The role of PbF2 on the gamma-ray photon, charged particles, and neutron shielding prowess of novel lead fluoro bismuth borate glasses

The radiation shielding characterization of glasses is vital in establishing their role in nuclear protection applications. This study presents the influence of reducing PbF 2 content on the radiation shielding parameters of x CaF 2 –(25- x )PbF 2 –25Bi 2 O 3 –49.8B 2 O 3 –0.2Cr 2 O 3 glasses where...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 33; no. 3; pp. 1123 - 1139
Main Authors Al-Buriahi, M. S., Alrowaili, Z. A., Alsufyani, Sultan J., Olarinoye, I. O., Alharbi, Abdulaziz N., Sriwunkum, Chahkrit, Kebaili, Imen
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0957-4522
1573-482X
DOI10.1007/s10854-021-07382-4

Cover

Loading…
Abstract The radiation shielding characterization of glasses is vital in establishing their role in nuclear protection applications. This study presents the influence of reducing PbF 2 content on the radiation shielding parameters of x CaF 2 –(25- x )PbF 2 –25Bi 2 O 3 –49.8B 2 O 3 –0.2Cr 2 O 3 glasses where x  = 0, 5, 15, and 25 mol % represents the glass code, Ca/Pb-BBC1, Ca/Pb-BBC2, Ca/Pb-BBC3, and Ca/Pb-BBC4, respectively. Photon and cold neutron transmission parameters were evaluated through the use of FUKA simulations and confirmed by WinXCOM (for photons only) calculations. On the other hand, the shielding quantities for electron, proton, alpha particle, and carbon ions were estimated from ESTAR, PSTAR, ASTAR, and SRIM codes. While the fast neutron removal cross section and interaction cross sections for thermal neutrons were estimated through analytic expressions. The value of mass attenuation coefficient decreased from 4.178–0.042, 4.086–0.042, 3.846–0.040, and 3.550–0.039 cm −2 /g for Ca/Pb-BBC1—4 accordingly as photon energy increased from 0.1 to 10 MeV. Analysis of other calculated photon absorbing quantities such as effective atomic number, half value layer, and gamma-ray dose constant shows that the increase in the PbF 2 content increased the photon shielding ability of the glasses. A similar effect was observed for charged particle absorption. A comparison of the photon and neutron absorbing capacity of the Ca/Pb-BBC glasses with those of common radiation shields shows that the Ca/Pb-BBC glasses have capacity to shield gamma rays and neutrons better. The Ca/Pb-BBC glasses hence are attractive for radiation protection functions such as for the storage of nuclear waste and laboratory radiation sources and shielding in contemporary and future applications of radiation.
AbstractList The radiation shielding characterization of glasses is vital in establishing their role in nuclear protection applications. This study presents the influence of reducing PbF2 content on the radiation shielding parameters of xCaF2–(25-x)PbF2–25Bi2O3–49.8B2O3–0.2Cr2O3 glasses where x = 0, 5, 15, and 25 mol % represents the glass code, Ca/Pb-BBC1, Ca/Pb-BBC2, Ca/Pb-BBC3, and Ca/Pb-BBC4, respectively. Photon and cold neutron transmission parameters were evaluated through the use of FUKA simulations and confirmed by WinXCOM (for photons only) calculations. On the other hand, the shielding quantities for electron, proton, alpha particle, and carbon ions were estimated from ESTAR, PSTAR, ASTAR, and SRIM codes. While the fast neutron removal cross section and interaction cross sections for thermal neutrons were estimated through analytic expressions. The value of mass attenuation coefficient decreased from 4.178–0.042, 4.086–0.042, 3.846–0.040, and 3.550–0.039 cm−2/g for Ca/Pb-BBC1—4 accordingly as photon energy increased from 0.1 to 10 MeV. Analysis of other calculated photon absorbing quantities such as effective atomic number, half value layer, and gamma-ray dose constant shows that the increase in the PbF2 content increased the photon shielding ability of the glasses. A similar effect was observed for charged particle absorption. A comparison of the photon and neutron absorbing capacity of the Ca/Pb-BBC glasses with those of common radiation shields shows that the Ca/Pb-BBC glasses have capacity to shield gamma rays and neutrons better. The Ca/Pb-BBC glasses hence are attractive for radiation protection functions such as for the storage of nuclear waste and laboratory radiation sources and shielding in contemporary and future applications of radiation.
The radiation shielding characterization of glasses is vital in establishing their role in nuclear protection applications. This study presents the influence of reducing PbF 2 content on the radiation shielding parameters of x CaF 2 –(25- x )PbF 2 –25Bi 2 O 3 –49.8B 2 O 3 –0.2Cr 2 O 3 glasses where x  = 0, 5, 15, and 25 mol % represents the glass code, Ca/Pb-BBC1, Ca/Pb-BBC2, Ca/Pb-BBC3, and Ca/Pb-BBC4, respectively. Photon and cold neutron transmission parameters were evaluated through the use of FUKA simulations and confirmed by WinXCOM (for photons only) calculations. On the other hand, the shielding quantities for electron, proton, alpha particle, and carbon ions were estimated from ESTAR, PSTAR, ASTAR, and SRIM codes. While the fast neutron removal cross section and interaction cross sections for thermal neutrons were estimated through analytic expressions. The value of mass attenuation coefficient decreased from 4.178–0.042, 4.086–0.042, 3.846–0.040, and 3.550–0.039 cm −2 /g for Ca/Pb-BBC1—4 accordingly as photon energy increased from 0.1 to 10 MeV. Analysis of other calculated photon absorbing quantities such as effective atomic number, half value layer, and gamma-ray dose constant shows that the increase in the PbF 2 content increased the photon shielding ability of the glasses. A similar effect was observed for charged particle absorption. A comparison of the photon and neutron absorbing capacity of the Ca/Pb-BBC glasses with those of common radiation shields shows that the Ca/Pb-BBC glasses have capacity to shield gamma rays and neutrons better. The Ca/Pb-BBC glasses hence are attractive for radiation protection functions such as for the storage of nuclear waste and laboratory radiation sources and shielding in contemporary and future applications of radiation.
Author Alsufyani, Sultan J.
Al-Buriahi, M. S.
Sriwunkum, Chahkrit
Alrowaili, Z. A.
Olarinoye, I. O.
Alharbi, Abdulaziz N.
Kebaili, Imen
Author_xml – sequence: 1
  givenname: M. S.
  orcidid: 0000-0001-9750-072X
  surname: Al-Buriahi
  fullname: Al-Buriahi, M. S.
  email: mohammed.al-buriahi@ogr.sakarya.edu.tr, alburiahi@sakarya.edu.tr
  organization: Department of Physics, Sakarya University
– sequence: 2
  givenname: Z. A.
  surname: Alrowaili
  fullname: Alrowaili, Z. A.
  organization: Department of Physics, College of Science, Jouf University
– sequence: 3
  givenname: Sultan J.
  surname: Alsufyani
  fullname: Alsufyani, Sultan J.
  organization: Department of Physics, College of Science, Taif University
– sequence: 4
  givenname: I. O.
  surname: Olarinoye
  fullname: Olarinoye, I. O.
  organization: Department of Physics, School of Physical Sciences, Federal University of Technology
– sequence: 5
  givenname: Abdulaziz N.
  surname: Alharbi
  fullname: Alharbi, Abdulaziz N.
  organization: Department of Physics, College of Science, Taif University
– sequence: 6
  givenname: Chahkrit
  surname: Sriwunkum
  fullname: Sriwunkum, Chahkrit
  organization: Department of Physics, Ubon Ratchathani University
– sequence: 7
  givenname: Imen
  surname: Kebaili
  fullname: Kebaili, Imen
  organization: Department of Physics, Faculty of Science, King Khalid University, Laboratoire de Physique Appliquée, Groupe Des Matériaux Luminescents, Faculté Des Sciences de Sfax, Université de Sfax
BookMark eNp9kEFLJDEUhMPiwo6uf8BTYK9mTfLSnZ6jyOoKgh4UvIV05mW6JZPMJuld_AP-bnscQdiDpweP-qqKOiQHMUUk5ETwn4JzfVYE7xrFuBSMa-gkU1_IQjQamOrk4wFZ8GWjmWqk_EYOS3ninLcKugV5uR-Q5hSQJk_v-ktJU6R1_q3tZmNZts90O6Sa4il1g81rXNGtzXV0AcsptXFFI041z1AZRgyrMa7pNqd_WMrOMaa_GGhAu6I-TCkn2o9lM9WB9inbOscEWwqW7-Srt6Hg8fs9Ig-Xv-4vfrOb26vri_Mb5kAsKwPQoJUXrYNGS4WgvPbOedG3zvctCq3BW8Bm2TZc9IqLTmoA7mTne6EAjsiPve_c8c-EpZqnNOU4RxrZylYIkEs1q-Re5XIqJaM32zxubH42gpvd3ma_t5n3Nm97mx3U_Qe5sdo6plizHcPnKOzRMufENeaPVp9Qrzz4lzo
CitedBy_id crossref_primary_10_1007_s11082_023_06000_3
crossref_primary_10_1016_j_radphyschem_2023_110877
crossref_primary_10_1016_j_ceramint_2024_07_270
crossref_primary_10_1016_j_radphyschem_2022_110555
crossref_primary_10_1007_s41779_022_00771_w
crossref_primary_10_1016_j_inoche_2024_113102
crossref_primary_10_1016_j_radphyschem_2023_111489
crossref_primary_10_1016_j_apradiso_2023_111080
crossref_primary_10_1016_j_radphyschem_2023_110917
crossref_primary_10_1016_j_radphyschem_2023_110916
crossref_primary_10_1016_j_radphyschem_2024_111726
crossref_primary_10_1016_j_pnucene_2022_104256
crossref_primary_10_1016_j_jmrt_2024_12_054
crossref_primary_10_1016_j_ijleo_2022_170241
crossref_primary_10_1016_j_ceramint_2025_01_574
crossref_primary_10_1016_j_radphyschem_2024_112500
crossref_primary_10_1016_j_radphyschem_2022_110164
crossref_primary_10_1007_s11082_024_06464_x
crossref_primary_10_1016_j_ceramint_2024_05_254
crossref_primary_10_1016_j_pnucene_2022_104457
crossref_primary_10_1016_j_radphyschem_2023_111450
crossref_primary_10_2174_0118744710271477231105075516
crossref_primary_10_1007_s10854_024_13850_4
crossref_primary_10_1007_s11082_024_06296_9
crossref_primary_10_1016_j_radphyschem_2024_112020
crossref_primary_10_1007_s12633_023_02801_z
crossref_primary_10_1016_j_radphyschem_2022_110722
crossref_primary_10_1007_s12633_023_02766_z
crossref_primary_10_1016_j_radphyschem_2024_111658
crossref_primary_10_1080_10420150_2023_2265020
crossref_primary_10_1007_s12633_023_02699_7
crossref_primary_10_1007_s41779_022_00707_4
crossref_primary_10_1007_s41779_022_00749_8
crossref_primary_10_1016_j_mtcomm_2022_104100
crossref_primary_10_1016_j_radphyschem_2024_111782
crossref_primary_10_1007_s10854_024_12754_7
crossref_primary_10_1016_j_radphyschem_2024_112036
crossref_primary_10_1140_epjp_s13360_025_05968_z
crossref_primary_10_1007_s12633_023_02636_8
crossref_primary_10_1002_app_55435
crossref_primary_10_1016_j_radphyschem_2023_111443
crossref_primary_10_1007_s11664_022_10028_8
crossref_primary_10_1016_j_heliyon_2023_e19935
crossref_primary_10_1016_j_pnucene_2024_105353
crossref_primary_10_1016_j_jobe_2024_108977
crossref_primary_10_1016_j_nimb_2023_165103
crossref_primary_10_1016_j_apradiso_2025_111742
crossref_primary_10_1016_j_apradiso_2023_110896
crossref_primary_10_1016_j_nme_2022_101193
crossref_primary_10_1016_j_scp_2024_101886
crossref_primary_10_1016_j_heliyon_2022_e11788
crossref_primary_10_1016_j_radphyschem_2024_111594
crossref_primary_10_1007_s12633_024_02914_z
crossref_primary_10_1007_s12633_024_02855_7
crossref_primary_10_1016_j_radphyschem_2024_111993
crossref_primary_10_1016_j_radphyschem_2023_111279
crossref_primary_10_1088_1402_4896_ad764e
crossref_primary_10_1007_s10904_024_03563_w
crossref_primary_10_1515_ijcre_2022_0235
crossref_primary_10_1016_j_radphyschem_2023_110966
crossref_primary_10_1080_00084433_2022_2058153
crossref_primary_10_1088_1402_4896_ad6ecb
crossref_primary_10_1016_j_radphyschem_2024_112007
crossref_primary_10_1016_j_ceramint_2024_10_415
crossref_primary_10_1016_j_radphyschem_2024_111517
crossref_primary_10_1016_j_omx_2024_100307
crossref_primary_10_1016_j_anucene_2024_110863
crossref_primary_10_1016_j_pnucene_2022_104482
crossref_primary_10_1016_j_ijleo_2023_170659
crossref_primary_10_1016_j_radphyschem_2024_111642
crossref_primary_10_1007_s00339_022_05474_4
Cites_doi 10.1016/j.ceramint.2020.03.110
10.22038/ijmp.2020.42684.1635
10.1016/j.ceramint.2020.08.092
10.1016/j.pnucene.2019.103047
10.1016/S0306-4549(97)00003-0
10.1016/j.ceramint.2020.09.100
10.1007/s00411-019-00824-y
10.1007/s10854-021-06101-3
10.1088/1402-4896/abf26a
10.1140/epjp/s13360-021-01755-8
10.1016/j.ceramint.2020.03.091
10.1080/10448639208218770
10.1016/j.ijleo.2021.168078
10.1007/s10854-021-05608-z
10.1016/j.ijleo.2021.168047
10.1016/j.pnucene.2021.103763
10.1016/j.nimb.2010.02.091
10.1016/j.anucene.2009.10.022
10.1016/j.jnoncrysol.2021.120705
10.1088/1402-4896/abf86a
10.1002/pat.5267
10.1016/j.ceramint.2020.09.131
10.1016/j.radphyschem.2019.108507
10.1007/s10904-020-01725-0
10.1140/epjp/s13360-021-01420-0
10.1016/j.pnucene.2021.103992
10.1007/s10854-021-06788-4
10.1016/j.ceramint.2020.02.148
10.1016/j.radphyschem.2018.08.025
10.1016/j.ceramint.2021.04.188
10.1016/j.physb.2019.411946
10.1016/j.ceramint.2020.04.240
10.1016/j.ceramint.2019.09.095
10.1016/j.scitotenv.2013.10.029
10.1016/j.pnucene.2021.103956
10.1016/j.commatsci.2021.110566
10.1016/j.ceramint.2020.04.021
10.1016/j.ceramint.2020.02.276
10.1016/j.ceramint.2021.09.301
10.1201/9781003009849
10.1007/s41779-020-00457-1
10.1007/s00339-019-3254-9
10.1016/j.radphyschem.2021.109454
10.1016/j.radphyschem.2021.109386
10.1140/epjp/s13360-021-01906-x
10.1007/s00339-020-04265-z
10.2172/6016002
10.1007/s10965-021-02749-x
10.1007/s00339-021-05034-2
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
HCIFZ
JG9
KB.
L7M
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
S0W
DOI 10.1007/s10854-021-07382-4
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-482X
EndPage 1139
ExternalDocumentID 10_1007_s10854_021_07382_4
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P62
P9N
PDBOC
PKN
PT4
PT5
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SP
7SR
8BQ
8FD
ABRTQ
DWQXO
F28
FR3
JG9
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-337374f16c35724e34f7fccf1b6cfb6e1773fa3e596501b401827330c28fb1433
IEDL.DBID BENPR
ISSN 0957-4522
IngestDate Wed Aug 13 03:05:22 EDT 2025
Tue Jul 01 02:35:15 EDT 2025
Thu Apr 24 22:56:14 EDT 2025
Fri Feb 21 02:47:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-337374f16c35724e34f7fccf1b6cfb6e1773fa3e596501b401827330c28fb1433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9750-072X
PQID 2626113294
PQPubID 326250
PageCount 17
ParticipantIDs proquest_journals_2626113294
crossref_primary_10_1007_s10854_021_07382_4
crossref_citationtrail_10_1007_s10854_021_07382_4
springer_journals_10_1007_s10854_021_07382_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science. Materials in electronics
PublicationTitleAbbrev J Mater Sci: Mater Electron
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Olarinoye (CR49) 2020; 46
Ahmed, Chandra Sekhar, Ahammed, Vasant Sathe, Alrowaili, Olarinoye, Al-Buriahi, Tonguc, Shareefuddin (CR7) 2021
Al-Buriahi (CR44) 2021; 32
CR37
Olarinoye, Oche (CR6) 2020
Al-Buriahi, Singh, Alalawi, Sriwunkum, Tonguc (CR30) 2020; 46
CR36
Andreo, Burns, Nahum, Seuntjens, Attix (CR56) 2017
Nagaraju, Devaiah, Haritha, Sekhar, Shareefuddin, Sayed, Lalitha, Kumar (CR13) 2021; 560
Al-Buriahi, Tonguc (CR33) 2020; 166
Kumar, Gaikwad, Obaid, Tekin, Agar, Sayyed (CR25) 2020; 119
Hegazy (CR50) 2021; 47
Rammah, Olarinoye, El-Agawany, El-Adawy (CR16) 2021; 47
Ziegler, Ziegler, Biersack (CR38) 2010; 268
Al-Buriahi, Tonguç, Perişanoğlu, Kavaz (CR31) 2020; 46
CR3
Steinhauser, Brandl, Johnson (CR1) 2014; 470
Alshahrani, Olarinoye, Mutuwong, Chahkrit Sriwunkum, Yakout, Tekin, and M. S. Al-Buriahi. (CR34) 2021; 183
CR9
CR47
CR42
CR40
Olarinoye (CR54) 2011; 1
Kebaili, Znaidia, Alzahrani (CR21) 2021; 32
Al-Buriahi, Singh, Halil Arslan, Awasarmol, and Baris T. Tonguc. (CR29) 2020; 59
Sears (CR43) 1992; 3
Bashter (CR2) 1997; 24
Al-Buriahi, Alzahrani, Olarinoye, Akyildirim, Alomairy, Kebaili, Tekin, Mutuwong (CR20) 2021; 96
CR17
Rammah (CR48) 2021; 31
CR14
Alzahrani, Alothman, Eke, Al-Ghamdi, Aloraini, Al-Buriahi (CR11) 2021; 196
Alzahrani, Kavas, Kurtulus, Al-Buriahi (CR8) 2021; 248
Al-Hadeethi, Sayyed, Al-Buriahi (CR52) 2020; 46
Alothman, Recep Kurtulus, Olarinoye, Mutuwong, Al-Buriahi (CR10) 2021; 248
Al-Buriahi, El-Agawany, Sriwunkum, Akyıldırım, Arslan, Tonguc, El-Mallawany, Rammah (CR22) 2020; 581
Al-Buriahi, Singh (CR23) 2020; 56
Tonguc, Arslan, Al-Buriahi (CR27) 2018; 153
Al-Buriahi, Sriwunkum, Arslan, Tonguc, Bourham (CR28) 2020; 126
Singh, Kumar, Vermani, Al-Buriahi, Alzahrani, Singh (CR19) 2021
Sekhar, Kavitha, Narsimlu (CR15) 2021; 32
Kilicoglu, Tekin (CR53) 2020; 46
Al-Buriahi, Olarinoye, Alomairy, Kebaili, Kaya, Arslan, Tonguc (CR39) 2021; 137
Al-Buriahi (CR51) 2021; 32
Tashlykov, Vlasova, Kovyazina, Mahmoud (CR24) 2021; 136
Al-Buriahi, Sriwunkum, Boukhris (CR46) 2021; 136
Alzahrani, Alrowaili, Saleh, Hammoud, Sultan Alomairy, Sriwunkum, and M. S. Al-Buriahi. (CR12) 2021; 142
CR26
Saeed (CR45) 2021; 184
Stalin, Gaikwad, Samee, Edukondalu, Ahmmad, Joshi, Rahman (CR18) 2020; 46
Al-Buriahi, Sayyed, Al-Hadeethi (CR57) 2020
El-Khayatt (CR41) 2010; 37
Olarinoye, Alomairy, Sriwunkum, Al-Buriahi (CR35) 2021; 96
Tsoulfanidis, Landsberger (CR55) 2021
Alzahrani, Alrowaili, Saleh, Al-Baradi, Alothman, Al-Buriahi (CR5) 2021; 31
Al-Buriahi, Bakhsh, Tonguc, Khan (CR32) 2020; 46
Alzahrani, Alrowaili, Olarinoye, Alothman, Al-Baradi, Kebaili, Al-Buriahi (CR4) 2021; 141
7382_CR3
7382_CR14
JS Alzahrani (7382_CR11) 2021; 196
IO Olarinoye (7382_CR49) 2020; 46
MS Al-Buriahi (7382_CR33) 2020; 166
7382_CR17
G Steinhauser (7382_CR1) 2014; 470
VF Sears (7382_CR43) 1992; 3
N Tsoulfanidis (7382_CR55) 2021
II Bashter (7382_CR2) 1997; 24
Y Al-Hadeethi (7382_CR52) 2020; 46
A Kumar (7382_CR25) 2020; 119
MS Al-Buriahi (7382_CR46) 2021; 136
YS Rammah (7382_CR48) 2021; 31
MS Al-Buriahi (7382_CR22) 2020; 581
MS Al-Buriahi (7382_CR32) 2020; 46
YS Rammah (7382_CR16) 2021; 47
I Kebaili (7382_CR21) 2021; 32
JF Ziegler (7382_CR38) 2010; 268
MS Al-Buriahi (7382_CR28) 2020; 126
7382_CR26
MS Al-Buriahi (7382_CR51) 2021; 32
MS Al-Buriahi (7382_CR39) 2021; 137
AM El-Khayatt (7382_CR41) 2010; 37
HH Hegazy (7382_CR50) 2021; 47
MA Alothman (7382_CR10) 2021; 248
R Nagaraju (7382_CR13) 2021; 560
J Singh (7382_CR19) 2021
MS Al-Buriahi (7382_CR31) 2020; 46
BT Tonguc (7382_CR27) 2018; 153
O Olarinoye (7382_CR6) 2020
7382_CR36
7382_CR37
JS Alzahrani (7382_CR4) 2021; 141
B Alshahrani (7382_CR34) 2021; 183
MS Al-Buriahi (7382_CR20) 2021; 96
P Andreo (7382_CR56) 2017
I Olarinoye (7382_CR54) 2011; 1
MS Al-Buriahi (7382_CR44) 2021; 32
JS Alzahrani (7382_CR8) 2021; 248
A Saeed (7382_CR45) 2021; 184
MS Al-Buriahi (7382_CR23) 2020; 56
7382_CR47
O Kilicoglu (7382_CR53) 2020; 46
MS Al-Buriahi (7382_CR57) 2020
MS Al-Buriahi (7382_CR30) 2020; 46
7382_CR40
KC Sekhar (7382_CR15) 2021; 32
7382_CR42
S Stalin (7382_CR18) 2020; 46
OL Tashlykov (7382_CR24) 2021; 136
IO Olarinoye (7382_CR35) 2021; 96
JS Alzahrani (7382_CR12) 2021; 142
MS Al-Buriahi (7382_CR29) 2020; 59
JS Alzahrani (7382_CR5) 2021; 31
7382_CR9
MR Ahmed (7382_CR7) 2021
References_xml – volume: 46
  start-page: 23347
  issue: 15
  year: 2020
  end-page: 23356
  ident: CR31
  article-title: The impact of Gd2O3 on nuclear safety proficiencies of TeO2–ZnO–Nb2O5 glasses: a GEANT4 Monte Carlo study
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.110
– year: 2020
  ident: CR6
  article-title: Gamma-rays and fast neutrons shielding parameters of two new Ti-based bulk metallic glasses
  publication-title: Iranian J. Med. Phys.
  doi: 10.22038/ijmp.2020.42684.1635
– volume: 46
  start-page: 29191
  issue: 18
  year: 2020
  end-page: 29198
  ident: CR49
  article-title: The effects of La O addition on mechanical and nuclear shielding properties for zinc borate glasses in Monte Carlo simulation
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.08.092
– volume: 119
  year: 2020
  ident: CR25
  article-title: Experimental studies and Monte Carlo simulations on gamma ray shielding competence of (30+ x) PbO10WO3 10Na2O− 10MgO–(40–x) B2O3 glasses
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2019.103047
– volume: 24
  start-page: 1389
  issue: 17
  year: 1997
  end-page: 1401
  ident: CR2
  article-title: Calculation of radiation attenuation coefficients for shielding concretes
  publication-title: Ann. Nucl. Energy.
  doi: 10.1016/S0306-4549(97)00003-0
– volume: 47
  start-page: 2547
  issue: 2
  year: 2021
  end-page: 2556
  ident: CR16
  article-title: The impact of PbF2 on the ionizing radiation shielding competence and mechanical properties of TeO2–PbF2 glasses and glass-ceramics
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.09.100
– volume: 59
  start-page: 145
  year: 2020
  end-page: 150
  ident: CR29
  article-title: Gamma-ray attenuation properties of some NLO materials: potential use in dosimetry
  publication-title: Radiat. Environ. Biophys.
  doi: 10.1007/s00411-019-00824-y
– ident: CR42
– volume: 32
  start-page: 15509
  year: 2021
  end-page: 15522
  ident: CR21
  article-title: Ge Se Bi ( ≤ 12) chalcogenide glasses for infrared and gamma sensing applications: structural, optical and gamma attenuation aspects
  publication-title: J Mater Sci: Mater Electron
  doi: 10.1007/s10854-021-06101-3
– volume: 96
  start-page: 065308
  year: 2021
  ident: CR35
  article-title: Effect of Ag2O/V2O5 substitution on the radiation shielding ability of tellurite glass system via XCOM approach and FLUKA simulations
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/abf26a
– volume: 136
  start-page: 776
  year: 2021
  ident: CR46
  article-title: X– and gamma-rays attenuation properties of DNA nucleobases by using FLUKA simulation code
  publication-title: Eur. Phys. J. Plus.
  doi: 10.1140/epjp/s13360-021-01755-8
– volume: 46
  start-page: 15464
  year: 2020
  end-page: 15472
  ident: CR30
  article-title: Mechanical features and radiation shielding properties of TeO2–Ag2O-WO3 glasses
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.091
– volume: 3
  start-page: 26
  issue: 3
  year: 1992
  end-page: 37
  ident: CR43
  article-title: Neutron scattering lengths and cross sections
  publication-title: Neutron News
  doi: 10.1080/10448639208218770
– volume: 248
  start-page: 168078
  year: 2021
  ident: CR8
  article-title: Evaluations of physical and mechanical properties, and photon attenuation characteristics on lithium-germanate glass containing ZnO
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.168078
– volume: 32
  start-page: 9440
  year: 2021
  end-page: 9451
  ident: CR51
  article-title: Newly developed glasses containing Si/Cd/Li/Gd and their high performance for radiation applications: role of Er O
  publication-title: E J. Mater. Sci.: Mater Electron.
  doi: 10.1007/s10854-021-05608-z
– volume: 248
  start-page: 168047
  year: 2021
  ident: CR10
  article-title: Optical, elastic, and radiation shielding properties of Bi2O3-PbO-B2O3 glass system: a role of SnO2 addition
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.168047
– ident: CR9
– volume: 137
  year: 2021
  ident: CR39
  article-title: Dense and environment friendly bismuth barium telluroborate glasses for nuclear protection applications
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2021.103763
– ident: CR36
– volume: 268
  start-page: 1818
  issue: 11–12
  year: 2010
  end-page: 1823
  ident: CR38
  article-title: SRIM–The stopping and range of ions in matter (2010)
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
  doi: 10.1016/j.nimb.2010.02.091
– volume: 37
  start-page: 218
  issue: 2
  year: 2010
  end-page: 222
  ident: CR41
  article-title: Calculation of fast neutron removal cross-sections for some compounds and materials
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2009.10.022
– ident: CR26
– volume: 560
  year: 2021
  ident: CR13
  article-title: Influence of CaF2 on spectroscopic studies of lead fluoro bismuth borate glasses doped with Cr3+ ions
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2021.120705
– volume: 96
  issue: 7
  year: 2021
  ident: CR20
  article-title: Role of heavy metal oxides on the radiation attenuation properties of newly developed TBBE-X glasses by computational methods
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/abf86a
– volume: 32
  start-page: 2386
  year: 2021
  end-page: 2396
  ident: CR44
  article-title: Radiation attenuation properties of some commercial polymers for advanced shielding applications
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.5267
– volume: 47
  start-page: 2772
  issue: 2
  year: 2021
  end-page: 2780
  ident: CR50
  article-title: Nuclear shielding properties of B O –Bi O –SrO glasses modified with Nd O : Theoretical and simulation studies
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.09.131
– ident: CR47
– ident: CR14
– volume: 31
  start-page: 21431
  year: 2021
  end-page: 21443
  ident: CR48
  article-title: Influence of Er -doped ions on the linear/nonlinear optical characteristics and radiation shielding features of TeO -ZnO-Er O glasses
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 1
  start-page: 64
  issue: 2
  year: 2011
  end-page: 69
  ident: CR54
  article-title: Variation of effective atomic numbers of some thermoluminescence and phantom materials with photon energies
  publication-title: Res J Chem Sci
– ident: CR37
– volume: 166
  start-page: 108507
  year: 2020
  ident: CR33
  article-title: Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2019.108507
– volume: 31
  start-page: 1
  year: 2021
  end-page: 13
  ident: CR5
  article-title: A significant role of Tb2O3 on the optical properties and radiation shielding performance of Ga2O3–B2O3–Al2O3–GeO2 glasses
  publication-title: J. Inorg. Organometal Polym Mater.
  doi: 10.1007/s10904-020-01725-0
– volume: 136
  start-page: 1
  issue: 4
  year: 2021
  end-page: 17
  ident: CR24
  article-title: Repercussions of yttrium oxides on radiation shielding capacity of sodium-silicate glass system: experimental and Monte Carlo simulation study
  publication-title: The European Physical Journal Plus
  doi: 10.1140/epjp/s13360-021-01420-0
– volume: 142
  start-page: 103992
  year: 2021
  ident: CR12
  article-title: Synthesis, physical and nuclear shielding properties of novel Pb–Al alloys
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2021.103992
– volume: 32
  start-page: 23047
  year: 2021
  end-page: 23065
  ident: CR15
  article-title: Enhancement of shielding ability using PbF in Fe-reinforced bismuth borate glasses
  publication-title: J Mater Sci: Mater Electron
  doi: 10.1007/s10854-021-06788-4
– year: 2020
  ident: CR57
  article-title: Role of TeO2 in radiation shielding characteristics of calcium boro-tellurite glasses
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.02.148
– volume: 153
  start-page: 86
  year: 2018
  end-page: 91
  ident: CR27
  article-title: Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2018.08.025
– ident: CR40
– year: 2021
  ident: CR19
  article-title: Fabrication and characterization of barium based bioactive glasses in terms of physical, structural, mechanical and radiation shielding properties
  publication-title: Ceram. Inter.
  doi: 10.1016/j.ceramint.2021.04.188
– volume: 581
  year: 2020
  ident: CR22
  article-title: Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses
  publication-title: Physica B
  doi: 10.1016/j.physb.2019.411946
– volume: 46
  start-page: 19078
  year: 2020
  end-page: 19083
  ident: CR32
  article-title: Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.240
– volume: 46
  start-page: 1323
  issue: 2
  year: 2020
  end-page: 1333
  ident: CR53
  article-title: Bioactive glasses and direct effect of increased K O additive for nuclear shielding performance: A comparative investigation
  publication-title: Ceram Int.
  doi: 10.1016/j.ceramint.2019.09.095
– ident: CR3
– volume: 470
  start-page: 800
  year: 2014
  end-page: 817
  ident: CR1
  article-title: Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.10.029
– volume: 141
  start-page: 103956
  year: 2021
  ident: CR4
  article-title: Nuclear shielding properties and buildup factors of Cr-based ferroalloys
  publication-title: Prog. Nuclear Ener.
  doi: 10.1016/j.pnucene.2021.103956
– ident: CR17
– volume: 196
  start-page: 110566
  year: 2021
  ident: CR11
  article-title: Simulating the radiation shielding properties of TeO2–Na2O–TiO glass system using PHITS Monte Carlo code
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110566
– volume: 46
  start-page: 17235
  issue: 11
  year: 2020
  end-page: 17334
  ident: CR18
  article-title: Structural, optical features and gamma ray shielding properties of Bi O –TeO –B O -GeO glass system
  publication-title: Ceram. Inter.
  doi: 10.1016/j.ceramint.2020.04.021
– volume: 46
  start-page: 14721
  issue: 10
  year: 2020
  end-page: 14732
  ident: CR52
  article-title: Bioactive glasses doped with TiO and their potential use in radiation shielding applications
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.02.276
– year: 2017
  ident: CR56
  publication-title: Fundamentals of ionizing radiation dosimetry
– year: 2021
  ident: CR7
  article-title: Synthesis, physical, optical, structural and radiation shielding characterization of borate glasses: A focus on the role of SrO/Al2O3substitution
  publication-title: Ceram. Inter.
  doi: 10.1016/j.ceramint.2021.09.301
– year: 2021
  ident: CR55
  publication-title: Measurement & detection of radiation
  doi: 10.1201/9781003009849
– volume: 56
  start-page: 1127
  issue: 3
  year: 2020
  end-page: 1133
  ident: CR23
  article-title: Comparison of shielding properties of various marble concretes using GEANT4 simulation and experimental data
  publication-title: J. Aust. Ceram. Soc.
  doi: 10.1007/s41779-020-00457-1
– volume: 126
  start-page: 1
  year: 2020
  end-page: 9
  ident: CR28
  article-title: Investigation of barium borate glasses for radiation shielding applications
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-3254-9
– volume: 184
  start-page: 109454
  year: 2021
  ident: CR45
  article-title: Neutron and charged particle attenuation properties of volcanic rocks
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2021.109454
– volume: 183
  start-page: 109386
  year: 2021
  ident: CR34
  article-title: Amorphous alloys with high Fe content for radiation shielding applications
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2021.109386
– volume: 136
  start-page: 1
  issue: 4
  year: 2021
  ident: 7382_CR24
  publication-title: The European Physical Journal Plus
  doi: 10.1140/epjp/s13360-021-01420-0
– ident: 7382_CR14
  doi: 10.1140/epjp/s13360-021-01906-x
– ident: 7382_CR17
  doi: 10.1007/s00339-020-04265-z
– volume: 96
  start-page: 065308
  year: 2021
  ident: 7382_CR35
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/abf26a
– volume: 32
  start-page: 9440
  year: 2021
  ident: 7382_CR51
  publication-title: E J. Mater. Sci.: Mater Electron.
  doi: 10.1007/s10854-021-05608-z
– volume: 248
  start-page: 168078
  year: 2021
  ident: 7382_CR8
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.168078
– volume: 32
  start-page: 23047
  year: 2021
  ident: 7382_CR15
  publication-title: J Mater Sci: Mater Electron
  doi: 10.1007/s10854-021-06788-4
– volume: 47
  start-page: 2547
  issue: 2
  year: 2021
  ident: 7382_CR16
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.09.100
– year: 2021
  ident: 7382_CR19
  publication-title: Ceram. Inter.
  doi: 10.1016/j.ceramint.2021.04.188
– volume-title: Fundamentals of ionizing radiation dosimetry
  year: 2017
  ident: 7382_CR56
– volume: 96
  issue: 7
  year: 2021
  ident: 7382_CR20
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/abf86a
– volume: 3
  start-page: 26
  issue: 3
  year: 1992
  ident: 7382_CR43
  publication-title: Neutron News
  doi: 10.1080/10448639208218770
– volume: 32
  start-page: 2386
  year: 2021
  ident: 7382_CR44
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.5267
– volume: 153
  start-page: 86
  year: 2018
  ident: 7382_CR27
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2018.08.025
– volume: 31
  start-page: 21431
  year: 2021
  ident: 7382_CR48
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 560
  year: 2021
  ident: 7382_CR13
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2021.120705
– volume: 166
  start-page: 108507
  year: 2020
  ident: 7382_CR33
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2019.108507
– volume: 126
  start-page: 1
  year: 2020
  ident: 7382_CR28
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-3254-9
– volume: 1
  start-page: 64
  issue: 2
  year: 2011
  ident: 7382_CR54
  publication-title: Res J Chem Sci
– volume: 470
  start-page: 800
  year: 2014
  ident: 7382_CR1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.10.029
– volume: 46
  start-page: 15464
  year: 2020
  ident: 7382_CR30
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.091
– year: 2021
  ident: 7382_CR7
  publication-title: Ceram. Inter.
  doi: 10.1016/j.ceramint.2021.09.301
– volume: 119
  year: 2020
  ident: 7382_CR25
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2019.103047
– ident: 7382_CR36
  doi: 10.2172/6016002
– volume: 47
  start-page: 2772
  issue: 2
  year: 2021
  ident: 7382_CR50
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.09.131
– volume: 46
  start-page: 17235
  issue: 11
  year: 2020
  ident: 7382_CR18
  publication-title: Ceram. Inter.
  doi: 10.1016/j.ceramint.2020.04.021
– volume: 46
  start-page: 29191
  issue: 18
  year: 2020
  ident: 7382_CR49
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.08.092
– volume: 136
  start-page: 776
  year: 2021
  ident: 7382_CR46
  publication-title: Eur. Phys. J. Plus.
  doi: 10.1140/epjp/s13360-021-01755-8
– volume: 31
  start-page: 1
  year: 2021
  ident: 7382_CR5
  publication-title: J. Inorg. Organometal Polym Mater.
  doi: 10.1007/s10904-020-01725-0
– volume: 142
  start-page: 103992
  year: 2021
  ident: 7382_CR12
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2021.103992
– volume: 37
  start-page: 218
  issue: 2
  year: 2010
  ident: 7382_CR41
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2009.10.022
– volume: 24
  start-page: 1389
  issue: 17
  year: 1997
  ident: 7382_CR2
  publication-title: Ann. Nucl. Energy.
  doi: 10.1016/S0306-4549(97)00003-0
– volume: 184
  start-page: 109454
  year: 2021
  ident: 7382_CR45
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2021.109454
– ident: 7382_CR37
– volume: 268
  start-page: 1818
  issue: 11–12
  year: 2010
  ident: 7382_CR38
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
  doi: 10.1016/j.nimb.2010.02.091
– volume: 248
  start-page: 168047
  year: 2021
  ident: 7382_CR10
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.168047
– year: 2020
  ident: 7382_CR57
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.02.148
– volume: 32
  start-page: 15509
  year: 2021
  ident: 7382_CR21
  publication-title: J Mater Sci: Mater Electron
  doi: 10.1007/s10854-021-06101-3
– volume: 183
  start-page: 109386
  year: 2021
  ident: 7382_CR34
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2021.109386
– volume: 59
  start-page: 145
  year: 2020
  ident: 7382_CR29
  publication-title: Radiat. Environ. Biophys.
  doi: 10.1007/s00411-019-00824-y
– ident: 7382_CR9
  doi: 10.1007/s10965-021-02749-x
– volume: 46
  start-page: 19078
  year: 2020
  ident: 7382_CR32
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.240
– volume-title: Measurement & detection of radiation
  year: 2021
  ident: 7382_CR55
  doi: 10.1201/9781003009849
– ident: 7382_CR40
– ident: 7382_CR42
– volume: 46
  start-page: 23347
  issue: 15
  year: 2020
  ident: 7382_CR31
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.110
– volume: 137
  year: 2021
  ident: 7382_CR39
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2021.103763
– volume: 141
  start-page: 103956
  year: 2021
  ident: 7382_CR4
  publication-title: Prog. Nuclear Ener.
  doi: 10.1016/j.pnucene.2021.103956
– ident: 7382_CR3
  doi: 10.1007/s00339-021-05034-2
– volume: 56
  start-page: 1127
  issue: 3
  year: 2020
  ident: 7382_CR23
  publication-title: J. Aust. Ceram. Soc.
  doi: 10.1007/s41779-020-00457-1
– year: 2020
  ident: 7382_CR6
  publication-title: Iranian J. Med. Phys.
  doi: 10.22038/ijmp.2020.42684.1635
– ident: 7382_CR47
– volume: 46
  start-page: 14721
  issue: 10
  year: 2020
  ident: 7382_CR52
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.02.276
– volume: 46
  start-page: 1323
  issue: 2
  year: 2020
  ident: 7382_CR53
  publication-title: Ceram Int.
  doi: 10.1016/j.ceramint.2019.09.095
– volume: 581
  year: 2020
  ident: 7382_CR22
  publication-title: Physica B
  doi: 10.1016/j.physb.2019.411946
– ident: 7382_CR26
– volume: 196
  start-page: 110566
  year: 2021
  ident: 7382_CR11
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110566
SSID ssj0006438
Score 2.5755963
Snippet The radiation shielding characterization of glasses is vital in establishing their role in nuclear protection applications. This study presents the influence...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1123
SubjectTerms Absorption
Alpha particles
Alpha rays
Atomic properties
Attenuation coefficients
Bismuth
Characterization and Evaluation of Materials
Charged particles
Chemistry and Materials Science
Cold neutrons
Fast neutrons
Gamma rays
Materials Science
Mathematical analysis
Neutrons
Nuclear cross sections
Optical and Electronic Materials
Parameters
Photons
Radiation
Radiation protection
Radiation shielding
Radiation sources
Radioactive wastes
Reinforced reaction injection molding
Thermal neutrons
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46L3oQf-J0yjt4cwWbH013HOIYguLBwW4lTRMnbO1YV8V_wL_bl67dpqjgOelr6feSfC957wshl9RKpOk4kGRiuccT3vFiX3P05Y4wSaK4VG4f8v4h6A_43VAMq6KwvM52r48ky5l6rdgtFNxzKQXolsgL-SbZEi52Ry8e0O5y_sU1Nlwo7DlFb0qrUpmfbXxdjlYc89uxaLna9PbIbkUTobvAdZ9smPSA7KyJBx6SD0QYXHIgZBYe4x6FLAWkc_CsJhPlzdQ7TEcZUrs2lHJIJoFpnQbXBpUmkJrCbYRDPnJpbGgU8MvecOpzFtPs1YxhjC4Adlxkswzil3xSzEdQeg2-xvFukx-RQe_26abvVbcqeBqH29xjTDLJrR9oJiTlhnErrdbWjwNt48D4UjKrmBEdJG9-jPFXiBSHXWsa2hjZFTsmjTRLzQkBoxNLjfZFqDQPnawM1TQRgZEqDIwQTeLXPzfSleS4u_liHK3Ekh0gEQISlYBEvEmuls9MF4Ibf_Zu1ZhF1eDLI4pBmo9Rdgeb2zWOq-bfrZ3-r_sZ2aauGKLckGmRxnxWmHOkKPP4ovTIT2Mx27Y
  priority: 102
  providerName: Springer Nature
Title The role of PbF2 on the gamma-ray photon, charged particles, and neutron shielding prowess of novel lead fluoro bismuth borate glasses
URI https://link.springer.com/article/10.1007/s10854-021-07382-4
https://www.proquest.com/docview/2626113294
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF61zQUOiKdIaaM5cCMWeB_ezQkFmrSitKqASOVkrffRVErsECdU_QP8bmaddQNI9OTD2mPLMzv77ezMN4S8pl4iTMeJJK3nCbd8kBSp4WjLA-Gs1VzqEIc8O89OJvzTpbiMAbc6plW2PrFx1LYyIUb-liLybrqi8_eLH0noGhVOV2MLjV3SQRescPPV-TA6v_hy54txvVUbtr3A7k1pLJuJxXNK8CSkKKCZI87kfy9NW7z5zxFps_KMH5NHETLCcKPjJ2THlU_Jwz-IBJ-RX6htCImCUHm4KMYUqhIQ2sGVns91stS3sJhWCPP60FAjOQuLNiWuD7q0ULp1CIpDPQ0pbSgU8Mtu0A0GiWX1081ghuYAfraulhUU1_V8vZpCY0H4moDBXf2cTMajbx9PkthhITE49VYJY5JJ7tPMMCEpd4x76Y3xaZEZX2QulZJ5zZwYIJBLC9yLKYQ77J2hyheItNgLsldWpXtJwBnrqTOpUNpwFShmqKFWZE5qlTkhuiRtf25uIv146IIxy7fEyUEhOSokbxSS8y55c_fMYkO-ce_dB63O8jgR63xrNl3Sb_W4Hf6_tP37pb0iD2gohGiCMQdkb7Vcu0OEJ6uiR3bV-LhHOsOjs89fw_X4--moFy0TRyd0-BtA3OUc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9gA9oJaHCBQ6BzgRC7wPr3NACJWmKX2IQyv1Ztb7IJUSO8QJVf9Af05_I7OO3RQkeuvNku2xtfPtzLezszMAb5lXRNNpIinrRSSs6EV5bARhuSedtVooHeKQR8fJ4FR8O5NnK3DdnoUJaZWtTawNtS1NiJF_YMS8667o4vPkVxS6RoXd1baFxgIWB-7ygpZs1af9r6Tfd4z1d092BlHTVSAyBLdZxLniSvg4MVwqJhwXXnljfJwnxueJi5XiXnMne0Re4pzWHym5eP7RsNTnxC44yX0Aa3TRCzMq7e_dWH7y7umitl-oJc5Yc0inOaqXShGFhAiaVMRqxd-OcMlu_9mQrf1cfwMeNwQVvywQtQkrrngC67fKFj6FK8IWhrRELD1-z_sMywKJSOJPPR7raKovcTIsiVR2sS7E5CxO2gS8LurCYuHmIQSP1TAk0JFQpD-7IKMbJBblbzfCEYEP_WheTkvMz6vxfDbEGq_0mcD4XfUMTu9l5J_DalEW7gWgM9YzZ2KZaiPSUNCGGWZl4pROEydlB-J2cDPTFDsPPTdG2bJMc1BIRgrJaoVkogPvb96ZLEp93Pn0VquzrJn2VbYEaQe6rR6Xt_8v7eXd0rbh4eDk6DA73D8-eAWPWDiCUYeBtmB1Np2710SMZvmbGo0IP-4b_n8AmKQZ8g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEL0gMpLBArMAU7Ear0Pr3NAiNJGLYUoQlTqzaz3QSoldogTqv4BfhS_jlnHbgCJ3nq2PbY83858OzsPgJfMK6LptJCU9SISVvSjPDaCsNyXzlotlA5xyE_D5OhUfDiTZxvwq62FCWmVrU2sDbUtTYiR7zJi3vVUdLHrm7SI0cHg7ex7FCZIhZPWdpzGCiIn7vKCtm_Vm-MD0vUrxgaHX94fRc2EgcgQ9BYR54or4ePEcKmYcFx45Y3xcZ4YnycuVop7zZ3sE5GJc9qLpOTu-Z5hqc-JaXCSews2Fe2K9jqwuX84HH2-8gPk69NVp7_QWZyxpmSnKdxLpYhCegQtMeK44m-3uOa6_xzP1l5vsA13G7qK71b4ugcbrrgPW380MXwAPwlpGJIUsfQ4ygcMywKJVuI3PZ3qaK4vcTYuiWL2sG7L5CzO2nS8HurCYuGWISCP1Tik05FQpC-7IBMcJBblDzfBCUER_WRZzkvMz6vpcjHGGr30msD_XfUQTm_k3z-CTlEW7jGgM9YzZ2KZaiPS0N6GGWZl4pROEydlF-L252amaX0eJnBMsnXT5qCQjBSS1QrJRBdeXz0zWzX-uPbunVZnWWMEqmwN2S70Wj2uL_9f2pPrpb2A2wT97OPx8OQp3GGhHqOOCe1AZzFfumfEkhb58waOCF9vegX8Bq4gH4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+PbF2+on+the+gamma-ray+photon%2C+charged+particles%2C+and+neutron+shielding+prowess+of+novel+lead+fluoro+bismuth+borate+glasses&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Al-Buriahi%2C+M.+S.&rft.au=Alrowaili%2C+Z.+A.&rft.au=Alsufyani%2C+Sultan+J.&rft.au=Olarinoye%2C+I.+O.&rft.date=2022-01-01&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=33&rft.issue=3&rft.spage=1123&rft.epage=1139&rft_id=info:doi/10.1007%2Fs10854-021-07382-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10854_021_07382_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon