CNNFOIL: convolutional encoder decoder modeling for pressure fields around airfoils

In this study, we propose an encoder–decoder convolutional neural network-based approach for estimating the pressure field around an airfoil. The developed tool is one of the early steps of a machine-learning-based aerodynamic performance prediction tool. Network training and evaluation are performe...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 33; no. 12; pp. 6835 - 6849
Main Authors Duru, Cihat, Alemdar, Hande, Baran, Özgür Uğraş
Format Journal Article
LanguageEnglish
Published London Springer London 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, we propose an encoder–decoder convolutional neural network-based approach for estimating the pressure field around an airfoil. The developed tool is one of the early steps of a machine-learning-based aerodynamic performance prediction tool. Network training and evaluation are performed from a set of computational fluid dynamics (CFD)-based solutions of the 2-D flow field around a group of known airfoils involving symmetrical, cambered, thick and thin airfoils. Reynolds averaged Navier Stokes-based CFD simulations are performed at a selected single Mach number and for an angle of attack condition. The calculated pressure field, which is the main parameter for lift and drag calculations, is fed to the neural network training algorithm. Pressure data are calculated using CFD methods on high-quality structured computational grids. For the better shape learning, a distance map is generated from airfoil shape and provided to the algorithm at data locations of the pressure points relative to the airfoil shape. Experiments are conducted with unseen airfoil shapes to evaluate the predictive capability of our model. Performance analysis for airfoils with different thicknesses and cambers is conducted. We also investigated the effect of the shock on the performance of our model. Overall, our model achieves 88 % accuracy for unseen airfoil shapes and shows promise to capture the overall flow pattern accurately. Also, significant speed-up is achieved compared to time-consuming CFD simulations. We achieve almost four orders of speed-up with a much cheaper computational resource.
AbstractList In this study, we propose an encoder–decoder convolutional neural network-based approach for estimating the pressure field around an airfoil. The developed tool is one of the early steps of a machine-learning-based aerodynamic performance prediction tool. Network training and evaluation are performed from a set of computational fluid dynamics (CFD)-based solutions of the 2-D flow field around a group of known airfoils involving symmetrical, cambered, thick and thin airfoils. Reynolds averaged Navier Stokes-based CFD simulations are performed at a selected single Mach number and for an angle of attack condition. The calculated pressure field, which is the main parameter for lift and drag calculations, is fed to the neural network training algorithm. Pressure data are calculated using CFD methods on high-quality structured computational grids. For the better shape learning, a distance map is generated from airfoil shape and provided to the algorithm at data locations of the pressure points relative to the airfoil shape. Experiments are conducted with unseen airfoil shapes to evaluate the predictive capability of our model. Performance analysis for airfoils with different thicknesses and cambers is conducted. We also investigated the effect of the shock on the performance of our model. Overall, our model achieves 88% accuracy for unseen airfoil shapes and shows promise to capture the overall flow pattern accurately. Also, significant speed-up is achieved compared to time-consuming CFD simulations. We achieve almost four orders of speed-up with a much cheaper computational resource.
In this study, we propose an encoder–decoder convolutional neural network-based approach for estimating the pressure field around an airfoil. The developed tool is one of the early steps of a machine-learning-based aerodynamic performance prediction tool. Network training and evaluation are performed from a set of computational fluid dynamics (CFD)-based solutions of the 2-D flow field around a group of known airfoils involving symmetrical, cambered, thick and thin airfoils. Reynolds averaged Navier Stokes-based CFD simulations are performed at a selected single Mach number and for an angle of attack condition. The calculated pressure field, which is the main parameter for lift and drag calculations, is fed to the neural network training algorithm. Pressure data are calculated using CFD methods on high-quality structured computational grids. For the better shape learning, a distance map is generated from airfoil shape and provided to the algorithm at data locations of the pressure points relative to the airfoil shape. Experiments are conducted with unseen airfoil shapes to evaluate the predictive capability of our model. Performance analysis for airfoils with different thicknesses and cambers is conducted. We also investigated the effect of the shock on the performance of our model. Overall, our model achieves 88 % accuracy for unseen airfoil shapes and shows promise to capture the overall flow pattern accurately. Also, significant speed-up is achieved compared to time-consuming CFD simulations. We achieve almost four orders of speed-up with a much cheaper computational resource.
Author Duru, Cihat
Baran, Özgür Uğraş
Alemdar, Hande
Author_xml – sequence: 1
  givenname: Cihat
  orcidid: 0000-0002-8735-8253
  surname: Duru
  fullname: Duru, Cihat
  email: cduru@metu.edu.tr
  organization: Department of Mechanical Engineering, Middle East Technical University
– sequence: 2
  givenname: Hande
  surname: Alemdar
  fullname: Alemdar, Hande
  organization: Department of Computer Engineering, Middle East Technical University
– sequence: 3
  givenname: Özgür Uğraş
  surname: Baran
  fullname: Baran, Özgür Uğraş
  organization: Department of Mechanical Engineering, Middle East Technical University
BookMark eNp9kM1LAzEQxYNUsK3-A54CnlcnX_vhTYrVQmkP6jmk2dmyZZvUpCv1vze6gjcv8w7z3vCbNyEj5x0Scs3glgEUdxFAcZYBhwyUzFl2OiNjJoXIBKhyRMZQybTOpbggkxh3ACDzUo3Jy2y1mq8Xy3tqvfvwXX9svTMdRWd9jYHWOOg-za51W9r4QA8BY-wD0qbFro7UBN-7mpo2NL7t4iU5b0wX8epXp-Rt_vg6e86W66fF7GGZWcGqYyJjmwQsSsMLk1elaJRVsra55GihEJUSCgUrNlArXoCUG4NVeqG2pTCbHMWU3Ax3D8G_9xiPeuf7kOij5kpIWUhe8OTig8sGH2PARh9CuzfhUzPQ3-XpoTydWPRPefqUQmIIxWR2Wwx_p_9JfQHkn3OC
CitedBy_id crossref_primary_10_1007_s00366_023_01861_4
crossref_primary_10_1063_5_0134791
crossref_primary_10_1016_j_cja_2022_11_025
crossref_primary_10_1063_5_0075784
crossref_primary_10_1063_5_0185370
crossref_primary_10_1016_j_compfluid_2022_105312
crossref_primary_10_3390_app14104087
crossref_primary_10_47480_isibted_1391106
crossref_primary_10_1088_1873_7005_acd7a0
crossref_primary_10_1016_j_jweia_2023_105405
crossref_primary_10_1063_5_0195824
crossref_primary_10_1016_j_ast_2024_109207
crossref_primary_10_1063_5_0155555
crossref_primary_10_1142_S1758825123500187
crossref_primary_10_3390_math12101417
crossref_primary_10_3233_JIFS_230692
crossref_primary_10_3390_aerospace11050377
crossref_primary_10_3390_en15239204
crossref_primary_10_1007_s12206_023_0140_3
crossref_primary_10_1016_j_eswa_2023_121002
crossref_primary_10_1063_5_0033376
crossref_primary_10_3390_app12105194
crossref_primary_10_3390_sym16010021
crossref_primary_10_1109_ACCESS_2024_3399077
Cites_doi 10.1063/1.5094943
10.2514/6.1992-439
10.1016/0021-9991(83)90065-7
10.1006/jcph.2002.7146
10.1063/1.5061693
10.1017/jfm.2016.615
10.2514/6.2018-1903
10.1007/s00521-008-0186-2
10.1111/cgf.13619
10.1007/978-981-13-3305-7_3
10.2514/1.J055595
10.1145/3394486.3403198
10.2514/6.2015-2460
10.1002/cav.1695
10.1145/2939672.2939738
10.2514/6.2018-3420
10.1016/j.ast.2015.01.030
10.1117/12.486343
10.2514/6.2017-3660
10.1017/9781139542418
10.1007/BF01414629
10.1007/s00521-020-04796-9
10.1007/s00466-019-01740-0
10.1016/j.compfluid.2020.104645
10.1017/jfm.2019.238
10.1016/j.ast.2014.12.017
10.1063/1.5024595
10.2514/1.J058291
10.1017/jfm.2019.700
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-020-05461-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Aerospace Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 6849
ExternalDocumentID 10_1007_s00521_020_05461_x
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADGRI
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-301b02038a27a6983f5c54dc642ec0739535e317b0d527044bae9064dc83ab6e3
IEDL.DBID 8FG
ISSN 0941-0643
IngestDate Thu Oct 10 18:04:44 EDT 2024
Thu Sep 12 19:02:02 EDT 2024
Sat Dec 16 12:09:31 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Aerodynamics
Computational fluid dynamics
Convolutional neural network
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-301b02038a27a6983f5c54dc642ec0739535e317b0d527044bae9064dc83ab6e3
ORCID 0000-0002-8735-8253
PQID 2534474272
PQPubID 2043988
PageCount 15
ParticipantIDs proquest_journals_2534474272
crossref_primary_10_1007_s00521_020_05461_x
springer_journals_10_1007_s00521_020_05461_x
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Wang R, Kashinath K, Mustafa M, Albert A, Yu R (2019) Towards physics-informed deep learning for turbulent flow prediction. arXiv preprint arXiv:1911.08655
SekarVJiangQShuCKhooBCFast flow field prediction over airfoils using deep learning approachPhys Fluids201931505710310.1063/1.5094943
SinghAPMedidaSDuraisamyKMachine-learning-augmented predictive modeling of turbulent separated flows over airfoilsAIAA J2017552215222710.2514/1.J055595
Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. In: 30th aerospace sciences meeting and exhibit, p 439
MilanoMKoumoutsakosPNeural network modeling for near wall turbulent flowJ Comput Phys20021821110.1006/jcph.2002.7146
JinXChengPChenWLLiHPrediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinderPhys Fluids201830404710510.1063/1.5024595
BhatnagarSAfsharYPanSDuraisamyKKaushikSPrediction of aerodynamic flow fields using convolutional neural networksComput Mech2019642525397716810.1007/s00466-019-01740-0
Liu W, Fang J (2019) Iterative framework of machine-learning based turbulence modeling for Reynolds-averaged Navier–Stokes simulations. arXiv preprint arXiv:1910.01232
LingJKurzawskiATempletonJReynolds averaged turbulence modelling using deep neural networks with embedded invarianceJ Fluid Mech2016807155356930810.1017/jfm.2016.615
KurtulusDFAbility to forecast unsteady aerodynamic forces of flapping airfoils by artificial neural networkNeural Comput Appl200918435910.1007/s00521-008-0186-2
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L et al (2019) PyTorch: an imperative style, high-performance deep learning library. In: Advances in neural information processing systems, pp 8024–8035
Yilmaz E, German B (2018) A deep learning approach to an airfoil inverse design problem. In: 2018 multidisciplinary analysis and optimization conference, p 3420
FukamiKFukagataKTairaKSuper-resolution reconstruction of turbulent flows with machine learningJ Fluid Mech2019870106394763010.1017/jfm.2019.238
Viquerat J, Hachem E (2019) A supervised neural network for drag prediction of arbitrary 2D shapes in low Reynolds number flows. arXiv preprint arXiv:1907.05090
IgnatyevDIKhrabrovANNeural network modeling of unsteady aerodynamic characteristics at high angles of attackAerosp Sci Technol20154110610.1016/j.ast.2014.12.017
SeligMUIUC airfoil coordinates database2016UrbanaUIUC Applied Aerodynamics Group
Tompson J, Schlachter K, Sprechmann P, Perlin K (2017) Accelerating Eulerian fluid simulation with convolutional networks. In: Proceedings of the 34th international conference on machine learning, vol 70. JMLR. org, pp 3424–3433
SunGSunYWangSArtificial neural network based inverse design: airfoils and wingsAerosp Sci Technol20154241510.1016/j.ast.2015.01.030
ToroEFSpruceMSpearesWRestoration of the contact surface in the HLL-Riemann solverShock Waves1994412510.1007/BF01414629
Thirumalainambi R, Bardina J (2003) Training data requirement for a neural network to predict aerodynamic coefficients In: Independent component analyses, wavelets, and neural networks, vol 5102. International Society for Optics and Photonics, pp 92–103
Miyanawala TP, Jaiman RK (2017) An efficient deep learning technique for the Navier–Stokes equations: application to unsteady wake flow dynamics. arXiv preprint arXiv:1710.09099
YangCYangXXiaoXData-driven projection method in fluid simulationComput Anim Virtual Worlds2016273–441510.1002/cav.1695
Maulik R, Sharma H, Patel S, Lusch B, Jennings E (2019) Accelerating RANS turbulence modeling using potential flow and machine learning. arXiv preprint arXiv:1910.10878
Kim B, Azevedo VC, Thuerey N, Kim T, Gross M, Solenthaler B (2019) Deep fluids: a generative network for parameterized fluid simulations. In: Computer graphics forum, vol 38. Wiley Online Library, pp 59–70
FieldingJPIntroduction to aircraft design2017CambridgeCambridge University Press10.1017/9781139542418
Guo X, Li W, Iorio F (2016) Convolutional neural networks for steady flow approximation. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 481–490
LeeSYouDData-driven prediction of unsteady flow over a circular cylinder using deep learningJ Fluid Mech2019879217401048010.1017/jfm.2019.700
Yilmaz E, German B (2017) A convolutional neural network approach to training predictors for airfoil performance. In: 18th AIAA/ISSMO multidisciplinary analysis and optimization conference, p 3660
Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980
Yuan Z, Wang Y, Qiu Y, Bai J, Chen G (2018) Aerodynamic coefficient prediction of airfoils with convolutional neural network. In: Asia-Pacific international symposium on aerospace technology. Springer, pp 34–46
Zhang Y, Sung WJ, Mavris DN (2018) Application of convolutional neural network to predict airfoil lift coefficient. In: AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 1903
Zhang ZJ, Duraisamy K (2015) Machine learning methods for data-driven turbulence modeling. In: 22nd AIAA computational fluid dynamics conference, p 2460
VinokurMOn one-dimensional stretching functions for finite-difference calculationsJ Comput Phys198350221570719910.1016/0021-9991(83)90065-7
Gregory N, O’reilly C (1970) Low-speed aerodynamic characteristics of NACA 0012 aerofoil section, including the effects of upper-surface roughness simulating hoar frost
ZhuLZhangWKouJLiuYMachine learning methods for turbulence modeling in subsonic flows around airfoilsPhys Fluids201931101510510.1063/1.5061693
AtalayKDDengizBYavuzTKoçEİçYTAirfoil–slat arrangement model design for wind turbines in fuzzy environmentNeural Comput Appl2020321910.1007/s00521-020-04796-9
Chen J, Viquerat J, Hachem E (2019) U-net architectures for fast prediction of incompressible laminar flows. arXiv preprint arXiv:1910.13532
ThuereyNWeißenowKPrantlLHuXdeep learning methods for Reynolds-averaged Navier–Stokes simulations of airfoil flowsAIAA J20205812510.2514/1.J058291
5461_CR21
X Jin (5461_CR23) 2018; 30
5461_CR25
K Fukami (5461_CR24) 2019; 870
M Vinokur (5461_CR36) 1983; 50
G Sun (5461_CR18) 2015; 42
5461_CR27
5461_CR28
S Bhatnagar (5461_CR30) 2019; 64
L Zhu (5461_CR5) 2019; 31
M Milano (5461_CR2) 2002; 182
V Sekar (5461_CR26) 2019; 31
DI Ignatyev (5461_CR12) 2015; 41
5461_CR3
J Ling (5461_CR4) 2016; 807
5461_CR9
5461_CR10
5461_CR6
5461_CR33
5461_CR7
M Selig (5461_CR32) 2016
5461_CR34
5461_CR13
5461_CR14
S Lee (5461_CR29) 2019; 879
5461_CR15
5461_CR37
JP Fielding (5461_CR1) 2017
5461_CR16
EF Toro (5461_CR35) 1994; 4
5461_CR38
5461_CR17
5461_CR19
C Yang (5461_CR8) 2016; 27
AP Singh (5461_CR22) 2017; 55
KD Atalay (5461_CR20) 2020; 32
DF Kurtulus (5461_CR11) 2009; 18
N Thuerey (5461_CR31) 2020; 58
References_xml – ident: 5461_CR38
– volume: 31
  start-page: 057103
  issue: 5
  year: 2019
  ident: 5461_CR26
  publication-title: Phys Fluids
  doi: 10.1063/1.5094943
  contributor:
    fullname: V Sekar
– ident: 5461_CR28
– volume-title: UIUC airfoil coordinates database
  year: 2016
  ident: 5461_CR32
  contributor:
    fullname: M Selig
– ident: 5461_CR33
  doi: 10.2514/6.1992-439
– volume: 50
  start-page: 215
  issue: 2
  year: 1983
  ident: 5461_CR36
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(83)90065-7
  contributor:
    fullname: M Vinokur
– volume: 182
  start-page: 1
  issue: 1
  year: 2002
  ident: 5461_CR2
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2002.7146
  contributor:
    fullname: M Milano
– ident: 5461_CR6
– volume: 31
  start-page: 015105
  issue: 1
  year: 2019
  ident: 5461_CR5
  publication-title: Phys Fluids
  doi: 10.1063/1.5061693
  contributor:
    fullname: L Zhu
– volume: 807
  start-page: 155
  year: 2016
  ident: 5461_CR4
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2016.615
  contributor:
    fullname: J Ling
– ident: 5461_CR16
  doi: 10.2514/6.2018-1903
– volume: 18
  start-page: 359
  issue: 4
  year: 2009
  ident: 5461_CR11
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-008-0186-2
  contributor:
    fullname: DF Kurtulus
– ident: 5461_CR27
  doi: 10.1111/cgf.13619
– ident: 5461_CR15
  doi: 10.1007/978-981-13-3305-7_3
– volume: 55
  start-page: 2215
  year: 2017
  ident: 5461_CR22
  publication-title: AIAA J
  doi: 10.2514/1.J055595
  contributor:
    fullname: AP Singh
– ident: 5461_CR25
  doi: 10.1145/3394486.3403198
– ident: 5461_CR37
– ident: 5461_CR3
  doi: 10.2514/6.2015-2460
– volume: 27
  start-page: 415
  issue: 3–4
  year: 2016
  ident: 5461_CR8
  publication-title: Comput Anim Virtual Worlds
  doi: 10.1002/cav.1695
  contributor:
    fullname: C Yang
– ident: 5461_CR21
  doi: 10.1145/2939672.2939738
– ident: 5461_CR19
  doi: 10.2514/6.2018-3420
– volume: 42
  start-page: 415
  year: 2015
  ident: 5461_CR18
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2015.01.030
  contributor:
    fullname: G Sun
– ident: 5461_CR10
  doi: 10.1117/12.486343
– ident: 5461_CR14
  doi: 10.2514/6.2017-3660
– ident: 5461_CR9
– ident: 5461_CR7
– volume-title: Introduction to aircraft design
  year: 2017
  ident: 5461_CR1
  doi: 10.1017/9781139542418
  contributor:
    fullname: JP Fielding
– volume: 4
  start-page: 25
  issue: 1
  year: 1994
  ident: 5461_CR35
  publication-title: Shock Waves
  doi: 10.1007/BF01414629
  contributor:
    fullname: EF Toro
– volume: 32
  start-page: 1
  year: 2020
  ident: 5461_CR20
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04796-9
  contributor:
    fullname: KD Atalay
– volume: 64
  start-page: 525
  issue: 2
  year: 2019
  ident: 5461_CR30
  publication-title: Comput Mech
  doi: 10.1007/s00466-019-01740-0
  contributor:
    fullname: S Bhatnagar
– ident: 5461_CR17
  doi: 10.1016/j.compfluid.2020.104645
– volume: 870
  start-page: 106
  year: 2019
  ident: 5461_CR24
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2019.238
  contributor:
    fullname: K Fukami
– volume: 41
  start-page: 106
  year: 2015
  ident: 5461_CR12
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2014.12.017
  contributor:
    fullname: DI Ignatyev
– volume: 30
  start-page: 047105
  issue: 4
  year: 2018
  ident: 5461_CR23
  publication-title: Phys Fluids
  doi: 10.1063/1.5024595
  contributor:
    fullname: X Jin
– volume: 58
  start-page: 25
  issue: 1
  year: 2020
  ident: 5461_CR31
  publication-title: AIAA J
  doi: 10.2514/1.J058291
  contributor:
    fullname: N Thuerey
– ident: 5461_CR34
– volume: 879
  start-page: 217
  year: 2019
  ident: 5461_CR29
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2019.700
  contributor:
    fullname: S Lee
– ident: 5461_CR13
SSID ssj0004685
Score 2.4473155
Snippet In this study, we propose an encoder–decoder convolutional neural network-based approach for estimating the pressure field around an airfoil. The developed...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 6835
SubjectTerms Aerodynamics
Algorithms
Angle of attack
Artificial Intelligence
Artificial neural networks
Cambering
Coders
Computational Biology/Bioinformatics
Computational fluid dynamics
Computational grids
Computational Science and Engineering
Computer Science
Computer simulation
Data Mining and Knowledge Discovery
Flow distribution
Image Processing and Computer Vision
Mach number
Machine learning
Mathematical models
Model accuracy
Neural networks
Original Article
Performance prediction
Probability and Statistics in Computer Science
Reynolds averaged Navier-Stokes method
Thin airfoils
Two dimensional flow
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu7BQnqJQkAc2SJX4lZatqlrKQ2WglcoU2bEjVaAWpamE-PWcnaTlOXTKkNhJznf2Z993dwhdiFD7KkikJzgxHgPM68lQC88ov024pCKQLtvnUAzG7G7CJ-s4bkd2Lz2SbqJexbrZA0zY-RLru2Ui8AA4VrktS11B1c7N833vSzikq8QJGxdL6mG0iJX5u5fv69EaZP7wi7rlpl9DozJoJ2eZvDSXmWrGH79zOG7yJ7top4CfuJPryx7aMrN9VCtLO-DC0g_QU3c47D_ePlxjS0sv1BMa2rSXGh7UJr-6QjrwcgzYFztO7TI12NHiFlimtmYTltM0mU9fF4do3O-NugOvqL_gxWCYmQe2r6yjsiVJKEW7RRMec6Zj2LKY2Hn4KDeAP5SvOQl9xpQ0bRC4jltUKmHoEarM5jNzjDAJFYX5A5rGATMc1FdomWgam4QHVMo6uixHIXrL02xEq4TKTl4RfEnk5BW911GjHKioMLlFRLhNXshISOroqhT8-vb_vZ1s9vgp2iaW1-JOYhqokqVLcwbAJFPnhSJ-ApOP2Ls
  priority: 102
  providerName: Springer Nature
Title CNNFOIL: convolutional encoder decoder modeling for pressure fields around airfoils
URI https://link.springer.com/article/10.1007/s00521-020-05461-x
https://www.proquest.com/docview/2534474272
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4ULl58G1EkPXjTRravBS8GkBUfQaOS4GnT3XYTEgPII-HnOy1dURM9Ndluu5vpTDud14fQqQx1NQkyRaSghnDQeYkKtSQmqdapUEwGylX77MpOj9_1Rd8b3KY-rDLfE91GrUeptZFfUGFr03Ea0qvxB7GoUda76iE01lExsJXwbKZ4dPMtL9JBcsINxkb3cOaTZlzqnLWHwlNqXcFcBmTx82BaaZu_HKTu3Im20aZXGHFjucI7aM0Md9FWDsaAvWzuoZdWtxs93j5cYhtI7hkKBtpClRpe1GbZOugb-BIGbRW7KNj5xGAXyDbFamJRlrAaTLLR4H26j3pR-7XVIR4xgaQgSjMC0ppY12JN0VDJeo1lIhVcp3DJMKnzyTFhQGNIqlrQsMp5okwdKKPTGlOJNOwAFYajoTlEmIYJA4mHoWnAjQCGk1plmqUmEwFTqoTOcnLF42VhjPirBLIjbgx_EjvixosSKucUjb2QTOPVkpbQeU7lVfffsx39P9sx2qA28sTZSsqoMJvMzQmoDrOk4vijgoqN5nUzsu3N230b2ma7-_QMvT3a-ARCccSl
link.rule.ids 315,786,790,12792,21416,27957,27958,33408,33779,41116,41558,42185,42627,43635,43840,52146,52269
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_oPOjFb3F-5uBNg2u-unkRHRubzio6wVtJmxQE2XSb4J_vS5Y6FfRUaJu0vLyXvO8fwJGKTS2LCk2VZJYK1Hmpjo2iNqs1mNRcRdp3-0xU51FcPcmn4HAbh7TKck_0G7UZ5s5Hfsqk600nWMzOX9-oQ41y0dUAoTEPC4KjqVKBhctWcnf_rTLSg3KiDePyewQPZTO-eM55RPEuc8FgoSL68fNomumbv0Kk_uRpr8JyUBnJxXSN12DODtZhpYRjIEE6N-ChmSTt227vjLhU8sBSONC1qjT4orHTqwe_wS8R1FeJz4N9H1niU9nGRI8czhLRz6Ni-Pwy3oTHdqvf7NCAmUBzFKYJRXnNXHCxrlmsVaPOC5lLYXI0M2zuo3JcWtQZspqRLK4JkWnbQMqYvM51pizfgspgOLDbQFiccZR5HJpHwkpkOWV0YXhuCxlxratwXJIrfZ22xki_miB74qb4J6knbvpRhb2SomkQk3E6W9QqnJRUnj3-e7ad_2c7hMVO_6aX9rrJ9S4sMZeH4j0ne1CZjN7tPioSk-wgcMsn9hDDbA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQXzxW5xOzYNvWtbmq5tvY1o2HVXQwd5K2qQwkG50Hfjne0nbbYo--NSHJmm53HG_5H53h9CN8JUbe6l0BCfaYYB5Hekr4ejY7RIuqfCkrfYZisGYPU34ZCOL37Ld65BkmdNgqjRlRXuu0vYq8c3cZsIxmJhALhOeAyhy27hGQ-oak95GZqRtyglnGMPvYbRKm_l9je-uaY03f4RIrecJDtBeBRlxr9zjQ7SlsyO0X7djwJV1HqO3fhgGL8PRPTZU8kqlYKIpValgoNLl0za_gS9hwKvY8mCXucaWyrbAMjd9lrCc5uls-rE4QePg8b0_cKqeCU4CxlQ4YK-xCS52JPGl6HZoyhPOVALHDJ3YqBzlGjBD7CpOfJexWOouSEYlHSpjoekpamSzTJ8hTPyYgs3D1MRjmoPKCSVTRROdco9K2US3tbiieVkaI1oVQbbCjeBPIivc6LOJWrVEo8pMFhHhpuAgIz5portayuvXf692_r_h12jn9SGIRsPw-QLtEkNLsRcpLdQo8qW-BFxRxFdWdb4A85LDqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNNFOIL%3A+convolutional+encoder+decoder+modeling+for+pressure+fields+around+airfoils&rft.jtitle=Neural+computing+%26+applications&rft.au=Duru+Cihat&rft.au=Alemdar+Hande&rft.au=Baran%2C+%C3%96zg%C3%BCr+U%C4%9Fra%C5%9F&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=12&rft.spage=6835&rft.epage=6849&rft_id=info:doi/10.1007%2Fs00521-020-05461-x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon