FAformer: parallel Fourier-attention architectures benefits EEG-based affective computing with enhanced spatial information
The balance of brain functional segregation (i.e., the process in specialized local subsystems) and integration (i.e., the process in global cooperation of the subsystems) is crucial for cognition in human beings, and many deep learning models have been used to evaluate the spatial information durin...
Saved in:
Published in | Neural computing & applications Vol. 36; no. 8; pp. 3903 - 3919 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.03.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The balance of brain functional segregation (i.e., the process in specialized local subsystems) and integration (i.e., the process in global cooperation of the subsystems) is crucial for cognition in human beings, and many deep learning models have been used to evaluate the spatial information during EEG-based affective computing. However, acquiring the intrinsic spatial representation in the topology of EEG channels is still challenging. To further address the issue, we propose the FAformer to enhance spatial information in EEG signals with parallel-branch architectures based on a vision transformer (ViT). In the encoder, there is a branch that utilizes Adaptive Neural Fourier Operators (AFNO) to model global spatial patterns using the Fourier transform in the electrode channel dimension. The other branch utilizes multi-head self-attention (MSA) to explore the dependence of emotion on different channels, which is conducive to building key local networks. Additionally, a self-supervised learning (SSL) task of adaptive feature dissociation (AdaptiveFD) is developed to improve the distinctiveness of spatial features generated from the parallel branches and guarantee robustness in different subjects. FAformer achieves superior performance over the competitive models on the DREAMER and DEAP. Moreover, the rationality and hyperparameters analysis are conducted to demonstrate the effectiveness of the FAformer. Finally, the visualization of features reveals the spatial global connections and key local patterns during the deep learning process in FAformer, which benefits EEG-based affective computing. |
---|---|
AbstractList | The balance of brain functional segregation (i.e., the process in specialized local subsystems) and integration (i.e., the process in global cooperation of the subsystems) is crucial for cognition in human beings, and many deep learning models have been used to evaluate the spatial information during EEG-based affective computing. However, acquiring the intrinsic spatial representation in the topology of EEG channels is still challenging. To further address the issue, we propose the FAformer to enhance spatial information in EEG signals with parallel-branch architectures based on a vision transformer (ViT). In the encoder, there is a branch that utilizes Adaptive Neural Fourier Operators (AFNO) to model global spatial patterns using the Fourier transform in the electrode channel dimension. The other branch utilizes multi-head self-attention (MSA) to explore the dependence of emotion on different channels, which is conducive to building key local networks. Additionally, a self-supervised learning (SSL) task of adaptive feature dissociation (AdaptiveFD) is developed to improve the distinctiveness of spatial features generated from the parallel branches and guarantee robustness in different subjects. FAformer achieves superior performance over the competitive models on the DREAMER and DEAP. Moreover, the rationality and hyperparameters analysis are conducted to demonstrate the effectiveness of the FAformer. Finally, the visualization of features reveals the spatial global connections and key local patterns during the deep learning process in FAformer, which benefits EEG-based affective computing. |
Author | Chen, Jianhui Zhou, Haiyan Gao, Ziheng Huang, Jiajin |
