1142/S0217984923500124 10.1016/j.rinp.2021.105086 10.1016/j.cjph.2020.09.021 10.1016/j.cam.2011.02.021 10.1007/s11071-021-06300-x 10.1016/j.matcom.2022.08.005 10.1142/S0217984922501202 10.1007/s12043-012-0284-7 10.1142/S0218348X23500032 10.1007/s12648-019-01442-6 10.1088/1402-4896/ac37a1 10.1140/epjp/i2018-11851-1 10.1007/s11082-022-04286-3 10.1016/j.camwa.2019.03.007 10.1142/S0217984922502190 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11082-023-05309-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1572-817X |
ExternalDocumentID | 10_1007_s11082_023_05309_3 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 Z8Z Z92 ZMTXR ZY4 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-3ee18549f3cc0e90b6a1d61c8f6759dd4b20555675fd5a908d0ee3c3b62cab7c3 |
IEDL.DBID | U2A |
ISSN | 0306-8919 |
IngestDate | Fri Jul 25 11:09:08 EDT 2025 Thu Apr 24 23:09:29 EDT 2025 Tue Jul 01 01:26:36 EDT 2025 Fri Feb 21 02:42:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Soliton solution Beta fractional derivative method Fractional rational Fractional Hamiltonian amplitude equation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-3ee18549f3cc0e90b6a1d61c8f6759dd4b20555675fd5a908d0ee3c3b62cab7c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2867254089 |
PQPubID | 2043598 |
ParticipantIDs | proquest_journals_2867254089 crossref_citationtrail_10_1007_s11082_023_05309_3 crossref_primary_10_1007_s11082_023_05309_3 springer_journals_10_1007_s11082_023_05309_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Optical and quantum electronics |
PublicationTitleAbbrev | Opt Quant Electron |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Khan, Ain, Abdeljawad, Nisar (CR15) 2023; 22 Yadav, Jahan, Nisar (CR33) 2023; 22 Fendzi-Donfack, Temgoua, Djoufack, Kenfack-Jiotsa, Nguenang, Nana (CR10) 2022; 160 He, Jiao, Gepreel, Khan (CR13) 2022; 204 CR14 Ahmad, Khan, Stanimirovic, Ahmad (CR1) 2020; 2020 Wang (CR29) 2023; 37 Fendzi-Donfack, Tala-Tebue, Inc, Kenfack-Jiotsa, Nguenang, Nana (CR12) 2023; 55 Durur, Yokuş, Duran (CR7) 2023; 2023 Fendzi-Donfack, Kumar, Tala-Tebue, Nana, Nguenang, Kenfack-Jiotsa (CR11) 2022; 32 Kumar, Kumar, Agarwal, Samet (CR20) 2020; 43 Younas, Seadawy, Younis, Rizvi (CR34) 2020; 68 Kumar, Singh, Gupta (CR19) 2012; 79 Seadawy, Cheemaa (CR26) 2020; 94 Demiray, Bulut (CR5) 2015; 17 Fendzi-Donfack, Nguenang, Nana (CR9) 2021; 104 Akar, Ozkan (CR4) 2023; 2023 Liu, Yang, Wang (CR21) 2022; 451 Ozkan (CR24) 2022; 6 Ain, Anjum, He (CR3) 2021; 12 Krishnan, Peng (CR16) 2005; 74 Kumar, Kumar (CR18) 2019; 78 Lu, Chen (CR22) 2022; 38 Kumar (CR17) 2014; 38 Taghizadeh, Mirzazadeh (CR27) 2011; 235 Wang (CR30) 2023; 31 Tarla, Ali, Yilmazer, Osman (CR28) 2022; 36 Wazwaz (CR32) 2008; 202 Duran (CR6) 2021; 96 Fendzi-Donfack, Nguenang, Nana (CR8) 2018; 133 Wang, Si (CR31) 2023; 21 Younas, Sulaiman, Ren (CR35) 2023; 55 Ozkan, Ozkan (CR25) 2021; 10 Nadeem, He, He, Sedighi, Shirazi (CR23) 2022; 13 Ahmad, Seadawy, Khan (CR2) 2020; 177 KL Wang (5309_CR30) 2023; 31 E Fendzi-Donfack (5309_CR10) 2022; 160 E Fendzi-Donfack (5309_CR12) 2023; 55 AR Seadawy (5309_CR26) 2020; 94 JF Lu (5309_CR22) 2022; 38 M Akar (5309_CR4) 2023; 2023 KJ Wang (5309_CR29) 2023; 37 EM Ozkan (5309_CR25) 2021; 10 E Fendzi-Donfack (5309_CR8) 2018; 133 E Fendzi-Donfack (5309_CR11) 2022; 32 QT Ain (5309_CR3) 2021; 12 H Durur (5309_CR7) 2023; 2023 AM Wazwaz (5309_CR32) 2008; 202 U Younas (5309_CR35) 2023; 55 EV Krishnan (5309_CR16) 2005; 74 D Kumar (5309_CR18) 2019; 78 S Kumar (5309_CR19) 2012; 79 S Tarla (5309_CR28) 2022; 36 EM Ozkan (5309_CR24) 2022; 6 U Younas (5309_CR34) 2020; 68 ST Demiray (5309_CR5) 2015; 17 H Ahmad (5309_CR2) 2020; 177 N Taghizadeh (5309_CR27) 2011; 235 KJ Wang (5309_CR31) 2023; 21 S Duran (5309_CR6) 2021; 96 S Kumar (5309_CR20) 2020; 43 A Khan (5309_CR15) 2023; 22 JG Liu (5309_CR21) 2022; 451 E Fendzi-Donfack (5309_CR9) 2021; 104 M Nadeem (5309_CR23) 2022; 13 H Ahmad (5309_CR1) 2020; 2020 5309_CR14 S Kumar (5309_CR17) 2014; 38 P Yadav (5309_CR33) 2023; 22 JH He (5309_CR13) 2022; 204 |
References_xml | – volume: 38 start-page: 105602 year: 2022 ident: CR22 article-title: Numerical analysis of a fractal modification of Yao–Cheng oscillator publication-title: Results Phys. doi: 10.1016/j.rinp.2022.105602 – volume: 17 start-page: 6025 issue: 9 year: 2015 end-page: 6043 ident: CR5 article-title: New exact solutions of the new Hamiltonian amplitude equation and Fokas-Lenells equation publication-title: Entropy doi: 10.3390/e17096025 – volume: 43 start-page: 5564 issue: 8 year: 2020 end-page: 5578 ident: CR20 article-title: A study of fractional Lotka–Volterra population model using Haar wavelet and Adams-Bashforth–Moulton methods publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6297 – volume: 74 start-page: 896 issue: 3 year: 2005 end-page: 897 ident: CR16 article-title: A new solitary wave solution for the new Hamiltonian amplitude equation publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.74.896 – ident: CR14 – volume: 22 start-page: 82 issue: 2 year: 2023 ident: CR33 article-title: Fibonacci wavelet collocation method for Fredholm integral equations of second kind publication-title: Qual. Theory Dyn. Syst. doi: 10.1007/s12346-023-00785-0 – volume: 21 start-page: 20220214 issue: 1 year: 2023 ident: CR31 article-title: Dynamic properties of the attachment oscillator arising in the nanophysics publication-title: Open Phys. doi: 10.1515/phys-2022-0214 – volume: 160 start-page: 112253 year: 2022 ident: CR10 article-title: Exotical solitons for an intrinsic fractional circuit using the sine-cosine method publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2022.112253 – volume: 10 start-page: 203 issue: 3 year: 2021 ident: CR25 article-title: The soliton solutions for some nonlinear fractional differential equations with Beta-Derivative publication-title: Axioms doi: 10.3390/axioms10030203 – volume: 12 start-page: 1 issue: 1 year: 2021 end-page: 10 ident: CR3 article-title: An analysis of time-fractional heat transfer problem using two-scale approach publication-title: GEM. Int. J. Geomathema. doi: 10.1007/s13137-021-00187-x – volume: 451 start-page: 128429 year: 2022 ident: CR21 article-title: A new perspective to discuss Korteweg-de Vries-like equation publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2022.128429 – volume: 13 start-page: 168 issue: 2 year: 2022 end-page: 182 ident: CR23 article-title: A numerical solution of nonlinear fractional Newell-Whitehead-Segel equation using natural transform publication-title: TWMS. J. Pure. Appl. Math. – volume: 2020 start-page: 2197 year: 2020 ident: CR1 article-title: Modified variational iteration technique for the numerical solution of fifth order KdV type equations publication-title: J. Appl. Comput. Mech. – volume: 177 start-page: 13 year: 2020 end-page: 23 ident: CR2 article-title: Study on numerical solution of dispersive water wave phenomena by using a reliable modification of variational iteration algorithm publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2020.04.005 – volume: 38 start-page: 3154 year: 2014 end-page: 3163 ident: CR17 article-title: A new analytical modelling for fractional telegraph equation via Laplace transform publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.11.035 – volume: 2023 start-page: 2450054 year: 2023 ident: CR7 article-title: Investigation of exact soliton solutions of nematicons in liquid crystals according to nonlinearity conditions publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979224500541 – volume: 22 start-page: 62 issue: 2 year: 2023 ident: CR15 article-title: Exact controllability of Hilfer fractional differential system with non-instantaneous impluleses and state dependent delay publication-title: Qual. Theory Dyn. Syst. doi: 10.1007/s12346-023-00761-8 – volume: 55 start-page: 102 issue: 2 year: 2023 ident: CR35 article-title: Propagation of M-truncated optical pulses in nonlinear optics publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-022-04344-w – volume: 2023 start-page: 2350219 year: 2023 ident: CR4 article-title: On exact solutions of the (2+1)-dimensional time conformable Maccari system publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979223502193 – volume: 6 start-page: 173 issue: 3 year: 2022 ident: CR24 article-title: New exact solutions of some important nonlinear fractional partial differential equations with Beta derivative publication-title: Fractal Fract. doi: 10.3390/fractalfract6030173 – volume: 37 start-page: 2350012 issue: 11 year: 2023 ident: CR29 article-title: Diverse wave structures to the modified Benjamin-Bona-Mahony equation in the optical illusions field publication-title: Mod. Phys. Lett. B. doi: 10.1142/S0217984923500124 – volume: 32 start-page: 105086 year: 2022 ident: CR11 article-title: Construction of exotical soliton-like for a fractional nonlinear electrical circuit equation using differential-difference Jacobi elliptic functions sub-equation method publication-title: Results Phys. doi: 10.1016/j.rinp.2021.105086 – volume: 68 start-page: 348 year: 2020 end-page: 364 ident: CR34 article-title: Dispersive of propagation wave structures to the Dullin-gottwald-holm dynamical equation in a shallow water waves publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2020.09.021 – volume: 235 start-page: 4871 issue: 16 year: 2011 end-page: 4877 ident: CR27 article-title: The first integral method to some complex nonlinear partial differential equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2011.02.021 – volume: 104 start-page: 691 issue: 1 year: 2021 end-page: 704 ident: CR9 article-title: On the soliton solutions for an intrinsic fractional discrete nonlinear electrical transmission line publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06300-x – volume: 78 start-page: 857 year: 