Antlion re-sampling based deep neural network model for classification of imbalanced multimodal stroke dataset
Stroke is enlisted as one of the leading causes of death and serious disability affecting millions of human lives across the world with high possibilities of becoming an epidemic in the next few decades. Timely detection and prompt decision making pertinent to this disease, plays a major role which...
Saved in:
Published in | Multimedia tools and applications Vol. 81; no. 29; pp. 41429 - 41453 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stroke is enlisted as one of the leading causes of death and serious disability affecting millions of human lives across the world with high possibilities of becoming an epidemic in the next few decades. Timely detection and prompt decision making pertinent to this disease, plays a major role which can reduce chances of brain death, paralysis and other resultant outcomes. Machine learning algorithms have been a popular choice for the diagnosis, analysis and predication of this disease but there exists issues related to data quality as they are collected cross-institutional resources. The present study focuses on improving the quality of stroke data implementing a rigorous pre-processing technique. The present study uses a multimodal stroke dataset available in the publicly available Kaggle repository. The missing values in this dataset are replaced with attribute means and LabelEncoder technique is applied to achieve homogeneity. However the dataset considered was observed to be imbalanced which reflect that the results may not represent the actual accuracy and would be biased. In order to overcome this imbalance, resampling technique was used. In case of oversampling, some data points in the minority class are replicated to increase the cardinality value and rebalance the dataset. transformed and oversampled data is further normalized using Standardscalar technique. Antlion optimization (ALO) algorithm is implemented on the deep neural network (DNN) model to select optimal hyperparameters in minimal time consumption. The proposed model consumed only 38.13% of the training time which was also a positive aspect. The experimental results proved the superiority of proposed model. |
---|---|
AbstractList | Stroke is enlisted as one of the leading causes of death and serious disability affecting millions of human lives across the world with high possibilities of becoming an epidemic in the next few decades. Timely detection and prompt decision making pertinent to this disease, plays a major role which can reduce chances of brain death, paralysis and other resultant outcomes. Machine learning algorithms have been a popular choice for the diagnosis, analysis and predication of this disease but there exists issues related to data quality as they are collected cross-institutional resources. The present study focuses on improving the quality of stroke data implementing a rigorous pre-processing technique. The present study uses a multimodal stroke dataset available in the publicly available Kaggle repository. The missing values in this dataset are replaced with attribute means and LabelEncoder technique is applied to achieve homogeneity. However the dataset considered was observed to be imbalanced which reflect that the results may not represent the actual accuracy and would be biased. In order to overcome this imbalance, resampling technique was used. In case of oversampling, some data points in the minority class are replicated to increase the cardinality value and rebalance the dataset. transformed and oversampled data is further normalized using Standardscalar technique. Antlion optimization (ALO) algorithm is implemented on the deep neural network (DNN) model to select optimal hyperparameters in minimal time consumption. The proposed model consumed only 38.13% of the training time which was also a positive aspect. The experimental results proved the superiority of proposed model. |
Author | Khan, Wazir Zada Hakak, Saqib Bhattacharya, Sweta Tariq, Usman G, Thippa Reddy Maddikunta, Praveen Kumar Reddy Bashir, Ali Kashif Jolfaei, Alireza |
Author_xml | – sequence: 1 givenname: Thippa Reddy surname: G fullname: G, Thippa Reddy organization: School of Information Technology and Engineering, Vellore Institute of Technology – sequence: 2 givenname: Sweta surname: Bhattacharya fullname: Bhattacharya, Sweta organization: School of Information Technology and Engineering, Vellore Institute of Technology – sequence: 3 givenname: Praveen Kumar Reddy surname: Maddikunta fullname: Maddikunta, Praveen Kumar Reddy organization: School of Information Technology and Engineering, Vellore Institute of Technology – sequence: 4 givenname: Saqib surname: Hakak fullname: Hakak, Saqib email: saqib.hakak@unbc.ca organization: Canadian Institute for Cybersecurity, Faculty of Computer Science, University of New Brunswick – sequence: 5 givenname: Wazir Zada orcidid: 0000-0003-0819-4236 surname: Khan fullname: Khan, Wazir Zada email: wazirzadakhan@jazanu.edu.sa organization: Faculty of CS, IT, Jazan University – sequence: 6 givenname: Ali Kashif surname: Bashir fullname: Bashir, Ali Kashif organization: Department of Computing and Mathematics, Manchester Metropolitan University Manchester – sequence: 7 givenname: Alireza surname: Jolfaei fullname: Jolfaei, Alireza organization: Department of Computing, Macquarie University – sequence: 8 givenname: Usman surname: Tariq fullname: Tariq, Usman organization: College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University |
BookMark | eNp9kE1PJCEQhonRZNX1D-yJxDNa0PQAR2N21WSSvXgnNd1gUBpGYGLm34vOJiZ78FR1eJ_6eM7IccrJEfKLwxUHUNeVc5CCgQAGxmjN9kfklI9qYEoJftz7QQNTI_Af5KzWZwC-GoU8JekmtRhyosWxiss2hvREN1jdTGfntjS5XcHYS3vL5YUueXaR-lzoFLHW4MOE7QPPnoZlgxHT1NFlF1vo2U7WVvKLozO2PrT9JCceY3UX_-o5efzz-_H2nq3_3j3c3qzZNHDT2GC0QalQykFqNU8aJIx6Na3GAXX_SHD0MypQwhgxCrUBb5Ry0qD3ADick8vD2G3JrztXm33Ou5L6RiuU7JaklqanxCE1lVxrcd5uS1iw7C0H-6HVHrTaDthPrXbfIf0fNIX26aAVDPF7dDigte9JT658XfUN9Q6nEpAT |
CitedBy_id | crossref_primary_10_3390_electronics11244137 crossref_primary_10_3389_fpubh_2021_835960 crossref_primary_10_1111_exsy_13596 crossref_primary_10_3389_fpubh_2022_834032 crossref_primary_10_1007_s00500_021_06109_1 crossref_primary_10_1016_j_jneumeth_2024_110210 crossref_primary_10_1155_2022_9580991 crossref_primary_10_4018_IJDAI_296389 crossref_primary_10_1007_s11063_021_10667_8 crossref_primary_10_1007_s13721_024_00447_4 crossref_primary_10_1109_ACCESS_2024_3417822 crossref_primary_10_32604_cmes_2021_015528 crossref_primary_10_3389_fpubh_2022_849185 crossref_primary_10_1007_s11042_023_15668_4 crossref_primary_10_1007_s11276_024_03783_5 crossref_primary_10_1109_ACCESS_2024_3480310 crossref_primary_10_1155_2022_3078025 crossref_primary_10_3390_atmos15111308 crossref_primary_10_1016_j_compmedimag_2024_102400 crossref_primary_10_1016_j_wneu_2024_01_059 crossref_primary_10_1109_TII_2024_3366991 crossref_primary_10_1007_s11042_024_18622_0 crossref_primary_10_1021_acsestengg_4c00093 crossref_primary_10_3389_fpubh_2022_861062 crossref_primary_10_1007_s11030_022_10382_z crossref_primary_10_1080_10916466_2024_2385727 crossref_primary_10_3389_fpubh_2022_862497 crossref_primary_10_3389_fpubh_2022_926229 crossref_primary_10_7717_peerj_cs_2196 crossref_primary_10_1007_s40747_020_00250_4 crossref_primary_10_1109_JAS_2024_124557 |
Cites_doi | 10.1016/j.artmed.2019.101723 10.1186/s40537-019-0192-5 10.1016/j.ins.2019.11.004 10.1056/NEJMoa1804355 10.1109/TMM.2019.2893549 10.1038/nature21056 10.1016/j.inffus.2017.03.007 10.1177/1550147720916404 10.1016/j.nicl.2017.06.016 10.1016/j.neucom.2018.09.065 10.1007/s12652-019-01444-6 10.1109/ACCESS.2019.2924584 10.1109/TVT.2020.2973294 10.1109/TBME.2017.2783241 10.1016/j.procs.2016.05.259 10.3389/fneur.2018.00945 10.1016/j.patcog.2017.12.017 10.1007/s11042-017-5045-7 10.1109/TII.2019.2902604 10.1109/TNNLS.2018.2832648 10.1109/ACCESS.2018.2789428 10.4018/IJSIR.2019070101 10.1109/ACCESS.2020.2980942 10.1007/s11042-017-5515-y 10.1161/CIR.0000000000000558 10.1016/j.nicl.2014.02.003 10.1504/IJBET.2018.094122 10.1007/s11042-018-7134-7 10.1016/j.mri.2013.03.013 10.1007/s12194-013-0234-1 10.1016/j.advengsoft.2015.01.010 10.1007/978-3-540-88425-5_10 10.1016/j.comcom.2020.05.020 10.1007/978-981-10-2525-9_1 10.1017/S0960129513000777 10.1007/978-3-030-12127-3_3 10.1007/978-3-030-17795-9_5 10.1145/1835804.1835830 10.1007/s12652-020-01963-7 10.1109/TNNLS.2017.2741349 10.1007/978-3-319-70139-4_78 10.1007/978-3-319-96136-1_25 10.1109/GLOCOM.2018.8647926 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-020-09988-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 41453 |
ExternalDocumentID | 10_1007_s11042_020_09988_y |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-3989a47a443487dc8040586c653a877221afda7072992527b0f977e49aff00a3 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 23:03:10 EDT 2025 Tue Jul 01 04:13:06 EDT 2025 Thu Apr 24 22:55:15 EDT 2025 Fri Feb 21 02:44:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | Imbalanced dataset Re-sampling Deep neural networks Antlion optimization Stroke prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-3989a47a443487dc8040586c653a877221afda7072992527b0f977e49aff00a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0819-4236 |
PQID | 2740204849 |
PQPubID | 54626 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2740204849 crossref_primary_10_1007_s11042_020_09988_y crossref_citationtrail_10_1007_s11042_020_09988_y springer_journals_10_1007_s11042_020_09988_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221200 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 20221200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Wang, Huang, Tang (CR42) 2017; 29 Kutia, Chauhdary, Iwendi, Liu, Yong, Bashir (CR19) 2019; 7 Li, Fong, Wong, Chu (CR20) 2018; 39 Thabtah, Hammoud, Kamalov, Gonsalves (CR38) 2020; 513 Thomalla, Simonsen, Boutitie, Andersen, Berthezene, Cheng, Cheripelli, Cho, Fazekas, Fiehler (CR39) 2018; 379 Huang, Liu (CR13) 2019; 325 Sattar, Cheetar (CR34) 2019; 10 Yuan, Xie, Abouelenien (CR44) 2018; 77 Zhang, Tan, Li, Hong (CR45) 2018; 30 CR18 Takahashi, Lee, Tsai, Matsuyama, Kinoshita, Ishii (CR37) 2014; 7 Zhu, Xia, Jin, Yan, Cai, Yan, Ning (CR47) 2018; 6 Reddy, Kumar ReddyM, Lakshmanna, Kaluri, SinghRajput, Srivastava, Baker (CR28) 2020; 8 Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (CR6) 2017; 542 CR14 CR12 CR11 CR10 Patel, SinghRajput, ThippaReddy, Iwendi, KashifBashir, Jo (CR25) 2020; 16 CR32 Pham, Mirjalili, Kumar, Alazab, Hwang (CR26) 2020; 69 CR31 CR30 Benjamin, Virani, Callaway, Chamberlain, Chang, Cheng, Chiuve, Cushman, Delling, Deo (CR2) 2018; 137 Zerdoumi, Sabri, Kamsin, Hashem, Gani, Hakak, Chang (CR46) 2018; 77 Manogaran, Varatharajan, Priyan (CR23) 2018; 77 Salunkhe, Mali (CR33) 2016; 85 Scalzo, Alger, Hu, Saver, Dani, Muir, Demchuk, Coutts, Luby, Warach (CR35) 2013; 31 Garg, Kaur, Kumar, Rodrigues (CR9) 2019; 21 Johnson, Khoshgoftaar (CR15) 2019; 6 CR5 Mirjalili (CR24) 2015; 83 CR8 Yu, Guo, Lou, Liebeskind, Scalzo (CR43) 2017; 65 Liu, Fan, Wu (CR21) 2019; 101 CR27 Kamal, Lopez, Sheth (CR16) 2018; 9 Feng, Ali, Iqbal, Bashir, Hussain, Pack (CR7) 2019; 15 Sultan, Javed, Irtaza, Dawood, Dawood, Bashir (CR36) 2019; 10 CR22 Reddy, Khare (CR29) 2018; 27 Al-khafajiy, Baker, Chalmers, Asim, Kolivand, Fahim, Waraich (CR1) 2019; 78 CR41 Kaur, Pannu, Malhi (CR17) 2019; 52 CR40 Chen, Bentley, Rueckert (CR4) 2017; 15 Bentley, Ganesalingam, Jones, Mahady, Epton, Rinne, Sharma, Halse, Mehta, Rueckert (CR3) 2014; 4 JM Johnson (9988_CR15) 2019; 6 A Esteva (9988_CR6) 2017; 542 M Al-khafajiy (9988_CR1) 2019; 78 C Huang (9988_CR13) 2019; 325 S Sultan (9988_CR36) 2019; 10 9988_CR22 HA Sattar (9988_CR34) 2019; 10 F Scalzo (9988_CR35) 2013; 31 S Kutia (9988_CR19) 2019; 7 9988_CR40 9988_CR41 J Li (9988_CR20) 2018; 39 D Wang (9988_CR42) 2017; 29 G Thomalla (9988_CR39) 2018; 379 Q-V Pham (9988_CR26) 2020; 69 9988_CR27 H Kamal (9988_CR16) 2018; 9 H Kaur (9988_CR17) 2019; 52 S Mirjalili (9988_CR24) 2015; 83 M Zhu (9988_CR47) 2018; 6 X Yuan (9988_CR44) 2018; 77 P Bentley (9988_CR3) 2014; 4 T Liu (9988_CR21) 2019; 101 EJ Benjamin (9988_CR2) 2018; 137 G Manogaran (9988_CR23) 2018; 77 G Reddy (9988_CR28) 2020; 8 UR Salunkhe (9988_CR33) 2016; 85 L Chen (9988_CR4) 2017; 15 9988_CR11 Y Yu (9988_CR43) 2017; 65 9988_CR12 H Patel (9988_CR25) 2020; 16 9988_CR31 9988_CR10 9988_CR32 C Zhang (9988_CR45) 2018; 30 9988_CR30 S Garg (9988_CR9) 2019; 21 9988_CR5 L Feng (9988_CR7) 2019; 15 F Thabtah (9988_CR38) 2020; 513 9988_CR18 GT Reddy (9988_CR29) 2018; 27 N Takahashi (9988_CR37) 2014; 7 9988_CR14 S Zerdoumi (9988_CR46) 2018; 77 9988_CR8 |
References_xml | – ident: CR22 – volume: 101 start-page: 101723 year: 2019 ident: CR21 article-title: A hybrid machine learning approach to cerebral stroke prediction based on imbalanced medical dataset publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.101723 – ident: CR18 – volume: 6 start-page: 27 issue: 1 year: 2019 ident: CR15 article-title: Survey on deep learning with class imbalance publication-title: Journal of Big Data doi: 10.1186/s40537-019-0192-5 – volume: 513 start-page: 429 year: 2020 end-page: 441 ident: CR38 article-title: Data imbalance in classification: Experimental evaluation publication-title: Inf Sci doi: 10.1016/j.ins.2019.11.004 – volume: 29 start-page: 3815 issue: 8 year: 2017 end-page: 3827 ident: CR42 article-title: Dissipativity and synchronization of generalized bam neural networks with multivariate discontinuous activations publication-title: IEEE transactions on neural networks and learning systems – volume: 379 start-page: 611 issue: 7 year: 2018 end-page: 622 ident: CR39 article-title: Mri-guided thrombolysis for stroke with unknown time of onset publication-title: N Engl J Med doi: 10.1056/NEJMoa1804355 – volume: 21 start-page: 566 issue: 3 year: 2019 end-page: 578 ident: CR9 article-title: Hybrid deep-learning-based anomaly detection scheme for suspicious flow detection in sdn: A social multimedia perspective publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2019.2893549 – ident: CR14 – volume: 542 start-page: 115 issue: 7639 year: 2017 ident: CR6 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – ident: CR12 – ident: CR30 – volume: 39 start-page: 1 year: 2018 end-page: 24 ident: CR20 article-title: Adaptive multi-objective swarm fusion for imbalanced data classification publication-title: Information Fusion doi: 10.1016/j.inffus.2017.03.007 – ident: CR10 – volume: 16 start-page: 1550147720916404 issue: 4 year: 2020 ident: CR25 article-title: A review on classification of imbalanced data for wireless sensor networks publication-title: International Journal of Distributed Sensor Networks doi: 10.1177/1550147720916404 – volume: 15 start-page: 633 year: 2017 end-page: 643 ident: CR4 article-title: Fully automatic acute ischemic lesion segmentation in dwi using convolutional neural networks publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2017.06.016 – volume: 325 start-page: 283 year: 2019 end-page: 287 ident: CR13 article-title: New studies on dynamic analysis of inertial neural networks involving non-reduced order method publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.065 – ident: CR8 – volume: 10 start-page: 4197 issue: 10 year: 2019 end-page: 4206 ident: CR36 article-title: A hybrid egocentric video summarization method to improve the healthcare for alzheimer patients publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-019-01444-6 – volume: 7 start-page: 90777 year: 2019 end-page: 90788 ident: CR19 article-title: Socio-technological factors affecting user’s adoption of ehealth functionalities: A case study of china and ukraine ehealth systems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2924584 – volume: 69 start-page: 4285 issue: 4 year: 2020 end-page: 4297 ident: CR26 article-title: Whale optimization algorithm with applications to resource allocation in wireless networks publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2020.2973294 – ident: CR40 – ident: CR27 – volume: 65 start-page: 2058 issue: 9 year: 2017 end-page: 2065 ident: CR43 article-title: Prediction of hemorrhagic transformation severity in acute stroke from source perfusion mri publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2017.2783241 – volume: 85 start-page: 725 year: 2016 end-page: 732 ident: CR33 article-title: Classifier ensemble design for imbalanced data classification: a hybrid approach publication-title: Procedia Computer Science doi: 10.1016/j.procs.2016.05.259 – volume: 9 start-page: 945 year: 2018 ident: CR16 article-title: Machine learning in acute ischemic stroke neuroimaging publication-title: Frontiers in neurology doi: 10.3389/fneur.2018.00945 – volume: 77 start-page: 160 year: 2018 end-page: 172 ident: CR44 article-title: A regularized ensemble framework of deep learning for cancer detection from multi-class, imbalanced training data publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.12.017 – volume: 77 start-page: 10091 issue: 8 year: 2018 end-page: 10121 ident: CR46 article-title: Image pattern recognition in big data: taxonomy and open challenges: survey publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-5045-7 – volume: 15 start-page: 3016 issue: 5 year: 2019 end-page: 3027 ident: CR7 article-title: Optimal haptic communications over nanonetworks for e-health systems publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2902604 – volume: 30 start-page: 109 issue: 1 year: 2018 end-page: 122 ident: CR45 article-title: A cost-sensitive deep belief network for imbalanced classification publication-title: IEEE transactions on neural networks and learning systems doi: 10.1109/TNNLS.2018.2832648 – ident: CR31 – ident: CR11 – volume: 6 start-page: 4641 year: 2018 end-page: 4652 ident: CR47 article-title: Class weights random forest algorithm for processing class imbalanced medical data publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2789428 – volume: 10 start-page: 1 issue: 3 year: 2019 end-page: 22 ident: CR34 article-title: A new strategy based on gsabat to solve single objective optimization problem publication-title: International Journal of Swarm Intelligence Research (IJSIR) doi: 10.4018/IJSIR.2019070101 – ident: CR32 – ident: CR5 – volume: 8 start-page: 54776 year: 2020 end-page: 54788 ident: CR28 article-title: Analysis of dimensionality reduction techniques on big data publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980942 – volume: 52 start-page: 1 issue: 4 year: 2019 end-page: 36 ident: CR17 article-title: A systematic review on imbalanced data challenges in machine learning: Applications and solutions publication-title: ACM Computing Surveys (CSUR) – volume: 77 start-page: 4379 issue: 4 year: 2018 end-page: 4399 ident: CR23 article-title: Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy inference system publication-title: Multimedia tools and applications doi: 10.1007/s11042-017-5515-y – volume: 137 start-page: e67 issue: 12 year: 2018 ident: CR2 article-title: Heart disease and stroke statistics-2018 update: a report from the american heart association publication-title: Circulation doi: 10.1161/CIR.0000000000000558 – volume: 4 start-page: 635 year: 2014 end-page: 640 ident: CR3 article-title: Prediction of stroke thrombolysis outcome using ct brain machine learning publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2014.02.003 – volume: 27 start-page: 183 issue: 3 year: 2018 end-page: 202 ident: CR29 article-title: Heart disease classification system using optimised fuzzy rule based algorithm publication-title: Int J Biomed Eng Technol doi: 10.1504/IJBET.2018.094122 – volume: 78 start-page: 24681 issue: 17 year: 2019 end-page: 24706 ident: CR1 article-title: Remote health monitoring of elderly through wearable sensors publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-018-7134-7 – ident: CR41 – volume: 31 start-page: 961 issue: 6 year: 2013 end-page: 969 ident: CR35 article-title: Multi-center prediction of hemorrhagic transformation in acute ischemic stroke using permeability imaging features publication-title: Magnetic resonance imaging doi: 10.1016/j.mri.2013.03.013 – volume: 7 start-page: 79 issue: 1 year: 2014 end-page: 88 ident: CR37 article-title: An automated detection method for the mca dot sign of acute stroke in unenhanced ct publication-title: Radiological physics and technology doi: 10.1007/s12194-013-0234-1 – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: CR24 article-title: The ant lion optimizer publication-title: Advances in engineering software doi: 10.1016/j.advengsoft.2015.01.010 – volume: 10 start-page: 1 issue: 3 year: 2019 ident: 9988_CR34 publication-title: International Journal of Swarm Intelligence Research (IJSIR) doi: 10.4018/IJSIR.2019070101 – volume: 30 start-page: 109 issue: 1 year: 2018 ident: 9988_CR45 publication-title: IEEE transactions on neural networks and learning systems doi: 10.1109/TNNLS.2018.2832648 – ident: 9988_CR31 – volume: 85 start-page: 725 year: 2016 ident: 9988_CR33 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2016.05.259 – volume: 15 start-page: 633 year: 2017 ident: 9988_CR4 publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2017.06.016 – volume: 8 start-page: 54776 year: 2020 ident: 9988_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980942 – volume: 10 start-page: 4197 issue: 10 year: 2019 ident: 9988_CR36 publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-019-01444-6 – volume: 27 start-page: 183 issue: 3 year: 2018 ident: 9988_CR29 publication-title: Int J Biomed Eng Technol doi: 10.1504/IJBET.2018.094122 – ident: 9988_CR40 doi: 10.1007/978-3-540-88425-5_10 – volume: 77 start-page: 10091 issue: 8 year: 2018 ident: 9988_CR46 publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-5045-7 – volume: 52 start-page: 1 issue: 4 year: 2019 ident: 9988_CR17 publication-title: ACM Computing Surveys (CSUR) – ident: 9988_CR22 doi: 10.1016/j.comcom.2020.05.020 – ident: 9988_CR41 doi: 10.1007/978-981-10-2525-9_1 – volume: 7 start-page: 79 issue: 1 year: 2014 ident: 9988_CR37 publication-title: Radiological physics and technology doi: 10.1007/s12194-013-0234-1 – volume: 77 start-page: 160 year: 2018 ident: 9988_CR44 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.12.017 – volume: 15 start-page: 3016 issue: 5 year: 2019 ident: 9988_CR7 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2902604 – volume: 69 start-page: 4285 issue: 4 year: 2020 ident: 9988_CR26 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2020.2973294 – ident: 9988_CR27 doi: 10.1017/S0960129513000777 – volume: 137 start-page: e67 issue: 12 year: 2018 ident: 9988_CR2 publication-title: Circulation doi: 10.1161/CIR.0000000000000558 – volume: 6 start-page: 27 issue: 1 year: 2019 ident: 9988_CR15 publication-title: Journal of Big Data doi: 10.1186/s40537-019-0192-5 – ident: 9988_CR12 doi: 10.1007/978-3-030-12127-3_3 – ident: 9988_CR30 – ident: 9988_CR5 doi: 10.1007/978-3-030-17795-9_5 – volume: 325 start-page: 283 year: 2019 ident: 9988_CR13 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.065 – ident: 9988_CR18 doi: 10.1145/1835804.1835830 – volume: 83 start-page: 80 year: 2015 ident: 9988_CR24 publication-title: Advances in engineering software doi: 10.1016/j.advengsoft.2015.01.010 – ident: 9988_CR32 – volume: 16 start-page: 155014772091640 issue: 4 year: 2020 ident: 9988_CR25 publication-title: International Journal of Distributed Sensor Networks doi: 10.1177/1550147720916404 – ident: 9988_CR8 doi: 10.1007/s12652-020-01963-7 – volume: 542 start-page: 115 issue: 7639 year: 2017 ident: 9988_CR6 publication-title: Nature doi: 10.1038/nature21056 – volume: 29 start-page: 3815 issue: 8 year: 2017 ident: 9988_CR42 publication-title: IEEE transactions on neural networks and learning systems doi: 10.1109/TNNLS.2017.2741349 – volume: 65 start-page: 2058 issue: 9 year: 2017 ident: 9988_CR43 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2017.2783241 – volume: 9 start-page: 945 year: 2018 ident: 9988_CR16 publication-title: Frontiers in neurology doi: 10.3389/fneur.2018.00945 – volume: 39 start-page: 1 year: 2018 ident: 9988_CR20 publication-title: Information Fusion doi: 10.1016/j.inffus.2017.03.007 – volume: 101 start-page: 101723 year: 2019 ident: 9988_CR21 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.101723 – volume: 31 start-page: 961 issue: 6 year: 2013 ident: 9988_CR35 publication-title: Magnetic resonance imaging doi: 10.1016/j.mri.2013.03.013 – volume: 379 start-page: 611 issue: 7 year: 2018 ident: 9988_CR39 publication-title: N Engl J Med doi: 10.1056/NEJMoa1804355 – volume: 6 start-page: 4641 year: 2018 ident: 9988_CR47 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2789428 – volume: 4 start-page: 635 year: 2014 ident: 9988_CR3 publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2014.02.003 – volume: 7 start-page: 90777 year: 2019 ident: 9988_CR19 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2924584 – volume: 513 start-page: 429 year: 2020 ident: 9988_CR38 publication-title: Inf Sci doi: 10.1016/j.ins.2019.11.004 – volume: 78 start-page: 24681 issue: 17 year: 2019 ident: 9988_CR1 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-018-7134-7 – volume: 21 start-page: 566 issue: 3 year: 2019 ident: 9988_CR9 publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2019.2893549 – ident: 9988_CR10 doi: 10.1007/978-3-319-70139-4_78 – ident: 9988_CR11 doi: 10.1007/978-3-319-96136-1_25 – ident: 9988_CR14 doi: 10.1109/GLOCOM.2018.8647926 – volume: 77 start-page: 4379 issue: 4 year: 2018 ident: 9988_CR23 publication-title: Multimedia tools and applications doi: 10.1007/s11042-017-5515-y |
SSID | ssj0016524 |
Score | 2.5235007 |
Snippet | Stroke is enlisted as one of the leading causes of death and serious disability affecting millions of human lives across the world with high possibilities of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 41429 |
SubjectTerms | Algorithms Artificial neural networks Computer Communication Networks Computer Science Data points Data Structures and Information Theory Datasets Decision making Homogeneity Machine learning Multimedia Information Systems Neural networks Optimization Oversampling Paralysis Resampling Special Purpose and Application-Based Systems Stroke |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgLDDwUUAUCvLABpYSx47tsUJUFRJMrdQtsh0HIUpaNWHov-ecJg0gQGLJkrOHPF_unfzuDqFrqeLUMeeIVNQRJkRKDOfwEJmUjGkuU58oPj7Fowl7mPJpXRRWNGr35kqy-lO3xW6hLyXx6Q6wGsB3tY12uM_d4RRP6GBzdxDzepStDAjEw7Aulfl5j6_hqOWY365Fq2gzPET7NU3EgzWuR2jL5V100IxgwLVHdtHep36Cxygf5OUMPjReOlJorxXPn7GPUylOnVtg37wSds3X0m9cTcHBwFqx9Rzai4YqnPA8wy9vxoseLSytNIdgCyuLcjl_ddjLSgtXnqDx8H58NyL1QAViwdNKEimpNBOasQjylNRK8GAuYxvzSEug2TTUWaqFbyauKKfCBBnQQ8eUzrIg0NEp6uTz3J0hLCKgCnFEjRURo0YoYZUB8wzORGiM6aGw-ayJrZuN-5kXs6Rtk-yhSACKpIIiWfXQzWbNYt1q40_rfoNWUrtdkUCK7Yt9JVM9dNsg2L7-fbfz_5lfoF3qyyAqWUsfdcrlu7sEclKaq-osfgAAt9v4 priority: 102 providerName: Springer Nature |
Title | Antlion re-sampling based deep neural network model for classification of imbalanced multimodal stroke dataset |
URI | https://link.springer.com/article/10.1007/s11042-020-09988-y https://www.proquest.com/docview/2740204849 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07b9swED409pIMfeSBunUNDtlSIpZEieRU2IWdoEWMoEiAZBJIigqKprJrqUP-fe9kKm4KNIs08DHw7sjvyO_uAI6VzgovvOdKx54LKQtu0xQ_slRKCJOqghzFi0V2fi2-3KQ34cKtDrTKbk9sN-pi6eiO_BS9J4rjVEJ_Wv3iVDWKXldDCY0d6OMWrND56k9ni8tvj-8IWRrK2qoxx7MxCmEzm-C5iEJTyH1ClIT68vD0aNrizX-eSNuTZ_4aXgbIyCYbGb-BF77ah1ddOQYWrHMf9v7KLXgA1aRq7nHR2drz2hBvvLpjdGYVrPB-xSiRJc5abWjgrK2IwxDBMkd4mghErczYsmTff1oiQDoc2vIPsS-OrJv18odnRDGtfXMIV_PZ1edzHoorcIdW1_BEK22ENEIk6LMUTqE1pypzWZoYhZA7jkxZGEmJxXWcxtKOS4SKXmhTluOxSY6gVy0r_xaYTBA2ZElsnUxEbKWWTlvsXqJ-RNbaAUTdsuYuJB6n-hf3-TZlMokiR1HkrSjyhwGcPI5ZbdJuPNt72EkrDyZY51uFGcDHToLb5v_P9u752d7DbkwhEC2lZQi9Zv3bf0Bg0tgR7Kj52Qj6k_l0uqD_2e3X2SjoJLZex5M_81rkvg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOBQqoCwV8gBNYbGwntg8IVcCypR-nReotsh0HIdrssgmq9kf1P3YmH11Aordecok9h8yz5zl-MwPwytisiCpGbqyIXGldcJ-m-NClMUq51BR0UDw6zqbf1NeT9GQDLoZcGJJVDntiu1EX80D_yN_h6YnyOI2yHxa_OHWNotvVoYVGB4uDuDrHI1v9fv8T-ve1EJPPs49T3ncV4AHh1nBpjXVKO6UkkvUiGIRxarKQpdIZ5JoicWXhNFXUtiIV2o9L5EhRWVeW47GTaPYW3FZSWlpQZvLl6tIiS_seumbMMRAnfY5Ol6mXUB4MndWQkiE4V3_HwTW5_ec-tg1zkwew1fNTttcB6iFsxGob7g-9H1i_FWzDvT8KGT6Caq9qTtHDbBl57UikXn1nFCALVsS4YFQ1E61Wneacte13GNJlFoi8k1qpBQibl-zHmSe1ZcCprdgRx-LMulnOf0ZGetY6No9hdhPf_AlsVvMq7gDTEjlKJoUPWirhtdXBehxeIhgT7_0IkuGz5qGvck7NNk7zdX1mckWOrshbV-SrEby5mrPoanxcO3p38Fber_c6X6NzBG8HD65f_9_a0-utvYQ709nRYX64f3zwDO4Kyr1otTS7sNksf8fnyIga_6LFIYP8hnF_CQUPGFo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYTgwEehYmkBH-AEVhPHiZ1DVRXaVUthVaEi9WbZjoMQJbtsgqr9afw7ZvLRBSR66yWX2KMo8-J5jt_MALzUeVYEGQLXuQhcKlVwl6Z4UaXWUtpUF7RR_DjNjj7L9-fp-Rr8GnJhSFY5rIntQl3MPP0j38HdE-VxapnvlL0s4vRgsjf_wamDFJ20Du00OoichOUlbt_q3eMD9PUrISaHZ--OeN9hgHuEXsOTXOdWKitlgsS98BohnerMZ2liNfJOEduysIqqa-ciFcpFJfKlIHNbllFkEzR7C9bxyVQ0gvW3h9PTT1dHGFnad9TVEcewHPcZO13eXkxZMbRzQ4KGUF3-HRVXVPef09k26E0ewL2erbL9Dl4PYS1UG3B_6ATB-oVhA-7-UdbwEVT7VXOB_maLwGtLkvXqC6NwWbAihDmjGppoteoU6KxtxsOQPDNPVJ60Sy1c2KxkX7870l56nNpKH3EszqybxexbYKRurUPzGM5u4q1vwqiaVeEJMJUgY8kS4bxKpHAqVz53OLxEaMbOuTHEw2s1vq95Tq03LsyqWjO5wqArTOsKsxzD66s5867ix7Wjtwdvmf7rr80Kq2N4M3hwdfv_1p5eb-0F3EbMmw_H05MtuCMoEaMV1mzDqFn8DM-QHjXueQ9EBuaGof8b8uwd7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antlion+re-sampling+based+deep+neural+network+model+for+classification+of+imbalanced+multimodal+stroke+dataset&rft.jtitle=Multimedia+tools+and+applications&rft.au=G%2C+Thippa+Reddy&rft.au=Bhattacharya%2C+Sweta&rft.au=Maddikunta%2C+Praveen+Kumar+Reddy&rft.au=Hakak%2C+Saqib&rft.date=2022-12-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=29&rft.spage=41429&rft.epage=41453&rft_id=info:doi/10.1007%2Fs11042-020-09988-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_020_09988_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |