Experimental Study to Improve the Hydrodynamic and Thermal Efficiencies of a Cross-Flow Car Radiator Using a New Prepared Hybrid Nanofluid Composed of Graphene Oxide and Silicon Oxide Nanoparticles Dispersed in Water–Ethylene Glycol Fluid

The utilization of nanofluids has found numerous applications in various industries, including transportation, electronics, and energy. By substituting conventional fluids with nanofluids, heat transfer rates can increase. This not only enhances engine efficiency, leading to decreased fuel consumpti...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of thermophysics Vol. 45; no. 2
Main Authors Rashidi, Omid, Sajadi, S. Mohammad, Soufivand, Mohammadreza, D′Orazio, Annunziata, Karimipour, Arash
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The utilization of nanofluids has found numerous applications in various industries, including transportation, electronics, and energy. By substituting conventional fluids with nanofluids, heat transfer rates can increase. This not only enhances engine efficiency, leading to decreased fuel consumption but also enables the design of more powerful engines adaptable to various climates. This study focuses on a hybrid nanofluid composed of graphene oxide and silicon oxide nanoparticles in a water-ethylene glycol base fluid, which can have an application in car radiators. Experiments, validated with distilled water, explored various volume fractions (0.1 % to 1.0 %) and coolant flow rates (3 to 7 l/min). Results showed that increasing flow rates improved heat transfer, displacement heat transfer coefficient (HTC), and Nusselt number. Similarly, higher nanoparticle fractions enhanced heat transfer and HTC with minimal pressure drop. The radiator's thermal performance significantly improved with nanofluid use, but a reduction in HTC relative to pumping power was noted.
AbstractList The utilization of nanofluids has found numerous applications in various industries, including transportation, electronics, and energy. By substituting conventional fluids with nanofluids, heat transfer rates can increase. This not only enhances engine efficiency, leading to decreased fuel consumption but also enables the design of more powerful engines adaptable to various climates. This study focuses on a hybrid nanofluid composed of graphene oxide and silicon oxide nanoparticles in a water-ethylene glycol base fluid, which can have an application in car radiators. Experiments, validated with distilled water, explored various volume fractions (0.1 % to 1.0 %) and coolant flow rates (3 to 7 l/min). Results showed that increasing flow rates improved heat transfer, displacement heat transfer coefficient (HTC), and Nusselt number. Similarly, higher nanoparticle fractions enhanced heat transfer and HTC with minimal pressure drop. The radiator's thermal performance significantly improved with nanofluid use, but a reduction in HTC relative to pumping power was noted.
The utilization of nanofluids has found numerous applications in various industries, including transportation, electronics, and energy. By substituting conventional fluids with nanofluids, heat transfer rates can increase. This not only enhances engine efficiency, leading to decreased fuel consumption but also enables the design of more powerful engines adaptable to various climates. This study focuses on a hybrid nanofluid composed of graphene oxide and silicon oxide nanoparticles in a water-ethylene glycol base fluid, which can have an application in car radiators. Experiments, validated with distilled water, explored various volume fractions (0.1 % to 1.0 %) and coolant flow rates (3 to 7 l/min). Results showed that increasing flow rates improved heat transfer, displacement heat transfer coefficient (HTC), and Nusselt number. Similarly, higher nanoparticle fractions enhanced heat transfer and HTC with minimal pressure drop. The radiator's thermal performance significantly improved with nanofluid use, but a reduction in HTC relative to pumping power was noted.
ArticleNumber 23
Author Sajadi, S. Mohammad
Rashidi, Omid
Karimipour, Arash
Soufivand, Mohammadreza
D′Orazio, Annunziata
Author_xml – sequence: 1
  givenname: Omid
  surname: Rashidi
  fullname: Rashidi, Omid
  organization: Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University
– sequence: 2
  givenname: S. Mohammad
  surname: Sajadi
  fullname: Sajadi, S. Mohammad
  organization: Department of Nutrition, Cihan University-Erbil
– sequence: 3
  givenname: Mohammadreza
  surname: Soufivand
  fullname: Soufivand, Mohammadreza
  organization: Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica, Sapienza Università di Roma
– sequence: 4
  givenname: Annunziata
  surname: D′Orazio
  fullname: D′Orazio, Annunziata
  organization: Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica, Sapienza Università di Roma
– sequence: 5
  givenname: Arash
  surname: Karimipour
  fullname: Karimipour, Arash
  email: arashkarimipour@gmail.com
  organization: Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University
BookMark eNp9kU1uFDEUhC0UJCaBC7CyxLrBP-kfL9EwM4kUJYgMgl3LbT9nHHXbje1J0jvukBvmBBwBdyYSOxaWLb-qr2TXMTpy3gFC7yn5SAmpP0VK6qosCOMF4ZySgr1CC1rWrBBlVR-hBaGiLARrfr5BxzHeEkJELfgC_Vk9jBDsAC7JHl-nvZ5w8vh8GIO_A5x2gM8mHbyenByswtJpvN1BGLJ6ZYxVFlxeEXuDJV4GH2Ox7v09XsqAv0ltZfIBf4_W3eT5JdzjrwFGGUBnbhesxpfSedPv82nph9HHPMmsTZDjDhzgqwer4Tn22vZWefdyM9syJ1nV5_QvNuZnzF7r8A-ZIDz9flyl3dTPjE0_Kd_j9ZzyFr02so_w7mU_Qdv1ars8Ky6uNufLzxeF4lSkgpcVExUjrCNacSDECAZQ8YZ2pqka4LosjaIamCSmAXKqREeZluRU1BQ6foI-HLD5H3_tIab21u-Dy4ktE7RhJcuFZBU7qNT8cQFMO-YuZJhaStq52PZQbJuLbZ-LbVk28YMpZrG7gfAP_R_XX6sBrYM
CitedBy_id crossref_primary_10_1016_j_hybadv_2024_100192
Cites_doi 10.1016/j.enbuild.2006.12.001
10.1016/j.applthermaleng.2004.11.013
10.1016/j.aej.2022.06.012
10.1007/s10765-020-02716-6
10.1002/9781119417989
10.1016/j.ijheatmasstransfer.2008.07.041
10.4271/960372
10.1016/j.applthermaleng.2004.09.005
10.1002/9781118671627
10.1016/j.physa.2019.01.035
10.1007/s10765-020-02702-y
10.1016/j.rser.2017.10.097
10.1080/0371750X.2009.11082156
10.1007/s00707-005-0248-9
10.1016/j.ijrefrig.2021.05.016
10.1007/s10765-021-02792-2
10.1016/j.rser.2010.08.018
10.4271/740088
10.1016/S0894-1777(97)10054-1
10.1243/0954407011528473
10.1016/j.ijrefrig.2008.08.007
10.1142/S0219581X08005493
10.1016/j.rser.2011.04.025
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10765-023-03310-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1572-9567
ExternalDocumentID 10_1007_s10765_023_03310_2
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADJSZ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYGD
AFEXP
AFFNX
AFGCZ
AFGFF
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACDTI
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c319t-356296202b0dc3e00f92ee6381bf868e3d55fc1de2a0f8e04c9b12da04971eb3
IEDL.DBID AGYKE
ISSN 0195-928X
IngestDate Thu Oct 10 16:50:05 EDT 2024
Thu Sep 12 17:38:22 EDT 2024
Fri Feb 09 01:19:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Silicon oxide
Water–Ethylene glycol
Graphene oxide
Heat transfer in radiator
Experimental approach
Hybrid nanofluid
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-356296202b0dc3e00f92ee6381bf868e3d55fc1de2a0f8e04c9b12da04971eb3
PQID 2918252195
PQPubID 2043777
ParticipantIDs proquest_journals_2918252195
crossref_primary_10_1007_s10765_023_03310_2
springer_journals_10_1007_s10765_023_03310_2
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Journal of Thermophysical Properties and Thermophysics and Its Applications
PublicationTitle International journal of thermophysics
PublicationTitleAbbrev Int J Thermophys
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References J.L. Routbort, D. Singh, G. Chen, Heavy vehicle systems optimization merit review and peer evaluation. (Argonne National Laboratory USA, 2007), https://www.energy.gov/eere/analysis/articles/heavy-vehicle-systems-optimization-peer-review
KarimipourAMalekahmadiOKarimipourAShahgholiMLiZInt. J. Thermophys.2020411162020IJT....41..116K1:CAS:528:DC%2BB3cXht1CitrfM10.1007/s10765-020-02702-y
BhattadASarkarJGhoshPRenew. Sust. Energ. Rev.201882365636691:CAS:528:DC%2BC2sXhvVarsb3M10.1016/j.rser.2017.10.097
DingGPengHJiangWGaoYInt. J. Refrig.2009321141231:CAS:528:DC%2BD1cXhsVShu7nL10.1016/j.ijrefrig.2008.08.007
F.M. White, Fluid Mechanics, 7th edn. (Mcgraw-Hill series in mechanical engineering, 2011)
DittusFWUniv. Cal. Pub. Eng.19302443461
YıldızGAğbulutÜGürelAEInt. J. Refrig.202112934236410.1016/j.ijrefrig.2021.05.016
BejanAConvection Heat Transfer20134New YorkWiley10.1002/9781118671627
TzengSCLinCWHuangKDActa Mech.2005179112310.1007/s00707-005-0248-9
VărdaruAHuminicGHuminicAFleacăCDumitracheFMorjanIAlex. Eng. J.202261121111212210.1016/j.aej.2022.06.012
ChoiSUSYuWHullJRZhangZGLockwoodFEIntSAEJ. Passeng. Cars Mech. Syst.20021113843
CarluccioEStaraceGFicarellaALaforgiaDAppl. Therm. Eng.2005251995201310.1016/j.applthermaleng.2004.11.013
T.L. Bergman, A.S. Lavine, F.P., Incropera, D.P. DeWitt, Introduction to Heat Transfer, 6th edn. (Wiley, New York, 2011)
SaidurRKaziSNHossainMSRahmanMMMohammedHARenew. Sust. Energ. Rev.2011153103231:CAS:528:DC%2BC3cXhtl2isbzN10.1016/j.rser.2010.08.018
MurshedSSLeongKCYangCNguyenNTInt. J. Nanosci.200873253311:CAS:528:DC%2BD1MXjtFKqt74%3D10.1142/S0219581X08005493
K. Emmenthal, W. Hucho, SAE Technical Paper 740088 (1974) https://doi.org/10.4271/740088
JuGerJJCrookRFIntSAEJ. Engines19991087181
ColemanHWSteeleWGExperimentation, Validation, and Uncertainty Analysis for Engineers20183New YorkWiley10.1002/9781119417989
V. Sridhara, B.S. Gowrishankar, Snehalatha, L.N. Satapathy, Trans. Indian Ceram. Soc. 68, 1–17 (2009)
HagenKDHeat Transfer with Applications19981HobokenPrentice Hall
M. Gollin, D. Bjork, SAE Technical Paper 960372 (1996) https://doi.org/10.4271/960372
AglaweKRYadavRKThoolSBMater. Today: Proc.202143366372
WitryAAl-HajeriMHBondokAAAppl. Therm. Eng.200525120712181:CAS:528:DC%2BD2MXht1ejsbc%3D10.1016/j.applthermaleng.2004.09.005
MahyariAAKarimipourAAfrandMPhysica A2019521981122019PhyA..521...98M1:CAS:528:DC%2BC1MXisFCntb8%3D10.1016/j.physa.2019.01.035
ChiouJPSAE Int.198089222230
MorrisSCGoodJJFossJFExp. Therm. Fluid Sci.19981710010610.1016/S0894-1777(97)10054-1
SarkarJRenew. Sust. Energ. Rev.201115327132771:CAS:528:DC%2BC3MXntlOrtL0%3D10.1016/j.rser.2011.04.025
ParkKJJungDEnergy Build.2007391061106410.1016/j.enbuild.2006.12.001
TrisaksriVWongwisesSInt. J. Heat Mass Transf.200952158215881:CAS:528:DC%2BD1MXotVagtQ%3D%3D10.1016/j.ijheatmasstransfer.2008.07.041
MartinKSözenAÇiftçiEAliHMInt. J. Thermophys.20204112110.1007/s10765-020-02716-6
ÇiftçiEInt. J. Thermophys.202142382021IJT....42...38C10.1007/s10765-021-02792-2
ChenJAWangDFZhengLZProc. Inst. Mech. Eng. D200121591191810.1243/0954407011528473
3310_CR14
3310_CR5
3310_CR12
FW Dittus (3310_CR32) 1930; 2
JJ JuGer (3310_CR16) 1999; 108
JA Chen (3310_CR17) 2001; 215
AA Mahyari (3310_CR25) 2019; 521
K Martin (3310_CR22) 2020; 41
KJ Park (3310_CR6) 2007; 39
J Sarkar (3310_CR4) 2011; 15
E Çiftçi (3310_CR21) 2021; 42
SUS Choi (3310_CR1) 2002; 111
KD Hagen (3310_CR27) 1998
SS Murshed (3310_CR30) 2008; 7
A Bhattad (3310_CR10) 2018; 82
3310_CR31
G Yıldız (3310_CR7) 2021; 129
HW Coleman (3310_CR29) 2018
3310_CR26
JP Chiou (3310_CR13) 1980; 89
E Carluccio (3310_CR18) 2005; 25
SC Tzeng (3310_CR2) 2005; 179
G Ding (3310_CR9) 2009; 32
A Bejan (3310_CR28) 2013
SC Morris (3310_CR15) 1998; 17
R Saidur (3310_CR11) 2011; 15
KR Aglawe (3310_CR3) 2021; 43
A Witry (3310_CR19) 2005; 25
V Trisaksri (3310_CR8) 2009; 52
A Karimipour (3310_CR23) 2020; 41
A Vărdaru (3310_CR24) 2022; 61
3310_CR20
References_xml – volume: 39
  start-page: 1061
  year: 2007
  ident: 3310_CR6
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2006.12.001
  contributor:
    fullname: KJ Park
– ident: 3310_CR31
– volume: 25
  start-page: 1995
  year: 2005
  ident: 3310_CR18
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2004.11.013
  contributor:
    fullname: E Carluccio
– volume: 61
  start-page: 12111
  year: 2022
  ident: 3310_CR24
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.06.012
  contributor:
    fullname: A Vărdaru
– volume: 41
  start-page: 1
  year: 2020
  ident: 3310_CR22
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-020-02716-6
  contributor:
    fullname: K Martin
– volume-title: Experimentation, Validation, and Uncertainty Analysis for Engineers
  year: 2018
  ident: 3310_CR29
  doi: 10.1002/9781119417989
  contributor:
    fullname: HW Coleman
– volume: 52
  start-page: 1582
  year: 2009
  ident: 3310_CR8
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.07.041
  contributor:
    fullname: V Trisaksri
– ident: 3310_CR14
  doi: 10.4271/960372
– volume: 25
  start-page: 1207
  year: 2005
  ident: 3310_CR19
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2004.09.005
  contributor:
    fullname: A Witry
– ident: 3310_CR26
– volume-title: Convection Heat Transfer
  year: 2013
  ident: 3310_CR28
  doi: 10.1002/9781118671627
  contributor:
    fullname: A Bejan
– ident: 3310_CR20
– volume: 521
  start-page: 98
  year: 2019
  ident: 3310_CR25
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.01.035
  contributor:
    fullname: AA Mahyari
– volume: 41
  start-page: 116
  year: 2020
  ident: 3310_CR23
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-020-02702-y
  contributor:
    fullname: A Karimipour
– volume: 82
  start-page: 3656
  year: 2018
  ident: 3310_CR10
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2017.10.097
  contributor:
    fullname: A Bhattad
– ident: 3310_CR5
  doi: 10.1080/0371750X.2009.11082156
– volume: 43
  start-page: 366
  year: 2021
  ident: 3310_CR3
  publication-title: Mater. Today: Proc.
  contributor:
    fullname: KR Aglawe
– volume: 179
  start-page: 11
  year: 2005
  ident: 3310_CR2
  publication-title: Acta Mech.
  doi: 10.1007/s00707-005-0248-9
  contributor:
    fullname: SC Tzeng
– volume: 129
  start-page: 342
  year: 2021
  ident: 3310_CR7
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2021.05.016
  contributor:
    fullname: G Yıldız
– volume: 42
  start-page: 38
  year: 2021
  ident: 3310_CR21
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-021-02792-2
  contributor:
    fullname: E Çiftçi
– volume: 89
  start-page: 222
  year: 1980
  ident: 3310_CR13
  publication-title: SAE Int.
  contributor:
    fullname: JP Chiou
– volume: 111
  start-page: 38
  year: 2002
  ident: 3310_CR1
  publication-title: J. Passeng. Cars Mech. Syst.
  contributor:
    fullname: SUS Choi
– volume: 15
  start-page: 310
  year: 2011
  ident: 3310_CR11
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2010.08.018
  contributor:
    fullname: R Saidur
– ident: 3310_CR12
  doi: 10.4271/740088
– volume: 17
  start-page: 100
  year: 1998
  ident: 3310_CR15
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/S0894-1777(97)10054-1
  contributor:
    fullname: SC Morris
– volume: 108
  start-page: 71
  year: 1999
  ident: 3310_CR16
  publication-title: J. Engines
  contributor:
    fullname: JJ JuGer
– volume: 2
  start-page: 443
  year: 1930
  ident: 3310_CR32
  publication-title: Univ. Cal. Pub. Eng.
  contributor:
    fullname: FW Dittus
– volume: 215
  start-page: 911
  year: 2001
  ident: 3310_CR17
  publication-title: Proc. Inst. Mech. Eng. D
  doi: 10.1243/0954407011528473
  contributor:
    fullname: JA Chen
– volume: 32
  start-page: 114
  year: 2009
  ident: 3310_CR9
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2008.08.007
  contributor:
    fullname: G Ding
– volume: 7
  start-page: 325
  year: 2008
  ident: 3310_CR30
  publication-title: Int. J. Nanosci.
  doi: 10.1142/S0219581X08005493
  contributor:
    fullname: SS Murshed
– volume-title: Heat Transfer with Applications
  year: 1998
  ident: 3310_CR27
  contributor:
    fullname: KD Hagen
– volume: 15
  start-page: 3271
  year: 2011
  ident: 3310_CR4
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2011.04.025
  contributor:
    fullname: J Sarkar
SSID ssj0009793
Score 2.415137
Snippet The utilization of nanofluids has found numerous applications in various industries, including transportation, electronics, and energy. By substituting...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
SubjectTerms Classical Mechanics
Condensed Matter Physics
Cross flow
Distilled water
Energy consumption
Ethylene glycol
Flow velocity
Fluid flow
Graphene
Heat transfer
Heat transfer coefficients
Industrial Chemistry/Chemical Engineering
Nanofluids
Nanoparticles
Physical Chemistry
Physics
Physics and Astronomy
Pressure drop
Radiators
Silicon oxides
Title Experimental Study to Improve the Hydrodynamic and Thermal Efficiencies of a Cross-Flow Car Radiator Using a New Prepared Hybrid Nanofluid Composed of Graphene Oxide and Silicon Oxide Nanoparticles Dispersed in Water–Ethylene Glycol Fluid
URI https://link.springer.com/article/10.1007/s10765-023-03310-2
https://www.proquest.com/docview/2918252195
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELagKyQ48LOwostSzYEbeJU4TpMcuyVpBWJB0BXlFDnJWKqIklWbii0n3oE35Al4BMb5UcrfYW9RHE_k-PPncTzzmbFnChVK10EeONrjUmqf--gJLiS6ylfCFcrkO785H88v5Kulu-zzuOtg925HsibqvVw3b2ySiR1uOeSTcOLdA9cIfg3YwWT26XXYa-16jdZufQyh8Jdtrsy_rfw-H_VO5h_7ovV0E91jiy5pp4ky-Xy6rZLT9OvfGo7Xacl9drd1P2HS4OUBu4HFIbuzJ0p4yG7VQaHp5iH7Ge7J_4OJONxBVULzHwKBXEeY7zJi4OZUe1BFBgQ7ovocwlqaAs3RvxsoNSiYmvbzKC-_wFSt4b0RRaAFP9RBC1ROdAvv1lhHxJNdk0kGxP2lzrd0ZXir3FAJ2ZoZkW3iaHh7tcqwfu2HVU6QLto7ptplF_IHL1dGDd3UXRXwkXzr9Y9v30MCaG5szPIdjQWIzFsesUUULqZz3p4QwVOijoo75L0FY2GJxMpSBy1LBwKRKMVOtD_20clcV6d2hkJZ2kdLpkFii0zRssizMXGO2KAoC3zMwCfPyiE8236SySCzA5l6BCOpNOogUWrInncwiS8bHZC4V3w2HRpTh8Z1h8ZiyE46JMUtJ2xiEdBajhAbuEP2okNGX_x_a8fXe_wJu01fRDah5SdsUK23-JQ8pyoZ0UiJzs7OR-2IGbGbF2LyC-FiFcs
link.rule.ids 315,786,790,27955,27956,41114,41556,42183,42625,52144,52267
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LjtMwFLVQRwhY8BhAFAa4C3bgUWI7TbIclbSFeYCgI8oqcpJrqSJKRk0qKCv-gT_kC_gErvNQywgWs6vq5qaNT46Pm3vPZeyFRo3Kk8hDaXyulAl4gL7gQqGnAy08oW298-nZaHau3i68RVcUVvXZ7v0jyYapd4rd_JGtJpbckSRKOBHvnrIr_IDtHU0_H0dbs12_Ndtt-hCKYNEVy_w7yt8L0lZlXnow2qw3kzvsvP-mbZrJl8N1nRym3y-ZOF71p9xltzsBCkctYu6xa1jss1s7toT77HqTFppW99nvaKcBANicww3UJbT_RCCQeITZJiMObvvagy4yIOAR2ecQNeYUaJv_VlAa0DC2F4BP8vIrjPUKPlhbBNryQ5O2QONEuPB-hU1OPMW1tWRA7F-afE2vLHOVFY1QrKm12SaWhnfflhk2p_24zAnURfeOPeyiT_qD10vrh26PXRbwidT16tePnxFBNLcxpvmG7gaY2LM8YPNJNB_PeNcjgqdEHjWXpN_CkXBE4mSpRMcxoUAkUnETE4wClJnnmdTNUGjHBOioNExckWnaGPkuJvIhGxRlgY8YBKStJCHaDZJMhZkbqtQnHClt0ISJ1kP2ssdJfNE6gcRbz2c7oTFNaNxMaCyG7KCHUtyxQhWLkHZzpJdCb8he9cjYDv8_2uOrffw5uzGbn57EJ2_Ojp-wm3R1VJtofsAG9WqNT0lH1cmz7rb5A-oHFzo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZQEQgOCAqIpQXmwA2sJo6ziY_VdtPlr1TQir1FTjyWVoqS1W4qujfegTfkCXgExk6iXRAcuEVxPI4y4_E38cxnxl5q1CjjCLmKbMKltClPMRFcSIx1qkUstKt3_nA2nl3Kt_N4vlPF77Pdhy3JrqbBsTTV7dHS2KOdwrdk7CqLIx5EBFA4OeGbbml0Nn4pjre0u0lHu-tPJBTpvC-b-buM35emLd78Y4vUrzzZfXavh4xw3On4AbuB9T67u0MkuM9u-UTOcv2Q_ZzuUPaDyxLcQNtA9-8AgeAezDaGvGZ3Ej3o2gCZCrnnCqaeTgLdcb1raCxomLgX5VnVfIWJXsEnR2RAQTr4RANqJxcJ5yv0Wewk11V_AfnrxlZXdOV8TbOmFpJ16oixya_Cx-uFQT_s50VFZlj3d1y35ZCmBycLx2Du-i5q-EJ4ePXj2_cpGVXlZJxWG7JfyNwoj9hFNr2YzHh_qgMvabq3PCLEpcYiEEVgygiDwCqBSG4gLGw6TjEycWzL0KDQgU0xkKUqQmE0hTJJSKH_Y7ZXNzU-YZASGorIBsO0MFKZUMkyIX1LbdGqQusRezXoM1923B35lqXZaT8n7ede-7kYscNB5Xk_j9e5UBR_EcJR8Yi9Hsxg2_xvaU__7_EX7Pb5SZa_f3P27oDdoY8ju8zwQ7bXrq7wGQGftnjubfsXW_D-hw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+Study+to+Improve+the+Hydrodynamic+and+Thermal+Efficiencies+of+a+Cross-Flow+Car+Radiator+Using+a+New+Prepared+Hybrid+Nanofluid+Composed+of+Graphene+Oxide+and+Silicon+Oxide+Nanoparticles+Dispersed+in+Water%E2%80%93Ethylene+Glycol+Fluid&rft.jtitle=International+journal+of+thermophysics&rft.au=Rashidi%2C+Omid&rft.au=Sajadi%2C+S.+Mohammad&rft.au=Soufivand%2C+Mohammadreza&rft.au=D%E2%80%B2Orazio%2C+Annunziata&rft.date=2024-02-01&rft.pub=Springer+US&rft.issn=0195-928X&rft.eissn=1572-9567&rft.volume=45&rft.issue=2&rft_id=info:doi/10.1007%2Fs10765-023-03310-2&rft.externalDocID=10_1007_s10765_023_03310_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-928X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-928X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-928X&client=summon