2019 end-page: 877 ident: CR18 article-title: Some new periodic solitary wave solutions of (3+1)-dimensional generalized shallow water wave equation by Lie symmetry approach publication-title: Comput. Math. Appl. – volume: 204 start-page: 243 year: 2022 end-page: 258 ident: CR13 article-title: Homotopy perturbation method for strongly nonlinear oscillators publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2022.08.005 – volume: 36 start-page: 2250120 issue: 23 year: 2022 ident: CR28 article-title: Propagation of solitons for the Hamiltonian amplitude equation via an analytical technique publication-title: Mod. Phys. Lett. B. doi: 10.1142/S0217984922501202 – volume: 79 start-page: 41 issue: 1 year: 2012 end-page: 60 ident: CR19 article-title: Coupled Higgs field equation and Hamiltonian amplitude equation: lie classical approach and (G’/G)-expansion method publication-title: Pramana J. Phys. doi: 10.1007/s12043-012-0284-7 – volume: 31 start-page: 2350003 issue: 1 year: 2023 ident: CR30 article-title: New fractal soliton solutions for the coupled fractional Klein–Gordon equation with beta-fractional derivative publication-title: Fractals doi: 10.1142/S0218348X23500032 – volume: 94 start-page: 117 issue: 1 year: 2020 end-page: 126 ident: CR26 article-title: Some new families of spiky solitary waves of one-dimensional higher-order K-dV equation with power law nonlinearity in plasma physics publication-title: Indian J. Phys. doi: 10.1007/s12648-019-01442-6 – volume: 96 start-page: 125251 issue: 12 year: 2021 ident: CR6 article-title: An investigation of the physical dynamics of a traveling wave solution called a bright soliton publication-title: Phys. Scr. doi: 10.1088/1402-4896/ac37a1 – volume: 202 start-page: 275 year: 2008 end-page: 286 ident: CR32 article-title: Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirota’s method, tanh-coth method, and Exp-function method publication-title: Appl. Math. Comput. – volume: 133 start-page: 32 issue: 2 year: 2018 ident: CR8 article-title: Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation publication-title: Eur. Phys. J. plus. doi: 10.1140/epjp/i2018-11851-1 – volume: 55 start-page: 35 issue: 2 year: 2023 ident: CR12 article-title: Dynamical behaviours and fractional alphabetical-exotic solitons in a coupled nonlinear electrical transmission lattice including wave obliqueness publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-022-04286-3 – volume: 2023 start-page: 2350219 year: 2023 ident: 5309_CR4 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979223502193 – volume: 38 start-page: 105602 year: 2022 ident: 5309_CR22 publication-title: Results Phys. doi: 10.1016/j.rinp.2022.105602 – volume: 36 start-page: 2250120 issue: 23 year: 2022 ident: 5309_CR28 publication-title: Mod. Phys. Lett. B. doi: 10.1142/S0217984922501202 – volume: 68 start-page: 348 year: 2020 ident: 5309_CR34 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2020.09.021 – volume: 133 start-page: 32 issue: 2 year: 2018 ident: 5309_CR8 publication-title: Eur. Phys. J. plus. doi: 10.1140/epjp/i2018-11851-1 – volume: 6 start-page: 173 issue: 3 year: 2022 ident: 5309_CR24 publication-title: Fractal Fract. doi: 10.3390/fractalfract6030173 – volume: 22 start-page: 62 issue: 2 year: 2023 ident: 5309_CR15 publication-title: Qual. Theory Dyn. Syst. doi: 10.1007/s12346-023-00761-8 – volume: 74 start-page: 896 issue: 3 year: 2005 ident: 5309_CR16 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.74.896 – volume: 2023 start-page: 2450054 year: 2023 ident: 5309_CR7 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979224500541 – volume: 78 start-page: 857 year: 2019 ident: 5309_CR18 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2019.03.007 – volume: 43 start-page: 5564 issue: 8 year: 2020 ident: 5309_CR20 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6297 – volume: 177 start-page: 13 year: 2020 ident: 5309_CR2 publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2020.04.005 – volume: 104 start-page: 691 issue: 1 year: 2021 ident: 5309_CR9 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06300-x – volume: 202 start-page: 275 year: 2008 ident: 5309_CR32 publication-title: Appl. Math. Comput. – volume: 22 start-page: 82 issue: 2 year: 2023 ident: 5309_CR33 publication-title: Qual. Theory Dyn. Syst. doi: 10.1007/s12346-023-00785-0 – volume: 12 start-page: 1 issue: 1 year: 2021 ident: 5309_CR3 publication-title: GEM. Int. J. Geomathema. doi: 10.1007/s13137-021-00187-x – volume: 31 start-page: 2350003 issue: 1 year: 2023 ident: 5309_CR30 publication-title: Fractals doi: 10.1142/S0218348X23500032 – volume: 55 start-page: 35 issue: 2 year: 2023 ident: 5309_CR12 publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-022-04286-3 – volume: 2020 start-page: 2197 year: 2020 ident: 5309_CR1 publication-title: J. Appl. Comput. Mech. – volume: 21 start-page: 20220214 issue: 1 year: 2023 ident: 5309_CR31 publication-title: Open Phys. doi: 10.1515/phys-2022-0214 – volume: 32 start-page: 105086 year: 2022 ident: 5309_CR11 publication-title: Results Phys. doi: 10.1016/j.rinp.2021.105086 – volume: 37 start-page: 2350012 issue: 11 year: 2023 ident: 5309_CR29 publication-title: Mod. Phys. Lett. B. doi: 10.1142/S0217984923500124 – volume: 96 start-page: 125251 issue: 12 year: 2021 ident: 5309_CR6 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ac37a1 – volume: 160 start-page: 112253 year: 2022 ident: 5309_CR10 publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2022.112253 – volume: 204 start-page: 243 year: 2022 ident: 5309_CR13 publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2022.08.005 – volume: 13 start-page: 168 issue: 2 year: 2022 ident: 5309_CR23 publication-title: TWMS. J. Pure. Appl. Math. – volume: 55 start-page: 102 issue: 2 year: 2023 ident: 5309_CR35 publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-022-04344-w – volume: 235 start-page: 4871 issue: 16 year: 2011 ident: 5309_CR27 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2011.02.021 – volume: 94 start-page: 117 issue: 1 year: 2020 ident: 5309_CR26 publication-title: Indian J. Phys. doi: 10.1007/s12648-019-01442-6 – volume: 38 start-page: 3154 year: 2014 ident: 5309_CR17 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.11.035 – volume: 79 start-page: 41 issue: 1 year: 2012 ident: 5309_CR19 publication-title: Pramana J. Phys. doi: 10.1007/s12043-012-0284-7 – volume: 17 start-page: 6025 issue: 9 year: 2015 ident: 5309_CR5 publication-title: Entropy doi: 10.3390/e17096025 – volume: 10 start-page: 203 issue: 3 year: 2021 ident: 5309_CR25 publication-title: Axioms doi: 10.3390/axioms10030203 – ident: 5309_CR14 doi: 10.1142/S0217984922502190 – volume: 451 start-page: 128429 year: 2022 ident: 5309_CR21 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2022.128429 |
SSID | ssj0006450 |
Score | 2.4690208 |
Snippet | In this paper, we present a pioneering investigation on the fractional Hamiltonian amplitude equation involving the beta fractional derivative for the first... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Amplitudes Characterization and Evaluation of Materials Computer Communication Networks Electrical Engineering Lasers Nonlinear dynamics Optical Devices Optics Photonics Physics Physics and Astronomy Solitary waves |
Title | New perspective on fractional Hamiltonian amplitude equation |
URI | https://link.springer.com/article/10.1007/s11082-023-05309-3 https://www.proquest.com/docview/2867254089 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgExIceAwQgzHlwA0i9d1E4rLBxgSCE5PGqWrS5IS6sY7_j9OmKyBA4lRVTdzKTvyo_TkAF8oofldIKlOW0cCVggqdmihFZmmEFltKA05-fIom0-B-Fs4sKKyoq93rlGSpqRuwm4vmiqKNobhwTMZ-E9ohxu6mkGvqDdb6F9_gVLmDiDLucguV-ZnGV3PU-Jjf0qKltRnvw651E8mgkusBbKi8A3vWZSR2QxYd2PnUT7ADW2U9pywO4RqVF1k0QEoyz4leViAGpDsxvzXQ68O1QVJTU246XBL1VvX9PoLpePR8M6H2oAQqcQetqK8Umt2Aa19KR3FHRKmbIbeZxnCAZ1kgPNPXC290FqbcYZmjlC99EXkyFbH0j6GVz3N1AkTGWRjpwI8ChtN4LIRGj4mnzNNIn_MuuDW_Emm7iJvDLF6Tpv-x4XGCPE5KHid-Fy7XcxZVD40_R_dqMSR2PxWJx6IYQ1mH4Qdc1aJpHv9O7fR_w89g25wnX4ENe9BaLd_VOXodK9GH9mB4Oxyb693Lw6hfLroPF17Pfg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCAEHHgPEYEAP3CBSX0sTicuEmApsO23SblWTJifUjXX8f5w2XQEBEseqiVs5jv0lzucA3Cjj-D0hiUxZRkJPCiJ0alYpMkspRmwpDTl5NKbxNHye9WaWFFbUp93rlGTpqRuym4fhimCMIWg4JmO_CVsIBpix5anfX_tf_IJb5Q4oYdzjlirzs4yv4ajBmN_SomW0GRzCvoWJTr8a1yPYUHkbDixkdOyELNqw96meYBu2y_OcsjiGe3RezqIhUjrz3NHLisSAcmOzrYGoD23DSc2ZclPh0lFvVd3vE5gOHicPMbEXJRCJM2hFAqUw7IZcB1K6iruCpl6G2mYalwM8y0Lhm7pe-KCzXspdlrlKBTIQ1JepiGRwCq18nqszcGSU9agOAxoy7MYjITQiJp4yX6N8zjvg1fpKpK0ibi6zeE2a-sdGxwnqOCl1nAQduF33WVQ1NP5s3a2HIbHzqUh8RiNcyroMf-CuHprm9e_Szv_X_Bp24slomAyfxi8XsGvulq-Ih11orZbv6hIRyEpclQb3AQQxz2s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCAQHHgPEYEAP3CBaX0sbicsETOM1cWDSblHzOqFubOX_4_SxDgRIHKsmbuU4sRP7-wJwoe3C7wlJZBIrEnpSEGESu0uRKqHosaW04OTnIR2Mwodxd7yE4s-r3auUZIFpsCxNadaZKtOpgW8eui6C_oagEdns_SqshRYNjBY98nuLtRi_5hZ5BEpi5rESNvOzjK-uqY43v6VIc8_T34XtMmR0esUY78GKTpuwU4aPTjk5503YWuIWbMJ6Xtsp5_twjQuZM61Blc4kdcysADSg3IE94sAIEO3ESWx9uWW7dPR7wQF-AKP-3evNgJSXJhCJsykjgdbogkNmAildzVxBE0-h5mODWwOmVCh8y_GFD0Z1E-bGytU6kIGgvkxEJINDaKSTVB-BIyPVpSYMaBhjNxYJYTB6YknsG5TPWAu8Sl9clozi9mKLN15zIVsdc9Qxz3XMgxZcLvpMCz6NP1u3q2Hg5dyacz-mEW5r3Rh_4Koamvr179KO_9f8HDZebvv86X74eAKb9pr5AoPYhkY2-9CnGIxk4iy3t088EdOe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+perspective+on+fractional+Hamiltonian+amplitude+equation&rft.jtitle=Optical+and+quantum+electronics&rft.au=Wang%2C+Kang-Le&rft.date=2023-11-01&rft.pub=Springer+US&rft.issn=0306-8919&rft.eissn=1572-817X&rft.volume=55&rft.issue=12&rft_id=info:doi/10.1007%2Fs11082-023-05309-3&rft.externalDocID=10_1007_s11082_023_05309_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-8919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-8919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-8919&client=summon |