New perspective on fractional Hamiltonian amplitude equation

In this paper, we present a pioneering investigation on the fractional Hamiltonian amplitude equation involving the beta fractional derivative for the first time, addressing a research gap in the field of nonlinear fractional dynamics. Our primary objective is to develop effective analytical techniq...

Full description

Saved in:
Bibliographic Details
Published inOptical and quantum electronics Vol. 55; no. 12
Main Author Wang, Kang-Le
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present a pioneering investigation on the fractional Hamiltonian amplitude equation involving the beta fractional derivative for the first time, addressing a research gap in the field of nonlinear fractional dynamics. Our primary objective is to develop effective analytical techniques capable of solving the fractional Hamiltonian amplitude equation and obtaining novel soliton solutions. To achieve this, we introduce two advanced methods: the extended fractional rational sin e δ - cos i n e δ and the fractional rational sinh δ - cosh δ techniques. By employing these cutting-edge approaches, we successfully derive new types of soliton solutions, demonstrating the reliability and efficiency of the proposed methods. Furthermore, the applicability of these techniques extends to various fractional nonlinear evolution models, highlighting their versatility in the realm of fractional dynamics. Finally, we provide a comprehensive presentation of the results, which substantiate the effectiveness of the methods in solving the complex fractional Hamiltonian amplitude equation.
AbstractList In this paper, we present a pioneering investigation on the fractional Hamiltonian amplitude equation involving the beta fractional derivative for the first time, addressing a research gap in the field of nonlinear fractional dynamics. Our primary objective is to develop effective analytical techniques capable of solving the fractional Hamiltonian amplitude equation and obtaining novel soliton solutions. To achieve this, we introduce two advanced methods: the extended fractional rational sin e δ - cos i n e δ and the fractional rational sinh δ - cosh δ techniques. By employing these cutting-edge approaches, we successfully derive new types of soliton solutions, demonstrating the reliability and efficiency of the proposed methods. Furthermore, the applicability of these techniques extends to various fractional nonlinear evolution models, highlighting their versatility in the realm of fractional dynamics. Finally, we provide a comprehensive presentation of the results, which substantiate the effectiveness of the methods in solving the complex fractional Hamiltonian amplitude equation.
In this paper, we present a pioneering investigation on the fractional Hamiltonian amplitude equation involving the beta fractional derivative for the first time, addressing a research gap in the field of nonlinear fractional dynamics. Our primary objective is to develop effective analytical techniques capable of solving the fractional Hamiltonian amplitude equation and obtaining novel soliton solutions. To achieve this, we introduce two advanced methods: the extended fractional rational sineδ-cosineδ and the fractional rational sinhδ-coshδ techniques. By employing these cutting-edge approaches, we successfully derive new types of soliton solutions, demonstrating the reliability and efficiency of the proposed methods. Furthermore, the applicability of these techniques extends to various fractional nonlinear evolution models, highlighting their versatility in the realm of fractional dynamics. Finally, we provide a comprehensive presentation of the results, which substantiate the effectiveness of the methods in solving the complex fractional Hamiltonian amplitude equation.
ArticleNumber 1033
Author Wang, Kang-Le
Author_xml – sequence: 1
  givenname: Kang-Le
  surname: Wang
  fullname: Wang, Kang-Le
  email: kangle140917@163.com
  organization: School of Mathematics and Information Science, Henan Polytechnic University
BookMark eNp9kE1LxDAQhoOs4O7qH_BU8BydJE2bgBdZ1BUWvSh4C2k6lS792qRV_Pd2t4LgYU8zA88zvLwLMmvaBgm5ZHDNANKbwBgoToELClKApuKEzJlMOVUsfZ-ROQhIqNJMn5FFCFsASGIJc3L7jF9Rhz506PryE6O2iQpvx71tbBWtbV1WfduUtols3VVlP-QY4W6we-CcnBa2CnjxO5fk7eH-dbWmm5fHp9XdhjrBdE8FIlMy1oVwDlBDlliWJ8ypIkmlzvM44yClHI8il1aDygFROJEl3NksdWJJrqa_nW93A4bebNvBj_mC4SpJuYxB6ZFSE-V8G4LHwriyP-TsvS0rw8DsuzJTV2bsyhy6MmJU-T-182Vt_fdxSUxSGOHmA_1fqiPWD9fufi4
CitedBy_id crossref_primary_10_1088_1402_4896_ad16fd
crossref_primary_10_1007_s11071_024_09356_7
crossref_primary_10_1016_j_padiff_2023_100589
crossref_primary_10_1142_S0217984924502592
crossref_primary_10_1063_5_0261145
crossref_primary_10_1142_S0218348X24500233
crossref_primary_10_1007_s11082_024_06403_w
crossref_primary_10_1142_S0218348X24500270
crossref_primary_10_3390_math11204382
crossref_primary_10_1016_j_compfluid_2024_106233
crossref_primary_10_1140_epjp_s13360_024_05080_8
crossref_primary_10_1016_j_rinp_2023_107208
crossref_primary_10_2298_TSCI230311017F
crossref_primary_10_1016_j_rinp_2024_107369
crossref_primary_10_1063_5_0186841
crossref_primary_10_1142_S0218348X23501104
crossref_primary_10_1007_s12346_024_00955_8
crossref_primary_10_1142_S0218348X24500245
crossref_primary_10_1142_S0218348X24500269
crossref_primary_10_1142_S0218348X24500348
crossref_primary_10_1088_1402_4896_ad2966
crossref_primary_10_1016_j_aej_2024_03_074
crossref_primary_10_1142_S0218348X24400401
crossref_primary_10_1142_S021798492450194X
crossref_primary_10_1007_s12043_024_02747_w
crossref_primary_10_2298_TSCI230325128R
Cites_doi 10.1016/j.rinp.2022.105602
10.3390/e17096025
10.1002/mma.6297
10.1143/JPSJ.74.896
10.1007/s12346-023-00785-0
10.1515/phys-2022-0214
10.1016/j.chaos.2022.112253
10.3390/axioms10030203
10.1007/s13137-021-00187-x
10.1016/j.physleta.2022.128429
10.1016/j.matcom.2020.04.005
10.1016/j.apm.2013.11.035
10.1142/S0217979224500541
10.1007/s12346-023-00761-8
10.1007/s11082-022-04344-w
10.1142/S0217979223502193
10.3390/fractalfract6030173
10.1142/S0217984923500124
10.1016/j.rinp.2021.105086
10.1016/j.cjph.2020.09.021
10.1016/j.cam.2011.02.021
10.1007/s11071-021-06300-x
10.1016/j.matcom.2022.08.005
10.1142/S0217984922501202
10.1007/s12043-012-0284-7
10.1142/S0218348X23500032
10.1007/s12648-019-01442-6
10.1088/1402-4896/ac37a1
10.1140/epjp/i2018-11851-1
10.1007/s11082-022-04286-3
10.1016/j.camwa.2019.03.007
10.1142/S0217984922502190
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11082-023-05309-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1572-817X
ExternalDocumentID 10_1007_s11082_023_05309_3
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8Z
Z92
ZMTXR
ZY4
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-3ee18549f3cc0e90b6a1d61c8f6759dd4b20555675fd5a908d0ee3c3b62cab7c3
IEDL.DBID U2A
ISSN 0306-8919
IngestDate Fri Jul 25 11:09:08 EDT 2025
Thu Apr 24 23:09:29 EDT 2025
Tue Jul 01 01:26:36 EDT 2025
Fri Feb 21 02:42:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Soliton solution
Beta fractional derivative
method
Fractional rational
Fractional Hamiltonian amplitude equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-3ee18549f3cc0e90b6a1d61c8f6759dd4b20555675fd5a908d0ee3c3b62cab7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2867254089
PQPubID 2043598
ParticipantIDs proquest_journals_2867254089
crossref_citationtrail_10_1007_s11082_023_05309_3
crossref_primary_10_1007_s11082_023_05309_3
springer_journals_10_1007_s11082_023_05309_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Optical and quantum electronics