Author_xml | – sequence: 1 givenname: Ziheng surname: Gao fullname: Gao, Ziheng organization: Faculty of Information Technology, Beijing University of Technology – sequence: 2 givenname: Jiajin surname: Huang fullname: Huang, Jiajin organization: Faculty of Information Technology, Beijing University of Technology, Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Engineering Research Center of Intelligent Perception and Autonomous Control, Ministry of Education, Engineering Research Center of Digital Community, Ministry of Education – sequence: 3 givenname: Jianhui surname: Chen fullname: Chen, Jianhui organization: Faculty of Information Technology, Beijing University of Technology, Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Engineering Research Center of Intelligent Perception and Autonomous Control, Ministry of Education, Engineering Research Center of Digital Community, Ministry of Education – sequence: 4 givenname: Haiyan surname: Zhou fullname: Zhou, Haiyan email: zhouhaiyan@bjut.edu.cn organization: Faculty of Information Technology, Beijing University of Technology, Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Engineering Research Center of Intelligent Perception and Autonomous Control, Ministry of Education, Engineering Research Center of Digital Community, Ministry of Education |
BookMark | eNp9kEFrGzEQhUVJoE7SP9CToGclWkm7XvVmjJ0UDL20ZzGrHdkya-1WkluS_PnIdqHQQ05zmPe9mfduyFUYAxLyueL3Fefzh8R5LSrGhWRci1azlw9kVikpmeR1e0VmXKuybpT8SG5S2nPOVdPWM_K6XrgxHjB-pRNEGAYc6Ho8Ro-RQc4Ysh8DhWh3PqPNx4iJdhjQ-ZzoavXIOkjYU3CubP1vpHY8TMfsw5b-8XlHMewg2KJIE2QPA_XhdA9Otnfk2sGQ8NPfeUt-rlc_lk9s8_3x23KxYVZWOjOJnXIC3bxRYGtQVdc1VTOHDlqpmhKkq7G3Vpc8dT_XfdMKqF2LqtdKam3lLfly8Z3i-OuIKZt9SRjKSSO0qIVuudRF1V5UNo4pRXTG-nz-M0fwg6m4OVVtLlWbUrU5V21eCir-Q6foDxCf34fkBUpFHLYY_331DvUGyqqWyQ |
CitedBy_id | crossref_primary_10_1016_j_imavis_2025_105454 crossref_primary_10_1007_s00521_024_10207_0 |
Cites_doi | 10.1007/978-3-030-29513-4_31 10.3390/s20236727 10.1109/TCDS.2021.3051465 10.1109/ICCV.2019.00815 10.1007/s00521-022-07643-1 10.1109/JBHI.2017.2688239 10.1093/cercor/bhab464 10.1016/j.neuron.2014.05.014 10.1109/JBHI.2020.2995767 10.1109/CVPR42600.2020.00414 10.1109/CVPR42600.2020.00657 10.1016/j.biopsych.2014.08.009 10.3390/s18051383 10.1016/j.neucom.2021.03.105 10.1007/s40708-017-0069-3 10.1109/TAMD.2015.2431497 10.1038/nn.4135 10.1109/NER.2011.5910636 10.1109/ICRA.2018.8462891 10.1109/MLSP.2019.8918693 10.1016/j.neuroimage.2016.10.020 10.1109/JSTARS.2020.3036602 10.1109/EMBC46164.2021.9630195 10.1109/BIBM.2016.7822545 10.1109/CBMS55023.2022.00072 10.18653/v1/2022.naacl-main.319 10.1109/IJCNN.2018.8489331 10.1109/ICICTA.2018.00031 10.1109/TAFFC.2020.3025777 10.1109/TCDS.2020.2976112 10.1109/ICASSP43922.2022.9747488 10.24963/ijcai.2020/184 10.1038/nrn3963 10.1109/TAFFC.2020.2994159 10.1109/TNSRE.2022.3173724 10.1007/s00521-022-06942-x 10.1109/CVPR42600.2020.00873 10.1073/pnas.2022288118 10.1080/02699930126048 10.1109/LSP.2019.2906824 10.14569/IJACSA.2018.090843 10.1109/CVPR.2018.00042 10.3389/fnins.2018.00525 10.3390/s21155092 10.1007/s00521-022-07843-9 10.3390/app7101060 10.1109/TNNLS.2020.3016291 10.1109/TAFFC.2018.2817622 10.1109/T-AFFC.2011.15 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00521-023-09289-z |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 3919 |
ExternalDocumentID | 10_1007_s00521_023_09289_z |
GrantInformation_xml | – fundername: Beijing Natural Science Foundation grantid: (No.4222022) – fundername: Education and Teaching Research Project of Beijing University of Technology grantid: (ER2022SJB06) – fundername: National Natural Science Foundation of China grantid: (62173008, 61602017) funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-3eb4f2ef764ac5a41bb6167aba8346004b5edcc96855d79d682a5f8e4d94399c3 |
IEDL.DBID | BENPR |
ISSN | 0941-0643 |
