Vortex Motion of the Euler and Lake Equations
We start by surveying the planar point vortex motion of the Euler equations in the whole plane, half-plane and quadrant. Then, we go on to prove the non-collision property of the 2-vortex system by using the explicit form of orbits of the 2-vortex system in the half-plane. We also prove that the N -...
Saved in:
Published in | Journal of nonlinear science Vol. 31; no. 3 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We start by surveying the planar point vortex motion of the Euler equations in the whole plane, half-plane and quadrant. Then, we go on to prove the non-collision property of the 2-vortex system by using the explicit form of orbits of the 2-vortex system in the half-plane. We also prove that the
N
-vortex system in the half-plane is nonintegrable for
N
>
2
, which was suggested previously by numerical experiments without rigorous proof. The skew-mean-curvature (or binormal) flow in
R
n
,
n
⩾
3
with certain symmetry can be regarded as point vortex motion of these 2D lake equations. We compare point vortex motions of the Euler and lake equations. Interesting similarities between the point vortex motion in the half-plane, quadrant and the binormal motion of coaxial vortex rings, sphere product membranes are addressed. We also raise some open questions in the paper. |
---|---|
AbstractList | We start by surveying the planar point vortex motion of the Euler equations in the whole plane, half-plane and quadrant. Then, we go on to prove the non-collision property of the 2-vortex system by using the explicit form of orbits of the 2-vortex system in the half-plane. We also prove that the
N
-vortex system in the half-plane is nonintegrable for
N
>
2
, which was suggested previously by numerical experiments without rigorous proof. The skew-mean-curvature (or binormal) flow in
R
n
,
n
⩾
3
with certain symmetry can be regarded as point vortex motion of these 2D lake equations. We compare point vortex motions of the Euler and lake equations. Interesting similarities between the point vortex motion in the half-plane, quadrant and the binormal motion of coaxial vortex rings, sphere product membranes are addressed. We also raise some open questions in the paper. We start by surveying the planar point vortex motion of the Euler equations in the whole plane, half-plane and quadrant. Then, we go on to prove the non-collision property of the 2-vortex system by using the explicit form of orbits of the 2-vortex system in the half-plane. We also prove that the N-vortex system in the half-plane is nonintegrable for N>2, which was suggested previously by numerical experiments without rigorous proof. The skew-mean-curvature (or binormal) flow in Rn,n⩾3 with certain symmetry can be regarded as point vortex motion of these 2D lake equations. We compare point vortex motions of the Euler and lake equations. Interesting similarities between the point vortex motion in the half-plane, quadrant and the binormal motion of coaxial vortex rings, sphere product membranes are addressed. We also raise some open questions in the paper. |
ArticleNumber | 48 |
Author | Yang, Cheng |
Author_xml | – sequence: 1 givenname: Cheng orcidid: 0000-0002-9996-9465 surname: Yang fullname: Yang, Cheng email: chyang@math.toronto.edu organization: Department of Mathematics, University of Toronto, The Fields Institute |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqOTr83mKKV-wIoX9RpiNqtb66ZNsqD_3rQrCB56GmbmfWZe3hma9L53CJ0TuCQA8ioCMEYxUIJBSRBYHKEp4XlEeCknaAqKVbhSkp-gWYwrACIFo1OEX3xI7qt48KnzfeHbIr27YjmsXShM3xS1-cjtdjC7dTxFx61ZR3f2W-fo-Wb5tLjD9ePt_eK6xpYRlTCrTNUAOGYE56TlnNpKgVWSUkNUYyQYAUw1smwNsZLaV0UNpaUlpVKMUzZHF-PdTfDbwcWkV34IfX6pqSAcCBWyyqpqVNngYwyu1bZLe6MpmG6tCehdOHoMR-dw9D4cLTJK_6Gb0H2a8H0YYiMUs7h_c-HP1QHqB__idbk |
CitedBy_id | crossref_primary_10_1007_s00205_023_01848_x crossref_primary_10_1007_s00283_021_10099_1 crossref_primary_10_1016_j_jde_2025_01_046 |
Cites_doi | 10.1098/rsta.1893.0020 10.1090/S0002-9947-1987-0891628-1 10.1063/1.3673800 10.1063/1.2425103 10.1088/0305-4470/28/8/013 10.1063/1.862605 10.4153/CJM-1949-022-2 10.1006/jcph.1995.1023 10.1007/978-1-4684-9290-3 10.1007/b97593 10.1063/1.869160 10.1063/1.166210 10.1007/BF03018608 10.1016/0167-2789(82)90067-7 10.1007/s00162-009-0148-z 10.1512/iumj.1996.45.1199 10.17323/1609-4514-2012-12-2-413-434 10.1088/1361-6544/abe1d1 10.1007/s40598-020-00162-8 10.1073/pnas.27.12.570 10.1098/rstl.1885.0015 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00332-021-09705-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1432-1467 |
ExternalDocumentID | 10_1007_s00332_021_09705_5 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 Z7U Z83 Z8W ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-38a8d00e3a5441f442c890c9722a19da70a5039d76fa1c72cb92a226c16993423 |
IEDL.DBID | U2A |
ISSN | 0938-8974 |
IngestDate | Fri Jul 25 11:15:58 EDT 2025 Tue Jul 01 04:07:54 EDT 2025 Thu Apr 24 23:09:39 EDT 2025 Fri Feb 21 02:48:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-38a8d00e3a5441f442c890c9722a19da70a5039d76fa1c72cb92a226c16993423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9996-9465 |
PQID | 2514012578 |
PQPubID | 2043730 |
ParticipantIDs | proquest_journals_2514012578 crossref_citationtrail_10_1007_s00332_021_09705_5 crossref_primary_10_1007_s00332_021_09705_5 springer_journals_10_1007_s00332_021_09705_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of nonlinear science |
PublicationTitleAbbrev | J Nonlinear Sci |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Aref (CR2) 2007; 48 Lamb (CR18) 1932 O’Neil (CR28) 1987; 302 Dyson (CR6) 1893; 184 Meleshko (CR24) 2010; 24 Marchioro, Pulvirenti (CR22) 1996 CR15 Thomson (CR34) 1883 CR36 Knio, Collerec, Juvé (CR17) 1995; 116 CR35 Gröbli (CR8) 1877; 22 CR12 CR11 Saffman (CR30) 1992 Marsden, Misiolek, Ortega, Perlmutter, Ratiu (CR23) 2007 Da Rios (CR5) 1906; 22 Kirchhoff (CR16) 1876 Shafranov (CR31) 1958; 6 Levermore, Oliver, Titi (CR19) 1996; 45 Bagrets, Bagrets (CR4) 1997; 7 CR7 Lim (CR20) 1997; 9 CR9 Helmholtz (CR10) 1858; 55 CR25 Péntek, Tél, Toroczkai (CR29) 1995; 28 CR21 Khesin (CR14) 2012; 12 Novikov (CR27) 1975; 41 Arnold, Khesin (CR3) 1998 Khanin (CR13) 1982; 4 Aref (CR1) 1979; 22 Newton (CR26) 2001 Shashikanth (CR32) 2012; 53 Synge (CR33) 1949; 1 TT Lim (9705_CR20) 1997; 9 A Bagrets (9705_CR4) 1997; 7 JE Marsden (9705_CR23) 2007 KA O’Neil (9705_CR28) 1987; 302 BN Shashikanth (9705_CR32) 2012; 53 9705_CR7 A Péntek (9705_CR29) 1995; 28 9705_CR9 VV Meleshko (9705_CR24) 2010; 24 9705_CR21 PG Saffman (9705_CR30) 1992 PK Newton (9705_CR26) 2001 JL Synge (9705_CR33) 1949; 1 9705_CR25 H Aref (9705_CR2) 2007; 48 GR Kirchhoff (9705_CR16) 1876 O Knio (9705_CR17) 1995; 116 W Gröbli (9705_CR8) 1877; 22 FW Dyson (9705_CR6) 1893; 184 VI Arnold (9705_CR3) 1998 EA Novikov (9705_CR27) 1975; 41 B Khesin (9705_CR14) 2012; 12 H Helmholtz (9705_CR10) 1858; 55 C Marchioro (9705_CR22) 1996 H Lamb (9705_CR18) 1932 K Khanin (9705_CR13) 1982; 4 CD Levermore (9705_CR19) 1996; 45 9705_CR11 JJ Thomson (9705_CR34) 1883 LS Da Rios (9705_CR5) 1906; 22 9705_CR15 VD Shafranov (9705_CR31) 1958; 6 9705_CR36 H Aref (9705_CR1) 1979; 22 9705_CR35 9705_CR12 |
References_xml | – volume: 6 start-page: 545 year: 1958 end-page: 554 ident: CR31 article-title: On magnetohydrodynamical equilibrium configurations publication-title: Soviet Phys. JETP – volume: 184 start-page: 1041 year: 1893 end-page: 1106 ident: CR6 article-title: The potential of an anchor ring, Part II publication-title: Philos. Trans. R. Soc. Lond. A doi: 10.1098/rsta.1893.0020 – volume: 302 start-page: 383 year: 1987 end-page: 425 ident: CR28 article-title: Stationary configurations of point vortices publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1987-0891628-1 – volume: 53 start-page: 013103 issue: 1 year: 2012 ident: CR32 article-title: Vortex dynamics in publication-title: J. Math. Phys. doi: 10.1063/1.3673800 – volume: 48 start-page: 065401 year: 2007 ident: CR2 article-title: Point vortex dynamics: a classical mathematics playground publication-title: J. Math. Phys. doi: 10.1063/1.2425103 – year: 1932 ident: CR18 publication-title: Hydrodynamics – year: 1883 ident: CR34 publication-title: A Treatise on the Motion of Vortex Rings – volume: 28 start-page: 2191 year: 1995 end-page: 2216 ident: CR29 article-title: Chaotic advection in the velocity field of leapfrogging vortex pairs publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/28/8/013 – volume: 22 start-page: 393 year: 1979 end-page: 400 ident: CR1 article-title: Motion of three vortices publication-title: Phys. Fluids doi: 10.1063/1.862605 – ident: CR12 – volume: 1 start-page: 257 year: 1949 end-page: 270 ident: CR33 article-title: On the motion of three vortices publication-title: Can. J. Math. doi: 10.4153/CJM-1949-022-2 – year: 2007 ident: CR23 publication-title: Hamiltonian Reduction by Stages. Lecture Notes in Mathematics – volume: 116 start-page: 226 year: 1995 end-page: 246 ident: CR17 article-title: Numerical study of sound emission by 2D regular and chaotic vortex configurations publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1023 – year: 2001 ident: CR26 publication-title: The N-vortex Problem: Analytical Techniques doi: 10.1007/978-1-4684-9290-3 – year: 1998 ident: CR3 publication-title: Topological methods in hydrodynamics doi: 10.1007/b97593 – ident: CR35 – volume: 9 start-page: 239 issue: 239 year: 1997 end-page: 241 ident: CR20 article-title: A note on the leapfrogging between two coaxial vortex rings at low Reynolds numbers publication-title: Phys. Fluids doi: 10.1063/1.869160 – volume: 7 start-page: 368 year: 1997 end-page: 375 ident: CR4 article-title: Non-integrability of two problems in vortex dynamics publication-title: Chaos doi: 10.1063/1.166210 – volume: 22 start-page: 37 year: 1877 end-page: 81 ident: CR8 article-title: Spezielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden (Zürcher and Furrer, Zurich, 1877) publication-title: Reprinted in Vierteljahrsschr. Natforsch. Ges. Zur. – ident: CR25 – volume: 22 start-page: 117 year: 1906 end-page: 135 ident: CR5 article-title: Sul moto d’un liquido indefinito con un filetto vorticoso di forma qualunque publication-title: Rend. Circ. Mat. Palermo doi: 10.1007/BF03018608 – volume: 4 start-page: 261 year: 1982 end-page: 269 ident: CR13 article-title: Quasi-periodic motion of vortex systems publication-title: Phys. D doi: 10.1016/0167-2789(82)90067-7 – ident: CR21 – volume: 41 start-page: 937 year: 1975 end-page: 943 ident: CR27 article-title: Dynamics and statistics of a system of vortices publication-title: Sov. Phys. JETP – year: 1992 ident: CR30 publication-title: Vortex Dynamics – ident: CR15 – year: 1876 ident: CR16 publication-title: Vorlesungen über Mathematische Physik – ident: CR11 – ident: CR9 – year: 1996 ident: CR22 publication-title: Mathematical Theory of Incompressible Nonviscous Fluids – volume: 24 start-page: 403 year: 2010 end-page: 431 ident: CR24 article-title: Coaxial vortex rings: 150 years after Helmholtz publication-title: Theor. Comp. Fluid Dyn. doi: 10.1007/s00162-009-0148-z – volume: 45 start-page: 479 issue: 2 year: 1996 end-page: 510 ident: CR19 article-title: Global well-posedness for models of shallow water in a basin with a varying bottom publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.1996.45.1199 – ident: CR36 – ident: CR7 – volume: 55 start-page: 25 year: 1858 end-page: 55 ident: CR10 article-title: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen publication-title: J. Reine Angew. Math. – volume: 12 start-page: 413 issue: 2 year: 2012 end-page: 434 ident: CR14 article-title: Symplectic structures and dynamics on vortex membranes publication-title: Moscow Math. J. doi: 10.17323/1609-4514-2012-12-2-413-434 – volume: 24 start-page: 403 year: 2010 ident: 9705_CR24 publication-title: Theor. Comp. Fluid Dyn. doi: 10.1007/s00162-009-0148-z – ident: 9705_CR15 doi: 10.1088/1361-6544/abe1d1 – volume: 22 start-page: 117 year: 1906 ident: 9705_CR5 publication-title: Rend. Circ. Mat. Palermo doi: 10.1007/BF03018608 – volume: 22 start-page: 393 year: 1979 ident: 9705_CR1 publication-title: Phys. Fluids doi: 10.1063/1.862605 – ident: 9705_CR9 – ident: 9705_CR36 – volume: 41 start-page: 937 year: 1975 ident: 9705_CR27 publication-title: Sov. Phys. JETP – volume-title: Topological methods in hydrodynamics year: 1998 ident: 9705_CR3 doi: 10.1007/b97593 – volume: 4 start-page: 261 year: 1982 ident: 9705_CR13 publication-title: Phys. D doi: 10.1016/0167-2789(82)90067-7 – volume: 22 start-page: 37 year: 1877 ident: 9705_CR8 publication-title: Reprinted in Vierteljahrsschr. Natforsch. Ges. Zur. – volume-title: Hydrodynamics year: 1932 ident: 9705_CR18 – volume: 12 start-page: 413 issue: 2 year: 2012 ident: 9705_CR14 publication-title: Moscow Math. J. doi: 10.17323/1609-4514-2012-12-2-413-434 – volume: 55 start-page: 25 year: 1858 ident: 9705_CR10 publication-title: J. Reine Angew. Math. – volume: 116 start-page: 226 year: 1995 ident: 9705_CR17 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1023 – ident: 9705_CR35 – ident: 9705_CR12 – volume: 28 start-page: 2191 year: 1995 ident: 9705_CR29 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/28/8/013 – volume: 6 start-page: 545 year: 1958 ident: 9705_CR31 publication-title: Soviet Phys. JETP – volume: 45 start-page: 479 issue: 2 year: 1996 ident: 9705_CR19 publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.1996.45.1199 – volume: 48 start-page: 065401 year: 2007 ident: 9705_CR2 publication-title: J. Math. Phys. doi: 10.1063/1.2425103 – volume: 7 start-page: 368 year: 1997 ident: 9705_CR4 publication-title: Chaos doi: 10.1063/1.166210 – volume: 9 start-page: 239 issue: 239 year: 1997 ident: 9705_CR20 publication-title: Phys. Fluids doi: 10.1063/1.869160 – volume-title: Hamiltonian Reduction by Stages. Lecture Notes in Mathematics year: 2007 ident: 9705_CR23 – volume: 184 start-page: 1041 year: 1893 ident: 9705_CR6 publication-title: Philos. Trans. R. Soc. Lond. A doi: 10.1098/rsta.1893.0020 – volume-title: Vorlesungen über Mathematische Physik year: 1876 ident: 9705_CR16 – volume-title: Mathematical Theory of Incompressible Nonviscous Fluids year: 1996 ident: 9705_CR22 – volume: 302 start-page: 383 year: 1987 ident: 9705_CR28 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1987-0891628-1 – ident: 9705_CR7 – volume: 53 start-page: 013103 issue: 1 year: 2012 ident: 9705_CR32 publication-title: J. Math. Phys. doi: 10.1063/1.3673800 – volume-title: A Treatise on the Motion of Vortex Rings year: 1883 ident: 9705_CR34 – ident: 9705_CR25 doi: 10.1007/s40598-020-00162-8 – ident: 9705_CR21 doi: 10.1073/pnas.27.12.570 – volume: 1 start-page: 257 year: 1949 ident: 9705_CR33 publication-title: Can. J. Math. doi: 10.4153/CJM-1949-022-2 – volume-title: Vortex Dynamics year: 1992 ident: 9705_CR30 – ident: 9705_CR11 doi: 10.1098/rstl.1885.0015 – volume-title: The N-vortex Problem: Analytical Techniques year: 2001 ident: 9705_CR26 doi: 10.1007/978-1-4684-9290-3 |
SSID | ssj0017532 |
Score | 2.3340948 |
Snippet | We start by surveying the planar point vortex motion of the Euler equations in the whole plane, half-plane and quadrant. Then, we go on to prove the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Analysis Classical Mechanics Computational fluid dynamics Economic Theory/Quantitative Economics/Mathematical Methods Euler-Lagrange equation Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Theoretical Vortex rings Vortices |
Title | Vortex Motion of the Euler and Lake Equations |
URI | https://link.springer.com/article/10.1007/s00332-021-09705-5 https://www.proquest.com/docview/2514012578 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AoFOSBDSw5TpzEYwstFVAmisoUOXayUKXQtBI_n3OapAIBElMU2fHw-c73OfcCuEiF9MPACq8fMuolhlOFSkddGSMfNrERwuY7jx794di7m4hJmRSWV9HulUuyOKnrZDfbdoxTG1LAZMAEFZvQFPbujlI85t3ad4AEvPAdSFTlEOlymSrz8xpfzdGaY35zixbWZrAHOyVNJN3Vvu7DRpK1YLekjKRUyLwF26O67Gp-APTZhs5-kFHRmofMUoKDpL-cJnOiMkMe1Cu-vq-qe-eHMB70n66HtOyHQDUqyoK6oQoNY4mrbOOw1PO4DiXTMuBcOdKogCnBXGkCP1WODriOJVdIr7TjIwtB3nQEjWyWJcdAgtBPJFotqaTxUi8OhfYZ2jOZGjfQwrTBqWCJdFks3PasmEZ1meMCygihjAooI9GGy_qbt1WpjD9ndyq0o1Jt8gjJFt737CnShqtqB9bDv6928r_pp7DFCyGwf1M60FjMl8kZkotFfA7Nbu-mN7DP25f7_nkhW59EE8K3 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RPKgHP1AjitqDN21SunVrj8RAUIETGG5L124XCSiDxD_f17GNaNTEY9Ouh1_f6_ut7wvgNhUqkKET3kAy6ieWU41KRz0VIx-2sRXC5TsPhkFv7D9NxKRICsvKaPfSJZnf1FWym2s7xqkLKWAqZIKKbdhBMiBdINeYtyvfARLw3HegUJUl0uUiVebnPb6aow3H_OYWza1N9wgOCppI2utzPYatZFaHw4IykkIhszrsD6qyq9kJ0BcXOvtBBnlrHjJPCU6SzmqaLIieWdLXrzh8X1f3zk5h3O2MHnq06IdADSrKknpSS8tY4mnXOCz1fW6kYkaFnOuWsjpkWjBP2TBIdcuE3MSKa6RXphUgC0GozqA2m8-ScyChDBKFVktpZf3Uj6UwAUN7plLrhUbYBrRKWCJTFAt3PSumUVXmOIcyQiijHMpINOCu-uZtXSrjz9XNEu2oUJssQrKF_3vuFmnAfXkCm-nfd7v43_Ib2O2NBv2o_zh8voQ9nguEe1lpQm25WCVXSDSW8XUuV59jCcKk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqIQgEPbGDVceIkHiugKtBWDBR1ixw7WajS0ofEz-ecpikgQGKM_JDy-c73JfcCuEyF9MPACq8fMuolhlOFSkddGSMfNrERwuY7d3t-u-89DMTgUxZ_Hu2-dEkuchpslaZs1hibtFEmvtkWZJza8AImAyaoWIcNvI4dK9d93iz9CEjGcz-CRLUOkToXaTM_7_HVNK345jcXaW55WnuwU1BG0lyc8T6sJVkVdgv6SArlnFZhu1uWYJ0eAH2xYbTvpJu36SGjlOAguZsPkwlRmSEd9YqPb4tK39ND6Lfunm_atOiNQDW-5Yy6oQoNY4mrbBOx1PO4DiXTMuBcOdKogCnBXGkCP1WODriOJVdItbTjIyNBDnUElWyUJcdAgtBPJFowqaTxUi8OhfYZgilT4wZamBo4S1giXRQOt_0rhlFZ8jiHMkIooxzKSNTgqlwzXpTN-HN2fYl2VKjQNELihd9-9kapwfXyBFbDv-928r_pF7D5dNuKOve9x1PY4rk82J8sdajMJvPkDDnHLD7PxeoDO-TG4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vortex+Motion+of+the+Euler+and+Lake+Equations&rft.jtitle=Journal+of+nonlinear+science&rft.au=Yang%2C+Cheng&rft.date=2021-06-01&rft.pub=Springer+US&rft.issn=0938-8974&rft.eissn=1432-1467&rft.volume=31&rft.issue=3&rft_id=info:doi/10.1007%2Fs00332-021-09705-5&rft.externalDocID=10_1007_s00332_021_09705_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-8974&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-8974&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-8974&client=summon |