PublicationTitleAbbrev Opt Quant Electron
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Khan, Ain, Abdeljawad, Nisar (CR15) 2023; 22
Yadav, Jahan, Nisar (CR33) 2023; 22
Fendzi-Donfack, Temgoua, Djoufack, Kenfack-Jiotsa, Nguenang, Nana (CR10) 2022; 160
He, Jiao, Gepreel, Khan (CR13) 2022; 204
CR14
Ahmad, Khan, Stanimirovic, Ahmad (CR1) 2020; 2020
Wang (CR29) 2023; 37
Fendzi-Donfack, Tala-Tebue, Inc, Kenfack-Jiotsa, Nguenang, Nana (CR12) 2023; 55
Durur, Yokuş, Duran (CR7) 2023; 2023
Fendzi-Donfack, Kumar, Tala-Tebue, Nana, Nguenang, Kenfack-Jiotsa (CR11) 2022; 32
Kumar, Kumar, Agarwal, Samet (CR20) 2020; 43
Younas, Seadawy, Younis, Rizvi (CR34) 2020; 68
Kumar, Singh, Gupta (CR19) 2012; 79
Seadawy, Cheemaa (CR26) 2020; 94
Demiray, Bulut (CR5) 2015; 17
Fendzi-Donfack, Nguenang, Nana (CR9) 2021; 104
Akar, Ozkan (CR4) 2023; 2023
Liu, Yang, Wang (CR21) 2022; 451
Ozkan (CR24) 2022; 6
Ain, Anjum, He (CR3) 2021; 12
Krishnan, Peng (CR16) 2005; 74
Kumar, Kumar (CR18) 2019; 78
Lu, Chen (CR22) 2022; 38
Kumar (CR17) 2014; 38
Taghizadeh, Mirzazadeh (CR27) 2011; 235
Wang (CR30) 2023; 31
Tarla, Ali, Yilmazer, Osman (CR28) 2022; 36
Wazwaz (CR32) 2008; 202
Duran (CR6) 2021; 96
Fendzi-Donfack, Nguenang, Nana (CR8) 2018; 133
Wang, Si (CR31) 2023; 21
Younas, Sulaiman, Ren (CR35) 2023; 55
Ozkan, Ozkan (CR25) 2021; 10
Nadeem, He, He, Sedighi, Shirazi (CR23) 2022; 13
Ahmad, Seadawy, Khan (CR2) 2020; 177
KL Wang (5309_CR30) 2023; 31
E Fendzi-Donfack (5309_CR10) 2022; 160
E Fendzi-Donfack (5309_CR12) 2023; 55
AR Seadawy (5309_CR26) 2020; 94
JF Lu (5309_CR22) 2022; 38
M Akar (5309_CR4) 2023; 2023
KJ Wang (5309_CR29) 2023; 37
EM Ozkan (5309_CR25) 2021; 10
E Fendzi-Donfack (5309_CR8) 2018; 133
E Fendzi-Donfack (5309_CR11) 2022; 32
QT Ain (5309_CR3) 2021; 12
H Durur (5309_CR7) 2023; 2023
AM Wazwaz (5309_CR32) 2008; 202
U Younas (5309_CR35) 2023; 55
EV Krishnan (5309_CR16) 2005; 74
D Kumar (5309_CR18) 2019; 78
S Kumar (5309_CR19) 2012; 79
S Tarla (5309_CR28) 2022; 36
EM Ozkan (5309_CR24) 2022; 6
U Younas (5309_CR34) 2020; 68
ST Demiray (5309_CR5) 2015; 17
H Ahmad (5309_CR2) 2020; 177
N Taghizadeh (5309_CR27) 2011; 235
KJ Wang (5309_CR31) 2023; 21
S Duran (5309_CR6) 2021; 96
S Kumar (5309_CR20) 2020; 43
A Khan (5309_CR15) 2023; 22
JG Liu (5309_CR21) 2022; 451
E Fendzi-Donfack (5309_CR9) 2021; 104
M Nadeem (5309_CR23) 2022; 13
H Ahmad (5309_CR1) 2020; 2020
5309_CR14
S Kumar (5309_CR17) 2014; 38
P Yadav (5309_CR33) 2023; 22
JH He (5309_CR13) 2022; 204
References_xml – volume: 38
  start-page: 105602
  year: 2022
  ident: CR22
  article-title: Numerical analysis of a fractal modification of Yao–Cheng oscillator
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2022.105602
– volume: 17
  start-page: 6025
  issue: 9
  year: 2015
  end-page: 6043
  ident: CR5
  article-title: New exact solutions of the new Hamiltonian amplitude equation and Fokas-Lenells equation
  publication-title: Entropy
  doi: 10.3390/e17096025
– volume: 43
  start-page: 5564
  issue: 8
  year: 2020
  end-page: 5578
  ident: CR20
  article-title: A study of fractional Lotka–Volterra population model using Haar wavelet and Adams-Bashforth–Moulton methods
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6297
– volume: 74
  start-page: 896
  issue: 3
  year: 2005
  end-page: 897
  ident: CR16
  article-title: A new solitary wave solution for the new Hamiltonian amplitude equation
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.74.896
– ident: CR14
– volume: 22
  start-page: 82
  issue: 2
  year: 2023
  ident: CR33
  article-title: Fibonacci wavelet collocation method for Fredholm integral equations of second kind
  publication-title: Qual. Theory Dyn. Syst.
  doi: 10.1007/s12346-023-00785-0
– volume: 21
  start-page: 20220214
  issue: 1
  year: 2023
  ident: CR31
  article-title: Dynamic properties of the attachment oscillator arising in the nanophysics
  publication-title: Open Phys.
  doi: 10.1515/phys-2022-0214
– volume: 160
  start-page: 112253
  year: 2022
  ident: CR10
  article-title: Exotical solitons for an intrinsic fractional circuit using the sine-cosine method
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2022.112253
– volume: 10
  start-page: 203
  issue: 3
  year: 2021
  ident: CR25
  article-title: The soliton solutions for some nonlinear fractional differential equations with Beta-Derivative
  publication-title: Axioms
  doi: 10.3390/axioms10030203
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  end-page: 10
  ident: CR3
  article-title: An analysis of time-fractional heat transfer problem using two-scale approach
  publication-title: GEM. Int. J. Geomathema.
  doi: 10.1007/s13137-021-00187-x
– volume: 451
  start-page: 128429
  year: 2022
  ident: CR21
  article-title: A new perspective to discuss Korteweg-de Vries-like equation
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2022.128429
– volume: 13
  start-page: 168
  issue: 2
  year: 2022
  end-page: 182
  ident: CR23
  article-title: A numerical solution of nonlinear fractional Newell-Whitehead-Segel equation using natural transform
  publication-title: TWMS. J. Pure. Appl. Math.
– volume: 2020
  start-page: 2197
  year: 2020
  ident: CR1
  article-title: Modified variational iteration technique for the numerical solution of fifth order KdV type equations
  publication-title: J. Appl. Comput. Mech.
– volume: 177
  start-page: 13
  year: 2020
  end-page: 23
  ident: CR2
  article-title: Study on numerical solution of dispersive water wave phenomena by using a reliable modification of variational iteration algorithm
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2020.04.005
– volume: 38
  start-page: 3154
  year: 2014
  end-page: 3163
  ident: CR17
  article-title: A new analytical modelling for fractional telegraph equation via Laplace transform
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.11.035
– volume: 2023
  start-page: 2450054
  year: 2023
  ident: CR7
  article-title: Investigation of exact soliton solutions of nematicons in liquid crystals according to nonlinearity conditions
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979224500541
– volume: 22
  start-page: 62
  issue: 2
  year: 2023
  ident: CR15
  article-title: Exact controllability of Hilfer fractional differential system with non-instantaneous impluleses and state dependent delay
  publication-title: Qual. Theory Dyn. Syst.
  doi: 10.1007/s12346-023-00761-8
– volume: 55
  start-page: 102
  issue: 2
  year: 2023
  ident: CR35
  article-title: Propagation of M-truncated optical pulses in nonlinear optics
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-022-04344-w
– volume: 2023
  start-page: 2350219
  year: 2023
  ident: CR4
  article-title: On exact solutions of the (2+1)-dimensional time conformable Maccari system
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979223502193
– volume: 6
  start-page: 173
  issue: 3
  year: 2022
  ident: CR24
  article-title: New exact solutions of some important nonlinear fractional partial differential equations with Beta derivative
  publication-title: Fractal Fract.
  doi: 10.3390/fractalfract6030173
– volume: 37
  start-page: 2350012
  issue: 11
  year: 2023
  ident: CR29
  article-title: Diverse wave structures to the modified Benjamin-Bona-Mahony equation in the optical illusions field
  publication-title: Mod. Phys. Lett. B.
  doi: 10.1142/S0217984923500124
– volume: 32
  start-page: 105086
  year: 2022
  ident: CR11
  article-title: Construction of exotical soliton-like for a fractional nonlinear electrical circuit equation using differential-difference Jacobi elliptic functions sub-equation method
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2021.105086
– volume: 68
  start-page: 348
  year: 2020
  end-page: 364
  ident: CR34
  article-title: Dispersive of propagation wave structures to the Dullin-gottwald-holm dynamical equation in a shallow water waves
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2020.09.021
– volume: 235
  start-page: 4871
  issue: 16
  year: 2011
  end-page: 4877
  ident: CR27
  article-title: The first integral method to some complex nonlinear partial differential equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2011.02.021
– volume: 104
  start-page: 691
  issue: 1
  year: 2021
  end-page: 704
  ident: CR9
  article-title: On the soliton solutions for an intrinsic fractional discrete nonlinear electrical transmission line
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06300-x
– volume: 78
  start-page: 857
  year: 2019
  end-page: 877
  ident: CR18
  article-title: Some new periodic solitary wave solutions of (3+1)-dimensional generalized shallow water wave equation by Lie symmetry approach
  publication-title: Comput. Math. Appl.
– volume: 204
  start-page: 243
  year: 2022
  end-page: 258
  ident: CR13
  article-title: Homotopy perturbation method for strongly nonlinear oscillators
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2022.08.005
– volume: 36
  start-page: 2250120
  issue: 23
  year: 2022
  ident: CR28
  article-title: Propagation of solitons for the Hamiltonian amplitude equation via an analytical technique
  publication-title: Mod. Phys. Lett. B.
  doi: 10.1142/S0217984922501202
– volume: 79
  start-page: 41
  issue: 1
  year: 2012
  end-page: 60
  ident: CR19
  article-title: Coupled Higgs field equation and Hamiltonian amplitude equation: lie classical approach and (G’/G)-expansion method
  publication-title: Pramana J. Phys.
  doi: 10.1007/s12043-012-0284-7
– volume: 31
  start-page: 2350003
  issue: 1
  year: 2023
  ident: CR30
  article-title: New fractal soliton solutions for the coupled fractional Klein–Gordon equation with beta-fractional derivative
  publication-title: Fractals
  doi: 10.1142/S0218348X23500032
– volume: 94
  start-page: 117
  issue: 1
  year: 2020
  end-page: 126
  ident: CR26
  article-title: Some new families of spiky solitary waves of one-dimensional higher-order K-dV equation with power law nonlinearity in plasma physics
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-019-01442-6
– volume: 96
  start-page: 125251
  issue: 12
  year: 2021
  ident: CR6
  article-title: An investigation of the physical dynamics of a traveling wave solution called a bright soliton
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ac37a1
– volume: 202
  start-page: 275
  year: 2008
  end-page: 286
  ident: CR32
  article-title: Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirota’s method, tanh-coth method, and Exp-function method
  publication-title: Appl. Math. Comput.
– volume: 133
  start-page: 32
  issue: 2
  year: 2018
  ident: CR8
  article-title: Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation
  publication-title: Eur. Phys. J. plus.
  doi: 10.1140/epjp/i2018-11851-1
– volume: 55
  start-page: 35
  issue: 2
  year: 2023
  ident: CR12
  article-title: Dynamical behaviours and fractional alphabetical-exotic solitons in a coupled nonlinear electrical transmission lattice including wave obliqueness
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-022-04286-3
– volume: 2023
  start-page: 2350219
  year: 2023
  ident: 5309_CR4
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979223502193
– volume: 38
  start-page: 105602
  year: 2022
  ident: 5309_CR22
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2022.105602
– volume: 36
  start-page: 2250120
  issue: 23
  year: 2022
  ident: 5309_CR28
  publication-title: Mod. Phys. Lett. B.
  doi: 10.1142/S0217984922501202
– volume: 68
  start-page: 348
  year: 2020
  ident: 5309_CR34
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2020.09.021
– volume: 133
  start-page: 32
  issue: 2
  year: 2018
  ident: 5309_CR8
  publication-title: Eur. Phys. J. plus.
  doi: 10.1140/epjp/i2018-11851-1
– volume: 6
  start-page: 173
  issue: 3
  year: 2022
  ident: 5309_CR24
  publication-title: Fractal Fract.
  doi: 10.3390/fractalfract6030173
– volume: 22
  start-page: 62
  issue: 2
  year: 2023
  ident: 5309_CR15
  publication-title: Qual. Theory Dyn. Syst.
  doi: 10.1007/s12346-023-00761-8
– volume: 74
  start-page: 896
  issue: 3
  year: 2005
  ident: 5309_CR16
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.74.896
– volume: 2023
  start-page: 2450054
  year: 2023
  ident: 5309_CR7
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979224500541
– volume: 78
  start-page: 857
  year: 2019
  ident: 5309_CR18
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2019.03.007
– volume: 43
  start-page: 5564
  issue: 8
  year: 2020
  ident: 5309_CR20
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6297
– volume: 177
  start-page: 13
  year: 2020
  ident: 5309_CR2
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2020.04.005
– volume: 104
  start-page: 691
  issue: 1
  year: 2021
  ident: 5309_CR9
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06300-x
– volume: 202
  start-page: 275
  year: 2008
  ident: 5309_CR32
  publication-title: Appl. Math. Comput.
– volume: 22
  start-page: 82
  issue: 2
  year: 2023
  ident: 5309_CR33
  publication-title: Qual. Theory Dyn. Syst.
  doi: 10.1007/s12346-023-00785-0
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 5309_CR3
  publication-title: GEM. Int. J. Geomathema.
  doi: 10.1007/s13137-021-00187-x
– volume: 31
  start-page: 2350003
  issue: 1
  year: 2023
  ident: 5309_CR30
  publication-title: Fractals
  doi: 10.1142/S0218348X23500032
– volume: 55
  start-page: 35
  issue: 2
  year: 2023
  ident: 5309_CR12
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-022-04286-3
– volume: 2020
  start-page: 2197
  year: 2020
  ident: 5309_CR1
  publication-title: J. Appl. Comput. Mech.
– volume: 21
  start-page: 20220214
  issue: 1
  year: 2023
  ident: 5309_CR31
  publication-title: Open Phys.
  doi: 10.1515/phys-2022-0214
– volume: 32
  start-page: 105086
  year: 2022
  ident: 5309_CR11
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2021.105086
– volume: 37
  start-page: 2350012
  issue: 11
  year: 2023
  ident: 5309_CR29
  publication-title: Mod. Phys. Lett. B.
  doi: 10.1142/S0217984923500124
– volume: 96
  start-page: 125251
  issue: 12
  year: 2021
  ident: 5309_CR6
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ac37a1
– volume: 160
  start-page: 112253
  year: 2022
  ident: 5309_CR10
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2022.112253
– volume: 204
  start-page: 243
  year: 2022
  ident: 5309_CR13
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2022.08.005
– volume: 13
  start-page: 168
  issue: 2
  year: 2022
  ident: 5309_CR23
  publication-title: TWMS. J. Pure. Appl. Math.
– volume: 55
  start-page: 102
  issue: 2
  year: 2023
  ident: 5309_CR35
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-022-04344-w
– volume: 235
  start-page: 4871
  issue: 16
  year: 2011
  ident: 5309_CR27
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2011.02.021
– volume: 94
  start-page: 117
  issue: 1
  year: 2020
  ident: 5309_CR26
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-019-01442-6
– volume: 38
  start-page: 3154
  year: 2014
  ident: 5309_CR17
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.11.035
– volume: 79
  start-page: 41
  issue: 1
  year: 2012
  ident: 5309_CR19
  publication-title: Pramana J. Phys.
  doi: 10.1007/s12043-012-0284-7
– volume: 17
  start-page: 6025
  issue: 9
  year: 2015
  ident: 5309_CR5
  publication-title: Entropy
  doi: 10.3390/e17096025
– volume: 10
  start-page: 203
  issue: 3
  year: 2021
  ident: 5309_CR25
  publication-title: Axioms
  doi: 10.3390/axioms10030203
– ident: 5309_CR14
  doi: 10.1142/S0217984922502190
– volume: 451
  start-page: 128429
  year: 2022
  ident: 5309_CR21
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2022.128429
SSID ssj0006450
Score 2.4690208
Snippet In this paper, we present a pioneering investigation on the fractional Hamiltonian amplitude equation involving the beta fractional derivative for the first...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Amplitudes
Characterization and Evaluation of Materials
Computer Communication Networks
Electrical Engineering
Lasers
Nonlinear dynamics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Solitary waves
Title New perspective on fractional Hamiltonian amplitude equation
URI https://link.springer.com/article/10.1007/s11082-023-05309-3
https://www.proquest.com/docview/2867254089
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgExIceAwQgzHlwA0i9d1E4rLBxgSCE5PGqWrS5IS6sY7_j9OmKyBA4lRVTdzKTvyo_TkAF8oofldIKlOW0cCVggqdmihFZmmEFltKA05-fIom0-B-Fs4sKKyoq93rlGSpqRuwm4vmiqKNobhwTMZ-E9ohxu6mkGvqDdb6F9_gVLmDiDLucguV-ZnGV3PU-Jjf0qKltRnvw651E8mgkusBbKi8A3vWZSR2QxYd2PnUT7ADW2U9pywO4RqVF1k0QEoyz4leViAGpDsxvzXQ68O1QVJTU246XBL1VvX9PoLpePR8M6H2oAQqcQetqK8Umt2Aa19KR3FHRKmbIbeZxnCAZ1kgPNPXC290FqbcYZmjlC99EXkyFbH0j6GVz3N1AkTGWRjpwI8ChtN4LIRGj4mnzNNIn_MuuDW_Emm7iJvDLF6Tpv-x4XGCPE5KHid-Fy7XcxZVD40_R_dqMSR2PxWJx6IYQ1mH4Qdc1aJpHv9O7fR_w89g25wnX4ENe9BaLd_VOXodK9GH9mB4Oxyb693Lw6hfLroPF17Pfg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCAEHHgPEYEAP3CBSX0sTicuEmApsO23SblWTJifUjXX8f5w2XQEBEseqiVs5jv0lzucA3Cjj-D0hiUxZRkJPCiJ0alYpMkspRmwpDTl5NKbxNHye9WaWFFbUp93rlGTpqRuym4fhimCMIWg4JmO_CVsIBpix5anfX_tf_IJb5Q4oYdzjlirzs4yv4ajBmN_SomW0GRzCvoWJTr8a1yPYUHkbDixkdOyELNqw96meYBu2y_OcsjiGe3RezqIhUjrz3NHLisSAcmOzrYGoD23DSc2ZclPh0lFvVd3vE5gOHicPMbEXJRCJM2hFAqUw7IZcB1K6iruCpl6G2mYalwM8y0Lhm7pe-KCzXspdlrlKBTIQ1JepiGRwCq18nqszcGSU9agOAxoy7MYjITQiJp4yX6N8zjvg1fpKpK0ibi6zeE2a-sdGxwnqOCl1nAQduF33WVQ1NP5s3a2HIbHzqUh8RiNcyroMf-CuHprm9e_Szv_X_Bp24slomAyfxi8XsGvulq-Ih11orZbv6hIRyEpclQb3AQQxz2s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCAQHHgPEYEAP3CBaX0sbicsETOM1cWDSblHzOqFubOX_4_SxDgRIHKsmbuU4sRP7-wJwoe3C7wlJZBIrEnpSEGESu0uRKqHosaW04OTnIR2Mwodxd7yE4s-r3auUZIFpsCxNadaZKtOpgW8eui6C_oagEdns_SqshRYNjBY98nuLtRi_5hZ5BEpi5rESNvOzjK-uqY43v6VIc8_T34XtMmR0esUY78GKTpuwU4aPTjk5503YWuIWbMJ6Xtsp5_twjQuZM61Blc4kdcysADSg3IE94sAIEO3ESWx9uWW7dPR7wQF-AKP-3evNgJSXJhCJsykjgdbogkNmAildzVxBE0-h5mODWwOmVCh8y_GFD0Z1E-bGytU6kIGgvkxEJINDaKSTVB-BIyPVpSYMaBhjNxYJYTB6YknsG5TPWAu8Sl9clozi9mKLN15zIVsdc9Qxz3XMgxZcLvpMCz6NP1u3q2Hg5dyacz-mEW5r3Rh_4Koamvr179KO_9f8HDZebvv86X74eAKb9pr5AoPYhkY2-9CnGIxk4iy3t088EdOe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+perspective+on+fractional+Hamiltonian+amplitude+equation&rft.jtitle=Optical+and+quantum+electronics&rft.au=Wang%2C+Kang-Le&rft.date=2023-11-01&rft.pub=Springer+US&rft.issn=0306-8919&rft.eissn=1572-817X&rft.volume=55&rft.issue=12&rft_id=info:doi/10.1007%2Fs11082-023-05309-3&rft.externalDocID=10_1007_s11082_023_05309_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-8919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-8919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-8919&client=summon