IngestDate | Fri Jul 25 21:39:40 EDT 2025 Thu Apr 24 22:56:59 EDT 2025 Tue Jul 01 03:04:46 EDT 2025 Fri Feb 21 02:42:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Deep learning Affective computing Vision transformer (ViT) Self-supervised learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-3eb4f2ef764ac5a41bb6167aba8346004b5edcc96855d79d682a5f8e4d94399c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2925298039 |
PQPubID | 2043988 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2925298039 crossref_citationtrail_10_1007_s00521_023_09289_z crossref_primary_10_1007_s00521_023_09289_z springer_journals_10_1007_s00521_023_09289_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240300 2024-03-00 20240301 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 3 year: 2024 text: 20240300 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2024 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Li, Huang, Zhou, Zhong (CR56) 2017; 7 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (CR14) 2017; 30 CR39 CR36 Schmidt, Trainor (CR21) 2001; 15 CR35 CR32 Alhagry, Fahmy, El-Khoribi (CR1) 2017; 8 CR31 Kwon, Shin, Kim (CR33) 2018; 18 Salama, El-Khoribi, Shoman, Shalaby (CR29) 2018; 9 Xi, Yun, Liu, Wang, Huang, Fan (CR52) 2022; 116 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (CR18) 2015; 18 Katsigiannis, Ramzan (CR27) 2017; 22 Zheng, Lu (CR24) 2015; 7 Phan, Kim, Yang, Lee (CR26) 2021; 21 Bi, Wang, Yan, Ping, Wen (CR9) 2022; 34 CR2 Zhong, Wang, Miao (CR30) 2020; 13 Yang, Cheng, Shiau, Wang (CR58) 2021; 34 Wei, Liu, Li, Cheng, Song, Chen (CR11) 2023; 152 Kim, Choi (CR37) 2020; 20 Kumari, Anwar, Bhattacharjee (CR12) 2022; 34 Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (CR28) 2011; 3 CR48 Wu, Xia, Nie, Zhang, Fan (CR63) 2022; 149 CR47 CR46 CR44 Cole, Bassett, Power, Braver, Petersen (CR16) 2014; 83 CR43 CR42 CR41 CR40 Cheng, Chen, Li, Liu, Song, Liu, Chen (CR59) 2020; 25 Wang, Liu, Cheng, Wu, Hildebrandt, Zhou (CR7) 2021; 118 Tao, Li, Song, Cheng, Liu, Wan, Chen (CR60) 2020; 14 Du, Fu, Calhoun (CR17) 2018; 12 Kastrati, Thompson, Schiffler, Fransson, Jensen (CR6) 2022; 32 CR13 CR57 Özerdem, Polat (CR67) 2017; 4 Song, Zheng, Song, Cui (CR54) 2018; 11 CR55 CR10 CR53 Ma, Li, Zhuang, Wang, Zeng (CR50) 2020; 32 CR51 Gao, Wang, Yang, Li, Ma, Chen (CR8) 2020; 13 Deco, Tononi, Boly, Kringelbach (CR5) 2015; 16 Guo, Cai, An, Chen, Ma, Wan, Gao (CR15) 2022; 603 Rao, Zhao, Zhu, Lu, Zhou (CR45) 2021; 34 Gong, He (CR19) 2015; 77 Bai, Wang, Gomes (CR65) 2021; 34 Huang, Chen, Liu, Zheng, Tian, Jiang (CR62) 2021; 86 Yuan, Lin (CR49) 2020; 14 Li, Xie, Chai, Wang, Yang (CR25) 2022; 122 CR68 CR23 Li, Chai, Wang, Yang, Du (CR34) 2021; 13 CR22 Shen, Sun, Li, Li, Pan, Lei (CR38) 2022; 30 CR66 Almanza-Conejo, Almanza-Ojeda, Contreras-Hernandez, Ibarra-Manzano (CR3) 2023; 35 CR64 Bassett, Bullmore (CR4) 2017; 23 Noble, Scheinost, Finn, Shen, Papademetris, McEwen, Bearden, Addington, Goodyear, Cadenhead (CR20) 2017; 146 Zhang, Yao, Chen, Monaghan (CR61) 2019; 26 9289_CR64 P Zhong (9289_CR30) 2020; 13 LA Schmidt (9289_CR21) 2001; 15 9289_CR68 9289_CR23 J Cheng (9289_CR59) 2020; 25 9289_CR22 9289_CR66 F-E Yang (9289_CR58) 2021; 34 L Shen (9289_CR38) 2022; 30 A Vaswani (9289_CR14) 2017; 30 Y Yuan (9289_CR49) 2020; 14 Q Ma (9289_CR50) 2020; 32 S Alhagry (9289_CR1) 2017; 8 N Kumari (9289_CR12) 2022; 34 Y Li (9289_CR56) 2017; 7 D Huang (9289_CR62) 2021; 86 D Li (9289_CR34) 2021; 13 9289_CR10 9289_CR53 9289_CR51 MW Cole (9289_CR16) 2014; 83 9289_CR13 9289_CR57 S Katsigiannis (9289_CR27) 2017; 22 9289_CR55 Y Wu (9289_CR63) 2022; 149 T Song (9289_CR54) 2018; 11 D Li (9289_CR25) 2022; 122 ES Salama (9289_CR29) 2018; 9 Q Gong (9289_CR19) 2015; 77 W Tao (9289_CR60) 2020; 14 J Bi (9289_CR9) 2022; 34 Z Gao (9289_CR8) 2020; 13 T-D-T Phan (9289_CR26) 2021; 21 L Xi (9289_CR52) 2022; 116 O Almanza-Conejo (9289_CR3) 2023; 35 G Deco (9289_CR5) 2015; 16 S Koelstra (9289_CR28) 2011; 3 9289_CR43 J-Y Guo (9289_CR15) 2022; 603 9289_CR42 9289_CR41 9289_CR40 Y Rao (9289_CR45) 2021; 34 Y Du (9289_CR17) 2018; 12 9289_CR47 9289_CR46 9289_CR2 9289_CR44 9289_CR48 DS Bassett (9289_CR4) 2017; 23 9289_CR32 9289_CR31 S Noble (9289_CR20) 2017; 146 W-L Zheng (9289_CR24) 2015; 7 D Zhang (9289_CR61) 2019; 26 9289_CR36 G Kastrati (9289_CR6) 2022; 32 9289_CR35 Y-H Kwon (9289_CR33) 2018; 18 J Bai (9289_CR65) 2021; 34 9289_CR39 MS Özerdem (9289_CR67) 2017; 4 Y Kim (9289_CR37) 2020; 20 ES Finn (9289_CR18) 2015; 18 Y Wei (9289_CR11) 2023; 152 R Wang (9289_CR7) 2021; 118 |
References_xml | – ident: CR22 – volume: 152 year: 2023 ident: CR11 article-title: Tc-net: a transformer capsule network for EEG-based emotion recognition publication-title: Comput Biol Med – volume: 116 year: 2022 ident: CR52 article-title: Semi-supervised time series classification model with self-supervised learning publication-title: Eng Appl Artif Intell – volume: 30 start-page: 1191 year: 2022 end-page: 1202 ident: CR38 article-title: Multiscale temporal self-attention and dynamical graph convolution hybrid network for EEG-based stereogram recognition publication-title: IEEE Trans Neural Syst Rehabil Eng – ident: CR68 – volume: 77 start-page: 223 issue: 3 year: 2015 end-page: 235 ident: CR19 article-title: Depression, neuroimaging and connectomics: a selective overview publication-title: Biol Psychiatry – volume: 13 start-page: 885 issue: 4 year: 2021 end-page: 897 ident: CR34 article-title: EEG emotion recognition based on 3-d feature representation and dilated fully convolutional networks publication-title: IEEE Trans Cognit Dev Syst – volume: 26 start-page: 715 issue: 5 year: 2019 end-page: 719 ident: CR61 article-title: A convolutional recurrent attention model for subject-independent EEG signal analysis publication-title: IEEE Signal Process Lett – volume: 86 start-page: 140 year: 2021 end-page: 151 ident: CR62 article-title: Differences first in asymmetric brain: a bi-hemisphere discrepancy convolutional neural network for EEG emotion recognition publication-title: Neurocomputing – ident: CR39 – ident: CR51 – ident: CR35 – volume: 20 start-page: 6727 issue: 23 year: 2020 ident: CR37 article-title: EEG-based emotion classification using long short-term memory network with attention mechanism publication-title: Sensors – volume: 14 start-page: 474 year: 2020 end-page: 487 ident: CR49 article-title: Self-supervised pretraining of transformers for satellite image time series classification publication-title: IEEE J Select Top Appl Earth Observ Remote Sens – volume: 16 start-page: 430 issue: 7 year: 2015 end-page: 439 ident: CR5 article-title: Rethinking segregation and integration: contributions of whole-brain modelling publication-title: Nat Rev Neurosci – volume: 149 year: 2022 ident: CR63 article-title: Simultaneously exploring multi-scale and asymmetric EEG features for emotion recognition publication-title: Comput Biol Med – ident: CR42 – volume: 18 start-page: 1383 issue: 5 year: 2018 ident: CR33 article-title: Electroencephalography based fusion two-dimensional (2d)-convolution neural networks (cnn) model for emotion recognition system publication-title: Sensors – ident: CR46 – volume: 4 start-page: 241 issue: 4 year: 2017 end-page: 252 ident: CR67 article-title: Emotion recognition based on EEG features in movie clips with channel selection publication-title: Brain Inform – volume: 34 start-page: 13291 issue: 16 year: 2022 end-page: 13303 ident: CR12 article-title: Time series-dependent feature of EEG signals for improved visually evoked emotion classification using emotioncapsnet publication-title: Neural Comput Appl – volume: 15 start-page: 487 issue: 4 year: 2001 end-page: 500 ident: CR21 article-title: Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions publication-title: Cognit Emot – volume: 23 start-page: 499 issue: 5 year: 2017 end-page: 516 ident: CR4 article-title: Small-world brain networks revisited publication-title: The Neurosci – volume: 7 start-page: 162 issue: 3 year: 2015 end-page: 175 ident: CR24 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans Auton Ment Dev – ident: CR57 – ident: CR32 – ident: CR36 – volume: 146 start-page: 959 year: 2017 end-page: 970 ident: CR20 article-title: Multisite reliability of mr-based functional connectivity publication-title: Neuroimage – volume: 13 start-page: 1290 issue: 3 year: 2020 end-page: 1301 ident: CR30 article-title: EEG-based emotion recognition using regularized graph neural networks publication-title: IEEE Trans Affect Comput – ident: CR64 – volume: 34 start-page: 10105 year: 2021 end-page: 10118 ident: CR65 article-title: Contrastively disentangled sequential variational autoencoder publication-title: Adv Neural Inform Process Syst – ident: CR43 – ident: CR66 – ident: CR47 – ident: CR2 – ident: CR53 – volume: 14 start-page: 382 issue: 1 year: 2020 end-page: 393 ident: CR60 article-title: EEG-based emotion recognition via channel-wise attention and self-attention publication-title: IEEE Trans Affect Comput – volume: 603 year: 2022 ident: CR15 article-title: A transformer based neural network for emotion recognition and visualizations of crucial EEG channels publication-title: Physica A – volume: 18 start-page: 1664 issue: 11 year: 2015 end-page: 1671 ident: CR18 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat Neurosci – ident: CR10 – volume: 12 start-page: 525 year: 2018 ident: CR17 article-title: Classification and prediction of brain disorders using functional connectivity: promising but challenging publication-title: Front Neurosci – volume: 9 start-page: 329 issue: 8 year: 2018 ident: CR29 article-title: EEG-based emotion recognition using 3d convolutional neural networks publication-title: International Journal of Advanced Computer Science and Applications – ident: CR40 – volume: 32 start-page: 4039 issue: 18 year: 2022 end-page: 4049 ident: CR6 article-title: Brain network segregation and integration during painful thermal stimulation publication-title: Cereb Cortex – volume: 35 start-page: 1409 issue: 2 year: 2023 end-page: 1422 ident: CR3 article-title: Emotion recognition in EEG signals using the continuous wavelet transform and cnns publication-title: Neural Comput Appl – ident: CR23 – volume: 22 start-page: 98 issue: 1 year: 2017 end-page: 107 ident: CR27 article-title: Dreamer: a database for emotion recognition through EEG and ecg signals from wireless low-cost off-the-shelf devices publication-title: IEEE J Biomed Health Inform – volume: 25 start-page: 453 issue: 2 year: 2020 end-page: 464 ident: CR59 article-title: Emotion recognition from multi-channel EEG via deep forest publication-title: IEEE J Biomed Health Inform – volume: 13 start-page: 945 issue: 4 year: 2020 end-page: 954 ident: CR8 article-title: A channel-fused dense convolutional network for EEG-based emotion recognition publication-title: IEEE Trans Cognit Dev Syst – volume: 11 start-page: 532 issue: 3 year: 2018 end-page: 541 ident: CR54 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans Affect Comput – ident: CR44 – ident: CR48 – volume: 8 start-page: 355 issue: 10 year: 2017 end-page: 358 ident: CR1 article-title: Emotion recognition based on EEG using LSTM recurrent neural network publication-title: Int J Adv Comput Sci Appl – volume: 32 start-page: 3942 issue: 9 year: 2020 end-page: 3955 ident: CR50 article-title: Self-supervised time series clustering with model-based dynamics publication-title: IEEE Trans Neural Netw Learn Syst – volume: 34 start-page: 980 year: 2021 end-page: 993 ident: CR45 article-title: Global filter networks for image classification publication-title: Adv Neural Inform Process Syst – volume: 83 start-page: 238 issue: 1 year: 2014 end-page: 251 ident: CR16 article-title: Intrinsic and task-evoked network architectures of the human brain publication-title: Neuron – ident: CR31 – ident: CR13 – volume: 122 year: 2022 ident: CR25 article-title: Spatial-frequency convolutional self-attention network for EEG emotion recognition publication-title: Appl Soft Comput – volume: 34 start-page: 22241 issue: 24 year: 2022 end-page: 22255 ident: CR9 article-title: Multi-domain fusion deep graph convolution neural network for EEG emotion recognition publication-title: Neural Comput Appl – ident: CR55 – volume: 7 start-page: 1060 issue: 10 year: 2017 ident: CR56 article-title: Human emotion recognition with electroencephalographic multidimensional features by hybrid deep neural networks publication-title: Appl Sci – volume: 3 start-page: 18 issue: 1 year: 2011 end-page: 31 ident: CR28 article-title: Deap: a database for emotion analysis; using physiological signals publication-title: IEEE Trans Affect Comput – volume: 21 start-page: 5092 issue: 15 year: 2021 ident: CR26 article-title: EEG-based emotion recognition by convolutional neural network with multi-scale kernels publication-title: Sensors – ident: CR41 – volume: 118 start-page: 2022288118 issue: 23 year: 2021 ident: CR7 article-title: Segregation, integration, and balance of large-scale resting brain networks configure different cognitive abilities publication-title: Proc Nat Acad Sci – volume: 30 start-page: 5998 year: 2017 end-page: 6008 ident: CR14 article-title: Attention is all you need publication-title: Adv Neural Inform Process Syst – volume: 34 start-page: 19448 year: 2021 end-page: 19460 ident: CR58 article-title: Adversarial teacher-student representation learning for domain generalization publication-title: Adv Neural Inform Process Syst – ident: 9289_CR35 doi: 10.1007/978-3-030-29513-4_31 – volume: 20 start-page: 6727 issue: 23 year: 2020 ident: 9289_CR37 publication-title: Sensors doi: 10.3390/s20236727 – volume: 30 start-page: 5998 year: 2017 ident: 9289_CR14 publication-title: Adv Neural Inform Process Syst – volume: 13 start-page: 885 issue: 4 year: 2021 ident: 9289_CR34 publication-title: IEEE Trans Cognit Dev Syst doi: 10.1109/TCDS.2021.3051465 – ident: 9289_CR46 doi: 10.1109/ICCV.2019.00815 – volume: 34 start-page: 19448 year: 2021 ident: 9289_CR58 publication-title: Adv Neural Inform Process Syst – volume: 34 start-page: 22241 issue: 24 year: 2022 ident: 9289_CR9 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07643-1 – volume: 116 year: 2022 ident: 9289_CR52 publication-title: Eng Appl Artif Intell – ident: 9289_CR13 – volume: 22 start-page: 98 issue: 1 year: 2017 ident: 9289_CR27 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2688239 – ident: 9289_CR36 – volume: 32 start-page: 4039 issue: 18 year: 2022 ident: 9289_CR6 publication-title: Cereb Cortex doi: 10.1093/cercor/bhab464 – volume: 83 start-page: 238 issue: 1 year: 2014 ident: 9289_CR16 publication-title: Neuron doi: 10.1016/j.neuron.2014.05.014 – volume: 25 start-page: 453 issue: 2 year: 2020 ident: 9289_CR59 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2020.2995767 – ident: 9289_CR43 doi: 10.1109/CVPR42600.2020.00414 – ident: 9289_CR66 doi: 10.1109/CVPR42600.2020.00657 – volume: 77 start-page: 223 issue: 3 year: 2015 ident: 9289_CR19 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2014.08.009 – volume: 18 start-page: 1383 issue: 5 year: 2018 ident: 9289_CR33 publication-title: Sensors doi: 10.3390/s18051383 – volume: 86 start-page: 140 year: 2021 ident: 9289_CR62 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.105 – volume: 4 start-page: 241 issue: 4 year: 2017 ident: 9289_CR67 publication-title: Brain Inform doi: 10.1007/s40708-017-0069-3 – volume: 7 start-page: 162 issue: 3 year: 2015 ident: 9289_CR24 publication-title: IEEE Trans Auton Ment Dev doi: 10.1109/TAMD.2015.2431497 – volume: 18 start-page: 1664 issue: 11 year: 2015 ident: 9289_CR18 publication-title: Nat Neurosci doi: 10.1038/nn.4135 – ident: 9289_CR23 doi: 10.1109/NER.2011.5910636 – volume: 34 start-page: 980 year: 2021 ident: 9289_CR45 publication-title: Adv Neural Inform Process Syst – ident: 9289_CR48 doi: 10.1109/ICRA.2018.8462891 – ident: 9289_CR55 – ident: 9289_CR51 doi: 10.1109/MLSP.2019.8918693 – volume: 603 year: 2022 ident: 9289_CR15 publication-title: Physica A – volume: 146 start-page: 959 year: 2017 ident: 9289_CR20 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.020 – volume: 14 start-page: 474 year: 2020 ident: 9289_CR49 publication-title: IEEE J Select Top Appl Earth Observ Remote Sens doi: 10.1109/JSTARS.2020.3036602 – volume: 34 start-page: 10105 year: 2021 ident: 9289_CR65 publication-title: Adv Neural Inform Process Syst – ident: 9289_CR53 doi: 10.1109/EMBC46164.2021.9630195 – ident: 9289_CR2 doi: 10.1109/BIBM.2016.7822545 – ident: 9289_CR40 – ident: 9289_CR10 doi: 10.1109/CBMS55023.2022.00072 – ident: 9289_CR44 doi: 10.18653/v1/2022.naacl-main.319 – ident: 9289_CR31 doi: 10.1109/IJCNN.2018.8489331 – ident: 9289_CR68 doi: 10.1109/ICICTA.2018.00031 – volume: 14 start-page: 382 issue: 1 year: 2020 ident: 9289_CR60 publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2020.3025777 – volume: 13 start-page: 945 issue: 4 year: 2020 ident: 9289_CR8 publication-title: IEEE Trans Cognit Dev Syst doi: 10.1109/TCDS.2020.2976112 – volume: 152 year: 2023 ident: 9289_CR11 publication-title: Comput Biol Med – ident: 9289_CR32 doi: 10.1109/ICASSP43922.2022.9747488 – ident: 9289_CR39 doi: 10.24963/ijcai.2020/184 – volume: 16 start-page: 430 issue: 7 year: 2015 ident: 9289_CR5 publication-title: Nat Rev Neurosci doi: 10.1038/nrn3963 – ident: 9289_CR57 – volume: 13 start-page: 1290 issue: 3 year: 2020 ident: 9289_CR30 publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2020.2994159 – volume: 8 start-page: 355 issue: 10 year: 2017 ident: 9289_CR1 publication-title: Int J Adv Comput Sci Appl – volume: 30 start-page: 1191 year: 2022 ident: 9289_CR38 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2022.3173724 – volume: 34 start-page: 13291 issue: 16 year: 2022 ident: 9289_CR12 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-06942-x – ident: 9289_CR64 – ident: 9289_CR42 doi: 10.1109/CVPR42600.2020.00873 – volume: 118 start-page: 2022288118 issue: 23 year: 2021 ident: 9289_CR7 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.2022288118 – volume: 15 start-page: 487 issue: 4 year: 2001 ident: 9289_CR21 publication-title: Cognit Emot doi: 10.1080/02699930126048 – ident: 9289_CR47 – ident: 9289_CR22 – volume: 23 start-page: 499 issue: 5 year: 2017 ident: 9289_CR4 publication-title: The Neurosci – volume: 26 start-page: 715 issue: 5 year: 2019 ident: 9289_CR61 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2019.2906824 – volume: 9 start-page: 329 issue: 8 year: 2018 ident: 9289_CR29 publication-title: International Journal of Advanced Computer Science and Applications doi: 10.14569/IJACSA.2018.090843 – ident: 9289_CR41 doi: 10.1109/CVPR.2018.00042 – volume: 12 start-page: 525 year: 2018 ident: 9289_CR17 publication-title: Front Neurosci doi: 10.3389/fnins.2018.00525 – volume: 21 start-page: 5092 issue: 15 year: 2021 ident: 9289_CR26 publication-title: Sensors doi: 10.3390/s21155092 – volume: 35 start-page: 1409 issue: 2 year: 2023 ident: 9289_CR3 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07843-9 – volume: 7 start-page: 1060 issue: 10 year: 2017 ident: 9289_CR56 publication-title: Appl Sci doi: 10.3390/app7101060 – volume: 122 year: 2022 ident: 9289_CR25 publication-title: Appl Soft Comput – volume: 32 start-page: 3942 issue: 9 year: 2020 ident: 9289_CR50 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.3016291 – volume: 11 start-page: 532 issue: 3 year: 2018 ident: 9289_CR54 publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2018.2817622 – volume: 149 year: 2022 ident: 9289_CR63 publication-title: Comput Biol Med – volume: 3 start-page: 18 issue: 1 year: 2011 ident: 9289_CR28 publication-title: IEEE Trans Affect Comput doi: 10.1109/T-AFFC.2011.15 |
SSID | ssj0004685 |
Score | 2.3471096 |
SecondaryResourceType | review_article |
Snippet | The balance of brain functional segregation (i.e., the process in specialized local subsystems) and integration (i.e., the process in global cooperation of the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3903 |
SubjectTerms | Affective computing Artificial Intelligence Channels Cognition Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Deep learning Electroencephalography Fourier transforms Image Processing and Computer Vision Probability and Statistics in Computer Science Review Self-supervised learning Spatial data Subsystems Topology |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L178FqdTcvCmgTVN2sbbkNUh6MnBbiVNUhRKlbVe5j_vS5puU1Tw3DQNfXlfye_9HkKXUaQtL5wmTDNBmFKgUjnTRAamAH9thsqRuD48RpMpu5_xmS8Kqzu0e3cl6Sz1stjNnmBC6ktDMhSQJpDFJtrikLtbINeUjtaqIV0jTshbLKaHhb5U5uc5vrqjVYz57VrUeZt0D-34MBGPWrnuow1THaDdrgUD9hp5iD7SkY06zfwGWxLvsjQlTts2dMQyZzosI16_LahxDuateGlqPB7fEevFNJYO1QGGDyv3CVgTtie02FTPDiKAa4u8hhV5olU77RGapuOn2wnx_RSIAkVrSGhyVlBTxBGTiksW5HkURLHMZRIyCHxYzo1WSsD_4zoWOkqo5EVimBY2a1HhMepVr5U5QThW1DYtLmSRCMgQtUiGUmgZWiMheWD6KOh-a6Y82bjteVFmS5pkJ4oMRJE5UWSLPrpavvPWUm38OXrQSSvzaldnVFBOYS2h6KPrToKrx7_Pdvq_4WdoGzYea7FoA9Rr5u_mHIKTJr9we_ETufPdjw priority: 102 providerName: Springer Nature |
Title | FAformer: parallel Fourier-attention architectures benefits EEG-based affective computing with enhanced spatial information |
URI | https://link.springer.com/article/10.1007/s00521-023-09289-z https://www.proquest.com/docview/2925298039 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB4t7YUL7ANEWbbyYW9g0ThOGnNZtbtJ0SLQClEJTpFjOwKpKo-UC_vnmXEdCistp0h5OJbH87LH3wfwPU0t4cJZLq1UXBqDKlVJy3XkavTXbmA8iOvpWXo8lb8vk8uw4NaEssrWJnpDbW8NrZEfCiUSobJBrH7c3XNijaLd1UChsQZdNMFZ1oHuOD_7c_7qZKQn5cQchup7ZByOzfjDc7QiindFzAcK0w7-9NY1reLNf7ZIvecpPsJGCBnZaCnjT_DBzT_DZkvHwIJ2foG_xYgiUPdwxAjQezZzM1YsKek4oWj6ukb2euegYRWauvpm0bA8n3DyaJZpX-GBRpAZ_wvsE6PVWubm175cgDVUhY09CqCr1OwWTIv84ucxD9wK3KDSLXjsKlkLVw9TqU2iZVRVaZQOdaWzWGIQJKvEWWMUjl9ih8qmmdBJnTlpFWUwJt6Gzvx27naADY0gAuNa15nCbNGikLSyOiaDoZPI9SBqh7U0AXic-C9m5QtkshdFiaIovSjKpx7sv3xzt4TdePftvVZaZVDBplxNmB4ctBJcPf5_a7vvt_YV1gUGNss6tD3oLB4e3TcMTBZVH9ayYtKH7mj8a1zQdXJ1kvfDnMSnUzF6BuJM5mE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPcAFWgpiYWl9oKdisXGcbFwJoVW7YSmPE0jcgmM7Amm1C2QRAv5TfyMzTsLSSuXGNY9J5BnPjO2Z7wPYimNLuHCWSysVl8bglMql5TpwBcZr1zEexPX4JB6cyd_n0fkM_Gl6YaissvGJ3lHbsaE98h2hRCRU0gnV3vUNJ9YoOl1tKDQqszh0D_e4ZCt3D36hfr8JkfZPfw54zSrADZrbhIcul4VwRTeW2kRaBnkeB3FX5zoJJYZ_mUfOGqPiJIpsV9k4EToqEietotzdhCh3Fj7IECM5daan-6_6MD0FKK6YqJpIhnWTjm_Vo_1XvCpC3lG4yOGPfwfCaXb7z4Gsj3PpR1isE1TWqyzqE8y40TIsNeQPrPYFn-Ep7VG-625_MIIPHw7dkKUVAR4nzE5fRclen1OULEfHWlxNStbv73OKn5ZpX0-CLpcZ_wn8J0Z7w8yNLn1xAiup5hv_qIZ4JbErcPYuY74Kc6PxyK0B6xpBdMmFLhKFa1OLJqGV1SG5Jx0FrgVBM6yZqWHOiW1jmL0ANHtVZKiKzKsie2zB95d3riuQjzefbjfayuoJX2ZT82zBdqPB6e3_S1t_W9pXmB-cHh9lRwcnhxuwIDClqirg2jA3ub1zm5gSTfIv3g4ZXLy34T8Dg6Qdbw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkFAvbSmt2JaHD-VULDaOk42ROKzKhqVLEQdW2lvq-CGQVumKpKpK_1R_ImMnWRYElXrgHMexMp6X_c03AJ_iWDteOE255oJypVClcq6pDIxFf226ypO4fjuLh2P-dRJNluBvWwvj0e7tlWRd0-BYmopqf6bt_rzwzZ1mYhrMQtoVmDLQmwZWOTK_f2HSVh6eHKGEdxlLBxdfhrTpK0AVbriKhibnlhnbi7lUkeRBnsdB3JO5TEKOAQDPI6OVEnESRbondJwwGdnEcC1c9K5CnPcFrHBXfYwaNGb9hUpM3wQUcyaHJ-JhU6bz-Jrvu8K7-PbBlaz3dOkbeNWEqKRf76k1WDLFW3jdtn8gjTVYhz9p30W85vqAOALx6dRMSVq3wKOOtdPjKMniTUVJcjSt9qoqyWBwTJ0H1UR6RAkaXaL8J3BNxJ0OE1NcengCKR3qG1fUkLy6ad_B-Fn--XtYLn4UZgNITzHXMNlKmwjMTrVIulJoGToDJaPAdCBof2umGqJz129jms0pmr0oMhRF5kWR3XTg8_ydWU3z8c_Rm620skbly4wJFjFcSyg6sNdK8O7x07N9-L_hO7B6fpRmpydno4_wkmGMVUPiNmG5uv5ptjBGqvJtvy0JfH9uPbgFnFEfKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FAformer%3A+parallel+Fourier-attention+architectures+benefits+EEG-based+affective+computing+with+enhanced+spatial+information&rft.jtitle=Neural+computing+%26+applications&rft.au=Gao%2C+Ziheng&rft.au=Huang%2C+Jiajin&rft.au=Chen%2C+Jianhui&rft.au=Zhou%2C+Haiyan&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=8&rft.spage=3903&rft.epage=3919&rft_id=info:doi/10.1007%2Fs00521-023-09289-z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |