DKD–DAD: a novel framework with discriminative kinematic descriptor and deep attention-pooled descriptor for action recognition
In order to improve action recognition accuracy, the discriminative kinematic descriptor and deep attention-pooled descriptor are proposed. Firstly, the optical flow field is transformed into a set of kinematic fields with more discriminativeness. Subsequently, two kinematic features are constructed...
Saved in:
Published in | Neural computing & applications Vol. 32; no. 9; pp. 5285 - 5302 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.05.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0941-0643 1433-3058 |
DOI | 10.1007/s00521-019-04030-1 |
Cover
Summary: | In order to improve action recognition accuracy, the discriminative kinematic descriptor and deep attention-pooled descriptor are proposed. Firstly, the optical flow field is transformed into a set of kinematic fields with more discriminativeness. Subsequently, two kinematic features are constructed, which more accurately depict the dynamic characteristics of action subject from the multi-order divergence and curl fields. Secondly, by introducing both of the tight-loose constraint and anti-confusion constraint, a discriminative fusion method is proposed, which guarantees better within-class compactness and between-class separability, meanwhile reduces the confusion caused by outliers. Furthermore, a discriminative kinematic descriptor is constructed. Thirdly, a prediction-attentional pooling method is proposed, which accurately focuses its attention on the discriminative local regions. On this basis, a deep attention-pooled descriptor (DKD–DAD) is constructed. Finally, a novel framework with discriminative kinematic descriptor and deep attention-pooled descriptor is presented, which comprehensively obtains the discriminative dynamic and static information in a video. Consequently, accuracies are improved. Experiments on two challenging datasets verify the effectiveness of our methods. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-019-04030-1 |