Antlion re-sampling based deep neural network model for classification of imbalanced multimodal stroke dataset

Stroke is enlisted as one of the leading causes of death and serious disability affecting millions of human lives across the world with high possibilities of becoming an epidemic in the next few decades. Timely detection and prompt decision making pertinent to this disease, plays a major role which...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 81; no. 29; pp. 41429 - 41453
Main Authors G, Thippa Reddy, Bhattacharya, Sweta, Maddikunta, Praveen Kumar Reddy, Hakak, Saqib, Khan, Wazir Zada, Bashir, Ali Kashif, Jolfaei, Alireza, Tariq, Usman
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stroke is enlisted as one of the leading causes of death and serious disability affecting millions of human lives across the world with high possibilities of becoming an epidemic in the next few decades. Timely detection and prompt decision making pertinent to this disease, plays a major role which can reduce chances of brain death, paralysis and other resultant outcomes. Machine learning algorithms have been a popular choice for the diagnosis, analysis and predication of this disease but there exists issues related to data quality as they are collected cross-institutional resources. The present study focuses on improving the quality of stroke data implementing a rigorous pre-processing technique. The present study uses a multimodal stroke dataset available in the publicly available Kaggle repository. The missing values in this dataset are replaced with attribute means and LabelEncoder technique is applied to achieve homogeneity. However the dataset considered was observed to be imbalanced which reflect that the results may not represent the actual accuracy and would be biased. In order to overcome this imbalance, resampling technique was used. In case of oversampling, some data points in the minority class are replicated to increase the cardinality value and rebalance the dataset. transformed and oversampled data is further normalized using Standardscalar technique. Antlion optimization (ALO) algorithm is implemented on the deep neural network (DNN) model to select optimal hyperparameters in minimal time consumption. The proposed model consumed only 38.13% of the training time which was also a positive aspect. The experimental results proved the superiority of proposed model.
AbstractList Stroke is enlisted as one of the leading causes of death and serious disability affecting millions of human lives across the world with high possibilities of becoming an epidemic in the next few decades. Timely detection and prompt decision making pertinent to this disease, plays a major role which can reduce chances of brain death, paralysis and other resultant outcomes. Machine learning algorithms have been a popular choice for the diagnosis, analysis and predication of this disease but there exists issues related to data quality as they are collected cross-institutional resources. The present study focuses on improving the quality of stroke data implementing a rigorous pre-processing technique. The present study uses a multimodal stroke dataset available in the publicly available Kaggle repository. The missing values in this dataset are replaced with attribute means and LabelEncoder technique is applied to achieve homogeneity. However the dataset considered was observed to be imbalanced which reflect that the results may not represent the actual accuracy and would be biased. In order to overcome this imbalance, resampling technique was used. In case of oversampling, some data points in the minority class are replicated to increase the cardinality value and rebalance the dataset. transformed and oversampled data is further normalized using Standardscalar technique. Antlion optimization (ALO) algorithm is implemented on the deep neural network (DNN) model to select optimal hyperparameters in minimal time consumption. The proposed model consumed only 38.13% of the training time which was also a positive aspect. The experimental results proved the superiority of proposed model.
Author Khan, Wazir Zada
Hakak, Saqib
Bhattacharya, Sweta
Tariq, Usman
G, Thippa Reddy
Maddikunta, Praveen Kumar Reddy
Bashir, Ali Kashif
Jolfaei, Alireza
Author_xml – sequence: 1
  givenname: Thippa Reddy
  surname: G
  fullname: G, Thippa Reddy
  organization: School of Information Technology and Engineering, Vellore Institute of Technology
– sequence: 2
  givenname: Sweta
  surname: Bhattacharya
  fullname: Bhattacharya, Sweta
  organization: School of Information Technology and Engineering, Vellore Institute of Technology
– sequence: 3
  givenname: Praveen Kumar Reddy
  surname: Maddikunta
  fullname: Maddikunta, Praveen Kumar Reddy
  organization: School of Information Technology and Engineering, Vellore Institute of Technology
– sequence: 4
  givenname: Saqib
  surname: Hakak
  fullname: Hakak, Saqib
  email: saqib.hakak@unbc.ca
  organization: Canadian Institute for Cybersecurity, Faculty of Computer Science, University of New Brunswick
– sequence: 5
  givenname: Wazir Zada
  orcidid: 0000-0003-0819-4236
  surname: Khan
  fullname: Khan, Wazir Zada
  email: wazirzadakhan@jazanu.edu.sa
  organization: Faculty of CS, IT, Jazan University
– sequence: 6
  givenname: Ali Kashif
  surname: Bashir
  fullname: Bashir, Ali Kashif
  organization: Department of Computing and Mathematics, Manchester Metropolitan University Manchester
– sequence: 7
  givenname: Alireza
  surname: Jolfaei
  fullname: Jolfaei, Alireza
  organization: Department of Computing, Macquarie University
– sequence: 8
  givenname: Usman
  surname: Tariq
  fullname: Tariq, Usman
  organization: College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University
BookMark eNp9kE1PJCEQhonRZNX1D-yJxDNa0PQAR2N21WSSvXgnNd1gUBpGYGLm34vOJiZ78FR1eJ_6eM7IccrJEfKLwxUHUNeVc5CCgQAGxmjN9kfklI9qYEoJftz7QQNTI_Af5KzWZwC-GoU8JekmtRhyosWxiss2hvREN1jdTGfntjS5XcHYS3vL5YUueXaR-lzoFLHW4MOE7QPPnoZlgxHT1NFlF1vo2U7WVvKLozO2PrT9JCceY3UX_-o5efzz-_H2nq3_3j3c3qzZNHDT2GC0QalQykFqNU8aJIx6Na3GAXX_SHD0MypQwhgxCrUBb5Ry0qD3ADick8vD2G3JrztXm33Ou5L6RiuU7JaklqanxCE1lVxrcd5uS1iw7C0H-6HVHrTaDthPrXbfIf0fNIX26aAVDPF7dDigte9JT658XfUN9Q6nEpAT
CitedBy_id crossref_primary_10_3390_electronics11244137
crossref_primary_10_3389_fpubh_2021_835960
crossref_primary_10_1111_exsy_13596
crossref_primary_10_3389_fpubh_2022_834032
crossref_primary_10_1007_s00500_021_06109_1
crossref_primary_10_1016_j_jneumeth_2024_110210
crossref_primary_10_1155_2022_9580991
crossref_primary_10_4018_IJDAI_296389
crossref_primary_10_1007_s11063_021_10667_8
crossref_primary_10_1007_s13721_024_00447_4
crossref_primary_10_1109_ACCESS_2024_3417822
crossref_primary_10_32604_cmes_2021_015528
crossref_primary_10_3389_fpubh_2022_849185
crossref_primary_10_1007_s11042_023_15668_4
crossref_primary_10_1007_s11276_024_03783_5
crossref_primary_10_1109_ACCESS_2024_3480310
crossref_primary_10_1155_2022_3078025
crossref_primary_10_3390_atmos15111308
crossref_primary_10_1016_j_compmedimag_2024_102400
crossref_primary_10_1016_j_wneu_2024_01_059
crossref_primary_10_1109_TII_2024_3366991
crossref_primary_10_1007_s11042_024_18622_0
crossref_primary_10_1021_acsestengg_4c00093
crossref_primary_10_3389_fpubh_2022_861062
crossref_primary_10_1007_s11030_022_10382_z
crossref_primary_10_1080_10916466_2024_2385727
crossref_primary_10_3389_fpubh_2022_862497
crossref_primary_10_3389_fpubh_2022_926229
crossref_primary_10_7717_peerj_cs_2196
crossref_primary_10_1007_s40747_020_00250_4
crossref_primary_10_1109_JAS_2024_124557
Cites_doi 10.1016/j.artmed.2019.101723
10.1186/s40537-019-0192-5
10.1016/j.ins.2019.11.004
10.1056/NEJMoa1804355
10.1109/TMM.2019.2893549
10.1038/nature21056
10.1016/j.inffus.2017.03.007
10.1177/1550147720916404
10.1016/j.nicl.2017.06.016
10.1016/j.neucom.2018.09.065
10.1007/s12652-019-01444-6
10.1109/ACCESS.2019.2924584
10.1109/TVT.2020.2973294
10.1109/TBME.2017.2783241
10.1016/j.procs.2016.05.259
10.3389/fneur.2018.00945
10.1016/j.patcog.2017.12.017
10.1007/s11042-017-5045-7
10.1109/TII.2019.2902604
10.1109/TNNLS.2018.2832648
10.1109/ACCESS.2018.2789428
10.4018/IJSIR.2019070101
10.1109/ACCESS.2020.2980942
10.1007/s11042-017-5515-y
10.1161/CIR.0000000000000558
10.1016/j.nicl.2014.02.003
10.1504/IJBET.2018.094122
10.1007/s11042-018-7134-7
10.1016/j.mri.2013.03.013
10.1007/s12194-013-0234-1
10.1016/j.advengsoft.2015.01.010
10.1007/978-3-540-88425-5_10
10.1016/j.comcom.2020.05.020
10.1007/978-981-10-2525-9_1
10.1017/S0960129513000777
10.1007/978-3-030-12127-3_3
10.1007/978-3-030-17795-9_5
10.1145/1835804.1835830
10.1007/s12652-020-01963-7
10.1109/TNNLS.2017.2741349
10.1007/978-3-319-70139-4_78
10.1007/978-3-319-96136-1_25
10.1109/GLOCOM.2018.8647926
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-020-09988-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 41453
ExternalDocumentID 10_1007_s11042_020_09988_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-3989a47a443487dc8040586c653a877221afda7072992527b0f977e49aff00a3
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 23:03:10 EDT 2025
Tue Jul 01 04:13:06 EDT 2025
Thu Apr 24 22:55:15 EDT 2025
Fri Feb 21 02:44:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords Imbalanced dataset
Re-sampling
Deep neural networks
Antlion optimization
Stroke prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-3989a47a443487dc8040586c653a877221afda7072992527b0f977e49aff00a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0819-4236
PQID 2740204849
PQPubID 54626
PageCount 25
ParticipantIDs proquest_journals_2740204849
crossref_primary_10_1007_s11042_020_09988_y
crossref_citationtrail_10_1007_s11042_020_09988_y
springer_journals_10_1007_s11042_020_09988_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221200
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Wang, Huang, Tang (CR42) 2017; 29
Kutia, Chauhdary, Iwendi, Liu, Yong, Bashir (CR19) 2019; 7
Li, Fong, Wong, Chu (CR20) 2018; 39
Thabtah, Hammoud, Kamalov, Gonsalves (CR38) 2020; 513
Thomalla, Simonsen, Boutitie, Andersen, Berthezene, Cheng, Cheripelli, Cho, Fazekas, Fiehler (CR39) 2018; 379
Huang, Liu (CR13) 2019; 325
Sattar, Cheetar (CR34) 2019; 10
Yuan, Xie, Abouelenien (CR44) 2018; 77
Zhang, Tan, Li, Hong (CR45) 2018; 30
CR18
Takahashi, Lee, Tsai, Matsuyama, Kinoshita, Ishii (CR37) 2014; 7
Zhu, Xia, Jin, Yan, Cai, Yan, Ning (CR47) 2018; 6
Reddy, Kumar ReddyM, Lakshmanna, Kaluri, SinghRajput, Srivastava, Baker (CR28) 2020; 8
Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (CR6) 2017; 542
CR14
CR12
CR11
CR10
Patel, SinghRajput, ThippaReddy, Iwendi, KashifBashir, Jo (CR25) 2020; 16
CR32
Pham, Mirjalili, Kumar, Alazab, Hwang (CR26) 2020; 69
CR31
CR30
Benjamin, Virani, Callaway, Chamberlain, Chang, Cheng, Chiuve, Cushman, Delling, Deo (CR2) 2018; 137
Zerdoumi, Sabri, Kamsin, Hashem, Gani, Hakak, Chang (CR46) 2018; 77
Manogaran, Varatharajan, Priyan (CR23) 2018; 77
Salunkhe, Mali (CR33) 2016; 85
Scalzo, Alger, Hu, Saver, Dani, Muir, Demchuk, Coutts, Luby, Warach (CR35) 2013; 31
Garg, Kaur, Kumar, Rodrigues (CR9) 2019; 21
Johnson, Khoshgoftaar (CR15) 2019; 6
CR5
Mirjalili (CR24) 2015; 83
CR8
Yu, Guo, Lou, Liebeskind, Scalzo (CR43) 2017; 65
Liu, Fan, Wu (CR21) 2019; 101
CR27
Kamal, Lopez, Sheth (CR16) 2018; 9
Feng, Ali, Iqbal, Bashir, Hussain, Pack (CR7) 2019; 15
Sultan, Javed, Irtaza, Dawood, Dawood, Bashir (CR36) 2019; 10
CR22
Reddy, Khare (CR29) 2018; 27
Al-khafajiy, Baker, Chalmers, Asim, Kolivand, Fahim, Waraich (CR1) 2019; 78
CR41
Kaur, Pannu, Malhi (CR17) 2019; 52
CR40
Chen, Bentley, Rueckert (CR4) 2017; 15
Bentley, Ganesalingam, Jones, Mahady, Epton, Rinne, Sharma, Halse, Mehta, Rueckert (CR3) 2014; 4
JM Johnson (9988_CR15) 2019; 6
A Esteva (9988_CR6) 2017; 542
M Al-khafajiy (9988_CR1) 2019; 78
C Huang (9988_CR13) 2019; 325
S Sultan (9988_CR36) 2019; 10
9988_CR22
HA Sattar (9988_CR34) 2019; 10
F Scalzo (9988_CR35) 2013; 31
S Kutia (9988_CR19) 2019; 7
9988_CR40
9988_CR41
J Li (9988_CR20) 2018; 39
D Wang (9988_CR42) 2017; 29
G Thomalla (9988_CR39) 2018; 379
Q-V Pham (9988_CR26) 2020; 69
9988_CR27
H Kamal (9988_CR16) 2018; 9
H Kaur (9988_CR17) 2019; 52
S Mirjalili (9988_CR24) 2015; 83
M Zhu (9988_CR47) 2018; 6
X Yuan (9988_CR44) 2018; 77
P Bentley (9988_CR3) 2014; 4
T Liu (9988_CR21) 2019; 101
EJ Benjamin (9988_CR2) 2018; 137
G Manogaran (9988_CR23) 2018; 77
G Reddy (9988_CR28) 2020; 8
UR Salunkhe (9988_CR33) 2016; 85
L Chen (9988_CR4) 2017; 15
9988_CR11
Y Yu (9988_CR43) 2017; 65
9988_CR12
H Patel (9988_CR25) 2020; 16
9988_CR31
9988_CR10
9988_CR32
C Zhang (9988_CR45) 2018; 30
9988_CR30
S Garg (9988_CR9) 2019; 21
9988_CR5
L Feng (9988_CR7) 2019; 15
F Thabtah (9988_CR38) 2020; 513
9988_CR18
GT Reddy (9988_CR29) 2018; 27
N Takahashi (9988_CR37) 2014; 7
9988_CR14
S Zerdoumi (9988_CR46) 2018; 77
9988_CR8
References_xml – ident: CR22
– volume: 101
  start-page: 101723
  year: 2019
  ident: CR21
  article-title: A hybrid machine learning approach to cerebral stroke prediction based on imbalanced medical dataset
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.101723
– ident: CR18
– volume: 6
  start-page: 27
  issue: 1
  year: 2019
  ident: CR15
  article-title: Survey on deep learning with class imbalance
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-019-0192-5
– volume: 513
  start-page: 429
  year: 2020
  end-page: 441
  ident: CR38
  article-title: Data imbalance in classification: Experimental evaluation
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.11.004
– volume: 29
  start-page: 3815
  issue: 8
  year: 2017
  end-page: 3827
  ident: CR42
  article-title: Dissipativity and synchronization of generalized bam neural networks with multivariate discontinuous activations
  publication-title: IEEE transactions on neural networks and learning systems
– volume: 379
  start-page: 611
  issue: 7
  year: 2018
  end-page: 622
  ident: CR39
  article-title: Mri-guided thrombolysis for stroke with unknown time of onset
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1804355
– volume: 21
  start-page: 566
  issue: 3
  year: 2019
  end-page: 578
  ident: CR9
  article-title: Hybrid deep-learning-based anomaly detection scheme for suspicious flow detection in sdn: A social multimedia perspective
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2019.2893549
– ident: CR14
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: CR6
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– ident: CR12
– ident: CR30
– volume: 39
  start-page: 1
  year: 2018
  end-page: 24
  ident: CR20
  article-title: Adaptive multi-objective swarm fusion for imbalanced data classification
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.03.007
– ident: CR10
– volume: 16
  start-page: 1550147720916404
  issue: 4
  year: 2020
  ident: CR25
  article-title: A review on classification of imbalanced data for wireless sensor networks
  publication-title: International Journal of Distributed Sensor Networks
  doi: 10.1177/1550147720916404
– volume: 15
  start-page: 633
  year: 2017
  end-page: 643
  ident: CR4
  article-title: Fully automatic acute ischemic lesion segmentation in dwi using convolutional neural networks
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2017.06.016
– volume: 325
  start-page: 283
  year: 2019
  end-page: 287
  ident: CR13
  article-title: New studies on dynamic analysis of inertial neural networks involving non-reduced order method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.065
– ident: CR8
– volume: 10
  start-page: 4197
  issue: 10
  year: 2019
  end-page: 4206
  ident: CR36
  article-title: A hybrid egocentric video summarization method to improve the healthcare for alzheimer patients
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-019-01444-6
– volume: 7
  start-page: 90777
  year: 2019
  end-page: 90788
  ident: CR19
  article-title: Socio-technological factors affecting user’s adoption of ehealth functionalities: A case study of china and ukraine ehealth systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924584
– volume: 69
  start-page: 4285
  issue: 4
  year: 2020
  end-page: 4297
  ident: CR26
  article-title: Whale optimization algorithm with applications to resource allocation in wireless networks
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.2973294
– ident: CR40
– ident: CR27
– volume: 65
  start-page: 2058
  issue: 9
  year: 2017
  end-page: 2065
  ident: CR43
  article-title: Prediction of hemorrhagic transformation severity in acute stroke from source perfusion mri
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2017.2783241
– volume: 85
  start-page: 725
  year: 2016
  end-page: 732
  ident: CR33
  article-title: Classifier ensemble design for imbalanced data classification: a hybrid approach
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2016.05.259
– volume: 9
  start-page: 945
  year: 2018
  ident: CR16
  article-title: Machine learning in acute ischemic stroke neuroimaging
  publication-title: Frontiers in neurology
  doi: 10.3389/fneur.2018.00945
– volume: 77
  start-page: 160
  year: 2018
  end-page: 172
  ident: CR44
  article-title: A regularized ensemble framework of deep learning for cancer detection from multi-class, imbalanced training data
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.12.017
– volume: 77
  start-page: 10091
  issue: 8
  year: 2018
  end-page: 10121
  ident: CR46
  article-title: Image pattern recognition in big data: taxonomy and open challenges: survey
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-5045-7
– volume: 15
  start-page: 3016
  issue: 5
  year: 2019
  end-page: 3027
  ident: CR7
  article-title: Optimal haptic communications over nanonetworks for e-health systems
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2019.2902604
– volume: 30
  start-page: 109
  issue: 1
  year: 2018
  end-page: 122
  ident: CR45
  article-title: A cost-sensitive deep belief network for imbalanced classification
  publication-title: IEEE transactions on neural networks and learning systems
  doi: 10.1109/TNNLS.2018.2832648
– ident: CR31
– ident: CR11
– volume: 6
  start-page: 4641
  year: 2018
  end-page: 4652
  ident: CR47
  article-title: Class weights random forest algorithm for processing class imbalanced medical data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2789428
– volume: 10
  start-page: 1
  issue: 3
  year: 2019
  end-page: 22
  ident: CR34
  article-title: A new strategy based on gsabat to solve single objective optimization problem
  publication-title: International Journal of Swarm Intelligence Research (IJSIR)
  doi: 10.4018/IJSIR.2019070101
– ident: CR32
– ident: CR5
– volume: 8
  start-page: 54776
  year: 2020
  end-page: 54788
  ident: CR28
  article-title: Analysis of dimensionality reduction techniques on big data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980942
– volume: 52
  start-page: 1
  issue: 4
  year: 2019
  end-page: 36
  ident: CR17
  article-title: A systematic review on imbalanced data challenges in machine learning: Applications and solutions
  publication-title: ACM Computing Surveys (CSUR)
– volume: 77
  start-page: 4379
  issue: 4
  year: 2018
  end-page: 4399
  ident: CR23
  article-title: Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy inference system
  publication-title: Multimedia tools and applications
  doi: 10.1007/s11042-017-5515-y
– volume: 137
  start-page: e67
  issue: 12
  year: 2018
  ident: CR2
  article-title: Heart disease and stroke statistics-2018 update: a report from the american heart association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000558
– volume: 4
  start-page: 635
  year: 2014
  end-page: 640
  ident: CR3
  article-title: Prediction of stroke thrombolysis outcome using ct brain machine learning
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2014.02.003
– volume: 27
  start-page: 183
  issue: 3
  year: 2018
  end-page: 202
  ident: CR29
  article-title: Heart disease classification system using optimised fuzzy rule based algorithm
  publication-title: Int J Biomed Eng Technol
  doi: 10.1504/IJBET.2018.094122
– volume: 78
  start-page: 24681
  issue: 17
  year: 2019
  end-page: 24706
  ident: CR1
  article-title: Remote health monitoring of elderly through wearable sensors
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-7134-7
– ident: CR41
– volume: 31
  start-page: 961
  issue: 6
  year: 2013
  end-page: 969
  ident: CR35
  article-title: Multi-center prediction of hemorrhagic transformation in acute ischemic stroke using permeability imaging features
  publication-title: Magnetic resonance imaging
  doi: 10.1016/j.mri.2013.03.013
– volume: 7
  start-page: 79
  issue: 1
  year: 2014
  end-page: 88
  ident: CR37
  article-title: An automated detection method for the mca dot sign of acute stroke in unenhanced ct
  publication-title: Radiological physics and technology
  doi: 10.1007/s12194-013-0234-1
– volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  ident: CR24
  article-title: The ant lion optimizer
  publication-title: Advances in engineering software
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 10
  start-page: 1
  issue: 3
  year: 2019
  ident: 9988_CR34
  publication-title: International Journal of Swarm Intelligence Research (IJSIR)
  doi: 10.4018/IJSIR.2019070101
– volume: 30
  start-page: 109
  issue: 1
  year: 2018
  ident: 9988_CR45
  publication-title: IEEE transactions on neural networks and learning systems
  doi: 10.1109/TNNLS.2018.2832648
– ident: 9988_CR31
– volume: 85
  start-page: 725
  year: 2016
  ident: 9988_CR33
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2016.05.259
– volume: 15
  start-page: 633
  year: 2017
  ident: 9988_CR4
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2017.06.016
– volume: 8
  start-page: 54776
  year: 2020
  ident: 9988_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980942
– volume: 10
  start-page: 4197
  issue: 10
  year: 2019
  ident: 9988_CR36
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-019-01444-6
– volume: 27
  start-page: 183
  issue: 3
  year: 2018
  ident: 9988_CR29
  publication-title: Int J Biomed Eng Technol
  doi: 10.1504/IJBET.2018.094122
– ident: 9988_CR40
  doi: 10.1007/978-3-540-88425-5_10
– volume: 77
  start-page: 10091
  issue: 8
  year: 2018
  ident: 9988_CR46
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-5045-7
– volume: 52
  start-page: 1
  issue: 4
  year: 2019
  ident: 9988_CR17
  publication-title: ACM Computing Surveys (CSUR)
– ident: 9988_CR22
  doi: 10.1016/j.comcom.2020.05.020
– ident: 9988_CR41
  doi: 10.1007/978-981-10-2525-9_1
– volume: 7
  start-page: 79
  issue: 1
  year: 2014
  ident: 9988_CR37
  publication-title: Radiological physics and technology
  doi: 10.1007/s12194-013-0234-1
– volume: 77
  start-page: 160
  year: 2018
  ident: 9988_CR44
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.12.017
– volume: 15
  start-page: 3016
  issue: 5
  year: 2019
  ident: 9988_CR7
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2019.2902604
– volume: 69
  start-page: 4285
  issue: 4
  year: 2020
  ident: 9988_CR26
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.2973294
– ident: 9988_CR27
  doi: 10.1017/S0960129513000777
– volume: 137
  start-page: e67
  issue: 12
  year: 2018
  ident: 9988_CR2
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000558
– volume: 6
  start-page: 27
  issue: 1
  year: 2019
  ident: 9988_CR15
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-019-0192-5
– ident: 9988_CR12
  doi: 10.1007/978-3-030-12127-3_3
– ident: 9988_CR30
– ident: 9988_CR5
  doi: 10.1007/978-3-030-17795-9_5
– volume: 325
  start-page: 283
  year: 2019
  ident: 9988_CR13
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.065
– ident: 9988_CR18
  doi: 10.1145/1835804.1835830
– volume: 83
  start-page: 80
  year: 2015
  ident: 9988_CR24
  publication-title: Advances in engineering software
  doi: 10.1016/j.advengsoft.2015.01.010
– ident: 9988_CR32
– volume: 16
  start-page: 155014772091640
  issue: 4
  year: 2020
  ident: 9988_CR25
  publication-title: International Journal of Distributed Sensor Networks
  doi: 10.1177/1550147720916404
– ident: 9988_CR8
  doi: 10.1007/s12652-020-01963-7
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 9988_CR6
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 29
  start-page: 3815
  issue: 8
  year: 2017
  ident: 9988_CR42
  publication-title: IEEE transactions on neural networks and learning systems
  doi: 10.1109/TNNLS.2017.2741349
– volume: 65
  start-page: 2058
  issue: 9
  year: 2017
  ident: 9988_CR43
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2017.2783241
– volume: 9
  start-page: 945
  year: 2018
  ident: 9988_CR16
  publication-title: Frontiers in neurology
  doi: 10.3389/fneur.2018.00945
– volume: 39
  start-page: 1
  year: 2018
  ident: 9988_CR20
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.03.007
– volume: 101
  start-page: 101723
  year: 2019
  ident: 9988_CR21
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.101723
– volume: 31
  start-page: 961
  issue: 6
  year: 2013
  ident: 9988_CR35
  publication-title: Magnetic resonance imaging
  doi: 10.1016/j.mri.2013.03.013
– volume: 379
  start-page: 611
  issue: 7
  year: 2018
  ident: 9988_CR39
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1804355
– volume: 6
  start-page: 4641
  year: 2018
  ident: 9988_CR47
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2789428
– volume: 4
  start-page: 635
  year: 2014
  ident: 9988_CR3
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2014.02.003
– volume: 7
  start-page: 90777
  year: 2019
  ident: 9988_CR19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924584
– volume: 513
  start-page: 429
  year: 2020
  ident: 9988_CR38
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.11.004
– volume: 78
  start-page: 24681
  issue: 17
  year: 2019
  ident: 9988_CR1
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-7134-7
– volume: 21
  start-page: 566
  issue: 3
  year: 2019
  ident: 9988_CR9
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2019.2893549
– ident: 9988_CR10
  doi: 10.1007/978-3-319-70139-4_78
– ident: 9988_CR11
  doi: 10.1007/978-3-319-96136-1_25
– ident: 9988_CR14
  doi: 10.1109/GLOCOM.2018.8647926
– volume: 77
  start-page: 4379
  issue: 4
  year: 2018
  ident: 9988_CR23
  publication-title: Multimedia tools and applications
  doi: 10.1007/s11042-017-5515-y
SSID ssj0016524
Score 2.5235007
Snippet Stroke is enlisted as one of the leading causes of death and serious disability affecting millions of human lives across the world with high possibilities of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 41429
SubjectTerms Algorithms
Artificial neural networks
Computer Communication Networks
Computer Science
Data points
Data Structures and Information Theory
Datasets
Decision making
Homogeneity
Machine learning
Multimedia Information Systems
Neural networks
Optimization
Oversampling
Paralysis
Resampling
Special Purpose and Application-Based Systems
Stroke
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgLDDwUUAUCvLABpYSx47tsUJUFRJMrdQtsh0HIUpaNWHov-ecJg0gQGLJkrOHPF_unfzuDqFrqeLUMeeIVNQRJkRKDOfwEJmUjGkuU58oPj7Fowl7mPJpXRRWNGr35kqy-lO3xW6hLyXx6Q6wGsB3tY12uM_d4RRP6GBzdxDzepStDAjEw7Aulfl5j6_hqOWY365Fq2gzPET7NU3EgzWuR2jL5V100IxgwLVHdtHep36Cxygf5OUMPjReOlJorxXPn7GPUylOnVtg37wSds3X0m9cTcHBwFqx9Rzai4YqnPA8wy9vxoseLSytNIdgCyuLcjl_ddjLSgtXnqDx8H58NyL1QAViwdNKEimpNBOasQjylNRK8GAuYxvzSEug2TTUWaqFbyauKKfCBBnQQ8eUzrIg0NEp6uTz3J0hLCKgCnFEjRURo0YoYZUB8wzORGiM6aGw-ayJrZuN-5kXs6Rtk-yhSACKpIIiWfXQzWbNYt1q40_rfoNWUrtdkUCK7Yt9JVM9dNsg2L7-fbfz_5lfoF3qyyAqWUsfdcrlu7sEclKaq-osfgAAt9v4
  priority: 102
  providerName: Springer Nature
Title Antlion re-sampling based deep neural network model for classification of imbalanced multimodal stroke dataset
URI https://link.springer.com/article/10.1007/s11042-020-09988-y
https://www.proquest.com/docview/2740204849
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07b9swED409pIMfeSBunUNDtlSIpZEieRU2IWdoEWMoEiAZBJIigqKprJrqUP-fe9kKm4KNIs08DHw7sjvyO_uAI6VzgovvOdKx54LKQtu0xQ_slRKCJOqghzFi0V2fi2-3KQ34cKtDrTKbk9sN-pi6eiO_BS9J4rjVEJ_Wv3iVDWKXldDCY0d6OMWrND56k9ni8tvj-8IWRrK2qoxx7MxCmEzm-C5iEJTyH1ClIT68vD0aNrizX-eSNuTZ_4aXgbIyCYbGb-BF77ah1ddOQYWrHMf9v7KLXgA1aRq7nHR2drz2hBvvLpjdGYVrPB-xSiRJc5abWjgrK2IwxDBMkd4mghErczYsmTff1oiQDoc2vIPsS-OrJv18odnRDGtfXMIV_PZ1edzHoorcIdW1_BEK22ENEIk6LMUTqE1pypzWZoYhZA7jkxZGEmJxXWcxtKOS4SKXmhTluOxSY6gVy0r_xaYTBA2ZElsnUxEbKWWTlvsXqJ-RNbaAUTdsuYuJB6n-hf3-TZlMokiR1HkrSjyhwGcPI5ZbdJuPNt72EkrDyZY51uFGcDHToLb5v_P9u752d7DbkwhEC2lZQi9Zv3bf0Bg0tgR7Kj52Qj6k_l0uqD_2e3X2SjoJLZex5M_81rkvg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOBQqoCwV8gBNYbGwntg8IVcCypR-nReotsh0HIdrssgmq9kf1P3YmH11Aordecok9h8yz5zl-MwPwytisiCpGbqyIXGldcJ-m-NClMUq51BR0UDw6zqbf1NeT9GQDLoZcGJJVDntiu1EX80D_yN_h6YnyOI2yHxa_OHWNotvVoYVGB4uDuDrHI1v9fv8T-ve1EJPPs49T3ncV4AHh1nBpjXVKO6UkkvUiGIRxarKQpdIZ5JoicWXhNFXUtiIV2o9L5EhRWVeW47GTaPYW3FZSWlpQZvLl6tIiS_seumbMMRAnfY5Ol6mXUB4MndWQkiE4V3_HwTW5_ec-tg1zkwew1fNTttcB6iFsxGob7g-9H1i_FWzDvT8KGT6Caq9qTtHDbBl57UikXn1nFCALVsS4YFQ1E61Wneacte13GNJlFoi8k1qpBQibl-zHmSe1ZcCprdgRx-LMulnOf0ZGetY6No9hdhPf_AlsVvMq7gDTEjlKJoUPWirhtdXBehxeIhgT7_0IkuGz5qGvck7NNk7zdX1mckWOrshbV-SrEby5mrPoanxcO3p38Fber_c6X6NzBG8HD65f_9_a0-utvYQ709nRYX64f3zwDO4Kyr1otTS7sNksf8fnyIga_6LFIYP8hnF_CQUPGFo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYTgwEehYmkBH-AEVhPHiZ1DVRXaVUthVaEi9WbZjoMQJbtsgqr9afw7ZvLRBSR66yWX2KMo8-J5jt_MALzUeVYEGQLXuQhcKlVwl6Z4UaXWUtpUF7RR_DjNjj7L9-fp-Rr8GnJhSFY5rIntQl3MPP0j38HdE-VxapnvlL0s4vRgsjf_wamDFJ20Du00OoichOUlbt_q3eMD9PUrISaHZ--OeN9hgHuEXsOTXOdWKitlgsS98BohnerMZ2liNfJOEduysIqqa-ciFcpFJfKlIHNbllFkEzR7C9bxyVQ0gvW3h9PTT1dHGFnad9TVEcewHPcZO13eXkxZMbRzQ4KGUF3-HRVXVPef09k26E0ewL2erbL9Dl4PYS1UG3B_6ATB-oVhA-7-UdbwEVT7VXOB_maLwGtLkvXqC6NwWbAihDmjGppoteoU6KxtxsOQPDNPVJ60Sy1c2KxkX7870l56nNpKH3EszqybxexbYKRurUPzGM5u4q1vwqiaVeEJMJUgY8kS4bxKpHAqVz53OLxEaMbOuTHEw2s1vq95Tq03LsyqWjO5wqArTOsKsxzD66s5867ix7Wjtwdvmf7rr80Kq2N4M3hwdfv_1p5eb-0F3EbMmw_H05MtuCMoEaMV1mzDqFn8DM-QHjXueQ9EBuaGof8b8uwd7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antlion+re-sampling+based+deep+neural+network+model+for+classification+of+imbalanced+multimodal+stroke+dataset&rft.jtitle=Multimedia+tools+and+applications&rft.au=G%2C+Thippa+Reddy&rft.au=Bhattacharya%2C+Sweta&rft.au=Maddikunta%2C+Praveen+Kumar+Reddy&rft.au=Hakak%2C+Saqib&rft.date=2022-12-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=29&rft.spage=41429&rft.epage=41453&rft_id=info:doi/10.1007%2Fs11042-020-09988-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_020_09988_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon