Dam Hydrological Risk and the Design Flood Under Non-stationary Conditions
Increasing global trends in time series of annual maximum daily streamflow (AMX) raise the concern that the safety of dams and other sensitive structures is compromised. There is no defined methodology to estimate the design flood (DF) under non-stationarity; thus, the objective of this work is to e...
Saved in:
Published in | Water resources management Vol. 35; no. 5; pp. 1499 - 1512 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.03.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Increasing global trends in time series of annual maximum daily streamflow (AMX) raise the concern that the safety of dams and other sensitive structures is compromised. There is no defined methodology to estimate the design flood (DF) under non-stationarity; thus, the objective of this work is to evaluate the behavior of the hydrological risk of Brazilian dams due to the non-stationary nature of the AMX time series and the implications of the non-stationary nature of the AMX time series in the design of new dams. For this, the hydrological risk of 108 AMX time series was evaluated, comparing the time intervals between 1954–1984 and 1954–2014. A case study was also executed, where the DF was estimated in a non-stationary time series. The generalized distribution of extreme values (GEV) was applied in the time series analyses. The results indicate that the hydrological risk of Brazilian dams increased, and safety may have been reduced. Regarding the ranking of models, the use of physical covariates in the estimate of the DF makes the estimates more reliable. Finally, although significant trends are good indicators, they alone do not guarantee a reduction or increase in risk. It was also observed that using non-stationary models is less important than updating the estimates with newly observed data. |
---|---|
AbstractList | Increasing global trends in time series of annual maximum daily streamflow (AMX) raise the concern that the safety of dams and other sensitive structures is compromised. There is no defined methodology to estimate the design flood (DF) under non-stationarity; thus, the objective of this work is to evaluate the behavior of the hydrological risk of Brazilian dams due to the non-stationary nature of the AMX time series and the implications of the non-stationary nature of the AMX time series in the design of new dams. For this, the hydrological risk of 108 AMX time series was evaluated, comparing the time intervals between 1954–1984 and 1954–2014. A case study was also executed, where the DF was estimated in a non-stationary time series. The generalized distribution of extreme values (GEV) was applied in the time series analyses. The results indicate that the hydrological risk of Brazilian dams increased, and safety may have been reduced. Regarding the ranking of models, the use of physical covariates in the estimate of the DF makes the estimates more reliable. Finally, although significant trends are good indicators, they alone do not guarantee a reduction or increase in risk. It was also observed that using non-stationary models is less important than updating the estimates with newly observed data. |
Author | Pinheiro, Adilson Detzel, Daniel Henrique Marco Isensee, Leandro José |
Author_xml | – sequence: 1 givenname: Leandro José orcidid: 0000-0002-5021-474X surname: Isensee fullname: Isensee, Leandro José email: leandroisensee@gmail.com organization: Department of Civil Engineering, Fundação Universidade Regional de Blumenau – sequence: 2 givenname: Adilson orcidid: 0000-0001-8546-0046 surname: Pinheiro fullname: Pinheiro, Adilson organization: Department of Civil Engineering, Fundação Universidade Regional de Blumenau – sequence: 3 givenname: Daniel Henrique Marco orcidid: 0000-0003-2841-6502 surname: Detzel fullname: Detzel, Daniel Henrique Marco organization: Department of Hydraulics and Sanitation, Federal University of Paraná |
BookMark | eNp9kMFKAzEQhoNUsK2-gKeA59WZZDe7OUprrSIKYs8hJtm6dZvUZHvo27t1BW8ehmHg_2aGb0JGPnhHyCXCNQKUNwmRCZkBw75KWWX8hIyxKHmGooARGYNkkOVljmdkktIGoMckjMnjXG_p8mBjaMO6Mbqlr036pNpb2n04OnepWXu6aEOwdOWti_Q5-Cx1umuC1_FAZ8Hb5jikc3Ja6za5i98-JavF3dtsmT293D_Mbp8yw1F2GTeVrJmxQlRoQKIAlktdCMlqYdGVBZjCQl0V76gRcxQ5d1BrU3GD0rKcT8nVsHcXw9fepU5twj76_qRiBfKSARe8T7EhZWJIKbpa7WKz7T9WCOroTA3OVO9M_ThTR4gPUOrDfu3i3-p_qG86A28D |
CitedBy_id | crossref_primary_10_1590_2318_0331_282320230041 crossref_primary_10_1007_s11069_022_05370_3 crossref_primary_10_1007_s13201_023_01962_x crossref_primary_10_1080_23249676_2022_2030254 crossref_primary_10_3389_fenvs_2022_806794 |
Cites_doi | 10.3390/hydrology5020028 10.1007/s11269-021-02764-z 10.1007/978-981-10-2051-3_2 10.1061/(ASCE)HE.1943-5584.0001797 10.1061/(ASCE)HE.1943-5584.0001416 10.1080/02626667.2019.1619081 10.1016/j.advwatres.2014.12.013 10.1007/s10584-019-02558-8 10.1515/johh-2016-0032 10.1007/s11269-018-2041-2 10.1016/j.scitotenv.2019.136275 10.1007/978-94-007-4479-0_4 10.15446/dyna.v86n208.69300 10.1007/s11269-017-1851-y 10.5194/nhess-2020-100 10.1007/s11269-017-1619-4 10.1061/(ASCE)HE.1943-5584.0000820 10.1007/978-1-4471-3675-0 10.18637/jss.v072.i08 10.1016/j.jhydrol.2020.125374 10.1016/j.oceaneng.2020.107406 10.5194/hess-14-2495-2010 10.1016/j.jhydrol.2018.07.063 10.3390/atmos9040129 10.1007/s10584-014-1254-5 10.3390/w11091811 10.1007/s11269-018-2150-y 10.21168/rbrh.v21n1.p232-241 10.1016/j.jhydrol.2019.04.068 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PQBIZ PQBZA PQEST PQQKQ PQUKI PTHSS PYCSY Q9U SOI |
DOI | 10.1007/s11269-021-02798-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Agriculture & Environmental Science Database ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Business Premium Collection Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences ABI/INFORM Global (ProQuest) ProQuest Science Journals Biological Science Database ProQuest Engineering Database Environmental Science Database ProQuest Earth, Atmospheric & Aquatic Science Database ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Natural Science Collection Biological Science Collection Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-1650 |
EndPage | 1512 |
ExternalDocumentID | 10_1007_s11269_021_02798_3 |
GrantInformation_xml | – fundername: UNIEDU/FUMDES grantid: 1423/SED/2019 – fundername: FAPESC grantid: 2016TR2525 – fundername: CNPq grantid: 440938/2017-1 |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AAMRO AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABBXA ABDZT ABECU ABEOS ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AACDK AAEOY AAHBH AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 PQBZA 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.G PQEST PQUKI Q9U SOI |
ID | FETCH-LOGICAL-c319t-3c89f2cd6681c09160249a5692f6d1e750c5d0f85b1a1141643e0fac83c19d243 |
IEDL.DBID | AGYKE |
ISSN | 0920-4741 |
IngestDate | Thu Oct 10 20:58:03 EDT 2024 Thu Sep 12 18:33:28 EDT 2024 Sat Dec 16 12:10:14 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Non-stationary Hydrological risk Dam safety Design flood Time series Extreme values |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-3c89f2cd6681c09160249a5692f6d1e750c5d0f85b1a1141643e0fac83c19d243 |
ORCID | 0000-0003-2841-6502 0000-0002-5021-474X 0000-0001-8546-0046 |
PQID | 2513720363 |
PQPubID | 54174 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2513720363 crossref_primary_10_1007_s11269_021_02798_3 springer_journals_10_1007_s11269_021_02798_3 |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
PublicationTitle | Water resources management |
PublicationTitleAbbrev | Water Resour Manage |
PublicationYear | 2021 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | MoreiraJGDVNaghettiniMEleutérioJCFrequência e risco sob não-estacionariedade em registros pluviométricos da bacia do alto rio tarauacá, acreRBRH201621123224110.21168/rbrh.v21n1.p232-241https://doi.org/10.21168/rbrh.v21n1.p232-241 Iannelli CM, Rigoletto IDP (2020) Brumadinho–riscos, impactos e perspectivas futuras. In: Liguori C, Levy DR (eds) Brumadinho: da Ciência à Realidade, Liberars, São Paulo, Brazil, pp 27–52 Grajales-CardonaDCarvajal-SernaLFNonstationary intesity-duration-frequency curves for medellin river basinDyna20198620832132810.15446/dyna.v86n208.69300https://doi.org/10.15446/dyna.v86n208.69300 De PaolaFGiugniMPuglieseFAnnisANardiFGev parameter estimation and stationary vs. non-stationary analysis of extreme rainfall in african test citiesHydrology2018522810.3390/hydrology5020028https://doi.org/10.3390/hydrology5020028 MackayEJonathanPAssessment of return value estimates from stationary and non-stationary extreme value modelsOcean Eng202020710740610.1016/j.oceaneng.2020.107406https://doi.org/10.1016/j.oceaneng.2020.107406 ŠrajMBezakNComparison of time trend-and precipitation-informed models for assessing design discharges in variable climateJ Hydrol202058912537410.1016/j.jhydrol.2020.125374https://doi.org/10.1016/j.jhydrol.2020.125374 ICOLD (2019) Dams’ safety is at the very origin of the foundation of ICOLD. International Commission on Large Dams. https://www.icold-cigb.org/GB/dams/dams_safety.asp. Accessed Sep 03 2019 ColesSBawaJTrennerLDorazioPAn introduction to statistical modeling of extreme values, vol 2082001BerlinSpringer10.1007/978-1-4471-3675-0 MedieroAJiménez-ÁlvarezLGarroteLDesign flood hydrographs from the relationship between flood peak and volumeHydrol Earth Syst Sci2010142495250510.5194/hess-14-2495-2010 Cooley D (2013) Return periods and return levels under climate change. In: Extremes in a changing climate, pp 97–114 LiJLeiYTanSBellCDEngelBAWangYNonstationary flood frequency analysis for annual flood peak and volume series in both univariate and bivariate domainWater Resources Management2018324239425210.1007/s11269-018-2041-2https://doi.org/10.1007/s11269-018-2041-2 GuoYFangGXuYPTianXXieJIdentifying how future climate and land use/cover changes impact streamflow in Xinanjiang Basin, East ChinaScience of The Total Environment202071013627510.1016/j.scitotenv.2019.136275https://doi.org/10.1016/j.scitotenv.2019.136275 ŠrajMParajkaJBlöschlGThe influence of non-stationarity in extreme hydrological events on flood frequency estimationJournal of Hydrology and Hydromechanics201664442643710.1515/johh-2016-0032https://doi.org/10.1515/johh-2016-0032 GillelandEKatzRWExtremes 2.0: an extreme value analysis package in rJournal of Statistical Software201672813910.18637/jss.v072.i08https://doi.org/10.18637/jss.v072.i08 YanLLiLYanPHeHLiJLuDNonstationary flood hazard analysis in response to climate change and population growthWater2019119181110.3390/w11091811https://doi.org/10.3390/w11091811 HuYLiangZSinghVPZhangXWangJLiBWangHConcept of equivalent reliability for estimating the design flood under non-stationary conditionsWater Resources Management2018323997101110.1007/s11269-017-1851-yhttps://doi.org/10.1007/s11269-017-1851-y LiuSHuangSXieYWangHLengGHuangQWeiXWangLIdentification of the non-stationarity of floods: changing patterns, causes, and implicationsWater Resour Manag20193393995310.1007/s11269-018-2150-yhttps://doi.org/10.1007/s11269-018-2150-y Pohlert T (2020) Probability plot correlation coefficient test. The R Foundation. https://cran.r-project.org/web/packages/ppcc/ppcc.pdf. Accessed Nov 15 2020 ANA (2009) RESOLUÇÃO No271, DE 27 DE ABRIL DE 2009. Agência Nacional de Águas, https://arquivos.ana.gov.br/resolucoes/2009/271-2009.pdf. Accessed Nov 15 2020 FelderGPaquetEPenotDZischgAWeingartnerRConsistency of extreme flood estimation approachesJournal of Hydrologic Engineering20192470401901810.1061/(ASCE)HE.1943-5584.0001797https://doi.org/10.1061/(ASCE)HE.1943-5584.0001797 IBGE (2020) Censo demográfico: 1960/1970/1980/1990/2000/2010. Instituto Brasileiro de Geografia e Estatistica. https://biblioteca.ibge.gov.br/. Accessed Nov 14 2020 SalasJDObeysekeraJRevisiting the concepts of return period and risk for nonstationary hydrologic extreme eventsJournal of Hydrologic Engineering201419355456810.1061/(ASCE)HE.1943-5584.0000820https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820 ChengLAghaKouchakAGillelandEKatzRWNon-stationary extreme value analysis in a changing climateClimatic Change2014127235336910.1007/s10584-014-1254-5https://doi.org/10.1007/s10584-014-1254-5 Mondal A, Mujumdar P (2017) Hydrologic extremes under climate change: non-stationarity and uncertainty. In: Sustainable water resources planning and management under climate change, Springer, pp 39–60. https://doi.org/10.1007/978-981-10-2051-3_2 Razmi A, Golian S, Zahmatkesh Z (2017) Non-stationary frequency analysis of extreme water level: application of annual maximum series and peak-over threshold approaches. Water Resources Management 31(7):2065–2083. https://doi.org/10.1007/s11269-017-1619-4 HamdiYDulucCMRebourVTemperature extremes: estimation of non-stationary return levels and associated uncertaintiesAtmosphere20189412910.3390/atmos9040129https://doi.org/10.3390/atmos9040129 Menescal RDA (2005) A segurança de Barragens e a gestão de Recursos hídricos no Brasil. Ministério da Integração Nacional. https://bibliotecadigital.seplan.planejamento.gov.br/handle/iditem/202. Accessed Nov 13 2020 SNIRH (2019) HidroWeb. Sistema Nacional de Informações sobre Recursos Hidricos. http://www.snirh.gov.br NashwanMSIsmailTAhmedKNon-stationary analysis of extreme rainfall in peninsular malaysiaJournal of Sustainability Science and Management201914326727226 FrançoisBSchlefKWiSBrownCDesign considerations for riverine floods in a changing climate–a reviewJ Hydrol201957455757310.1016/j.jhydrol.2019.04.068https://doi.org/10.1016/j.jhydrol.2019.04.068 SerinaldiFKilsbyCGStationarity is undead: uncertainty dominates the distribution of extremesAdv Water Resour201577173610.1016/j.advwatres.2014.12.013https://doi.org/10.1016/j.advwatres.2014.12.013 WilcoxCVischelTPanthouGBodianABlanchetJDescroixLQuantinGCasséCTanimounBKoneSTrends in hydrological extremes in the senegal and niger riversJournal of Hydrology2018566531545,10.1016/j.jhydrol.2018.07.063https://doi.org/10.1016/j.jhydrol.2018.07.063 CarneyMCBias correction to gev shape parameters used to predict precipitation extremesJournal of Hydrologic Engineering201621100401603510.1061/(ASCE)HE.1943-5584.0001416https://doi.org/10.1061/(ASCE)HE.1943-5584.0001416 Kudryavtseva N, Soomere T, Männikus R (2020) Non-stationary analysis of water level extremes in latvian waters, baltic sea, during 1961–2018. Natural Hazards and Earth System Sciences Discussions, pp 1–23. https://doi.org/10.5194/nhess-2020-100 KimSULeeCEIncorporation of cost-benefit analysis considering epistemic uncertainty for calculating the optimal design floodWater Resour Manag20213575777410.1007/s11269-021-02764-zhttps://doi.org/10.1007/s11269-021-02764-z BartikoDOliveiraDYBonumáNBChaffePLBSpatial and seasonal patterns of flood change across brazilHydrol Sci J20196491071107910.1080/02626667.2019.1619081https://doi.org/10.1080/02626667.2019.1619081 SNISB (2019) O Relatório de Segurança de Barragens 2019. Sistema Nacional de Informações sobre Segurança de Barragens, http://www.snisb.gov.br/portal/snisb/relatorio-anual-de-seguranca-de-barragem/2019 FranzkeCLCzuprynaMProbabilistic assessment and projections of us weather and climate risks and economic damagesClim Chang2020158350351510.1007/s10584-019-02558-8https://doi.org/10.1007/s10584-019-02558-8 E Gilleland (2798_CR11) 2016; 72 Y Hamdi (2798_CR14) 2018; 9 2798_CR20 J Li (2798_CR21) 2018; 32 2798_CR26 2798_CR25 Y Guo (2798_CR13) 2020; 710 F Serinaldi (2798_CR32) 2015; 77 Y Hu (2798_CR15) 2018; 32 MS Nashwan (2798_CR28) 2019; 14 SU Kim (2798_CR19) 2021; 35 2798_CR29 M Šraj (2798_CR36) 2016; 64 F De Paola (2798_CR7) 2018; 5 2798_CR34 2798_CR33 MC Carney (2798_CR3) 2016; 21 CL Franzke (2798_CR10) 2020; 158 2798_CR16 A Mediero (2798_CR24) 2010; 14 B François (2798_CR9) 2019; 574 JD Salas (2798_CR31) 2014; 19 D Bartiko (2798_CR2) 2019; 64 E Mackay (2798_CR23) 2020; 207 2798_CR30 2798_CR1 JGDV Moreira (2798_CR27) 2016; 21 D Grajales-Cardona (2798_CR12) 2019; 86 M Šraj (2798_CR35) 2020; 589 L Cheng (2798_CR4) 2014; 127 S Liu (2798_CR22) 2019; 33 C Wilcox (2798_CR37) 2018; 566 2798_CR18 2798_CR6 2798_CR17 L Yan (2798_CR38) 2019; 11 S Coles (2798_CR5) 2001 G Felder (2798_CR8) 2019; 24 |
References_xml | – volume: 5 start-page: 28 issue: 2 year: 2018 ident: 2798_CR7 publication-title: Hydrology doi: 10.3390/hydrology5020028 contributor: fullname: F De Paola – volume: 35 start-page: 757 year: 2021 ident: 2798_CR19 publication-title: Water Resour Manag doi: 10.1007/s11269-021-02764-z contributor: fullname: SU Kim – ident: 2798_CR26 doi: 10.1007/978-981-10-2051-3_2 – volume: 24 start-page: 04019018 issue: 7 year: 2019 ident: 2798_CR8 publication-title: Journal of Hydrologic Engineering doi: 10.1061/(ASCE)HE.1943-5584.0001797 contributor: fullname: G Felder – volume: 21 start-page: 04016035 issue: 10 year: 2016 ident: 2798_CR3 publication-title: Journal of Hydrologic Engineering doi: 10.1061/(ASCE)HE.1943-5584.0001416 contributor: fullname: MC Carney – volume: 64 start-page: 1071 issue: 9 year: 2019 ident: 2798_CR2 publication-title: Hydrol Sci J doi: 10.1080/02626667.2019.1619081 contributor: fullname: D Bartiko – volume: 77 start-page: 17 year: 2015 ident: 2798_CR32 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2014.12.013 contributor: fullname: F Serinaldi – volume: 158 start-page: 503 issue: 3 year: 2020 ident: 2798_CR10 publication-title: Clim Chang doi: 10.1007/s10584-019-02558-8 contributor: fullname: CL Franzke – ident: 2798_CR17 – volume: 64 start-page: 426 issue: 4 year: 2016 ident: 2798_CR36 publication-title: Journal of Hydrology and Hydromechanics doi: 10.1515/johh-2016-0032 contributor: fullname: M Šraj – volume: 32 start-page: 4239 year: 2018 ident: 2798_CR21 publication-title: Water Resources Management doi: 10.1007/s11269-018-2041-2 contributor: fullname: J Li – volume: 710 start-page: 136275 year: 2020 ident: 2798_CR13 publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2019.136275 contributor: fullname: Y Guo – ident: 2798_CR34 – ident: 2798_CR1 – ident: 2798_CR6 doi: 10.1007/978-94-007-4479-0_4 – volume: 14 start-page: 2672 issue: 3 year: 2019 ident: 2798_CR28 publication-title: Journal of Sustainability Science and Management contributor: fullname: MS Nashwan – volume: 86 start-page: 321 issue: 208 year: 2019 ident: 2798_CR12 publication-title: Dyna doi: 10.15446/dyna.v86n208.69300 contributor: fullname: D Grajales-Cardona – volume: 32 start-page: 997 issue: 3 year: 2018 ident: 2798_CR15 publication-title: Water Resources Management doi: 10.1007/s11269-017-1851-y contributor: fullname: Y Hu – ident: 2798_CR20 doi: 10.5194/nhess-2020-100 – ident: 2798_CR29 – ident: 2798_CR30 doi: 10.1007/s11269-017-1619-4 – volume: 19 start-page: 554 issue: 3 year: 2014 ident: 2798_CR31 publication-title: Journal of Hydrologic Engineering doi: 10.1061/(ASCE)HE.1943-5584.0000820 contributor: fullname: JD Salas – volume-title: An introduction to statistical modeling of extreme values, vol 208 year: 2001 ident: 2798_CR5 doi: 10.1007/978-1-4471-3675-0 contributor: fullname: S Coles – volume: 72 start-page: 1 issue: 8 year: 2016 ident: 2798_CR11 publication-title: Journal of Statistical Software doi: 10.18637/jss.v072.i08 contributor: fullname: E Gilleland – volume: 589 start-page: 125374 year: 2020 ident: 2798_CR35 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125374 contributor: fullname: M Šraj – volume: 207 start-page: 107406 year: 2020 ident: 2798_CR23 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2020.107406 contributor: fullname: E Mackay – ident: 2798_CR25 – ident: 2798_CR16 – ident: 2798_CR18 – volume: 14 start-page: 2495 year: 2010 ident: 2798_CR24 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-14-2495-2010 contributor: fullname: A Mediero – volume: 566 start-page: 531 year: 2018 ident: 2798_CR37 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2018.07.063 contributor: fullname: C Wilcox – volume: 9 start-page: 129 issue: 4 year: 2018 ident: 2798_CR14 publication-title: Atmosphere doi: 10.3390/atmos9040129 contributor: fullname: Y Hamdi – volume: 127 start-page: 353 issue: 2 year: 2014 ident: 2798_CR4 publication-title: Climatic Change doi: 10.1007/s10584-014-1254-5 contributor: fullname: L Cheng – volume: 11 start-page: 1811 issue: 9 year: 2019 ident: 2798_CR38 publication-title: Water doi: 10.3390/w11091811 contributor: fullname: L Yan – volume: 33 start-page: 939 year: 2019 ident: 2798_CR22 publication-title: Water Resour Manag doi: 10.1007/s11269-018-2150-y contributor: fullname: S Liu – volume: 21 start-page: 232 issue: 1 year: 2016 ident: 2798_CR27 publication-title: RBRH doi: 10.21168/rbrh.v21n1.p232-241 contributor: fullname: JGDV Moreira – volume: 574 start-page: 557 year: 2019 ident: 2798_CR9 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.04.068 contributor: fullname: B François – ident: 2798_CR33 |
SSID | ssj0010090 |
Score | 2.357902 |
Snippet | Increasing global trends in time series of annual maximum daily streamflow (AMX) raise the concern that the safety of dams and other sensitive structures is... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1499 |
SubjectTerms | Atmospheric Sciences Case studies Civil Engineering Dam design Dam engineering Dam safety Dams Design Earth and Environmental Science Earth Sciences Environment Extreme values Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology Hydrology/Water Resources Model testing Risk Risk taking Stream discharge Stream flow Time series Trends |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXWBAfIpCQR7YwCKJY8eeEJRWVYcKVVTqFjm2IyFEUpoy9N9jOw4BJJgyRPJwZ9-98z3fA-Aq4UmWKCVQoDRDJkpGiHNNEWZWDj6XCc0cy3dKx_N4siALf-FWeVplExNdoFaltHfktyYPW0EVTPHd8h1Z1SjbXfUSGtugG5lKIeiA7sNw-jT76iMYBOFuWbgpkmKTPP2zmfrxXBhRjixFwZRmnCH8MzW1ePNXi9RlntE-2POQEd7XPj4AW7o4BLvfBgkegcmjeIPjjVo1oQzOXqpXKAoFDcCDj46mAUeWpA6d0hGclgWq6ja8WG3goLSta7sFj8F8NHwejJFXSUDSHJ81wpLxPJKKUhZKk_2pHQIoCOVRTlWoDSKQRAU5I1koTPFjyiOsg1xIhmXIVRTjE9ApykKfAqgzEgpNzSdLYsIEIyIROpNBkAVaEdID142B0mU9DCNtxx5bc6bGnKkzZ4p7oN_YMPUHo0pbN_bATWPX9vffq539v9o52ImcKy07rA8669WHvjBwYZ1d-j3xCUdhunA priority: 102 providerName: ProQuest |
Title | Dam Hydrological Risk and the Design Flood Under Non-stationary Conditions |
URI | https://link.springer.com/article/10.1007/s11269-021-02798-3 https://www.proquest.com/docview/2513720363 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5qL3rwLT5LDt40ZR9NNjnWPqlQpFjQ05LXgohbaetBf72TdNf1efAU2CyBnUwm3-x8M4PQeSISlRgjSWAsJ2AlIyKEZSTmrh18phOmPMt3xAaT5vCO3lV53J7sXkYkvaGuct3CiAniGAXgSQlO4lVUKxJPa63-_XX3I3gAsMH_WhHgGTXhxixyZX5f5et9VIHMb3FRf930ttBtmbSzZJk8Nl4WqqHfftZw_M-XbKPNAn7i1lJfdtCKzXfRxqeihHto2JFPePBqZqVZxOOH-SOWucEAFnHHUz5wzxHese-ahEfTnMyXIX05e8XtqQuDO3XeR5Ne97Y9IEXHBaLhKC5IrLnIIm0Y46EGJMFcQUFJmYgyZkIL6EJTE2ScqlCCIwWuVmyDTGoe61CYqBkfoLV8mttDhK2iobQMBpU0KZecykRapYNABdZQeoQuSrmnz8vCGmlVQtlJKAUJpV5CaXyETsutSYtDNk8BmrkeOzGD6ctS1NX036sd_-_1E7Qe-d1yzLNTtLaYvdgzgCILVUervNevFwoI41V3dDOGp5Oo9Q5yONWc |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33756,41093,41535,42162,42604,43612,43817,52123,52246,74363,74630 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagDMCAeIpCAQ9sYJHEsWNPCLWEUEoH1EpskWM7EkKkpS1D_z22kxBAgilDJA939n33_gA4j3iURUoJ5CnNkLGSAeJcU4SZpYPPZUQz1-U7pMk47D-T5yrhNq_aKmub6Ay1mkibI78yOGwJVTDF19N3ZFmjbHW1otBYBWshNlhtJ8Xju68qgvEfXI6FmxApNNBZDc2Uo3N-QDmyDQomMOMM4Z_A1HibvwqkDnfibbBVOYzwptTwDljRxS7Y_LZGcA_0e-INJks1qw0ZfHqZv0JRKGjcO9hzTRowti3q0PEcweGkQPOyCC9mS9id2MK1vYD7YBzfjroJqjgSkDSPZ4GwZDwPpKKU-dJgP7UrAAWhPMip8rXxByRRXs5I5gsT-pjgCGsvF5Jh6XMVhPgAtIpJoQ8B1Bnxhabmk0UhYYIREQmdSc_LPK0IaYOLWkDptFyFkTZLj604UyPO1IkzxW3QqWWYVs9injZKbIPLWq7N779PO_r_tDOwnoweB-ngfvhwDDYCp1bbJ9YBrcXsQ58Yx2GRnbrb8Qn1kLv7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEB20BdGD-InVqjl40-DuZpNNTqKtpVYppVjobckmWRBxq209-O9Ntlmrgp72sJDDm2TmTeZlBuAsEUmWaC1xoA3H1ktGWAjDMOFuHHyuEpaVKt8-647i3piOvf5p5mWVlU8sHbWeKHdHfmnjsBuoQhi5zL0sYtDuXL2-YTdBylVa_TiNVagnMSNBDeo3t_3B8KumYNlEeeMibMIU20Dqn9AsHtKFERPYyRVsmiY4Jj_D1JJ7_iqXllGoswWbnj6i64W9t2HFFDuw8a2p4C702vIFdT_0tHJraPg0e0ay0MiSPdQuJRuo4wTrqJx6hPqTAs8WJXk5_UCtiStju-24B6PO7WOri_3EBKzsUZpjorjII6UZ46GyTIC5hoCSMhHlTIfGsgNFdZBzmoXSJkI2VSImyKXiRIVCRzHZh1oxKcwBIJPRUBpmP1kSUy45lYk0mQqCLDCa0gacVwClr4vGGOmyBbKDM7VwpiWcKWlAs8Iw9Ydkli5N2oCLCtfl779XO_x_tVNYs1sjfbjr3x_BelRa1YnGmlCbT9_NsWUR8-zEb49PLd7BmA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dam+Hydrological+Risk+and+the+Design+Flood+Under+Non-stationary+Conditions&rft.jtitle=Water+resources+management&rft.au=Isensee%2C+Leandro+Jos%C3%A9&rft.au=Pinheiro%2C+Adilson&rft.au=Detzel%2C+Daniel+Henrique+Marco&rft.date=2021-03-01&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=35&rft.issue=5&rft.spage=1499&rft.epage=1512&rft_id=info:doi/10.1007%2Fs11269-021-02798-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11269_021_02798_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |