Vortex Motion of the Euler and Lake Equations

We start by surveying the planar point vortex motion of the Euler equations in the whole plane, half-plane and quadrant. Then, we go on to prove the non-collision property of the 2-vortex system by using the explicit form of orbits of the 2-vortex system in the half-plane. We also prove that the N -...

Full description

Saved in:
Bibliographic Details
Published inJournal of nonlinear science Vol. 31; no. 3
Main Author Yang, Cheng
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We start by surveying the planar point vortex motion of the Euler equations in the whole plane, half-plane and quadrant. Then, we go on to prove the non-collision property of the 2-vortex system by using the explicit form of orbits of the 2-vortex system in the half-plane. We also prove that the N -vortex system in the half-plane is nonintegrable for N > 2 , which was suggested previously by numerical experiments without rigorous proof. The skew-mean-curvature (or binormal) flow in R n , n ⩾ 3 with certain symmetry can be regarded as point vortex motion of these 2D lake equations. We compare point vortex motions of the Euler and lake equations. Interesting similarities between the point vortex motion in the half-plane, quadrant and the binormal motion of coaxial vortex rings, sphere product membranes are addressed. We also raise some open questions in the paper.
AbstractList We start by surveying the planar point vortex motion of the Euler equations in the whole plane, half-plane and quadrant. Then, we go on to prove the non-collision property of the 2-vortex system by using the explicit form of orbits of the 2-vortex system in the half-plane. We also prove that the N -vortex system in the half-plane is nonintegrable for N > 2 , which was suggested previously by numerical experiments without rigorous proof. The skew-mean-curvature (or binormal) flow in R n , n ⩾ 3 with certain symmetry can be regarded as point vortex motion of these 2D lake equations. We compare point vortex motions of the Euler and lake equations. Interesting similarities between the point vortex motion in the half-plane, quadrant and the binormal motion of coaxial vortex rings, sphere product membranes are addressed. We also raise some open questions in the paper.
We start by surveying the planar point vortex motion of the Euler equations in the whole plane, half-plane and quadrant. Then, we go on to prove the non-collision property of the 2-vortex system by using the explicit form of orbits of the 2-vortex system in the half-plane. We also prove that the N-vortex system in the half-plane is nonintegrable for N>2, which was suggested previously by numerical experiments without rigorous proof. The skew-mean-curvature (or binormal) flow in Rn,n⩾3 with certain symmetry can be regarded as point vortex motion of these 2D lake equations. We compare point vortex motions of the Euler and lake equations. Interesting similarities between the point vortex motion in the half-plane, quadrant and the binormal motion of coaxial vortex rings, sphere product membranes are addressed. We also raise some open questions in the paper.
ArticleNumber 48
Author Yang, Cheng
Author_xml – sequence: 1
  givenname: Cheng
  orcidid: 0000-0002-9996-9465
  surname: Yang
  fullname: Yang, Cheng
  email: chyang@math.toronto.edu
  organization: Department of Mathematics, University of Toronto, The Fields Institute
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqOTr83mKKV-wIoX9RpiNqtb66ZNsqD_3rQrCB56GmbmfWZe3hma9L53CJ0TuCQA8ioCMEYxUIJBSRBYHKEp4XlEeCknaAqKVbhSkp-gWYwrACIFo1OEX3xI7qt48KnzfeHbIr27YjmsXShM3xS1-cjtdjC7dTxFx61ZR3f2W-fo-Wb5tLjD9ePt_eK6xpYRlTCrTNUAOGYE56TlnNpKgVWSUkNUYyQYAUw1smwNsZLaV0UNpaUlpVKMUzZHF-PdTfDbwcWkV34IfX6pqSAcCBWyyqpqVNngYwyu1bZLe6MpmG6tCehdOHoMR-dw9D4cLTJK_6Gb0H2a8H0YYiMUs7h_c-HP1QHqB__idbk
CitedBy_id crossref_primary_10_1007_s00205_023_01848_x
crossref_primary_10_1007_s00283_021_10099_1
crossref_primary_10_1016_j_jde_2025_01_046
Cites_doi 10.1098/rsta.1893.0020
10.1090/S0002-9947-1987-0891628-1
10.1063/1.3673800
10.1063/1.2425103
10.1088/0305-4470/28/8/013
10.1063/1.862605
10.4153/CJM-1949-022-2
10.1006/jcph.1995.1023
10.1007/978-1-4684-9290-3
10.1007/b97593
10.1063/1.869160
10.1063/1.166210
10.1007/BF03018608
10.1016/0167-2789(82)90067-7
10.1007/s00162-009-0148-z
10.1512/iumj.1996.45.1199
10.17323/1609-4514-2012-12-2-413-434
10.1088/1361-6544/abe1d1
10.1007/s40598-020-00162-8
10.1073/pnas.27.12.570
10.1098/rstl.1885.0015
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s00332-021-09705-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1432-1467
ExternalDocumentID 10_1007_s00332_021_09705_5
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7U
Z83
Z8W
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-38a8d00e3a5441f442c890c9722a19da70a5039d76fa1c72cb92a226c16993423
IEDL.DBID U2A
ISSN 0938-8974
IngestDate Fri Jul 25 11:15:58 EDT 2025
Tue Jul 01 04:07:54 EDT 2025
Thu Apr 24 23:09:39 EDT 2025
Fri Feb 21 02:48:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-38a8d00e3a5441f442c890c9722a19da70a5039d76fa1c72cb92a226c16993423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9996-9465
PQID 2514012578
PQPubID 2043730
ParticipantIDs proquest_journals_2514012578
crossref_citationtrail_10_1007_s00332_021_09705_5
crossref_primary_10_1007_s00332_021_09705_5
springer_journals_10_1007_s00332_021_09705_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of nonlinear science
PublicationTitleAbbrev J Nonlinear Sci
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Aref (CR2) 2007; 48
Lamb (CR18) 1932
O’Neil (CR28) 1987; 302
Dyson (CR6) 1893; 184
Meleshko (CR24) 2010; 24
Marchioro, Pulvirenti (CR22) 1996
CR15
Thomson (CR34) 1883
CR36
Knio, Collerec, Juvé (CR17) 1995; 116
CR35
Gröbli (CR8) 1877; 22
CR12
CR11
Saffman (CR30) 1992
Marsden, Misiolek, Ortega, Perlmutter, Ratiu (CR23) 2007
Da Rios (CR5) 1906; 22
Kirchhoff (CR16) 1876
Shafranov (CR31) 1958; 6
Levermore, Oliver, Titi (CR19) 1996; 45
Bagrets, Bagrets (CR4) 1997; 7
CR7
Lim (CR20) 1997; 9
CR9
Helmholtz (CR10) 1858; 55
CR25
Péntek, Tél, Toroczkai (CR29) 1995; 28
CR21
Khesin (CR14) 2012; 12
Novikov (CR27) 1975; 41
Arnold, Khesin (CR3) 1998
Khanin (CR13) 1982; 4
Aref (CR1) 1979; 22
Newton (CR26) 2001
Shashikanth (CR32) 2012; 53
Synge (CR33) 1949; 1
TT Lim (9705_CR20) 1997; 9
A Bagrets (9705_CR4) 1997; 7
JE Marsden (9705_CR23) 2007
KA O’Neil (9705_CR28) 1987; 302
BN Shashikanth (9705_CR32) 2012; 53
9705_CR7
A Péntek (9705_CR29) 1995; 28
9705_CR9
VV Meleshko (9705_CR24) 2010; 24
9705_CR21
PG Saffman (9705_CR30) 1992
PK Newton (9705_CR26) 2001
JL Synge (9705_CR33) 1949; 1
9705_CR25
H Aref (9705_CR2) 2007; 48
GR Kirchhoff (9705_CR16) 1876
O Knio (9705_CR17) 1995; 116
W Gröbli (9705_CR8) 1877; 22
FW Dyson (9705_CR6) 1893; 184
VI Arnold (9705_CR3) 1998
EA Novikov (9705_CR27) 1975; 41
B Khesin (9705_CR14) 2012; 12
H Helmholtz (9705_CR10) 1858; 55
C Marchioro (9705_CR22) 1996
H Lamb (9705_CR18) 1932
K Khanin (9705_CR13) 1982; 4
CD Levermore (9705_CR19) 1996; 45
9705_CR11
JJ Thomson (9705_CR34) 1883
LS Da Rios (9705_CR5) 1906; 22
9705_CR15
VD Shafranov (9705_CR31) 1958; 6
9705_CR36
H Aref (9705_CR1) 1979; 22
9705_CR35
9705_CR12
References_xml – volume: 6
  start-page: 545
  year: 1958
  end-page: 554
  ident: CR31
  article-title: On magnetohydrodynamical equilibrium configurations
  publication-title: Soviet Phys. JETP
– volume: 184
  start-page: 1041
  year: 1893
  end-page: 1106
  ident: CR6
  article-title: The potential of an anchor ring, Part II
  publication-title: Philos. Trans. R. Soc. Lond. A
  doi: 10.1098/rsta.1893.0020
– volume: 302
  start-page: 383
  year: 1987
  end-page: 425
  ident: CR28
  article-title: Stationary configurations of point vortices
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1987-0891628-1
– volume: 53
  start-page: 013103
  issue: 1
  year: 2012
  ident: CR32
  article-title: Vortex dynamics in
  publication-title: J. Math. Phys.
  doi: 10.1063/1.3673800
– volume: 48
  start-page: 065401
  year: 2007
  ident: CR2
  article-title: Point vortex dynamics: a classical mathematics playground
  publication-title: J. Math. Phys.
  doi: 10.1063/1.2425103
– year: 1932
  ident: CR18
  publication-title: Hydrodynamics
– year: 1883
  ident: CR34
  publication-title: A Treatise on the Motion of Vortex Rings
– volume: 28
  start-page: 2191
  year: 1995
  end-page: 2216
  ident: CR29
  article-title: Chaotic advection in the velocity field of leapfrogging vortex pairs
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/28/8/013
– volume: 22
  start-page: 393
  year: 1979
  end-page: 400
  ident: CR1
  article-title: Motion of three vortices
  publication-title: Phys. Fluids
  doi: 10.1063/1.862605
– ident: CR12
– volume: 1
  start-page: 257
  year: 1949
  end-page: 270
  ident: CR33
  article-title: On the motion of three vortices
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1949-022-2
– year: 2007
  ident: CR23
  publication-title: Hamiltonian Reduction by Stages. Lecture Notes in Mathematics
– volume: 116
  start-page: 226
  year: 1995
  end-page: 246
  ident: CR17
  article-title: Numerical study of sound emission by 2D regular and chaotic vortex configurations
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1023
– year: 2001
  ident: CR26
  publication-title: The N-vortex Problem: Analytical Techniques
  doi: 10.1007/978-1-4684-9290-3
– year: 1998
  ident: CR3
  publication-title: Topological methods in hydrodynamics
  doi: 10.1007/b97593
– ident: CR35
– volume: 9
  start-page: 239
  issue: 239
  year: 1997
  end-page: 241
  ident: CR20
  article-title: A note on the leapfrogging between two coaxial vortex rings at low Reynolds numbers
  publication-title: Phys. Fluids
  doi: 10.1063/1.869160
– volume: 7
  start-page: 368
  year: 1997
  end-page: 375
  ident: CR4
  article-title: Non-integrability of two problems in vortex dynamics
  publication-title: Chaos
  doi: 10.1063/1.166210
– volume: 22
  start-page: 37
  year: 1877
  end-page: 81
  ident: CR8
  article-title: Spezielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden (Zürcher and Furrer, Zurich, 1877)
  publication-title: Reprinted in Vierteljahrsschr. Natforsch. Ges. Zur.
– ident: CR25
– volume: 22
  start-page: 117
  year: 1906
  end-page: 135
  ident: CR5
  article-title: Sul moto d’un liquido indefinito con un filetto vorticoso di forma qualunque
  publication-title: Rend. Circ. Mat. Palermo
  doi: 10.1007/BF03018608
– volume: 4
  start-page: 261
  year: 1982
  end-page: 269
  ident: CR13
  article-title: Quasi-periodic motion of vortex systems
  publication-title: Phys. D
  doi: 10.1016/0167-2789(82)90067-7
– ident: CR21
– volume: 41
  start-page: 937
  year: 1975
  end-page: 943
  ident: CR27
  article-title: Dynamics and statistics of a system of vortices
  publication-title: Sov. Phys. JETP
– year: 1992
  ident: CR30
  publication-title: Vortex Dynamics
– ident: CR15
– year: 1876
  ident: CR16
  publication-title: Vorlesungen über Mathematische Physik
– ident: CR11
– ident: CR9
– year: 1996
  ident: CR22
  publication-title: Mathematical Theory of Incompressible Nonviscous Fluids
– volume: 24
  start-page: 403
  year: 2010
  end-page: 431
  ident: CR24
  article-title: Coaxial vortex rings: 150 years after Helmholtz
  publication-title: Theor. Comp. Fluid Dyn.
  doi: 10.1007/s00162-009-0148-z
– volume: 45
  start-page: 479
  issue: 2
  year: 1996
  end-page: 510
  ident: CR19
  article-title: Global well-posedness for models of shallow water in a basin with a varying bottom
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1996.45.1199
– ident: CR36
– ident: CR7
– volume: 55
  start-page: 25
  year: 1858
  end-page: 55
  ident: CR10
  article-title: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen
  publication-title: J. Reine Angew. Math.
– volume: 12
  start-page: 413
  issue: 2
  year: 2012
  end-page: 434
  ident: CR14
  article-title: Symplectic structures and dynamics on vortex membranes
  publication-title: Moscow Math. J.
  doi: 10.17323/1609-4514-2012-12-2-413-434
– volume: 24
  start-page: 403
  year: 2010
  ident: 9705_CR24
  publication-title: Theor. Comp. Fluid Dyn.
  doi: 10.1007/s00162-009-0148-z
– ident: 9705_CR15
  doi: 10.1088/1361-6544/abe1d1
– volume: 22
  start-page: 117
  year: 1906
  ident: 9705_CR5
  publication-title: Rend. Circ. Mat. Palermo
  doi: 10.1007/BF03018608
– volume: 22
  start-page: 393
  year: 1979
  ident: 9705_CR1
  publication-title: Phys. Fluids
  doi: 10.1063/1.862605
– ident: 9705_CR9
– ident: 9705_CR36
– volume: 41
  start-page: 937
  year: 1975
  ident: 9705_CR27
  publication-title: Sov. Phys. JETP
– volume-title: Topological methods in hydrodynamics
  year: 1998
  ident: 9705_CR3
  doi: 10.1007/b97593
– volume: 4
  start-page: 261
  year: 1982
  ident: 9705_CR13
  publication-title: Phys. D
  doi: 10.1016/0167-2789(82)90067-7
– volume: 22
  start-page: 37
  year: 1877
  ident: 9705_CR8
  publication-title: Reprinted in Vierteljahrsschr. Natforsch. Ges. Zur.
– volume-title: Hydrodynamics
  year: 1932
  ident: 9705_CR18
– volume: 12
  start-page: 413
  issue: 2
  year: 2012
  ident: 9705_CR14
  publication-title: Moscow Math. J.
  doi: 10.17323/1609-4514-2012-12-2-413-434
– volume: 55
  start-page: 25
  year: 1858
  ident: 9705_CR10
  publication-title: J. Reine Angew. Math.
– volume: 116
  start-page: 226
  year: 1995
  ident: 9705_CR17
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1023
– ident: 9705_CR35
– ident: 9705_CR12
– volume: 28
  start-page: 2191
  year: 1995
  ident: 9705_CR29
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/28/8/013
– volume: 6
  start-page: 545
  year: 1958
  ident: 9705_CR31
  publication-title: Soviet Phys. JETP
– volume: 45
  start-page: 479
  issue: 2
  year: 1996
  ident: 9705_CR19
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1996.45.1199
– volume: 48
  start-page: 065401
  year: 2007
  ident: 9705_CR2
  publication-title: J. Math. Phys.
  doi: 10.1063/1.2425103
– volume: 7
  start-page: 368
  year: 1997
  ident: 9705_CR4
  publication-title: Chaos
  doi: 10.1063/1.166210
– volume: 9
  start-page: 239
  issue: 239
  year: 1997
  ident: 9705_CR20
  publication-title: Phys. Fluids
  doi: 10.1063/1.869160
– volume-title: Hamiltonian Reduction by Stages. Lecture Notes in Mathematics
  year: 2007
  ident: 9705_CR23
– volume: 184
  start-page: 1041
  year: 1893
  ident: 9705_CR6
  publication-title: Philos. Trans. R. Soc. Lond. A
  doi: 10.1098/rsta.1893.0020
– volume-title: Vorlesungen über Mathematische Physik
  year: 1876
  ident: 9705_CR16
– volume-title: Mathematical Theory of Incompressible Nonviscous Fluids
  year: 1996
  ident: 9705_CR22
– volume: 302
  start-page: 383
  year: 1987
  ident: 9705_CR28
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1987-0891628-1
– ident: 9705_CR7
– volume: 53
  start-page: 013103
  issue: 1
  year: 2012
  ident: 9705_CR32
  publication-title: J. Math. Phys.
  doi: 10.1063/1.3673800
– volume-title: A Treatise on the Motion of Vortex Rings
  year: 1883
  ident: 9705_CR34
– ident: 9705_CR25
  doi: 10.1007/s40598-020-00162-8
– ident: 9705_CR21
  doi: 10.1073/pnas.27.12.570
– volume: 1
  start-page: 257
  year: 1949
  ident: 9705_CR33
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1949-022-2
– volume-title: Vortex Dynamics
  year: 1992
  ident: 9705_CR30
– ident: 9705_CR11
  doi: 10.1098/rstl.1885.0015
– volume-title: The N-vortex Problem: Analytical Techniques
  year: 2001
  ident: 9705_CR26
  doi: 10.1007/978-1-4684-9290-3
SSID ssj0017532
Score 2.3340948
Snippet We start by surveying the planar point vortex motion of the Euler equations in the whole plane, half-plane and quadrant. Then, we go on to prove the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Analysis
Classical Mechanics
Computational fluid dynamics
Economic Theory/Quantitative Economics/Mathematical Methods
Euler-Lagrange equation
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
Vortex rings
Vortices
Title Vortex Motion of the Euler and Lake Equations
URI https://link.springer.com/article/10.1007/s00332-021-09705-5
https://www.proquest.com/docview/2514012578
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AoFOSBDSw5TpzEYwstFVAmisoUOXayUKXQtBI_n3OapAIBElMU2fHw-c73OfcCuEiF9MPACq8fMuolhlOFSkddGSMfNrERwuY7jx794di7m4hJmRSWV9HulUuyOKnrZDfbdoxTG1LAZMAEFZvQFPbujlI85t3ad4AEvPAdSFTlEOlymSrz8xpfzdGaY35zixbWZrAHOyVNJN3Vvu7DRpK1YLekjKRUyLwF26O67Gp-APTZhs5-kFHRmofMUoKDpL-cJnOiMkMe1Cu-vq-qe-eHMB70n66HtOyHQDUqyoK6oQoNY4mrbOOw1PO4DiXTMuBcOdKogCnBXGkCP1WODriOJVdIr7TjIwtB3nQEjWyWJcdAgtBPJFotqaTxUi8OhfYZ2jOZGjfQwrTBqWCJdFks3PasmEZ1meMCygihjAooI9GGy_qbt1WpjD9ndyq0o1Jt8gjJFt737CnShqtqB9bDv6928r_pp7DFCyGwf1M60FjMl8kZkotFfA7Nbu-mN7DP25f7_nkhW59EE8K3
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RPKgHP1AjitqDN21SunVrj8RAUIETGG5L124XCSiDxD_f17GNaNTEY9Ouh1_f6_ut7wvgNhUqkKET3kAy6ieWU41KRz0VIx-2sRXC5TsPhkFv7D9NxKRICsvKaPfSJZnf1FWym2s7xqkLKWAqZIKKbdhBMiBdINeYtyvfARLw3HegUJUl0uUiVebnPb6aow3H_OYWza1N9wgOCppI2utzPYatZFaHw4IykkIhszrsD6qyq9kJ0BcXOvtBBnlrHjJPCU6SzmqaLIieWdLXrzh8X1f3zk5h3O2MHnq06IdADSrKknpSS8tY4mnXOCz1fW6kYkaFnOuWsjpkWjBP2TBIdcuE3MSKa6RXphUgC0GozqA2m8-ScyChDBKFVktpZf3Uj6UwAUN7plLrhUbYBrRKWCJTFAt3PSumUVXmOIcyQiijHMpINOCu-uZtXSrjz9XNEu2oUJssQrKF_3vuFmnAfXkCm-nfd7v43_Ib2O2NBv2o_zh8voQ9nguEe1lpQm25WCVXSDSW8XUuV59jCcKk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqIQgEPbGDVceIkHiugKtBWDBR1ixw7WajS0ofEz-ecpikgQGKM_JDy-c73JfcCuEyF9MPACq8fMuolhlOFSkddGSMfNrERwuY7d3t-u-89DMTgUxZ_Hu2-dEkuchpslaZs1hibtFEmvtkWZJza8AImAyaoWIcNvI4dK9d93iz9CEjGcz-CRLUOkToXaTM_7_HVNK345jcXaW55WnuwU1BG0lyc8T6sJVkVdgv6SArlnFZhu1uWYJ0eAH2xYbTvpJu36SGjlOAguZsPkwlRmSEd9YqPb4tK39ND6Lfunm_atOiNQDW-5Yy6oQoNY4mrbBOx1PO4DiXTMuBcOdKogCnBXGkCP1WODriOJVdItbTjIyNBDnUElWyUJcdAgtBPJFowqaTxUi8OhfYZgilT4wZamBo4S1giXRQOt_0rhlFZ8jiHMkIooxzKSNTgqlwzXpTN-HN2fYl2VKjQNELihd9-9kapwfXyBFbDv-928r_pF7D5dNuKOve9x1PY4rk82J8sdajMJvPkDDnHLD7PxeoDO-TG4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vortex+Motion+of+the+Euler+and+Lake+Equations&rft.jtitle=Journal+of+nonlinear+science&rft.au=Yang%2C+Cheng&rft.date=2021-06-01&rft.pub=Springer+US&rft.issn=0938-8974&rft.eissn=1432-1467&rft.volume=31&rft.issue=3&rft_id=info:doi/10.1007%2Fs00332-021-09705-5&rft.externalDocID=10_1007_s00332_021_09705_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-8974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-8974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-8974&client=summon