A Novel Double-Coated Persulfate Slow-Release Material: Preparation and Application for the Removal of Antibiotics from Groundwater
Single-layer slow-release materials have short lifespans due to their rapid initial release behavior. To address this problem, a double-coated persulfate slow-release material was developed in this study. The outer coating layer consists of polycaprolactone–silica sand, which is used to encapsulate...
Saved in:
Published in | Water (Basel) Vol. 17; no. 1; p. 10 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single-layer slow-release materials have short lifespans due to their rapid initial release behavior. To address this problem, a double-coated persulfate slow-release material was developed in this study. The outer coating layer consists of polycaprolactone–silica sand, which is used to encapsulate an inner layer of polycaprolactone–silica sand and sodium persulfate. Static and dynamic release experiments were conducted to analyze the behavior and degradation capabilities of this material when activated by iron–nitrogen co-doped biochar (Fe@N-BC) for the removal of sulfamethoxazole (SMZ) and ciprofloxacin (CIP) in groundwater. The double-coated material maintains a stable release rate, achieving optimal performance with an outer layer thickness of 0.25 cm and a silica sand to polycaprolactone (PCL) mass ratio between 2 and 5. Optimal degradation rates for SMZ and CIP were observed at a pH of 3. Specifically, 1 mg/L of SMZ was fully degraded within 12 h, while the complete removal of 1 mg/L of CIP occurred within just 2 h. The presence of humic acid and higher initial pollutant concentrations reduced the degradation rates. Among the tested anions, HCO3− had the most significant inhibitory impact, while Cl− had the least significant impact on degradation performance. Column experiments demonstrated a consistent release of persulfate over a period of 60 days at a flow rate of 0.5 mL/min. Increased flow rates resulted in a shorter lifespan for this slow-release material. The minimum outflows of SMZ and CIP were obtained with a quartz sand mesh size of 40–60 and a flow rate of 0.5 mL/min. These results offer a theoretical basis for the prolonged and stable release of persulfate, as well as the efficient removal of SMZ and CIP from groundwater. |
---|---|
AbstractList | Single-layer slow-release materials have short lifespans due to their rapid initial release behavior. To address this problem, a double-coated persulfate slow-release material was developed in this study. The outer coating layer consists of polycaprolactone–silica sand, which is used to encapsulate an inner layer of polycaprolactone–silica sand and sodium persulfate. Static and dynamic release experiments were conducted to analyze the behavior and degradation capabilities of this material when activated by iron–nitrogen co-doped biochar (Fe@N-BC) for the removal of sulfamethoxazole (SMZ) and ciprofloxacin (CIP) in groundwater. The double-coated material maintains a stable release rate, achieving optimal performance with an outer layer thickness of 0.25 cm and a silica sand to polycaprolactone (PCL) mass ratio between 2 and 5. Optimal degradation rates for SMZ and CIP were observed at a pH of 3. Specifically, 1 mg/L of SMZ was fully degraded within 12 h, while the complete removal of 1 mg/L of CIP occurred within just 2 h. The presence of humic acid and higher initial pollutant concentrations reduced the degradation rates. Among the tested anions, HCO[sub.3] [sup.−] had the most significant inhibitory impact, while Cl[sup.−] had the least significant impact on degradation performance. Column experiments demonstrated a consistent release of persulfate over a period of 60 days at a flow rate of 0.5 mL/min. Increased flow rates resulted in a shorter lifespan for this slow-release material. The minimum outflows of SMZ and CIP were obtained with a quartz sand mesh size of 40–60 and a flow rate of 0.5 mL/min. These results offer a theoretical basis for the prolonged and stable release of persulfate, as well as the efficient removal of SMZ and CIP from groundwater. Single-layer slow-release materials have short lifespans due to their rapid initial release behavior. To address this problem, a double-coated persulfate slow-release material was developed in this study. The outer coating layer consists of polycaprolactone–silica sand, which is used to encapsulate an inner layer of polycaprolactone–silica sand and sodium persulfate. Static and dynamic release experiments were conducted to analyze the behavior and degradation capabilities of this material when activated by iron–nitrogen co-doped biochar (Fe@N-BC) for the removal of sulfamethoxazole (SMZ) and ciprofloxacin (CIP) in groundwater. The double-coated material maintains a stable release rate, achieving optimal performance with an outer layer thickness of 0.25 cm and a silica sand to polycaprolactone (PCL) mass ratio between 2 and 5. Optimal degradation rates for SMZ and CIP were observed at a pH of 3. Specifically, 1 mg/L of SMZ was fully degraded within 12 h, while the complete removal of 1 mg/L of CIP occurred within just 2 h. The presence of humic acid and higher initial pollutant concentrations reduced the degradation rates. Among the tested anions, HCO3− had the most significant inhibitory impact, while Cl− had the least significant impact on degradation performance. Column experiments demonstrated a consistent release of persulfate over a period of 60 days at a flow rate of 0.5 mL/min. Increased flow rates resulted in a shorter lifespan for this slow-release material. The minimum outflows of SMZ and CIP were obtained with a quartz sand mesh size of 40–60 and a flow rate of 0.5 mL/min. These results offer a theoretical basis for the prolonged and stable release of persulfate, as well as the efficient removal of SMZ and CIP from groundwater. |
Audience | Academic |
Author | Zhang, Miao Dong, Luyu Xie, Yilin Xia, Yujin Wang, Yunfei Bi, Qingquan Wang, Xueli Yang, Shengke Hu, Zhixin |
Author_xml | – sequence: 1 givenname: Zhixin surname: Hu fullname: Hu, Zhixin – sequence: 2 givenname: Yujin surname: Xia fullname: Xia, Yujin – sequence: 3 givenname: Miao surname: Zhang fullname: Zhang, Miao – sequence: 4 givenname: Yilin surname: Xie fullname: Xie, Yilin – sequence: 5 givenname: Luyu surname: Dong fullname: Dong, Luyu – sequence: 6 givenname: Qingquan surname: Bi fullname: Bi, Qingquan – sequence: 7 givenname: Yunfei surname: Wang fullname: Wang, Yunfei – sequence: 8 givenname: Xueli surname: Wang fullname: Wang, Xueli – sequence: 9 givenname: Shengke surname: Yang fullname: Yang, Shengke |
BookMark | eNptUU1LxDAQDaKgrh78BwFPHqpJkzZdb2X9BD8WP84lm0w0kjY1aV08-8eNrIiCMwPzZnhv5vC20XrnO0Boj5JDxqbkaEkFoSTVGtrKiWAZ55yu_8KbaDfGF5KCT6uqIFvoo8Y3_g0cPvHjwkE283IAjecQ4uhMwvje-WV2Bw5kBHydNsFKd4znAXoZ5GB9h2Wncd33zqrVbHzAwzPgO2j9m3TYG1x3g11YP1gVsQm-xefBj51eft3bQRtGugi7332CHs9OH2YX2dXt-eWsvsoUo9MhYwtpdFFqCpDzgpfElIwxwVUJlRKKllIzUExxafJc5YYVmpOSayGF0koINkH7q7t98K8jxKF58WPo0suG0YJVJRfFL9aTdNDYzvghSNXaqJq6YrlIr3OSWIf_sFJqaK1Kthib9n8EByuBCj7GAKbpg21leG8oab7ca37cY59-pY1h |
Cites_doi | 10.1007/s11157-019-09512-1 10.3390/w14030503 10.1016/j.matchemphys.2017.10.007 10.1002/slct.202203389 10.1016/j.watres.2020.116455 10.1016/j.eti.2021.102064 10.1002/pat.6029 10.1016/j.scitotenv.2013.11.008 10.1016/j.jhazmat.2023.130727 10.1016/j.cej.2019.05.177 10.1109/IRI51335.2021.00065 10.1016/j.cej.2023.143147 10.1016/j.chemosphere.2023.140346 10.3390/catal12091058 10.1016/j.scitotenv.2022.157462 10.1016/j.seppur.2018.02.055 10.3390/nano12234305 10.1007/s11270-020-04506-0 10.1021/es001637l 10.1016/j.jhazmat.2021.128083 10.1016/j.watres.2020.116481 10.3390/ma16217045 10.1016/j.chemosphere.2020.127508 10.3390/w15234103 10.1021/acs.iecr.7b00082 10.1016/j.chemosphere.2023.138954 10.1016/j.envres.2023.116653 10.1016/j.scitotenv.2021.152089 10.1016/j.jhazmat.2016.03.068 10.1016/j.cclet.2021.12.042 10.1016/j.chemosphere.2016.05.055 10.1016/j.scitotenv.2024.170023 10.1016/j.chemosphere.2019.06.198 10.1021/acs.est.7b05847 10.1016/j.chemosphere.2021.131091 10.1016/j.jece.2023.110945 10.1016/j.jhazmat.2022.129722 10.1016/j.colsurfa.2020.124926 10.2166/wcc.2018.168 10.1016/j.jhazmat.2021.126355 10.1016/j.scitotenv.2022.157217 10.1016/j.jece.2023.109587 10.1038/s41545-019-0039-9 10.1021/acs.est.2c04387 10.1016/j.cej.2023.145168 10.1016/j.jconhyd.2017.03.001 10.1016/j.scitotenv.2022.161323 10.1016/j.scitotenv.2022.157023 10.1016/j.cej.2019.122142 10.1016/j.jhazmat.2020.122764 10.3390/w15081615 10.1016/j.jhazmat.2022.128738 10.1016/j.jhazmat.2010.10.027 10.1016/j.jclepro.2023.137569 10.1016/j.apcatb.2021.120532 10.1016/j.colsurfa.2023.131490 10.3390/w15152805 10.1016/j.cej.2018.06.137 10.1016/j.cej.2020.124803 10.3390/w16030456 10.1016/j.scitotenv.2022.160513 10.1016/j.scitotenv.2023.164408 10.1016/j.chemosphere.2019.01.075 10.1016/j.jhazmat.2021.125879 10.3390/toxics11100829 10.1016/j.watres.2019.115385 10.1089/ees.2015.0110 10.1016/j.jclepro.2022.134981 10.3390/w13121679 10.1163/156856795X00512 10.1016/j.watres.2018.01.050 10.1016/j.chemosphere.2018.08.031 10.1063/1.555808 10.3390/molecules26154584 10.1016/j.scitotenv.2021.149981 10.1016/j.jece.2021.105627 10.1021/es1013714 10.1016/j.jconrel.2018.06.007 10.1016/j.biortech.2021.124732 10.1016/j.chemosphere.2006.05.026 10.1016/j.cej.2016.09.077 10.1007/s11270-024-07501-x 10.1016/j.jhazmat.2023.132902 10.1016/j.chemosphere.2023.140596 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.3390/w17010010 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2073-4441 |
ExternalDocumentID | A832745420 10_3390_w17010010 |
GeographicLocations | China Tianjin China |
GeographicLocations_xml | – name: China – name: Tianjin China |
GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION D1J E3Z ECGQY EDH GX1 IAO ITC KQ8 MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-3bafd56d1ee245460f633374c6e8c7c16ad3ec3c4af22c2f35d4064d7a7cdc773 |
IEDL.DBID | BENPR |
ISSN | 2073-4441 |
IngestDate | Mon Jun 30 13:20:02 EDT 2025 Tue Jun 17 21:59:26 EDT 2025 Tue Jun 10 20:58:29 EDT 2025 Tue Jul 01 02:41:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-3bafd56d1ee245460f633374c6e8c7c16ad3ec3c4af22c2f35d4064d7a7cdc773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3153864757?pq-origsite=%requestingapplication% |
PQID | 3153864757 |
PQPubID | 2032318 |
ParticipantIDs | proquest_journals_3153864757 gale_infotracmisc_A832745420 gale_infotracacademiconefile_A832745420 crossref_primary_10_3390_w17010010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Water (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Chen (ref_62) 2021; 24 Chen (ref_31) 2019; 9 Ji (ref_41) 2013; 472 Chen (ref_65) 2021; 418 Ma (ref_29) 2021; 9 Wang (ref_26) 2022; 846 Zainab (ref_4) 2020; 187 ref_53 ref_52 Yang (ref_60) 2023; 892 Teel (ref_81) 2016; 158 Tang (ref_25) 2021; 426 Jing (ref_42) 2021; 345 Ding (ref_70) 2016; 308 Gonzalez (ref_50) 1995; 21 Wang (ref_54) 2018; 351 ref_18 Lalhriatpuia (ref_15) 2023; 11 ref_17 ref_59 Adam (ref_72) 2023; 473 Silva (ref_9) 2017; 199 Yu (ref_79) 2019; 374 Luo (ref_68) 2021; 819 Zhang (ref_21) 2020; 600 Wu (ref_71) 2022; 380 Nguyen (ref_39) 2023; 333 Li (ref_47) 2019; 378 Zhao (ref_5) 2021; 804 Li (ref_16) 2020; 397 Pham (ref_24) 2020; 259 Manickam (ref_38) 2023; 8 Boretti (ref_1) 2019; 2 Chen (ref_63) 2024; 464 Pang (ref_77) 2023; 414 Martinec (ref_8) 2019; 18 Rao (ref_32) 2020; 188 Liang (ref_45) 2006; 66 Yu (ref_84) 2024; 235 Han (ref_3) 2023; 235 Liang (ref_27) 2017; 56 Xiong (ref_88) 2019; 235 Wang (ref_19) 2024; 914 Wang (ref_74) 2023; 346 Ahmad (ref_36) 2023; 446 Wang (ref_37) 2023; 344 ref_78 ref_33 ref_30 Barcelona (ref_61) 2001; 35 Ranc (ref_10) 2016; 312 Tian (ref_66) 2021; 33 Chokejaroenrat (ref_28) 2015; 32 Ao (ref_75) 2018; 212 Lin (ref_7) 2022; 440 Wei (ref_12) 2022; 432 Hou (ref_64) 2018; 283 Kim (ref_80) 2020; 394 Chang (ref_14) 2018; 204 Duan (ref_55) 2021; 298 Liang (ref_58) 2010; 185 Liu (ref_57) 2022; 846 ref_83 ref_82 Song (ref_67) 2018; 79 Liu (ref_56) 2016; 548–549 Ma (ref_13) 2019; 171 Watts (ref_11) 2018; 133 Zhu (ref_73) 2023; 11 ref_87 Evans (ref_23) 2019; 221 Li (ref_34) 2023; 34 Xing (ref_35) 2020; 231 ref_85 Zhang (ref_20) 2023; 866 ref_40 Liu (ref_2) 2022; 860 Liu (ref_6) 2023; 466 Acero (ref_46) 2018; 201 Furman (ref_44) 2010; 44 Abbas (ref_86) 2021; 416 Kim (ref_69) 2018; 52 ref_49 Chu (ref_43) 2021; 282 Xu (ref_22) 2022; 843 Zhang (ref_76) 2022; 56 Wang (ref_48) 2024; 13 Neta (ref_51) 1988; 17 |
References_xml | – volume: 18 start-page: 699 year: 2019 ident: ref_8 article-title: Coupling in situ chemical oxidation with bioremediation of chloroethenes: A review publication-title: Rev. Environ. Sci. Bio/Technol. doi: 10.1007/s11157-019-09512-1 – ident: ref_82 doi: 10.3390/w14030503 – volume: 204 start-page: 154 year: 2018 ident: ref_14 article-title: Comparison study of Fe-based matrix composites reinforced with Ti-coated and Mo-coated SiC particles publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.10.007 – volume: 8 start-page: e202203389 year: 2023 ident: ref_38 article-title: Synthesis of Different Nano-layer Shells (Mono-, Bi-, and Alloy Layers)-Coated Gold Spherical Nanoparticles Core for Catalysis publication-title: ChemistrySelect doi: 10.1002/slct.202203389 – volume: 187 start-page: 116455 year: 2020 ident: ref_4 article-title: Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks publication-title: Water Res. doi: 10.1016/j.watres.2020.116455 – volume: 24 start-page: 102064 year: 2021 ident: ref_62 article-title: Developing a new controlled-release KMnO4 for groundwater DNAPL remediation publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2021.102064 – volume: 34 start-page: 2029 year: 2023 ident: ref_34 article-title: Engineering and slow-release properties of lignin-based double-layer coated fertilizer publication-title: Polym. Adv. Technol. doi: 10.1002/pat.6029 – volume: 472 start-page: 800 year: 2013 ident: ref_41 article-title: Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.11.008 – volume: 446 start-page: 130727 year: 2023 ident: ref_36 article-title: Nitrogen-doped Biochar (N-doped BC) and Iron/Nitrogen Co-doped Biochar (Fe/N co-doped BC) for Removal of Refractory Organic Pollutants publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.130727 – volume: 374 start-page: 316 year: 2019 ident: ref_79 article-title: Photocatalytic degradation of ciprofloxacin using Zn-doped Cu2O particles: Analysis of degradation pathways and intermediates publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.177 – ident: ref_59 doi: 10.1109/IRI51335.2021.00065 – volume: 466 start-page: 143147 year: 2023 ident: ref_6 article-title: Multivalent metal catalysts in Fenton/Fenton-like oxidation system: A critical review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.143147 – volume: 344 start-page: 140346 year: 2023 ident: ref_37 article-title: A biodegradable chitosan-based polymer for sustained nutrient release to stimulate groundwater hydrocarbon-degrading microflora publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.140346 – ident: ref_40 doi: 10.3390/catal12091058 – volume: 846 start-page: 157462 year: 2022 ident: ref_57 article-title: The effects of inorganic anions on degradation kinetics and isotope fractionation during the transformation of tris(2-chloroethyl) phosphate (TCEP) by UV/persulfate publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.157462 – volume: 201 start-page: 41 year: 2018 ident: ref_46 article-title: Degradation of selected emerging contaminants by UV-activated persulfate: Kinetics and influence of matrix constituents publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.02.055 – ident: ref_78 doi: 10.3390/nano12234305 – volume: 231 start-page: 1 year: 2020 ident: ref_35 article-title: An Innovative Double-Layer Microsphere Used as Slow-Release Carbon Source for Biological Denitrification publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-020-04506-0 – volume: 35 start-page: 3378 year: 2001 ident: ref_61 article-title: In Situ Lifetimes and Kinetics of a Reductive Whey Barrier and an Oxidative ORC Barrier in the Subsurface publication-title: Environ. Sci. Technol. doi: 10.1021/es001637l – volume: 426 start-page: 128083 year: 2021 ident: ref_25 article-title: A novel chitosan-urea encapsulated material for persulfate slow-release to degrade organic pollutants publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.128083 – volume: 188 start-page: 116481 year: 2020 ident: ref_32 article-title: Enhanced Oxidation of Organic Contaminants by Mn(VII)/CaSO3 Under Environmentally Relevant Conditions: Performance and Mechanisms publication-title: Water Res. doi: 10.1016/j.watres.2020.116481 – ident: ref_85 doi: 10.3390/ma16217045 – volume: 259 start-page: 127508 year: 2020 ident: ref_24 article-title: Sustained release of persulfate from inert inorganic materials for groundwater remediation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127508 – ident: ref_87 doi: 10.3390/w15234103 – volume: 56 start-page: 5271 year: 2017 ident: ref_27 article-title: Characterization of a Sodium Persulfate Sustained Release Rod for in Situ Chemical Oxidation Groundwater Remediation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b00082 – volume: 333 start-page: 138954 year: 2023 ident: ref_39 article-title: Remediation of groundwater contaminated with trichloroethylene (TCE) using a long-lasting persulfate/biochar barrier publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.138954 – volume: 345 start-page: 117840 year: 2021 ident: ref_42 article-title: Novel LaCr substituted Mhexaferrite photocatalyst for decontamination of organic pollutants by peroxymonosulfate activation publication-title: J. Mol. Liq. – volume: 235 start-page: 116653 year: 2023 ident: ref_3 article-title: Groundwater antibiotics contamination in an alluvial-pluvial fan, North China Plain: Occurrence, sources, and risk assessment publication-title: Environ. Res. doi: 10.1016/j.envres.2023.116653 – volume: 819 start-page: 152089 year: 2021 ident: ref_68 article-title: Activation of persulfate for highly efficient degradation of metronidazole using Fe(II)-rich potassium doped magnetic biochar publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.152089 – volume: 13 start-page: 100393 year: 2024 ident: ref_48 article-title: A review of Sustained release materials for remediation of organically contaminated groundwater: Material preparation, applications and prospects for practical application publication-title: J. Hazard. Mater. Adv. – volume: 312 start-page: 280 year: 2016 ident: ref_10 article-title: Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): A review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.03.068 – volume: 33 start-page: 4461 year: 2021 ident: ref_66 article-title: Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.12.042 – volume: 158 start-page: 184 year: 2016 ident: ref_81 article-title: Persulfate activation during exertion of total oxidant demand publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.05.055 – volume: 914 start-page: 170023 year: 2024 ident: ref_19 article-title: Utilizing different types of biomass materials to modify steel slag for the preparation of composite materials used in the adsorption and solidification of Pb in solutions and soil publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2024.170023 – volume: 235 start-page: 434 year: 2019 ident: ref_88 article-title: Biological denitrification using polycaprolactone-peanut shell as slow-release carbon source treating drainage of municipal WWTP publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.06.198 – volume: 52 start-page: 3625 year: 2018 ident: ref_69 article-title: Activation of Persulfate by Nanosized Zero-Valent Iron (NZVI): Mechanisms and Transformation Products of NZVI publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05847 – volume: 9 start-page: 1 year: 2019 ident: ref_31 article-title: Chitosan Encapsulation of FerrateVI for Controlled Release to Water:Mechanistic Insights and Degradation of Organic Contaminant publication-title: Sci. Rep. – volume: 282 start-page: 131091 year: 2021 ident: ref_43 article-title: Degradation of norfloxacin by calcite activating peroxymonosulfate: Performance and mechanism publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131091 – volume: 11 start-page: 110945 year: 2023 ident: ref_15 article-title: Novel biochar supported heterojunction of RH-BC (Fe0/Au0) catalyst: A highly efficient catalyst in the degradation of micro-pollutants publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2023.110945 – volume: 440 start-page: 129722 year: 2022 ident: ref_7 article-title: Application of persulfate-based oxidation processes to address diverse sustainability challenges: A critical review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.129722 – volume: 600 start-page: 124926 year: 2020 ident: ref_21 article-title: Novel carbothermal synthesis of Fe, N co-doped oak wood biochar (Fe/N-OB) for fast and effective Cr(VI) removal publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2020.124926 – volume: 79 start-page: 573 year: 2018 ident: ref_67 article-title: A mini review of activated methods to persulfate-based advanced oxidation process publication-title: Water Sci. Technol. doi: 10.2166/wcc.2018.168 – volume: 418 start-page: 126355 year: 2021 ident: ref_65 article-title: Landfill leachate treatment by persulphate related advanced oxidation technologies publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126355 – volume: 846 start-page: 157217 year: 2022 ident: ref_26 article-title: Comparative study of the performance of controlled release materials containing mesoporous MnOx in catalytic persulfate activation for the remediation of tetracycline contaminated groundwater publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.157217 – volume: 11 start-page: 109587 year: 2023 ident: ref_73 article-title: ZIF-8-derived nitrogen-doped porous carbon supported CuFeO2 for sulfamethoxazole removal: Performances, degradation pathways and mechanisms publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2023.109587 – volume: 2 start-page: 15 year: 2019 ident: ref_1 article-title: Reassessing the projections of the World Water Development Report publication-title: NPJ Clean Water doi: 10.1038/s41545-019-0039-9 – volume: 56 start-page: 15941 year: 2022 ident: ref_76 article-title: Unraveling the Toxicity Associated with Ciprofloxacin Biodegradation in Biological Wastewater Treatment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c04387 – volume: 548–549 start-page: 1 year: 2016 ident: ref_56 article-title: Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions publication-title: Sci. Total Environ. – volume: 473 start-page: 145168 year: 2023 ident: ref_72 article-title: The development of novel tailor-made photocatalytic reactor for sulfamethoxazole removal: Understanding mechanism and degradation pathway publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.145168 – volume: 199 start-page: 36 year: 2017 ident: ref_9 article-title: Field demonstration of polymer-amended in situ chemical oxidation (PA-ISCO) publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2017.03.001 – volume: 866 start-page: 161323 year: 2023 ident: ref_20 article-title: Degradation of PAHs in soil by activated persulfate system with activated carbon supported iron-based bimetal publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2022.161323 – volume: 843 start-page: 157023 year: 2022 ident: ref_22 article-title: Preparation and properties of the persulfate gel materials and application for the remediation of 2,4-dinitrotoluene contaminated groundwater publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.157023 – volume: 378 start-page: 122142 year: 2019 ident: ref_47 article-title: Mechanisms on the impacts of humic acids on persulfate/Fe2+-based groundwater remediation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122142 – volume: 397 start-page: 122764 year: 2020 ident: ref_16 article-title: High-efficiency degradation of organic pollutants with Fe, N co-doped biochar catalysts via persulfate activation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122764 – ident: ref_53 doi: 10.3390/w15081615 – volume: 432 start-page: 128738 year: 2022 ident: ref_12 article-title: Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.128738 – volume: 185 start-page: 1162 year: 2010 ident: ref_58 article-title: Application of persulfate-releasing barrier to remediate MTBE and benzene contaminated groundwater publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.10.027 – volume: 414 start-page: 137569 year: 2023 ident: ref_77 article-title: Natural wood-derived charcoal embedded with bimetallic iron/cobalt sites to promote ciprofloxacin degradation publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.137569 – volume: 298 start-page: 120532 year: 2021 ident: ref_55 article-title: Effect of phosphate on peroxymonosulfate activation: Accelerating generation of sulfate radical and underlying mechanism publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120532 – ident: ref_18 doi: 10.1016/j.colsurfa.2023.131490 – ident: ref_52 doi: 10.3390/w15152805 – volume: 351 start-page: 688 year: 2018 ident: ref_54 article-title: Radiation-induced degradation of sulfamethoxazole in the presence of various inorganic anions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.06.137 – volume: 394 start-page: 124803 year: 2020 ident: ref_80 article-title: Degradation of Ciprofloxacin and Inactivation of Ciprofloxacin Resistant, E. Faecium during UV-LED (275 nm)/Chlorine Process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124803 – ident: ref_33 doi: 10.3390/w16030456 – volume: 860 start-page: 160513 year: 2022 ident: ref_2 article-title: Meta-analysis addressing the characterization and risk identification of antibiotics and antibiotic resistance genes in global groundwater publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.160513 – volume: 892 start-page: 164408 year: 2023 ident: ref_60 article-title: Characteristics of persulfate gel materials in groundwater remediation: Column and tank experiments investigations publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.164408 – volume: 221 start-page: 802 year: 2019 ident: ref_23 article-title: Slow-release permanganate versus unactivated persulfate for long-term in situ chemical oxidation of 1,4-dioxane and chlorinated solvents publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.01.075 – volume: 416 start-page: 125879 year: 2021 ident: ref_86 article-title: Development of polystyrene coated persulfate slow-release beads for the oxidation of targeted PAHs: Effect of sulfate and chloride ions publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125879 – ident: ref_30 doi: 10.3390/toxics11100829 – volume: 171 start-page: 115385 year: 2019 ident: ref_13 article-title: Characteristics and mechanisms of controlled-release KMnO4 for groundwater remediation: Experimental and modeling investigations publication-title: Water Res. doi: 10.1016/j.watres.2019.115385 – volume: 32 start-page: 1007 year: 2015 ident: ref_28 article-title: Treating Methyl Orange in a Two-Dimensional Flow Tank byIn SituChemical Oxidation Using Slow-Release Persulfate Activated with Zero-Valent Iron publication-title: Environ. Eng. Sci. doi: 10.1089/ees.2015.0110 – volume: 380 start-page: 134981 year: 2022 ident: ref_71 article-title: Efficient activation of peroxydisulfate by FeNC for chloramphenicol degradation: Performance and mechanisms publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.134981 – ident: ref_83 doi: 10.3390/w13121679 – volume: 21 start-page: 837 year: 1995 ident: ref_50 article-title: Vuv Photolysis of Aqueous Solutions of Nitrate and Nitrite publication-title: Res. Chem. Intermed. doi: 10.1163/156856795X00512 – volume: 133 start-page: 247 year: 2018 ident: ref_11 article-title: Persulfate activation by glucose for in situ chemical oxidation publication-title: Water Res. doi: 10.1016/j.watres.2018.01.050 – volume: 212 start-page: 365 year: 2018 ident: ref_75 article-title: Mechanisms and toxicity evaluation of the degradation of sulfamethoxazole by MPUV/PMS process publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.08.031 – volume: 17 start-page: 1027 year: 1988 ident: ref_51 article-title: Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555808 – ident: ref_49 doi: 10.3390/molecules26154584 – volume: 804 start-page: 149981 year: 2021 ident: ref_5 article-title: An overview of in-situ remediation for nitrate in groundwater publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.149981 – volume: 9 start-page: 105627 year: 2021 ident: ref_29 article-title: Persulfate-based controlled release beads for in situ chemical oxidation of common organic pollutants publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.105627 – volume: 44 start-page: 6423 year: 2010 ident: ref_44 article-title: Mechanism of base activation of persulfate publication-title: Environ. Sci. Technol. doi: 10.1021/es1013714 – volume: 283 start-page: 200 year: 2018 ident: ref_64 article-title: Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review publication-title: J. Control. Release doi: 10.1016/j.jconrel.2018.06.007 – ident: ref_17 doi: 10.1016/j.biortech.2021.124732 – volume: 66 start-page: 106 year: 2006 ident: ref_45 article-title: Influence of pH on persulfate oxidation of TCE at ambient temperatures publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.05.026 – volume: 308 start-page: 330 year: 2016 ident: ref_70 article-title: Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: Identification of radicals and degradation pathway publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.09.077 – volume: 235 start-page: 1 year: 2024 ident: ref_84 article-title: The Remediation of Organic Pollution in Soil by Persulfate publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-024-07501-x – volume: 464 start-page: 132902 year: 2024 ident: ref_63 article-title: Influencing factors and controlled release kinetics of H2O2 from PVP-coated calcium peroxide NPs for groundwater remediation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.132902 – volume: 346 start-page: 140596 year: 2023 ident: ref_74 article-title: Interface engineering of 0D/2D Cu2O/BiOBr Z-scheme heterojunction for efficient degradation of sulfamethoxazole: Mechanism, degradation pathway, and DFT calculation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.140596 |
SSID | ssj0000498850 |
Score | 2.3196416 |
Snippet | Single-layer slow-release materials have short lifespans due to their rapid initial release behavior. To address this problem, a double-coated persulfate... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Index Database |
StartPage | 10 |
SubjectTerms | Antibiotics Chemical properties Comparative analysis Composition Control Deformation Efficiency Environmental aspects Groundwater Oxidation Persulfates Pollutants Potassium Purification Reagents Sodium Technology application Water Water, Underground |
Title | A Novel Double-Coated Persulfate Slow-Release Material: Preparation and Application for the Removal of Antibiotics from Groundwater |
URI | https://www.proquest.com/docview/3153864757 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbKcoEDaksRUEAjVKkniyR27GwvVYp4CIkVWoq0t8jx47TEsITuD-gf70w2C6xUcYtkK4nG8_g89nzD2LfEDEPqVMZVrTWXXmhuCiW41z4xeerq0JEkXY_U5Z28muSTPuH21F-rXPrEzlG7aClHfiLINJXUuf758MipaxSdrvYtNNbYOrrgohiw9V9no5vxS5YF8W9R5MmCUkjg_v5kTgTktBNaCUT_d8ddjDn_yLZ6cAjlYjU_sQ---cw231AGbrO_JYziHz8FRL711PPTiGDRAV1kf54GfIbbaZzzMUYTjE9wbdpOxX7AzcwvaL5jA6ZxUL6eXAMCV0AgCGN_H1HzIAYoGyomiUTiDFSCApSkatyc3veF3Z2f_T695H0jBW7RwlouahNcrlzqfSZzqZKghBBaWuULq22qjBPeCitNyDKbBZE7jPPSaaOts1qLHTZoYuN3GVD3b18nwodiKIOphzIXEvXA2RBC5sQeO15KtXpY8GVUuM8g0Vcvot9j30neFdlQOzPW9KUA-Alio6pKdDMafzTDmQcrM1H37erwcsWq3vaeqldN2X9_-CvbyKibb5dQOWCDdvbsDxFitPVRr0dHbO1ikv4DjCfUmA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAcEE9RWsBCIE5Ws7ZjZ5EQCqXVlnZX1dJKvaWOH6clbrcpK878H34jM3m0rIS49RbJkRONv3l47PmGkLeJGYWhU5ypUmsmvdDMZEowr31i0qErQ0OSNJmq8Yn8epqerpHffS0MXqvsbWJjqF20mCPfFqiaSupUfzq_YNg1Ck9X-xYaLSwO_M8lbNkuP-5_gfV9x_ne7vHOmHVdBZgFuNVMlCa4VLmh91ymUiVBCSG0tMpnVtuhMk54K6w0gXPLg0gdOD3ptNHWWa0FzHuHrEuhEj4g6593p0ez66wOxNtZliYthZEQo2R7iYTnuPNacXz_Nv-NT9t7SB50wSjNW_Q8Imu-ekzu_0VR-IT8yuk0_vBzCpF2OfdsJ0Jw6ihenL-aB3im3-ZxyWbgvcAf0ompG0h_oEcL39KKx4qaytH85qScQqBMIfCkM_89AtJpDDSvsHglImk0xZIXikmxyi1xvqfk5FZE_IwMqlj554Rit3FfJsKHbCSDKUcyFRJw52wIgTuxQd70Ui3OW36OAvY1KPriWvQb5D3Ku0CdrRfGmq70AD6B7FdFDmZNw49yeHNr5U3QNbs63K9Y0en6ZXGDzBf_H35N7o6PJ4fF4f70YJPc49hJuEnmbJFBvbjyLyG8qctXHaYoObttGP8BxLMRbQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQDzVQgGrAnGymrUdO4uEUGi7aildrRYq9ZY6fpyWuGxTVpz5V_w6ZvJoWQn11lskR040_sbzsOcbQt4kZhSGTnGmSq2Z9EIzkynBvPaJSYeuDA1J0vFEHZzIz6fp6Rr509fC4LXKfk9sNmoXLebIdwSqppIaAvjQXYuY7o0_nv9g2EEKT1r7dhotRI78ryWEbxcfDvdgrd9yPt7_tnvAug4DzAL0aiZKE1yq3NB7LlOpkqCEEFpa5TOr7VAZJ7wVVprAueVBpA4MoHTaaOus1gLmvUPWNUZFA7L-aX8ynV1leMD3zrI0aemMhBglO0skP8cobMUI_t8UNPZt_JA86BxTmrdIekTWfPWY3P-HrvAJ-Z3TSfzp5xS87nLu2W4ER9VRvER_OQ_wTL_O45LNwJKBbaTHpm7g_Z5OF76lGI8VNZWj-fWpOQWnmYITSmf-ewTU0xhoXmEhS0QCaYrlLxQTZJVb4nxPycmtiPgZGVSx8huEYudxXybCh2wkgylHMhUSMOhsCIE7sUm2e6kW5y1XRwExDoq-uBL9JnmH8i5Qf-uFsaYrQ4BPIBNWkcMWp-FHOby5tfIm6J1dHe5XrOj0_qK4Runzm4dfk7sA3-LL4eToBbnHsalwk9fZIoN6celfgqdTl686SFFydtso_gsSahWi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Double-Coated+Persulfate+Slow-Release+Material%3A+Preparation+and+Application+for+the+Removal+of+Antibiotics+from+Groundwater&rft.jtitle=Water+%28Basel%29&rft.au=Zhixin+Hu&rft.au=Yujin+Xia&rft.au=Miao+Zhang&rft.au=Yilin+Xie&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=17&rft.issue=1&rft_id=info:doi/10.3390%2Fw17010010&rft.externalDocID=A832745420 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |