A high-throughput strategy for rapid synthesis and characterization of Ni-based superalloys

This study developed a new high-throughput strategy, designated as hot-isostatic-pressing-based micro-synthesis approach (HIP-MSA), to optimize high-performance nickel-based superalloys in a rapid, efficient, and cost-effective manner. A specific honeycomb-array structure containing 106 discrete cel...

Full description

Saved in:
Bibliographic Details
Published inRare metals Vol. 41; no. 8; pp. 2693 - 2700
Main Authors Zhao, Lei, Liu, Su-Ran, Jiang, Liang, Yang, Li-Xia, Zhu, Li-Long, Wang, Hui, Zhang, Wen-Yu, Huang, Zai-Wang, Deng, Yuan-Bin, Broeckmann, Christoph, Huang, Hai-Liang, Wang, Hai-Zhou
Format Journal Article
LanguageEnglish
Published Beijing Nonferrous Metals Society of China 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study developed a new high-throughput strategy, designated as hot-isostatic-pressing-based micro-synthesis approach (HIP-MSA), to optimize high-performance nickel-based superalloys in a rapid, efficient, and cost-effective manner. A specific honeycomb-array structure containing 106 discrete cells was designed and optimized using finite element analysis (FEA) and then applied to create a combinatorial library consisting of 106 Ni-based superalloys with various Co, Nb and Ta concentrations. By integration with high-throughput characterization tools, extensive composition and phase structure data were collected quickly and efficiently. In the superalloys with higher amounts of Nb and Ta, the detrimental η phase displaying needle-like morphology was observed, and its content (wt%) increased drastically with Ta and Nb contents increasing. However, the increase of Co addition in those alloys was confirmed to be surprisingly beneficial by significantly suppressing the formation of η phase that was induced by high Nb and Ta contents. The zero-phase-fraction (ZPF) line of η phase was established, which is critical to design superalloy chemistry for superior microstructural stability at high-temperature service conditions. Graphical abstract
AbstractList This study developed a new high-throughput strategy, designated as hot-isostatic-pressing-based micro-synthesis approach (HIP-MSA), to optimize high-performance nickel-based superalloys in a rapid, efficient, and cost-effective manner. A specific honeycomb-array structure containing 106 discrete cells was designed and optimized using finite element analysis (FEA) and then applied to create a combinatorial library consisting of 106 Ni-based superalloys with various Co, Nb and Ta concentrations. By integration with high-throughput characterization tools, extensive composition and phase structure data were collected quickly and efficiently. In the superalloys with higher amounts of Nb and Ta, the detrimental η phase displaying needle-like morphology was observed, and its content (wt%) increased drastically with Ta and Nb contents increasing. However, the increase of Co addition in those alloys was confirmed to be surprisingly beneficial by significantly suppressing the formation of η phase that was induced by high Nb and Ta contents. The zero-phase-fraction (ZPF) line of η phase was established, which is critical to design superalloy chemistry for superior microstructural stability at high-temperature service conditions.
This study developed a new high-throughput strategy, designated as hot-isostatic-pressing-based micro-synthesis approach (HIP-MSA), to optimize high-performance nickel-based superalloys in a rapid, efficient, and cost-effective manner. A specific honeycomb-array structure containing 106 discrete cells was designed and optimized using finite element analysis (FEA) and then applied to create a combinatorial library consisting of 106 Ni-based superalloys with various Co, Nb and Ta concentrations. By integration with high-throughput characterization tools, extensive composition and phase structure data were collected quickly and efficiently. In the superalloys with higher amounts of Nb and Ta, the detrimental η phase displaying needle-like morphology was observed, and its content (wt%) increased drastically with Ta and Nb contents increasing. However, the increase of Co addition in those alloys was confirmed to be surprisingly beneficial by significantly suppressing the formation of η phase that was induced by high Nb and Ta contents. The zero-phase-fraction (ZPF) line of η phase was established, which is critical to design superalloy chemistry for superior microstructural stability at high-temperature service conditions. Graphical abstract
Author Zhang, Wen-Yu
Wang, Hui
Wang, Hai-Zhou
Jiang, Liang
Broeckmann, Christoph
Huang, Zai-Wang
Zhao, Lei
Zhu, Li-Long
Huang, Hai-Liang
Deng, Yuan-Bin
Liu, Su-Ran
Yang, Li-Xia
Author_xml – sequence: 1
  givenname: Lei
  surname: Zhao
  fullname: Zhao, Lei
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Metal Materials Characterization, Central Iron and Steel Research Institute
– sequence: 2
  givenname: Su-Ran
  surname: Liu
  fullname: Liu, Su-Ran
  organization: National Center for Materials Service Safety, University of Science and Technology Beijing
– sequence: 3
  givenname: Liang
  surname: Jiang
  fullname: Jiang, Liang
  organization: Institute for Advanced Studies in Precision Materials, Yantai University
– sequence: 4
  givenname: Li-Xia
  surname: Yang
  fullname: Yang, Li-Xia
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Metal Materials Characterization, Central Iron and Steel Research Institute
– sequence: 5
  givenname: Li-Long
  orcidid: 0000-0002-4404-8650
  surname: Zhu
  fullname: Zhu, Li-Long
  email: lilong.zhu@ytu.edu.cn
  organization: Institute for Advanced Studies in Precision Materials, Yantai University
– sequence: 6
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Metal Materials Characterization, Central Iron and Steel Research Institute
– sequence: 7
  givenname: Wen-Yu
  surname: Zhang
  fullname: Zhang, Wen-Yu
  organization: National Center for Materials Service Safety, University of Science and Technology Beijing
– sequence: 8
  givenname: Zai-Wang
  surname: Huang
  fullname: Huang, Zai-Wang
  organization: State Key Laboratory of Powder Metallurgy, Central South University
– sequence: 9
  givenname: Yuan-Bin
  surname: Deng
  fullname: Deng, Yuan-Bin
  organization: Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University
– sequence: 10
  givenname: Christoph
  surname: Broeckmann
  fullname: Broeckmann, Christoph
  organization: Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University
– sequence: 11
  givenname: Hai-Liang
  surname: Huang
  fullname: Huang, Hai-Liang
  organization: Institute for Advanced Studies in Precision Materials, Yantai University
– sequence: 12
  givenname: Hai-Zhou
  orcidid: 0000-0002-6079-9008
  surname: Wang
  fullname: Wang, Hai-Zhou
  email: wanghaizhou@ncschina.com
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Metal Materials Characterization, Central Iron and Steel Research Institute
BookMark eNp9kMtOAyEUhompiW31BVyRuEYPMBdYNo23xOhGVy4IQ6FDU4cRmEV9esfWxMRFV-cs_u9cvhmadKGzCF1SuKYA9U2irJSCAGMEqKxKIk7QlIqqJjUV5WTsASiBktEzNEtpA1AUVQVT9L7ArV-3JLcxDOu2HzJOOeps1zvsQsRR936F067LrU0-Yd2tsGl11Cbb6L909qHDweFnTxqd7Bgdehv1dht26RydOr1N9uK3ztHb3e3r8oE8vdw_LhdPxHAqM-FclNKCNBzANUaLldWaV5ZJCU44aQ1vBGcFFE3Nas0Yp400pTPO1axYFXyOrg5z-xg-B5uy2oQhduNKxSohK8F4XY0pdkiZGFKK1qk--g8dd4qC-pGoDhLVKFHtJSoxQuIfZHzePz1K8tvjKD-gadzTrW38u-oI9Q2khInH
CitedBy_id crossref_primary_10_1007_s12598_025_03241_x
crossref_primary_10_1016_j_scriptamat_2022_115215
crossref_primary_10_3390_coatings15010081
crossref_primary_10_1016_S1003_6326_24_66618_5
crossref_primary_10_1007_s12598_024_03148_z
crossref_primary_10_1016_j_mtcomm_2023_107826
crossref_primary_10_1016_j_mtcomm_2024_108736
crossref_primary_10_1007_s12598_023_02266_4
crossref_primary_10_1007_s42243_024_01332_0
crossref_primary_10_1016_j_actamat_2023_119365
crossref_primary_10_1016_j_jmrt_2023_02_118
crossref_primary_10_1016_j_matchar_2023_112921
crossref_primary_10_1016_j_mtcomm_2024_108360
Cites_doi 10.1016/j.jmst.2020.01.026
10.1126/science.1098993
10.1557/jmr.2018.214
10.1016/j.msea.2005.03.082
10.1007/s12598-019-01309-z
10.1007/s12598-018-1094-y
10.1007/s12598-020-01688-8
10.1007/s11669-004-0167-9
10.1016/j.eng.2020.05.005
10.1016/j.jallcom.2020.158100
10.1007/s11431-018-9369-9
10.2514/1.18239
10.1016/j.actamat.2009.08.018
10.1016/j.actamat.2005.12.019
10.1016/j.jmst.2020.01.041
10.1016/j.scriptamat.2019.11.019
10.1016/j.actamat.2016.11.053
10.1016/j.eng.2020.05.007
10.1017/CBO9780511541285
10.1016/j.msea.2021.141906
10.1557/jmr.2016.98
10.1016/j.msea.2012.07.032
10.1016/0036-9748(86)90461-8
10.1007/s12598-014-0256-9
10.1016/j.cma.2016.10.033
10.1002/srin.201600416
10.1016/j.pmatsci.2005.10.001
10.1016/j.jallcom.2016.08.210
10.1016/0956-716X(91)90420-6
10.1016/j.actamat.2016.02.019
ContentType Journal Article
Copyright Youke Publishing Co.,Ltd 2022
Youke Publishing Co.,Ltd 2022.
Copyright_xml – notice: Youke Publishing Co.,Ltd 2022
– notice: Youke Publishing Co.,Ltd 2022.
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1007/s12598-022-01965-8
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1867-7185
EndPage 2700
ExternalDocumentID 10_1007_s12598_022_01965_8
GrantInformation_xml – fundername: Shandong Natural Science Foundation of China
  grantid: ZR2020ZD05
– fundername: National Science and Technology Major Project of China
  grantid: J2019-VI-0023-0140
– fundername: Taishan Scholars Program of Shandong Province
  grantid: tsqn201909081
– fundername: National Key Research and Development Program of China
  grantid: 2016YFB0700300
GroupedDBID --K
-EM
-SB
-S~
06D
0R~
0VY
188
1B1
29P
2B.
2C0
2KG
2VQ
30V
4.4
406
408
40D
5VR
5VS
5XA
5XC
8FE
8FG
8RM
8TC
92H
92I
92R
93N
96X
AAAVM
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACRPL
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADMLS
ADMUD
ADNMO
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BA0
BENPR
BGLVJ
BGNMA
CAG
CAJEB
CCEZO
CCPQU
CDRFL
CHBEP
COF
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EO9
ESBYG
FA0
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
I~X
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PDBOC
PT4
Q--
Q2X
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDC
SDG
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UGNYK
UOJIU
UTJUX
UY8
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIGII
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8BQ
8FD
ABRTQ
JG9
ID FETCH-LOGICAL-c319t-33859e09c300fbca8deaa36e2990f8f9ec3b832404b727a2231b9c5fcff724d43
IEDL.DBID U2A
ISSN 1001-0521
IngestDate Wed Jul 16 06:52:51 EDT 2025
Tue Jul 01 01:30:11 EDT 2025
Thu Apr 24 23:00:09 EDT 2025
Fri Feb 21 02:45:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Honeycomb-array structure
Superalloy
Zero-phase-fraction (ZPF) line
Finite element analysis (FEA)
Bulk combinatorial synthesis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-33859e09c300fbca8deaa36e2990f8f9ec3b832404b727a2231b9c5fcff724d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4404-8650
0000-0002-6079-9008
PQID 2689682376
PQPubID 326325
PageCount 8
ParticipantIDs proquest_journals_2689682376
crossref_primary_10_1007_s12598_022_01965_8
crossref_citationtrail_10_1007_s12598_022_01965_8
springer_journals_10_1007_s12598_022_01965_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Rare metals
PublicationTitleAbbrev Rare Met
PublicationYear 2022
Publisher Nonferrous Metals Society of China
Springer Nature B.V
Publisher_xml – name: Nonferrous Metals Society of China
– name: Springer Nature B.V
References NguyenCVDengYBBezoldABroeckmannCA combined model to simulate the powder densification and shape changes during hot isostatic pressingComput Methods Appl Mech Eng201731530210.1016/j.cma.2016.10.033
TanZHWangXGChengYLiYMYangYHLiuJLLiuJDLiJGZhouYZSunXFCo content dependence on the microstructure characteristic and creep performance at elevated temperature in Ru-containing single crystal superalloysMater Sci Eng A20218251419061:CAS:528:DC%2BB3MXhvVCmtLfI10.1016/j.msea.2021.141906
WangZZhangLNLiWFQinZJWangZXLiZHTanLMZhuLLLiuFHanHJiangLHigh throughput experiment assisted discovery of new Ni-base superalloysScr Mater20201781341:CAS:528:DC%2BC1MXitFOks7%2FL10.1016/j.scriptamat.2019.11.019
SreeramagiriPBhagavatamARamakrishnanAAlrehailiHDindaGPDesign and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturingJ Mater Sci Technol2020472010.1016/j.jmst.2020.01.041
WangZZhangLNLiWFQinZJWangZXLiZHTanLMZhuLLLiuFHanHJiangLA high-throughput approach to explore the multi-component alloy space: a case study of nickel-based superalloysJ Alloys Compd20218581581001:CAS:528:DC%2BB3cXis12hs7nI10.1016/j.jallcom.2020.158100
ZhuLLWeiCDQiHYJiangJJinZPZhaoJCExperimental investigation of phase equilibria in the Co-rich part of the Co-Al-X (X = W, Mo, Nb, Ni, Ta) ternary systems using diffusion multiplesJ Alloys Compd20176911101:CAS:528:DC%2BC28XhsVGgtLfE10.1016/j.jallcom.2016.08.210
ReedRCTaoTWarnkenNAlloys-by-design: application to nickel-based single crystal superalloysActa Mater2009571958981:CAS:528:DC%2BD1MXht1CnsrrF10.1016/j.actamat.2009.08.018
UchicMDDimidukDMFlorandoJNNixWDSample dimensions influence strength and crystal plasticityScience200430556869861:CAS:528:DC%2BD2cXmsVGmtrg%3D10.1126/science.1098993
LuoHLiXQPanCLHePJZengKLMicrostructural evolution and mechanical properties of Alloy 718 fabricated by selective laser melting following different post-treatmentsRare Met2021401132221:CAS:528:DC%2BB3MXls1SntLY%3D10.1007/s12598-020-01688-8
ZhaoJCCombinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationshipsProg Mater Sci200651555710.1016/j.pmatsci.2005.10.001
XuKDRenZMLiCJProgress in application of rare metals in superalloysRare Met20143321111:CAS:528:DC%2BC2cXmtlSrtrY%3D10.1007/s12598-014-0256-9
PollockTMTinSNickel-based superalloys for advanced turbine engines: chemistry, microstructure and propertiesJ Propul Power20062223611:CAS:528:DC%2BD28XjtlCqtr8%3D10.2514/1.18239
Deng YB, Birke C, Rajaei A, Kaletsch A, Broeckmann C. Numerical study of hot isostatic pressing with integrated heat treatment of PM-HIP cold work steel D7. World Congress on Powder Metallurgy. Beijing. 2018. 442.
LinXYueTMYangHOHuangWDMicrostructure and phase evolution in laser rapid forming of a functionally graded Ti-Rene88DT alloyActa Mater200654719011:CAS:528:DC%2BD28XisFChur4%3D10.1016/j.actamat.2005.12.019
WangBZhangJHuangTWYangWCSuHJLiZRLiuLFuHZEffect of Co on microstructural stability of the third generation Ni-based single crystal superalloysJ Mater Res201631913281:CAS:528:DC%2BC28XnslGiu7c%3D10.1557/jmr.2016.98
YuanYGuYFZhongZHYokokawaTHaradaHEnhanced strength at intermediate temperatures in a Ni-base disk superalloy with high Co additionMater Sci Eng A20125565951:CAS:528:DC%2BC38Xht1GgsL7M10.1016/j.msea.2012.07.032
MaZPeiYLLuoLQinLLiSSGongSKPartitioning behavior and lattice misfit of γ/γ′ phases in Ni-based superalloys with different Mo additionsRare Met20214049201:CAS:528:DC%2BB3cXntVOns7s%3D10.1007/s12598-019-01309-z
WangHZZhaoLJiaYHLiDLYangLXLuYHFengGWanWHState-of-the-art review of high-throughput statistical spatial-mapping characterization technology and its applicationsEngineering2020666211:CAS:528:DC%2BB3cXitVamu7bI10.1016/j.eng.2020.05.005
XiaWSZhaoXBYueLZhangZA review of composition evolution in Ni-based single crystal superalloysJ Mater Sci Technol2020447610.1016/j.jmst.2020.01.026
MorralJEGuptaHPhase boundary, ZPF, and topological lines on phase diagramsScr Metall Mater199125613931:CAS:528:DyaK3MXksFyhtro%3D10.1016/0956-716X(91)90420-6
LiZMLudwigASavanASpringerHRaabeDCombinatorial metallurgical synthesis and processing of high-entropy alloysJ Mater Res20183331561:CAS:528:DC%2BC1cXhvFWktr7L10.1557/jmr.2018.214
KnollHOcylokSWeisheitASpringerHJägleERaabeDCombinatorial alloy design by laser additive manufacturingSteel Res Int2017888160041610.1002/srin.201600416
WangHZXieJXEditorial for special issue on materials genome engineeringEngineering20206658510.1016/j.eng.2020.05.007
UchicMDDimidukDMA methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testingMater Sci Eng A2005400–40126810.1016/j.msea.2005.03.082
BagotPAJSilkOBWDouglasJOPedrazziniSCruddenDJMartinTLHardyMCMoodyMPReedRCAn atom probe tomography study of site preference and partitioning in a nickel-based superalloyActa Mater20171251561:CAS:528:DC%2BC28XitV2rt7%2FE10.1016/j.actamat.2016.11.053
GuptaHMorralJENowotnyHConstructing multicomponent phase diagrams by overlapping ZPF linesScr Metall19862068891:CAS:528:DyaL28XktlSrtL8%3D10.1016/0036-9748(86)90461-8
CaoPSWangHRuYLiangYFGongSKMicrostructure and creep properties of Ni-based single-crystal superalloys with Mo/Al addition at 760 °C/850 MPaRare Met201810.1007/s12598-018-1094-y
CampbellCEZhaoJCHenryMFComparison of experimental and simulated multicomponent Ni-base superalloy diffusion couplesJ Phase Equilib Diff2014251610.1007/s11669-004-0167-9
ReedRCThe superalloys: fundamentals and applications2006New YorkCambridge University Press10.1017/CBO9780511541285
LiuYHHuZHSuoZGHuLZFengLYGongXQLiuYZhangJCHigh-throughput experiments facilitate materials innovation: a reviewSci China Tech Sci201962452110.1007/s11431-018-9369-9
CarrollBEOtisRABorgoniaJPSuhJDillonRPShapiroAAHofmannDCLiuZ-KBeeseAMFunctionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: characterization and thermodynamic modelingActa Mater2016108461:CAS:528:DC%2BC28XjtVOgtbw%3D10.1016/j.actamat.2016.02.019
H Knoll (1965_CR8) 2017; 88
H Luo (1965_CR2) 2021; 40
KD Xu (1965_CR26) 2014; 33
Z Wang (1965_CR12) 2020; 178
JC Zhao (1965_CR6) 2006; 51
CV Nguyen (1965_CR28) 2017; 315
1965_CR29
CE Campbell (1965_CR11) 2014; 25
MD Uchic (1965_CR20) 2005; 400–401
PS Cao (1965_CR4) 2018
MD Uchic (1965_CR19) 2004; 305
YH Liu (1965_CR10) 2019; 62
ZH Tan (1965_CR22) 2021; 825
RC Reed (1965_CR5) 2009; 57
PAJ Bagot (1965_CR25) 2017; 125
P Sreeramagiri (1965_CR16) 2020; 47
HZ Wang (1965_CR18) 2020; 6
WS Xia (1965_CR24) 2020; 44
H Gupta (1965_CR30) 1986; 20
HZ Wang (1965_CR17) 2020; 6
RC Reed (1965_CR1) 2006
Z Wang (1965_CR13) 2021; 858
Y Yuan (1965_CR23) 2012; 556
B Wang (1965_CR21) 2016; 31
ZM Li (1965_CR9) 2018; 33
BE Carroll (1965_CR15) 2016; 108
JE Morral (1965_CR31) 1991; 25
Z Ma (1965_CR27) 2021; 40
TM Pollock (1965_CR3) 2006; 22
X Lin (1965_CR14) 2006; 54
LL Zhu (1965_CR7) 2017; 691
References_xml – reference: KnollHOcylokSWeisheitASpringerHJägleERaabeDCombinatorial alloy design by laser additive manufacturingSteel Res Int2017888160041610.1002/srin.201600416
– reference: LiuYHHuZHSuoZGHuLZFengLYGongXQLiuYZhangJCHigh-throughput experiments facilitate materials innovation: a reviewSci China Tech Sci201962452110.1007/s11431-018-9369-9
– reference: LinXYueTMYangHOHuangWDMicrostructure and phase evolution in laser rapid forming of a functionally graded Ti-Rene88DT alloyActa Mater200654719011:CAS:528:DC%2BD28XisFChur4%3D10.1016/j.actamat.2005.12.019
– reference: WangBZhangJHuangTWYangWCSuHJLiZRLiuLFuHZEffect of Co on microstructural stability of the third generation Ni-based single crystal superalloysJ Mater Res201631913281:CAS:528:DC%2BC28XnslGiu7c%3D10.1557/jmr.2016.98
– reference: ZhaoJCCombinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationshipsProg Mater Sci200651555710.1016/j.pmatsci.2005.10.001
– reference: WangHZXieJXEditorial for special issue on materials genome engineeringEngineering20206658510.1016/j.eng.2020.05.007
– reference: WangHZZhaoLJiaYHLiDLYangLXLuYHFengGWanWHState-of-the-art review of high-throughput statistical spatial-mapping characterization technology and its applicationsEngineering2020666211:CAS:528:DC%2BB3cXitVamu7bI10.1016/j.eng.2020.05.005
– reference: PollockTMTinSNickel-based superalloys for advanced turbine engines: chemistry, microstructure and propertiesJ Propul Power20062223611:CAS:528:DC%2BD28XjtlCqtr8%3D10.2514/1.18239
– reference: ReedRCTaoTWarnkenNAlloys-by-design: application to nickel-based single crystal superalloysActa Mater2009571958981:CAS:528:DC%2BD1MXht1CnsrrF10.1016/j.actamat.2009.08.018
– reference: TanZHWangXGChengYLiYMYangYHLiuJLLiuJDLiJGZhouYZSunXFCo content dependence on the microstructure characteristic and creep performance at elevated temperature in Ru-containing single crystal superalloysMater Sci Eng A20218251419061:CAS:528:DC%2BB3MXhvVCmtLfI10.1016/j.msea.2021.141906
– reference: CaoPSWangHRuYLiangYFGongSKMicrostructure and creep properties of Ni-based single-crystal superalloys with Mo/Al addition at 760 °C/850 MPaRare Met201810.1007/s12598-018-1094-y
– reference: ZhuLLWeiCDQiHYJiangJJinZPZhaoJCExperimental investigation of phase equilibria in the Co-rich part of the Co-Al-X (X = W, Mo, Nb, Ni, Ta) ternary systems using diffusion multiplesJ Alloys Compd20176911101:CAS:528:DC%2BC28XhsVGgtLfE10.1016/j.jallcom.2016.08.210
– reference: WangZZhangLNLiWFQinZJWangZXLiZHTanLMZhuLLLiuFHanHJiangLA high-throughput approach to explore the multi-component alloy space: a case study of nickel-based superalloysJ Alloys Compd20218581581001:CAS:528:DC%2BB3cXis12hs7nI10.1016/j.jallcom.2020.158100
– reference: XiaWSZhaoXBYueLZhangZA review of composition evolution in Ni-based single crystal superalloysJ Mater Sci Technol2020447610.1016/j.jmst.2020.01.026
– reference: LiZMLudwigASavanASpringerHRaabeDCombinatorial metallurgical synthesis and processing of high-entropy alloysJ Mater Res20183331561:CAS:528:DC%2BC1cXhvFWktr7L10.1557/jmr.2018.214
– reference: UchicMDDimidukDMA methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testingMater Sci Eng A2005400–40126810.1016/j.msea.2005.03.082
– reference: CarrollBEOtisRABorgoniaJPSuhJDillonRPShapiroAAHofmannDCLiuZ-KBeeseAMFunctionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: characterization and thermodynamic modelingActa Mater2016108461:CAS:528:DC%2BC28XjtVOgtbw%3D10.1016/j.actamat.2016.02.019
– reference: SreeramagiriPBhagavatamARamakrishnanAAlrehailiHDindaGPDesign and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturingJ Mater Sci Technol2020472010.1016/j.jmst.2020.01.041
– reference: YuanYGuYFZhongZHYokokawaTHaradaHEnhanced strength at intermediate temperatures in a Ni-base disk superalloy with high Co additionMater Sci Eng A20125565951:CAS:528:DC%2BC38Xht1GgsL7M10.1016/j.msea.2012.07.032
– reference: XuKDRenZMLiCJProgress in application of rare metals in superalloysRare Met20143321111:CAS:528:DC%2BC2cXmtlSrtrY%3D10.1007/s12598-014-0256-9
– reference: GuptaHMorralJENowotnyHConstructing multicomponent phase diagrams by overlapping ZPF linesScr Metall19862068891:CAS:528:DyaL28XktlSrtL8%3D10.1016/0036-9748(86)90461-8
– reference: ReedRCThe superalloys: fundamentals and applications2006New YorkCambridge University Press10.1017/CBO9780511541285
– reference: NguyenCVDengYBBezoldABroeckmannCA combined model to simulate the powder densification and shape changes during hot isostatic pressingComput Methods Appl Mech Eng201731530210.1016/j.cma.2016.10.033
– reference: BagotPAJSilkOBWDouglasJOPedrazziniSCruddenDJMartinTLHardyMCMoodyMPReedRCAn atom probe tomography study of site preference and partitioning in a nickel-based superalloyActa Mater20171251561:CAS:528:DC%2BC28XitV2rt7%2FE10.1016/j.actamat.2016.11.053
– reference: Deng YB, Birke C, Rajaei A, Kaletsch A, Broeckmann C. Numerical study of hot isostatic pressing with integrated heat treatment of PM-HIP cold work steel D7. World Congress on Powder Metallurgy. Beijing. 2018. 442.
– reference: UchicMDDimidukDMFlorandoJNNixWDSample dimensions influence strength and crystal plasticityScience200430556869861:CAS:528:DC%2BD2cXmsVGmtrg%3D10.1126/science.1098993
– reference: WangZZhangLNLiWFQinZJWangZXLiZHTanLMZhuLLLiuFHanHJiangLHigh throughput experiment assisted discovery of new Ni-base superalloysScr Mater20201781341:CAS:528:DC%2BC1MXitFOks7%2FL10.1016/j.scriptamat.2019.11.019
– reference: LuoHLiXQPanCLHePJZengKLMicrostructural evolution and mechanical properties of Alloy 718 fabricated by selective laser melting following different post-treatmentsRare Met2021401132221:CAS:528:DC%2BB3MXls1SntLY%3D10.1007/s12598-020-01688-8
– reference: MorralJEGuptaHPhase boundary, ZPF, and topological lines on phase diagramsScr Metall Mater199125613931:CAS:528:DyaK3MXksFyhtro%3D10.1016/0956-716X(91)90420-6
– reference: CampbellCEZhaoJCHenryMFComparison of experimental and simulated multicomponent Ni-base superalloy diffusion couplesJ Phase Equilib Diff2014251610.1007/s11669-004-0167-9
– reference: MaZPeiYLLuoLQinLLiSSGongSKPartitioning behavior and lattice misfit of γ/γ′ phases in Ni-based superalloys with different Mo additionsRare Met20214049201:CAS:528:DC%2BB3cXntVOns7s%3D10.1007/s12598-019-01309-z
– volume: 44
  start-page: 76
  year: 2020
  ident: 1965_CR24
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2020.01.026
– volume: 305
  start-page: 986
  issue: 5686
  year: 2004
  ident: 1965_CR19
  publication-title: Science
  doi: 10.1126/science.1098993
– volume: 33
  start-page: 3156
  year: 2018
  ident: 1965_CR9
  publication-title: J Mater Res
  doi: 10.1557/jmr.2018.214
– volume: 400–401
  start-page: 268
  year: 2005
  ident: 1965_CR20
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2005.03.082
– volume: 40
  start-page: 920
  issue: 4
  year: 2021
  ident: 1965_CR27
  publication-title: Rare Met
  doi: 10.1007/s12598-019-01309-z
– year: 2018
  ident: 1965_CR4
  publication-title: Rare Met
  doi: 10.1007/s12598-018-1094-y
– volume: 40
  start-page: 3222
  issue: 11
  year: 2021
  ident: 1965_CR2
  publication-title: Rare Met
  doi: 10.1007/s12598-020-01688-8
– volume: 25
  start-page: 6
  issue: 1
  year: 2014
  ident: 1965_CR11
  publication-title: J Phase Equilib Diff
  doi: 10.1007/s11669-004-0167-9
– volume: 6
  start-page: 621
  issue: 6
  year: 2020
  ident: 1965_CR18
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.05.005
– volume: 858
  start-page: 158100
  year: 2021
  ident: 1965_CR13
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2020.158100
– volume: 62
  start-page: 521
  issue: 4
  year: 2019
  ident: 1965_CR10
  publication-title: Sci China Tech Sci
  doi: 10.1007/s11431-018-9369-9
– volume: 22
  start-page: 361
  issue: 2
  year: 2006
  ident: 1965_CR3
  publication-title: J Propul Power
  doi: 10.2514/1.18239
– ident: 1965_CR29
– volume: 57
  start-page: 5898
  issue: 19
  year: 2009
  ident: 1965_CR5
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2009.08.018
– volume: 54
  start-page: 1901
  issue: 7
  year: 2006
  ident: 1965_CR14
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2005.12.019
– volume: 47
  start-page: 20
  year: 2020
  ident: 1965_CR16
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2020.01.041
– volume: 178
  start-page: 134
  year: 2020
  ident: 1965_CR12
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2019.11.019
– volume: 125
  start-page: 156
  year: 2017
  ident: 1965_CR25
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2016.11.053
– volume: 6
  start-page: 585
  issue: 6
  year: 2020
  ident: 1965_CR17
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.05.007
– volume-title: The superalloys: fundamentals and applications
  year: 2006
  ident: 1965_CR1
  doi: 10.1017/CBO9780511541285
– volume: 825
  start-page: 141906
  year: 2021
  ident: 1965_CR22
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2021.141906
– volume: 31
  start-page: 1328
  issue: 9
  year: 2016
  ident: 1965_CR21
  publication-title: J Mater Res
  doi: 10.1557/jmr.2016.98
– volume: 556
  start-page: 595
  year: 2012
  ident: 1965_CR23
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2012.07.032
– volume: 20
  start-page: 889
  issue: 6
  year: 1986
  ident: 1965_CR30
  publication-title: Scr Metall
  doi: 10.1016/0036-9748(86)90461-8
– volume: 33
  start-page: 111
  issue: 2
  year: 2014
  ident: 1965_CR26
  publication-title: Rare Met
  doi: 10.1007/s12598-014-0256-9
– volume: 315
  start-page: 302
  year: 2017
  ident: 1965_CR28
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2016.10.033
– volume: 88
  start-page: 1600416
  issue: 8
  year: 2017
  ident: 1965_CR8
  publication-title: Steel Res Int
  doi: 10.1002/srin.201600416
– volume: 51
  start-page: 557
  issue: 5
  year: 2006
  ident: 1965_CR6
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2005.10.001
– volume: 691
  start-page: 110
  year: 2017
  ident: 1965_CR7
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2016.08.210
– volume: 25
  start-page: 1393
  issue: 6
  year: 1991
  ident: 1965_CR31
  publication-title: Scr Metall Mater
  doi: 10.1016/0956-716X(91)90420-6
– volume: 108
  start-page: 46
  year: 2016
  ident: 1965_CR15
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2016.02.019
SSID ssj0044660
Score 2.3643553
Snippet This study developed a new high-throughput strategy, designated as hot-isostatic-pressing-based micro-synthesis approach (HIP-MSA), to optimize...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2693
SubjectTerms Biomaterials
Chemistry and Materials Science
Combinatorial analysis
Energy
Finite element method
High temperature
Materials Engineering
Materials Science
Metallic Materials
Nanoscale Science and Technology
Nickel
Nickel base alloys
Niobium
Original Article
Physical Chemistry
Solid phases
Superalloys
Synthesis
Tantalum
Title A high-throughput strategy for rapid synthesis and characterization of Ni-based superalloys
URI https://link.springer.com/article/10.1007/s12598-022-01965-8
https://www.proquest.com/docview/2689682376
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPEWhVB7YwFLqOK49RtBS8egClYoYovglVUJp1KRD_z12Hg0gQGLKkIuHO9v3Xe7uOwAuFSeCBFIjQT2BiCYGcU9wRI1PsBbKTbh21RYTOp6S-1kwq5rCsrravU5JFjd10-xmkTpDrvq8oMFDbBu0Axu7u0KuKQ7r-9clKEsOAhcoW-9Utcr8vMZXd9RgzG9p0cLbjPbBXgUTYVja9QBs6eQQ7H4iDzwCbyF0XMOomrSTrnKYlVSza2iRKFzG6VzBbJ1YiJfNMxgnCsoNPXPZfQkXBk5sdGxdmRVdpe4H1ftinR2D6Wj4cjNG1agEJO0ZypENNAOuPS59zzNCxkzpOPapds7GMMO19AVz3HtEWMASW0zQF1wGRhozwEQR_wS0kkWiTwEk3KfBQPUx9jSJjW9DHhkw60o9KSnGqgP6tcYiWfGIu3EW71HDgOy0HFktR4WWI9YBV5tv0pJF40_pbm2IqDpRWYQp49Qx69AOuK6N07z-fbWz_4mfgx1c7A9X49cFrXy50hcWd-SiB9rh7dPjs3vevT4Me8W2-wB839GU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVl9QFOYCl1HGMfOFQsKltPVELiEGLHliqhtCKtUP-HD2WchQICJA6c41jReOz3Jp55A7CfKq55ZCzVItCUW-6oCrSiwoWcWZ36Dtc-26Ij2l1-dR_dT8FrXQtTZLvXV5LFST0pdkOmLqnPPi9k8KisUimv7fgFA7X85PIMV_WAsYvzu9M2rXoJUINONqQYiUXKBsqEQeC0SWRqkyQU1p_GTjplTailF6fjGhE9QdBsamUiZ5w7ZjzlIc47DbNIPqTfO13Wqs97fyFaah74wBzRsCrN-f6bP8PfhNN-uYYt0O1iCRYrWkpapR8tw5TNVmDhg1jhKjy0iNc2plVnn8FoSPJS2nZMkPmS52TQS0k-zpBS5r2cJFlKzLscdFntSfqOdDAaR-jEoaOB_yH21B_na9D9F3Ouw0zWz-wGEK5CER2nTcYCyxMXYohlIonQHRgjGEsb0KwtFptKt9y3z3iKJ4rL3soxWjkurBzLBhy-vzMoVTt-Hb1dL0Rc7eA8ZkIq4ZV8RAOO6sWZPP55ts2_Dd-Dufbd7U18c9m53oJ5VviKzy_chpnh88juIOcZ6t3C5Qg8_rePvwFj6wuu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RkFA5oJaHCKV0D_QEK5z1evEeOESFKCEo4tBISD0Y70tCQo6FHaH8K35iZ_1I2ooiceDs8cqamd1vxjvzDcCRkVzxSFuqRKAot9xRGShJhQs5s8r4Cde-2mIsBhN-dRvdrsBz2wtTVbu3V5J1T4NnacrK09y402XjG0btMfWV6BUlHo2bssqRnT9h0lacDy_Qwt8Z61_-_DGgzVwBqtHhSopZWSRtIHUYBE7pNDY2TUNh_cnsYietDlXsieq4QnRPEUC7SurIaefOGDc8xHU_wBr33ce4gyas1579_nK05j_wSToiY9Om8_I3_w2Fy_j2nyvZCun6n2CzCVFJr_apz7Bisy3Y-IO4cBt-9YjnOabNlJ98VpKiprmdE4yCyWOa3xtSzDMML4v7gqSZIXpBDV13fpKpI2PMzBFGUXSW-59jD9N5sQOTd1HnLqxm08zuAeEyFNGZ6TIWWJ66ENMtHcUI44HWgjHTgW6rsUQ3HOZ-lMZDsmRf9lpOUMtJpeUk7sDx4p28ZvB4VfqgNUTS7OYiYSKWwrP6iA6ctMZZPv7_avtvE_8G6zcX_eR6OB59gY-schVfangAq-XjzH7F8KdUh5XHEbh7bxf_DSY-D-E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high-throughput+strategy+for+rapid+synthesis+and+characterization+of+Ni-based+superalloys&rft.jtitle=Rare+metals&rft.au=Zhao%2C+Lei&rft.au=Su-Ran%2C+Liu&rft.au=Jiang%2C+Liang&rft.au=Li-Xia%2C+Yang&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=41&rft.issue=8&rft.spage=2693&rft.epage=2700&rft_id=info:doi/10.1007%2Fs12598-022-01965-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon