State of Charge Estimation in Lithium-Ion Batteries: A Neural Network Optimization Approach

The development of an accurate and robust state-of-charge (SOC) estimation is crucial for the battery lifetime, efficiency, charge control, and safe driving of electric vehicles (EV). This paper proposes an enhanced data-driven method based on a time-delay neural network (TDNN) algorithm for state o...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 9; no. 9; p. 1546
Main Authors Hossain Lipu, M. S., Hannan, M. A., Hussain, Aini, Ayob, Afida, Saad, Mohamad H. M., Muttaqi, Kashem M.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of an accurate and robust state-of-charge (SOC) estimation is crucial for the battery lifetime, efficiency, charge control, and safe driving of electric vehicles (EV). This paper proposes an enhanced data-driven method based on a time-delay neural network (TDNN) algorithm for state of charge (SOC) estimation in lithium-ion batteries. Nevertheless, SOC accuracy is subject to the suitable value of the hyperparameters selection of the TDNN algorithm. Hence, the TDNN algorithm is optimized by the improved firefly algorithm (iFA) to determine the optimal number of input time delay (UTD) and hidden neurons (HNs). This work investigates the performance of lithium nickel manganese cobalt oxide (LiNiMnCoO2) and lithium nickel cobalt aluminum oxide (LiNiCoAlO2) toward SOC estimation under two experimental test conditions: the static discharge test (SDT) and hybrid pulse power characterization (HPPC) test. Also, the accuracy of the proposed method is evaluated under different EV drive cycles and temperature settings. The results show that iFA-based TDNN achieves precise SOC estimation results with a root mean square error (RMSE) below 1%. Besides, the effectiveness and robustness of the proposed approach are validated against uncertainties including noise impacts and aging influences.
AbstractList The development of an accurate and robust state-of-charge (SOC) estimation is crucial for the battery lifetime, efficiency, charge control, and safe driving of electric vehicles (EV). This paper proposes an enhanced data-driven method based on a time-delay neural network (TDNN) algorithm for state of charge (SOC) estimation in lithium-ion batteries. Nevertheless, SOC accuracy is subject to the suitable value of the hyperparameters selection of the TDNN algorithm. Hence, the TDNN algorithm is optimized by the improved firefly algorithm (iFA) to determine the optimal number of input time delay (UTD) and hidden neurons (HNs). This work investigates the performance of lithium nickel manganese cobalt oxide (LiNiMnCoO2) and lithium nickel cobalt aluminum oxide (LiNiCoAlO2) toward SOC estimation under two experimental test conditions: the static discharge test (SDT) and hybrid pulse power characterization (HPPC) test. Also, the accuracy of the proposed method is evaluated under different EV drive cycles and temperature settings. The results show that iFA-based TDNN achieves precise SOC estimation results with a root mean square error (RMSE) below 1%. Besides, the effectiveness and robustness of the proposed approach are validated against uncertainties including noise impacts and aging influences.
Author Saad, Mohamad H. M.
Hannan, M. A.
Hussain, Aini
Ayob, Afida
Muttaqi, Kashem M.
Hossain Lipu, M. S.
Author_xml – sequence: 1
  givenname: M. S.
  orcidid: 0000-0001-9060-4454
  surname: Hossain Lipu
  fullname: Hossain Lipu, M. S.
– sequence: 2
  givenname: M. A.
  orcidid: 0000-0001-8367-4112
  surname: Hannan
  fullname: Hannan, M. A.
– sequence: 3
  givenname: Aini
  orcidid: 0000-0001-7347-7879
  surname: Hussain
  fullname: Hussain, Aini
– sequence: 4
  givenname: Afida
  orcidid: 0000-0002-7112-5148
  surname: Ayob
  fullname: Ayob, Afida
– sequence: 5
  givenname: Mohamad H. M.
  surname: Saad
  fullname: Saad, Mohamad H. M.
– sequence: 6
  givenname: Kashem M.
  surname: Muttaqi
  fullname: Muttaqi, Kashem M.
BookMark eNp9kDFPwzAQhS1UJErpH2CyxBw42ziJ2UJVoFJFB2BiiBzXIS5pHGxHCH49hjIgkLjl3kn33Tu9QzTqbKcROiZwypiAM91qFZztjPICBOHn6R4aU8hEIqigox_6AE2930AsQVjOYIwe74IMGtsazxrpnjSe-2C2MhjbYdPhpQmNGbbJIo6XMgTtjPYXuMC3enCyjS28WveMV32kzPuOK_reWamaI7Rfy9br6XefoIer-f3sJlmurhezYpkoRkRIGBeMZnXUKpcyh3oNQokKeMUJIaCyKs0VAUJ5ynKu4sR4DWrN9LpShEg2QSe7u9H2ZdA-lBs7uC5alpQLAVnKKI1b-W5LOeu903WpTPh6ODhp2pJA-Zlm-TfNiNJfaO9iSO7tP-gDL1p9-Q
CitedBy_id crossref_primary_10_1016_j_energy_2024_131540
crossref_primary_10_1109_ACCESS_2023_3267410
crossref_primary_10_1016_j_energy_2024_132395
crossref_primary_10_3390_electrochem3010003
crossref_primary_10_3390_en15124227
crossref_primary_10_3390_su131910943
crossref_primary_10_3390_su132212800
crossref_primary_10_1177_09544070231174118
crossref_primary_10_3390_electronics12214433
crossref_primary_10_1016_j_jclepro_2020_125465
crossref_primary_10_3390_en16135050
crossref_primary_10_1016_j_est_2024_111321
crossref_primary_10_3390_app11219820
crossref_primary_10_3390_s22051763
crossref_primary_10_1002_er_8548
crossref_primary_10_1021_acsomega_3c00918
crossref_primary_10_3390_batteries8110219
crossref_primary_10_1007_s00202_023_02227_1
crossref_primary_10_3390_computation9120137
crossref_primary_10_1016_j_est_2022_104664
crossref_primary_10_1515_ehs_2021_0039
crossref_primary_10_3390_electronics10050540
crossref_primary_10_1016_j_est_2021_102440
crossref_primary_10_1016_j_heliyon_2024_e35183
crossref_primary_10_1016_j_est_2023_108707
crossref_primary_10_1016_j_est_2023_108926
crossref_primary_10_1016_j_ifacol_2025_01_063
crossref_primary_10_3390_en15062064
crossref_primary_10_1016_j_est_2024_111877
crossref_primary_10_3390_en15082853
crossref_primary_10_3390_en16196974
crossref_primary_10_1007_s40435_024_01471_y
crossref_primary_10_1016_j_jclepro_2021_126044
crossref_primary_10_1049_pel2_12081
crossref_primary_10_3390_en14227521
crossref_primary_10_1016_j_est_2024_114943
crossref_primary_10_1016_j_ijhydene_2024_06_154
crossref_primary_10_1109_TIV_2022_3161301
crossref_primary_10_3390_batteries10030089
crossref_primary_10_1038_s41598_021_98915_8
crossref_primary_10_1016_j_est_2023_107199
crossref_primary_10_1016_j_ress_2023_109332
crossref_primary_10_3390_batteries8120260
crossref_primary_10_1149_1945_7111_adad44
crossref_primary_10_3390_en17225582
crossref_primary_10_3390_machines10100912
crossref_primary_10_1002_er_7545
crossref_primary_10_1016_j_jclepro_2022_132188
Cites_doi 10.3390/electronics8111324
10.1016/j.apenergy.2017.07.056
10.3390/en10050679
10.3390/en13102638
10.1016/j.jpowsour.2018.07.116
10.1109/72.329697
10.1109/TIE.2017.2701766
10.3390/math7100959
10.1109/ACCESS.2018.2837156
10.1016/j.conengprac.2016.05.014
10.3390/en13112825
10.1038/s41598-020-66424-9
10.1016/j.jpowsour.2013.08.039
10.3390/electronics7110321
10.1016/j.est.2016.03.003
10.1016/j.apenergy.2016.08.016
10.1016/j.apenergy.2012.08.031
10.1016/j.jocs.2017.07.009
10.3390/en12030446
10.1109/TII.2019.2941747
10.1016/j.ijepes.2014.04.059
10.1016/j.asoc.2020.106438
10.1109/ACCESS.2019.2913078
10.1016/j.apenergy.2013.07.008
10.1016/j.epsr.2017.01.032
10.1016/j.apenergy.2015.11.072
10.1016/j.energy.2019.116538
10.1016/j.jpowsour.2013.09.135
10.1109/ACCESS.2018.2797976
10.1038/s41598-020-61464-7
10.3390/en11071820
10.3390/en11040995
10.1016/j.apenergy.2014.08.081
10.1109/TIE.2017.2733475
10.3390/en13133306
10.3390/electronics6040102
10.3390/en10070987
10.1109/TII.2017.2777460
10.1109/ACCESS.2018.2888881
10.3390/en10091313
10.1049/iet-pel.2013.0746
10.3390/en13133307
10.1016/j.rser.2019.109334
10.1109/TIA.2019.2902532
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics9091546
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection (via ProQuest)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10_3390_electronics9091546
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-359327f319c8aa80fd09c9b05b51110c7b68c101256385cb6835f0cd3edbc11a3
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Fri Jul 25 07:06:30 EDT 2025
Tue Jul 01 02:00:13 EDT 2025
Thu Apr 24 23:02:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-359327f319c8aa80fd09c9b05b51110c7b68c101256385cb6835f0cd3edbc11a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8367-4112
0000-0001-7347-7879
0000-0002-7112-5148
0000-0001-9060-4454
OpenAccessLink https://www.proquest.com/docview/2599076322?pq-origsite=%requestingapplication%
PQID 2599076322
PQPubID 2032404
ParticipantIDs proquest_journals_2599076322
crossref_citationtrail_10_3390_electronics9091546
crossref_primary_10_3390_electronics9091546
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Huang (ref_3) 2018; 399
Naha (ref_37) 2020; 10
Xing (ref_38) 2014; 113
He (ref_17) 2014; 62
Lipu (ref_19) 2019; 55
ref_36
ref_11
ref_10
Xu (ref_32) 2019; 7
Du (ref_15) 2016; 54
Hannan (ref_35) 2020; 10
Liu (ref_14) 2017; 64
Hannan (ref_28) 2018; 6
ref_16
Lipu (ref_22) 2018; 6
Awadallah (ref_25) 2016; 6
Wu (ref_39) 2017; 10
Liu (ref_21) 2020; 16
Hagan (ref_29) 1994; 5
Chaoui (ref_26) 2017; 146
Chen (ref_44) 2014; 246
Xiao (ref_24) 2019; 7
Xiong (ref_13) 2018; 65
Charkhgard (ref_18) 2014; 7
Duong (ref_43) 2017; 204
Hu (ref_8) 2019; 114
Zhang (ref_9) 2014; 248
ref_20
Yang (ref_12) 2016; 164
ref_41
Wang (ref_34) 2014; 135
ref_40
ref_1
ref_2
ref_27
Lv (ref_30) 2018; 14
Hussain (ref_7) 2019; 12
Xia (ref_31) 2018; 26
He (ref_42) 2013; 101
Ball (ref_33) 2020; 94
Zheng (ref_45) 2016; 180
ref_5
Bian (ref_23) 2020; 191
ref_4
ref_6
References_xml – ident: ref_10
  doi: 10.3390/electronics8111324
– volume: 204
  start-page: 560
  year: 2017
  ident: ref_43
  article-title: Accurate approach to the temperature effect on state of charge estimation in the LiFePO4 battery under dynamic load operation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.07.056
– ident: ref_41
  doi: 10.3390/en10050679
– ident: ref_2
  doi: 10.3390/en13102638
– volume: 399
  start-page: 274
  year: 2018
  ident: ref_3
  article-title: Recycling of lithium-ion batteries: Recent advances and perspectives
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.07.116
– volume: 5
  start-page: 989
  year: 1994
  ident: ref_29
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.329697
– volume: 64
  start-page: 8128
  year: 2017
  ident: ref_14
  article-title: A State of Charge Estimation Method Based on H∞ Observer for Switched Systems of Lithium-Ion Nickel-Manganese-Cobalt Batteries
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2701766
– ident: ref_27
  doi: 10.3390/math7100959
– volume: 6
  start-page: 28150
  year: 2018
  ident: ref_22
  article-title: State of Charge Estimation for Lithium-ion Battery Using Recurrent NARX Neural Network Model Based Lighting Search Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2837156
– volume: 54
  start-page: 81
  year: 2016
  ident: ref_15
  article-title: An adaptive sliding mode observer for lithium-ion battery state of charge and state of health estimation in electric vehicles
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2016.05.014
– ident: ref_5
  doi: 10.3390/en13112825
– volume: 10
  start-page: 9526
  year: 2020
  ident: ref_37
  article-title: An Incremental Voltage Difference Based Technique for Online State of Health Estimation of Li-ion Batteries
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-66424-9
– volume: 246
  start-page: 667
  year: 2014
  ident: ref_44
  article-title: A novel approach for state of charge estimation based on adaptive switching gain sliding mode observer in electric vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.08.039
– ident: ref_11
  doi: 10.3390/electronics7110321
– volume: 6
  start-page: 95
  year: 2016
  ident: ref_25
  article-title: Accuracy improvement of SOC estimation in lithium-ion batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2016.03.003
– volume: 180
  start-page: 424
  year: 2016
  ident: ref_45
  article-title: Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.08.016
– volume: 101
  start-page: 808
  year: 2013
  ident: ref_42
  article-title: A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.08.031
– volume: 26
  start-page: 488
  year: 2018
  ident: ref_31
  article-title: A hybrid optimizer based on firefly algorithm and particle swarm optimization algorithm
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.07.009
– volume: 12
  start-page: 446
  year: 2019
  ident: ref_7
  article-title: Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation
  publication-title: Energies
  doi: 10.3390/en12030446
– volume: 16
  start-page: 3767
  year: 2020
  ident: ref_21
  article-title: Gaussian Process Regression with Automatic Relevance Determination Kernel for Calendar Aging Prediction of Lithium-Ion Batteries
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2941747
– volume: 62
  start-page: 783
  year: 2014
  ident: ref_17
  article-title: State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.04.059
– volume: 94
  start-page: 106438
  year: 2020
  ident: ref_33
  article-title: Optimization of drop ejection frequency in EHD inkjet printing system using an improved Firefly Algorithm
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2020.106438
– volume: 7
  start-page: 54192
  year: 2019
  ident: ref_24
  article-title: Accurate state-of-charge estimation approach for lithium-ion batteries by gated recurrent unit with ensemble optimizer
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2913078
– volume: 113
  start-page: 106
  year: 2014
  ident: ref_38
  article-title: State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.07.008
– volume: 146
  start-page: 189
  year: 2017
  ident: ref_26
  article-title: Aging prediction and state of charge estimation of a LiFePO4 battery using input time-delayed neural networks
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2017.01.032
– volume: 164
  start-page: 387
  year: 2016
  ident: ref_12
  article-title: A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.11.072
– volume: 191
  start-page: 116538
  year: 2020
  ident: ref_23
  article-title: Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116538
– volume: 248
  start-page: 1028
  year: 2014
  ident: ref_9
  article-title: A novel model of the initial state of charge estimation for LiFePO 4 batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.09.135
– volume: 6
  start-page: 10069
  year: 2018
  ident: ref_28
  article-title: Neural Network Approach for Estimating State of Charge of Lithium-ion Battery Using Backtracking Search Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2797976
– volume: 10
  start-page: 4687
  year: 2020
  ident: ref_35
  article-title: Toward Enhanced State of Charge Estimation of Lithium-ion Batteries Using Optimized Machine Learning Techniques
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61464-7
– ident: ref_6
  doi: 10.3390/en11071820
– ident: ref_20
  doi: 10.3390/en11040995
– volume: 135
  start-page: 81
  year: 2014
  ident: ref_34
  article-title: A method for joint estimation of state-of-charge and available energy of LiFePO4batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.08.081
– volume: 65
  start-page: 1526
  year: 2018
  ident: ref_13
  article-title: A Double-Scale, Particle-Filtering, Energy State Prediction Algorithm for Lithium-Ion Batteries
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2733475
– ident: ref_4
  doi: 10.3390/en13133306
– ident: ref_16
  doi: 10.3390/electronics6040102
– volume: 10
  start-page: 987
  year: 2017
  ident: ref_39
  article-title: State-of-Charge Estimation with State-of-Health Calibration for Lithium-Ion Batteries
  publication-title: Energies
  doi: 10.3390/en10070987
– volume: 14
  start-page: 3436
  year: 2018
  ident: ref_30
  article-title: Levenberg–Marquardt Backpropagation Training of Multilayer Neural Networks for State Estimation of a Safety-Critical Cyber-Physical System
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2777460
– ident: ref_36
– volume: 7
  start-page: 9205
  year: 2019
  ident: ref_32
  article-title: Collision-Free Fuzzy Formation Control of Swarm Robotic Cyber-Physical Systems Using a Robust Orthogonal Firefly Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2888881
– ident: ref_40
  doi: 10.3390/en10091313
– volume: 7
  start-page: 2758
  year: 2014
  ident: ref_18
  article-title: Hybrid state of charge estimation for lithium-ion batteries: Design and implementation
  publication-title: IET Power Electron.
  doi: 10.1049/iet-pel.2013.0746
– ident: ref_1
  doi: 10.3390/en13133307
– volume: 114
  start-page: 109334
  year: 2019
  ident: ref_8
  article-title: State estimation for advanced battery management: Key challenges and future trends
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109334
– volume: 55
  start-page: 4225
  year: 2019
  ident: ref_19
  article-title: Extreme Learning Machine Model for State of Charge Estimation of Lithium-ion battery Using Gravitational Search Algorithm
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2019.2902532
SSID ssj0000913830
Score 2.4295616
Snippet The development of an accurate and robust state-of-charge (SOC) estimation is crucial for the battery lifetime, efficiency, charge control, and safe driving of...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1546
SubjectTerms Accuracy
Aging
Algorithms
Aluminum oxide
Back propagation
Bias
Charge efficiency
Climate change
Cobalt oxides
Electric vehicles
Fault diagnosis
Heuristic methods
Lithium
Lithium-ion batteries
Manganese
Network management systems
Neural networks
Nickel
Noise
Optimization
Optimization techniques
Rechargeable batteries
Root-mean-square errors
State of charge
Time lag
Title State of Charge Estimation in Lithium-Ion Batteries: A Neural Network Optimization Approach
URI https://www.proquest.com/docview/2599076322
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8ELnowfkYUSQ_ezMK2rmXzYtAM0QgaIwmJh6Ufq5LIQIGrf7uvW_kwJtzWdNvhte_192v7fg-hC8GA_CtgqoEWJiXH504UaeL4gnABANXleYZ3t8c6_eBhQAd2w21qr1UuYmIeqNVYmj3yBsB04HEM5t_15MsxVaPM6aotoVFCFQjBYVhGlZu49_yy3GUxqpchcYtsGQL8vrGqLjONoJca5Lu-Iv0NyPkq095DuxYe4lYxnvtoK80O0M6aaOAhesvxIR5rbI7K31Mcg5cWCYh4mOHH4exjOB8599AsxDOBC1_hFjYyHPDrXnHvGz9BrBjZJEzcssriR6jfjl9vO44tkeBI8J2ZQyjgr6aGZxlyHrpauZGMhEsFACnPlU3BQmkkvCj4GZXQIlS7UpFUCel5nByjcjbO0hOEdSAlUUCXWUQCTRhPKSdM-qmvqGBKVZG3MFMirX64KWPxmQCPMKZN_pu2ii6X30wK9YyNb9cW1k-sJ02T1bifbu4-Q9u-4cL5_a8aKs--5-k5AIaZqKNS2L6r27kBre5P_AuU9MVv
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTsJAFL1BXKgL4zOiqLPQlWloO53SmhhDFAR5uIGExEXtzLRKIg8FYvwpv9E7fQDGhB27NtN2cXt655zO3HMBLriN4l-iUrVCrkpyTF9z3ZBqJqc-R4Kq-1GFd7NlVzvWY5d1M_CT1sKobZVpTowStRwK9Y-8gDQddZyN-LsdfWiqa5RaXU1baMSwqAffXyjZxje1e3y_l6ZZKbfvqlrSVUATCLeJRhlSlmKIx8LxfUcPpe4Kl-uMI_cwdFHktiOU6xVDaDKBZ5SFupA0kFwYhk_xuWuwblGcyVVleuVh9k9HeWw6VI9rc3BcL8x72YxdHGWKZy_Of3_TfzSnVXZgOyGjpBSjZxcywWAPthYsCvfhOWKjZBgStTD_GpAy5oS43JH0BqTRm7z1pn2thqexVScq72tSIsr0Ax_dineZkyfMTP2k5JOUEh_zA-isJHSHkB0MB8ERkNASgkoU57ZLrZDafsB8agszMCXjtpQ5MNIweSJxK1dNM949VC0qtN7_0ObganbPKPbqWHp1Po2-l3y3Y2-OsuPlw-ewUW03G16j1qqfwKapVHi08ywP2cnnNDhFqjLhZxE-CLysGpC_tZ_9sA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT8IwFD5BSIw-GK8RRe2DPpmFsdLBTIxBgYAgEiOJiQ9zbVclkYsCMf41f52nuwDGhDfe1mzrw9m30-9rzwXglNso_iUq1bziOiXH8gzHUdSwOPU4ElTTCzK871p2rZO_fWJPCfiJc2F0WGXsEwNHLQdC75FnkaajjrMRf1kVhUW0y9Wr4YehO0jpk9a4nUYIkYb__YXybXRZL-O3PrOsauXxpmZEHQYMgdAbG5QhfSkovBZFzyuaSpqOcLjJOPKQnCkK3C4KXQGLIUyZwBFlyhSS-pKLXM6jOO8KpApaFSUhdV1ptR-mOzy64maRmmGmDqWOmZ11thk5eJdp1j2_Gv5dDIIVrroJGxE1JaUQS1uQ8PvbsD5XsHAHngNuSgaK6GP6V59U0EOEyY-k2yfN7vitO-kZdRyGhTtRh1-QEtElQHDqVhhzTu7RT_WiBFBSiqqa70JnKcbbg2R_0Pf3gai8EFSiVLcdmlfU9nzmUVtYviUZt6VMQy42kyui2uW6hca7ixpGm9b9b9o0nE_fGYaVOxY-nYmt70Z_8cidYe5g8e0TWEUwus16q3EIa5aW5EEYWgaS48-Jf4S8ZcyPI4AQeFk2Jn8BbMEDUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+Charge+Estimation+in+Lithium-Ion+Batteries%3A+A+Neural+Network+Optimization+Approach&rft.jtitle=Electronics+%28Basel%29&rft.au=Hossain+Lipu%2C+M+S&rft.au=Hannan%2C+M+A&rft.au=Hussain%2C+Aini&rft.au=Ayob%2C+Afida&rft.date=2020-09-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=9&rft.issue=9&rft.spage=1546&rft_id=info:doi/10.3390%2Felectronics9091546&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon