BLSTM and CNN Stacking Architecture for Speech Emotion Recognition

Speech Emotion Recognition (SER) is a huge challenge for distinguishing and interpreting the sentiments carried in speech. Fortunately, deep learning is proved to have great ability to deal with acoustic features. For instance, Bidirectional Long Short Term Memory (BLSTM) has an advantage of solving...

Full description

Saved in:
Bibliographic Details
Published inNeural processing letters Vol. 53; no. 6; pp. 4097 - 4115
Main Authors Li, Dongdong, Sun, Linyu, Xu, Xinlei, Wang, Zhe, Zhang, Jing, Du, Wenli
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1370-4621
1573-773X
DOI10.1007/s11063-021-10581-z

Cover

Abstract Speech Emotion Recognition (SER) is a huge challenge for distinguishing and interpreting the sentiments carried in speech. Fortunately, deep learning is proved to have great ability to deal with acoustic features. For instance, Bidirectional Long Short Term Memory (BLSTM) has an advantage of solving time series acoustic features and Convolutional Neural Network (CNN) can discover the local structure among different features. This paper proposed the BLSTM and CNN Stacking Architecture (BCSA) to enhance the ability to recognition emotions. In order to match the input formats of BLSTM and CNN, slicing feature matrices is necessary. For utilizing the different roles of the BLSTM and CNN, the Stacking is employed to integrate the BLSTM and CNN. In detail, taking into account overfitting problem, the estimates of probabilistic quantities from BLSTM and CNN are combined as new data using K-fold cross validation. Finally, based on the Stacking models, the logistic regression is used to recognize emotions effectively by fitting the new data. The experiment results demonstrate that the performance of proposed architecture is better than that of single model. Furthermore, compared with the state-of-the-art model on SER in our knowledge, the proposed method BCSA may be more suitable for SER by integrating time series acoustic features and the local structure among different features.
AbstractList Speech Emotion Recognition (SER) is a huge challenge for distinguishing and interpreting the sentiments carried in speech. Fortunately, deep learning is proved to have great ability to deal with acoustic features. For instance, Bidirectional Long Short Term Memory (BLSTM) has an advantage of solving time series acoustic features and Convolutional Neural Network (CNN) can discover the local structure among different features. This paper proposed the BLSTM and CNN Stacking Architecture (BCSA) to enhance the ability to recognition emotions. In order to match the input formats of BLSTM and CNN, slicing feature matrices is necessary. For utilizing the different roles of the BLSTM and CNN, the Stacking is employed to integrate the BLSTM and CNN. In detail, taking into account overfitting problem, the estimates of probabilistic quantities from BLSTM and CNN are combined as new data using K-fold cross validation. Finally, based on the Stacking models, the logistic regression is used to recognize emotions effectively by fitting the new data. The experiment results demonstrate that the performance of proposed architecture is better than that of single model. Furthermore, compared with the state-of-the-art model on SER in our knowledge, the proposed method BCSA may be more suitable for SER by integrating time series acoustic features and the local structure among different features.
Author Wang, Zhe
Sun, Linyu
Zhang, Jing
Li, Dongdong
Xu, Xinlei
Du, Wenli
Author_xml – sequence: 1
  givenname: Dongdong
  surname: Li
  fullname: Li, Dongdong
  organization: Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Department of Computer Science and Engineering, East China University of Science and Technology, Provincial Key Laboratory for Computer Information Processing Technology, Soochow University
– sequence: 2
  givenname: Linyu
  surname: Sun
  fullname: Sun, Linyu
  organization: Department of Computer Science and Engineering, East China University of Science and Technology
– sequence: 3
  givenname: Xinlei
  surname: Xu
  fullname: Xu, Xinlei
  organization: Department of Computer Science and Engineering, East China University of Science and Technology
– sequence: 4
  givenname: Zhe
  surname: Wang
  fullname: Wang, Zhe
  email: wangzhe@ecust.edu.cn
  organization: Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Department of Computer Science and Engineering, East China University of Science and Technology
– sequence: 5
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: Department of Computer Science and Engineering, East China University of Science and Technology
– sequence: 6
  givenname: Wenli
  surname: Du
  fullname: Du, Wenli
  email: wldu@ecust.edu.cn
  organization: Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology
BookMark eNp9kM1PAjEQxRuDiYD-A5428VztbPejHIHgR4KYCCbemtKdwiJ0sS0H-estYmLigdO8w_zmzXsd0rKNRUKugd0CY-WdB2AFpywFCiwXQPdnpA15yWlZ8vdW1LxkNCtSuCAd71eMRSxlbTIYjKez50TZKhlOJsk0KP1R20XSd3pZB9Rh5zAxjUumW0S9TEabJtSNTV5RNwtbH_QlOTdq7fHqd3bJ2_1oNnyk45eHp2F_TDWHXqCc55rP84qhNilkuhAZpsIUCGUlMoW8MKUwRglu8ixTOc6hqHpQYZFDaaqCd8nN8e7WNZ879EGump2z0VKmPRA84zFU3EqPW9o13js0cuvqjXJfEpg8dCWPXcnYlfzpSu4jJP5Bug7qEC44Va9Po_yI-uhjF-j-vjpBfQNOq3-X
CitedBy_id crossref_primary_10_3390_foods11142019
crossref_primary_10_1109_ACCESS_2024_3517733
crossref_primary_10_3390_electronics13061151
crossref_primary_10_1007_s00217_023_04375_x
crossref_primary_10_1177_14727978251321951
crossref_primary_10_1007_s11042_023_16465_9
crossref_primary_10_1007_s00170_024_13385_2
crossref_primary_10_1016_j_cjche_2024_06_026
crossref_primary_10_1016_j_specom_2023_01_008
crossref_primary_10_1109_JIOT_2024_3360094
crossref_primary_10_3390_s23136212
crossref_primary_10_1007_s11063_023_11259_4
crossref_primary_10_1016_j_neucom_2023_126623
crossref_primary_10_1007_s11063_022_11036_9
crossref_primary_10_3233_JIFS_219390
crossref_primary_10_1007_s11042_023_17829_x
crossref_primary_10_2478_ijssis_2024_0027
crossref_primary_10_1016_j_apacoust_2023_109658
crossref_primary_10_1016_j_eswa_2023_123110
Cites_doi 10.1155/2009/153017
10.1016/j.ins.2020.09.047
10.1109/TASLP.2016.2540805
10.1109/MSP.2012.2205597
10.1038/nature14539
10.1007/s10489-018-1206-2
10.1109/JSTSP.2017.2764438
10.1016/B978-0-08-051584-7.50010-3
10.1016/j.dsp.2012.10.008
10.1109/T-AFFC.2010.1
10.1007/s10579-008-9076-6
10.1016/j.patrec.2014.10.015
10.1109/TMM.2017.2766843
10.1016/S0893-6080(05)80023-1
10.3390/electronics9050713
10.21437/Interspeech.2017-917
10.1109/ICCIC.2015.7435630
10.21437/Interspeech.2009-103
10.1016/j.neunet.2017.02.013
10.1109/ICSPCS.2017.8270472
10.1016/j.specom.2010.08.013
10.1109/ICASSP.2017.7952552
10.1109/ICASSP.2016.7472166
10.1109/ISCAS.2010.5537907
10.4028/www.scientific.net/AMM.610.283
10.1007/s10489-018-1242-y
10.21437/Interspeech.2014-433
10.1109/APSIPA.2017.8282123
10.1016/j.eswa.2020.114177
10.1109/ICASSP.2017.7952120
10.1007/978-3-030-41299-9_34
10.1145/2502081.2502224
10.1109/ICASSP.2016.7471734
10.1007/978-3-030-27535-8_43
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
Copyright Springer Nature B.V. Dec 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: Copyright Springer Nature B.V. Dec 2021
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
DOI 10.1007/s11063-021-10581-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-773X
EndPage 4115
ExternalDocumentID 10_1007_s11063_021_10581_z
GrantInformation_xml – fundername: Natural Science Foundation of China
  grantid: 62076094
– fundername: Natural Science Foundations of China
  grantid: 61806078
– fundername: Shanghai Science and Technology Program “Distributed and generative few-shot algorithm and theory research”
  grantid: 20511100600
– fundername: National Major Scientific and Technological Special Project for “Significant New Drugs Development”
  grantid: 2019ZX09201004
GroupedDBID -4Z
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PSYQQ
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-335c3b5d0ecf214c684e28f6e17d84ae36f78ffa83f544a5eb16d91de6517fd63
IEDL.DBID BENPR
ISSN 1370-4621
IngestDate Wed Aug 13 10:40:16 EDT 2025
Tue Jul 01 01:09:35 EDT 2025
Thu Apr 24 22:58:35 EDT 2025
Fri Feb 21 02:47:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Stacking
Convolutional neural network
Bidirectional long short term memory
Speech emotion recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-335c3b5d0ecf214c684e28f6e17d84ae36f78ffa83f544a5eb16d91de6517fd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918343010
PQPubID 2043838
PageCount 19
ParticipantIDs proquest_journals_2918343010
crossref_primary_10_1007_s11063_021_10581_z
crossref_citationtrail_10_1007_s11063_021_10581_z
springer_journals_10_1007_s11063_021_10581_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211200
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Neural processing letters
PublicationTitleAbbrev Neural Process Lett
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Wolpert (CR22) 1992; 5
Busso, Bulut, Lee, Kazemzadeh, Mower, Kim, Chang, Lee, Narayanan (CR23) 2008; 42
CR39
CR38
CR37
CR36
CR35
Kos, Kačič, Vlaj (CR41) 2013; 23
Benavoli, Corani, Demšar, Zaffalon (CR50) 2017; 18
CR33
CR32
Calvo, Sidney (CR1) 2010; 1
CR31
CR30
Cun, Boser, Denker, Howard, Habbard, Jackel (CR26) 1990; 2
CR4
CR6
Zhang, Zhang, Huang, Gao (CR17) 2018; 20
CR8
CR7
CR49
CR47
CR46
CR45
CR44
CR42
Tzirakis, Trigeorgis, Nicolaou, Schuller, Zafeiriou (CR21) 2017; 11
Li, Zhou, Wang, Gao (CR34) 2021; 548
Zhang, Zhang, Nie, Gao, Liu (CR29) 2016; 24
Chandrasekar, Chapaneri, Jayaswal (CR43) 2014; 101
Pachet, Roy (CR48) 2009; 2009
CR19
CR18
Davis, Ieee (CR40) 1990; 28
CR16
Hinto, Li, Dong, Dahl, Mohamed, Navdeep, Senior, Nguyen, Vanhoucke, Sainath (CR3) 2012; 29
CR15
CR14
CR13
CR11
CR10
Lecun, Bengio, Hinton (CR2) 2015; 521
CR51
Yeonguk, Kim (CR12) 2020; 9
CR28
CR27
Xing, Zhikang, Guo, Fujita (CR5) 2019; 49
CR25
CR24
CR20
Trentin, Scherer, Schwenker (CR9) 2015; 66
SB Davis (10581_CR40) 1990; 28
10581_CR32
10581_CR33
10581_CR30
10581_CR31
RA Calvo (10581_CR1) 2010; 1
10581_CR27
10581_CR28
10581_CR25
10581_CR24
M Kos (10581_CR41) 2013; 23
P Chandrasekar (10581_CR43) 2014; 101
10581_CR44
10581_CR42
DH Wolpert (10581_CR22) 1992; 5
W Xing (10581_CR5) 2019; 49
10581_CR7
10581_CR38
F Pachet (10581_CR48) 2009; 2009
10581_CR8
10581_CR39
10581_CR36
10581_CR37
10581_CR35
C Busso (10581_CR23) 2008; 42
P Tzirakis (10581_CR21) 2017; 11
10581_CR6
10581_CR4
Yu Yeonguk (10581_CR12) 2020; 9
G Hinto (10581_CR3) 2012; 29
S Zhang (10581_CR17) 2018; 20
X Zhang (10581_CR29) 2016; 24
10581_CR10
10581_CR11
10581_CR51
YL Cun (10581_CR26) 1990; 2
10581_CR49
Y Lecun (10581_CR2) 2015; 521
10581_CR47
D Li (10581_CR34) 2021; 548
10581_CR45
10581_CR46
E Trentin (10581_CR9) 2015; 66
10581_CR20
10581_CR18
10581_CR19
10581_CR16
10581_CR14
10581_CR15
10581_CR13
A Benavoli (10581_CR50) 2017; 18
References_xml – ident: CR45
– volume: 2009
  start-page: 1
  issue: 1
  year: 2009
  end-page: 23
  ident: CR48
  article-title: Analytical features: a knowledge-based approach to audio feature generation
  publication-title: Eurasip J Audio Speech Music Process
  doi: 10.1155/2009/153017
– ident: CR49
– ident: CR4
– volume: 548
  start-page: 328
  year: 2021
  end-page: 343
  ident: CR34
  article-title: Exploiting the potentialities of features for speech emotion recognition
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.09.047
– ident: CR39
– ident: CR16
– ident: CR51
– volume: 24
  start-page: 1066
  issue: 6
  year: 2016
  end-page: 1078
  ident: CR29
  article-title: A pairwise algorithm using the deep stacking network for speech separation and pitch estimation
  publication-title: IEEE/ACM Trans Audio Speech Lang Process
  doi: 10.1109/TASLP.2016.2540805
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  end-page: 97
  ident: CR3
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2205597
– ident: CR35
– ident: CR8
– volume: 18
  start-page: 2653
  issue: 1
  year: 2017
  end-page: 2688
  ident: CR50
  article-title: Time for a change: a tutorial for comparing multiple classifiers through Bayesian analysis
  publication-title: J Mach Learn Res
– ident: CR25
– ident: CR42
– ident: CR46
– ident: CR19
– ident: CR15
– ident: CR11
– ident: CR32
– ident: CR36
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: CR2
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: CR18
– ident: CR47
– ident: CR14
– ident: CR37
– ident: CR30
– volume: 49
  start-page: 44
  issue: 1
  year: 2019
  end-page: 52
  ident: CR5
  article-title: Hierarchical attention based long short-term memory for Chinese lyric generation
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1206-2
– ident: CR10
– volume: 11
  start-page: 1301
  issue: 8
  year: 2017
  end-page: 1309
  ident: CR21
  article-title: End-to-end multimodal emotion recognition using deep neural networks
  publication-title: IEEE J Sel Top Signal Process
  doi: 10.1109/JSTSP.2017.2764438
– ident: CR33
– volume: 28
  start-page: 65
  issue: 4
  year: 1990
  end-page: 74
  ident: CR40
  article-title: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences
  publication-title: Read Speech Recognit
  doi: 10.1016/B978-0-08-051584-7.50010-3
– ident: CR6
– ident: CR27
– volume: 23
  start-page: 659
  issue: 2
  year: 2013
  end-page: 674
  ident: CR41
  article-title: Acoustic classification and segmentation using modified spectral roll-off and variance-based features
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2012.10.008
– volume: 101
  start-page: 31
  issue: 101
  year: 2014
  end-page: 36
  ident: CR43
  article-title: Emotion recognition from speech using discriminative features
  publication-title: Int J Comput Appl
– volume: 1
  start-page: 18
  issue: 1
  year: 2010
  end-page: 37
  ident: CR1
  article-title: Affect detection: an interdisciplinary review of models, methods, and their applications
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/T-AFFC.2010.1
– volume: 42
  start-page: 335
  issue: 4
  year: 2008
  end-page: 359
  ident: CR23
  article-title: Iemocap: interactive emotional dyadic motion capture database
  publication-title: Lang Resour Eval
  doi: 10.1007/s10579-008-9076-6
– ident: CR44
– volume: 66
  start-page: 4
  year: 2015
  end-page: 12
  ident: CR9
  article-title: Emotion recognition from speech signals via a probabilistic echo-state network
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2014.10.015
– volume: 20
  start-page: 1576
  issue: 6
  year: 2018
  end-page: 1590
  ident: CR17
  article-title: Speech emotion recognition using deep convolutional neural network and discriminant temporal pyramid matching
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2017.2766843
– ident: CR38
– ident: CR31
– ident: CR13
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  end-page: 259
  ident: CR22
  article-title: Stacked generalization *
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80023-1
– ident: CR7
– volume: 2
  start-page: 396
  issue: 2
  year: 1990
  end-page: 404
  ident: CR26
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Adv Neural Inf Process Syst
– volume: 9
  start-page: 713
  issue: 5
  year: 2020
  ident: CR12
  article-title: Attention-LSTM-attention model for speech emotion recognition and analysis of IEMOCAP database
  publication-title: Electronics
  doi: 10.3390/electronics9050713
– ident: CR28
– ident: CR24
– ident: CR20
– ident: 10581_CR18
  doi: 10.21437/Interspeech.2017-917
– ident: 10581_CR44
  doi: 10.1109/ICCIC.2015.7435630
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  ident: 10581_CR22
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80023-1
– ident: 10581_CR35
– ident: 10581_CR16
– volume: 1
  start-page: 18
  issue: 1
  year: 2010
  ident: 10581_CR1
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/T-AFFC.2010.1
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10581_CR2
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 10581_CR39
  doi: 10.21437/Interspeech.2009-103
– ident: 10581_CR10
  doi: 10.1016/j.neunet.2017.02.013
– volume: 101
  start-page: 31
  issue: 101
  year: 2014
  ident: 10581_CR43
  publication-title: Int J Comput Appl
– ident: 10581_CR13
  doi: 10.1109/ICSPCS.2017.8270472
– ident: 10581_CR47
  doi: 10.1016/j.specom.2010.08.013
– ident: 10581_CR7
  doi: 10.1109/ICASSP.2017.7952552
– volume: 20
  start-page: 1576
  issue: 6
  year: 2018
  ident: 10581_CR17
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2017.2766843
– volume: 42
  start-page: 335
  issue: 4
  year: 2008
  ident: 10581_CR23
  publication-title: Lang Resour Eval
  doi: 10.1007/s10579-008-9076-6
– ident: 10581_CR31
  doi: 10.1109/ICASSP.2016.7472166
– ident: 10581_CR36
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 10581_CR3
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2205597
– ident: 10581_CR42
– ident: 10581_CR32
– volume: 28
  start-page: 65
  issue: 4
  year: 1990
  ident: 10581_CR40
  publication-title: Read Speech Recognit
  doi: 10.1016/B978-0-08-051584-7.50010-3
– volume: 49
  start-page: 44
  issue: 1
  year: 2019
  ident: 10581_CR5
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1206-2
– ident: 10581_CR27
  doi: 10.1109/ISCAS.2010.5537907
– ident: 10581_CR6
– volume: 9
  start-page: 713
  issue: 5
  year: 2020
  ident: 10581_CR12
  publication-title: Electronics
  doi: 10.3390/electronics9050713
– ident: 10581_CR45
  doi: 10.4028/www.scientific.net/AMM.610.283
– ident: 10581_CR46
– ident: 10581_CR4
  doi: 10.1007/s10489-018-1242-y
– ident: 10581_CR20
  doi: 10.21437/Interspeech.2014-433
– volume: 11
  start-page: 1301
  issue: 8
  year: 2017
  ident: 10581_CR21
  publication-title: IEEE J Sel Top Signal Process
  doi: 10.1109/JSTSP.2017.2764438
– ident: 10581_CR37
– volume: 24
  start-page: 1066
  issue: 6
  year: 2016
  ident: 10581_CR29
  publication-title: IEEE/ACM Trans Audio Speech Lang Process
  doi: 10.1109/TASLP.2016.2540805
– ident: 10581_CR33
– ident: 10581_CR19
  doi: 10.1109/APSIPA.2017.8282123
– ident: 10581_CR28
– volume: 2009
  start-page: 1
  issue: 1
  year: 2009
  ident: 10581_CR48
  publication-title: Eurasip J Audio Speech Music Process
  doi: 10.1155/2009/153017
– ident: 10581_CR15
  doi: 10.1016/j.eswa.2020.114177
– ident: 10581_CR24
– volume: 23
  start-page: 659
  issue: 2
  year: 2013
  ident: 10581_CR41
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2012.10.008
– ident: 10581_CR30
  doi: 10.1109/ICASSP.2017.7952120
– ident: 10581_CR38
– ident: 10581_CR14
  doi: 10.1007/978-3-030-41299-9_34
– ident: 10581_CR49
  doi: 10.1145/2502081.2502224
– volume: 18
  start-page: 2653
  issue: 1
  year: 2017
  ident: 10581_CR50
  publication-title: J Mach Learn Res
– volume: 2
  start-page: 396
  issue: 2
  year: 1990
  ident: 10581_CR26
  publication-title: Adv Neural Inf Process Syst
– volume: 548
  start-page: 328
  year: 2021
  ident: 10581_CR34
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.09.047
– ident: 10581_CR8
– ident: 10581_CR51
– ident: 10581_CR25
  doi: 10.1109/ICASSP.2016.7471734
– volume: 66
  start-page: 4
  year: 2015
  ident: 10581_CR9
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2014.10.015
– ident: 10581_CR11
  doi: 10.1007/978-3-030-27535-8_43
SSID ssj0010020
Score 2.390752
Snippet Speech Emotion Recognition (SER) is a huge challenge for distinguishing and interpreting the sentiments carried in speech. Fortunately, deep learning is proved...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4097
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Classification
Complex Systems
Computational Intelligence
Computer Science
Deep learning
Emotion recognition
Emotions
Machine learning
Neural networks
Speech
Speech recognition
Statistical analysis
Support vector machines
Time series
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu7BQnqJQkAc2SBUntuOMbdWCeHSgrVSmKHZsIYHSiqZLfz3Oq4EKkJo1jpXc-c6fc9_dAVyHNpGSOtRiXFGLaGKnJABpydBcruTYkxnbYsjuJ-RhSqdFUtiiZLuXIcnMU1fJbub0ksYcUwoW5dha7UKdYu7zGtQ7d6-P_XX0IMVA2UHLsy3CHFwky_w-y88NqUKZG4HRbL8ZNGBSvmlOM3lvLxPRlquNIo7bfsoB7BcAFHXyFXMIOyo-gkbZ3AEVtn4M3e7TaPyMwjhCveEQGVAq07_qqPMt8oAM4kWjuVLyDfXzfkDopWQkzeITmAz64969VTRcsKSxxMRyXSpdQSNbSe1gIhknyuGaKexFnITKZdrjWofc1ZSQkBo_zyIfR4pR7OmIuadQi2exOgMUetJADyZs4QgS6kj4iojI8ZUgmjPbbQIupR7Iohp52hTjI6jqKKdCCoyQgkxIwaoJN-tn5nktjn9Ht0plBoVdLgLHNy6MGKdmN-G21E11--_ZzrcbfgF7TqbelPfSglryuVSXBr0k4qpYrF9JMeQS
  priority: 102
  providerName: Springer Nature
Title BLSTM and CNN Stacking Architecture for Speech Emotion Recognition
URI https://link.springer.com/article/10.1007/s11063-021-10581-z
https://www.proquest.com/docview/2918343010
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED4BXVh4Iwql8sAGFoljO-6AUFu1IB4Roq1UpsjxQwwoLVAWfj12mlBAohkTx8Pd-fzZ9_gATmRAlWKEYS4Mw9TSwCcBKKykeyIlwlgV2RYJvx7RmzEbr0BS1cL4tMrKJxaOWk-UvyM_Jy1nfNSZY3A5fcWeNcpHVysKDVlSK-iLosXYKtScSxbO7mudXvLw-B1X8OioOILFAaachGUZzbyYzp2OfEzTp3gxEeLP31vVAn_-CZkWO1F_CzZKCInac51vw4rJd2CzomdA5WrdhU7nbjC8RzLXqJskyMFK5e_FUftH7AA5zIoGU2PUM-rNGX3QY5VTNMn3YNTvDbvXuKRMwMqtpRmOIqaijOnAKEtCqrighgjLTRhrQaWJuI2FtVJEllEqmfPUXLdCbTgLY6t5tA9r-SQ3B4BkrBx44FmQkYxKq7OWoZkmLZNRK3gQ1SGspJOqsp-4p7V4SRedkL1EUyfRtJBo-lmH0-9_pvNuGktHNyqhp-XKek8XdlCHs0oRi8__z3a4fLYjWCeF7n2mSgPWZm8f5tjhjVnWhFXRv2pCrX31dNtrlibl3o5I-wv_edNU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB7xOMBleS2iSwEf4ATWJn7FOSBUHqVA6QGKxC0kfogDSrtLEYIfxW_EzoMCEtzINckcxp_H33jG_gA204ApxQnHQhqOmWWBbwJQWKXuoUqGkSq6LXqic8VOr_n1BLzUZ2F8W2UdE4tArQfK75H_JbEDH3NwDPaG_7BXjfLV1VpCo4TFmXl6dCnb_e7JoRvfLULaR_2DDq5UBbBycBthSrmiGdeBUZaETAnJDJFWmDDSkqWGChtJa1NJLWcs5S6YCR2H2ggeRlYL6uxOwjSjNPZSEbJ9_Fa18NyrSPCiADNBwuqQTnlUz-VevmLqG8i4DPHzx4VwzG4_FWSLda49D78qgopaJaIWYMLkizBXiz-gKhYswf5-97J_jtJco4NeDznSqvyuO2q9q0wgx4jR5dAYdYuOSr0gdFF3LA3y33D1I65bhql8kJsVQGmkHDURWZCRjKVWZ7FhmSaxyZiVIqANCGvvJKq6rdyLZtwl43uWvUcT59Gk8Gjy3IDtt3-G5V0d337drJ2eVPP2PhmjrAE79UCMX39t7c_31jZgptM_7ybdk97ZKsySAge-J6YJU6P_D2bNMZtRtl7ACcHNT-P3FVwSBwE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbRMSO7ThjW1oVKBGirdQtSvwQA0orCEt_PXYeTUGAhNc4Hs5358--7-4AuIxdIgTF1GFcUYdo4loSgHBEbIYnOPJFzrYI2WBC7qd0upLFn7Pdq5BkkdNgqzSl2c1c6ps68c3cZGz80dKxKEfOYh1sGHeMrKZPcHsZR7BoKL9y-a5DGEZl2szPa3w9mmq8-S1Emp88_V2wXUJG2C72eA-sqXQf7FTtGGBpnQeg0xmOxo8wTiXshiE0MFLYd3DYXokVQINR4WiulHiBvaKDD3yuOESz9BBM-r1xd-CULRIcYWwnczyPCi-h0lVCY0QE40RhrplCvuQkVh7TPtc65p6mhMTUeGYmAyQVo8jXknlHoJHOUnUMYOwLAxZY4iY4IbGWSaBIInGgEqI5c70mQJV0IlHWD7dtLF6juvKxlWhkJBrlEo0WTXC1_GdeVM_4c3arEnpUWtJ7hAPjdIhxQ24TXFcbUX_-fbWT_02_AJtPt_1oeBc-nIItnKuFJa20QCN7-1BnBnpkyXmuXZ_r5c38
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BLSTM+and+CNN+Stacking+Architecture+for+Speech+Emotion+Recognition&rft.jtitle=Neural+processing+letters&rft.date=2021-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=53&rft.issue=6&rft.spage=4097&rft.epage=4115&rft_id=info:doi/10.1007%2Fs11063-021-10581-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon