Numerical Analysis of Singularly Perturbed System of Parabolic Convection–Diffusion Problem with Regular Boundary Layers

In this article, we obtain the numerical solution of singularly perturbed system of parabolic convection–diffusion problems exhibiting boundary layer. The proposed numerical scheme consists of the backward-Euler method for the time derivative and an upwind finite difference scheme for the spatial de...

Full description

Saved in:
Bibliographic Details
Published inDifferential equations and dynamical systems Vol. 30; no. 3; pp. 695 - 717
Main Authors Singh, Maneesh Kumar, Natesan, Srinivasan
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.07.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0971-3514
0974-6870
DOI10.1007/s12591-019-00462-2

Cover

Abstract In this article, we obtain the numerical solution of singularly perturbed system of parabolic convection–diffusion problems exhibiting boundary layer. The proposed numerical scheme consists of the backward-Euler method for the time derivative and an upwind finite difference scheme for the spatial derivatives. We analyze the scheme on a piecewise-uniform Shishkin mesh for the spatial discretization to establish uniform convergence with respect to the perturbation parameters. For the proposed scheme, the stability analysis is presented and parameter-uniform error estimate is derived. In order to validate the theoretical results, we have carried out some numerical experiments.
AbstractList In this article, we obtain the numerical solution of singularly perturbed system of parabolic convection–diffusion problems exhibiting boundary layer. The proposed numerical scheme consists of the backward-Euler method for the time derivative and an upwind finite difference scheme for the spatial derivatives. We analyze the scheme on a piecewise-uniform Shishkin mesh for the spatial discretization to establish uniform convergence with respect to the perturbation parameters. For the proposed scheme, the stability analysis is presented and parameter-uniform error estimate is derived. In order to validate the theoretical results, we have carried out some numerical experiments.
Author Natesan, Srinivasan
Singh, Maneesh Kumar
Author_xml – sequence: 1
  givenname: Maneesh Kumar
  surname: Singh
  fullname: Singh, Maneesh Kumar
  organization: Department of Mathematics, Indian Institute of Technology Guwahati
– sequence: 2
  givenname: Srinivasan
  orcidid: 0000-0001-7527-1989
  surname: Natesan
  fullname: Natesan, Srinivasan
  email: natesan@iitg.ernet.in
  organization: Department of Mathematics, Indian Institute of Technology Guwahati
BookMark eNp9kMtOwzAQRS1UJErhB1hZYh3wI3biZSlPqYKKx9pyYqe4SuNiJ6Cw4h_4Q74Et0VCYsFqRpp7ZubefTBoXGMAOMLoBCOUnQZMmMAJwiJBKOUkITtgiESWJjzP0GDT44QynO6B_RAWCPFMpNkQvN92S-NtqWo4blTdBxugq-CDbeZdrXzdw5nxbecLo-FDH1qzXI9nyqvC1baEE9e8mrK1rvn6-Dy3VdWF2MOZd0UdtW-2fYb3ZrMLnrmu0cr3cKp648MB2K1UHczhTx2Bp8uLx8l1Mr27upmMp0lJsWgTYjJBaaUFzwhlVVkwkhJNdVoILDRPdYYqTrQwNCrynJWpolwzjQlhOTGUjsDxdu_Ku5fOhFYuXOej2SAJz1HOGYsXRiDfqkrvQvCmkqVt1dpY65WtJUZynbTcJi1j0nKTtCQRJX_QlbfLaPR_iG6hEMXN3Pjfr_6hvgF6k5Tp
CitedBy_id crossref_primary_10_1007_s10910_024_01587_8
crossref_primary_10_1016_j_apnum_2024_02_006
crossref_primary_10_1007_s12190_020_01434_4
crossref_primary_10_1007_s40819_024_01716_6
Cites_doi 10.1080/0020716042000301798
10.4208/cicp.scpde14.21s
10.1090/mmono/023
10.1007/s10444-007-9058-z
10.1007/978-1-4612-1114-3
10.1142/8410
10.1201/9781482285727
10.1016/j.apnum.2004.05.006
10.1007/978-3-642-05134-0
10.1007/s10915-013-9814-9
10.1007/s00607-006-0215-x
10.1016/0377-0427(88)90315-9
ContentType Journal Article
Copyright Foundation for Scientific Research and Technological Innovation 2019
Foundation for Scientific Research and Technological Innovation 2019.
Copyright_xml – notice: Foundation for Scientific Research and Technological Innovation 2019
– notice: Foundation for Scientific Research and Technological Innovation 2019.
DBID AAYXX
CITATION
DOI 10.1007/s12591-019-00462-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 0974-6870
EndPage 717
ExternalDocumentID 10_1007_s12591_019_00462_2
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
4.4
406
408
40D
40E
5VS
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABLLD
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9R
PF0
PQQKQ
PT4
QOS
R89
R9I
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
WK8
YLTOR
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-2e7933fd967235fcb5242d3d4b919d64d70f62d9e3967885c4a36d5d122582e33
IEDL.DBID AGYKE
ISSN 0971-3514
IngestDate Fri Jul 25 11:02:06 EDT 2025
Tue Jul 01 00:57:20 EDT 2025
Thu Apr 24 23:01:38 EDT 2025
Fri Feb 21 02:45:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Finite difference scheme
Uniform convergence
Singularly perturbed system
Shishkin mesh
AMS 65M06
CR G1.8
Parabolic convection–diffusion problems
65M12
Boundary layers
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2e7933fd967235fcb5242d3d4b919d64d70f62d9e3967885c4a36d5d122582e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7527-1989
PQID 2680865579
PQPubID 2043992
PageCount 23
ParticipantIDs proquest_journals_2680865579
crossref_citationtrail_10_1007_s12591_019_00462_2
crossref_primary_10_1007_s12591_019_00462_2
springer_journals_10_1007_s12591_019_00462_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationSubtitle International Journal for Theory, Real World Modelling and Simulations
PublicationTitle Differential equations and dynamical systems
PublicationTitleAbbrev Differ Equ Dyn Syst
PublicationYear 2022
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References Ng-Stynes, O’Riordan, Stynes (CR15) 1988; 21
Deb, Natesan (CR5) 2008; 38
Farrell, Hegarty, Miller, O’Riordan, Shishkin (CR7) 2000
Miller, O’Riordan, Shishkin (CR13) 2012
Doolan, Miller, Schilders (CR6) 1980
Ladyzenskaja, Solonnikov, Ural’ceva (CR9) 1968
Linß (CR11) 2007; 79
Chang, Howes (CR3) 1984
Bellew, O’Riordan (CR1) 2004; 51
Pao (CR17) 1992
Liu, Chen (CR12) 2014; 61
Hsieh, Shih, Yang, You (CR8) 2016; 19
Morton (CR14) 1996
O’Riordan, Stynes (CR16) 2009; 30
Das, Natesan (CR4) 2013; 10
Linß (CR10) 2010
Cen (CR2) 2005; 82
T Linß (462_CR11) 2007; 79
CV Pao (462_CR17) 1992
S Bellew (462_CR1) 2004; 51
T Linß (462_CR10) 2010
KW Chang (462_CR3) 1984
OA Ladyzenskaja (462_CR9) 1968
P Das (462_CR4) 2013; 10
E O’Riordan (462_CR16) 2009; 30
LB Liu (462_CR12) 2014; 61
JJH Miller (462_CR13) 2012
KW Morton (462_CR14) 1996
Z Cen (462_CR2) 2005; 82
MJ Ng-Stynes (462_CR15) 1988; 21
P-W Hsieh (462_CR8) 2016; 19
EP Doolan (462_CR6) 1980
PA Farrell (462_CR7) 2000
BS Deb (462_CR5) 2008; 38
References_xml – year: 1992
  ident: CR17
  publication-title: Nonlinear Parabolic and Elliptic Equations
– volume: 82
  start-page: 177
  issue: 2
  year: 2005
  end-page: 192
  ident: CR2
  article-title: Parameter-uniform finite difference scheme for a system of coupled singularly perturbed convection-diffusion equations
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/0020716042000301798
– volume: 19
  start-page: 1287
  issue: 5
  year: 2016
  end-page: 1301
  ident: CR8
  article-title: A novel technique for constructing difference schemes for systems of singularly perturbed equations
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.scpde14.21s
– year: 1968
  ident: CR9
  publication-title: Linear and Quasi-Linear Equations of Parabolic Type
  doi: 10.1090/mmono/023
– volume: 30
  start-page: 101
  issue: 2
  year: 2009
  end-page: 121
  ident: CR16
  article-title: Numerical analysis of a strongly coupled system of two singularly perturbed convection-diffusion problems
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-007-9058-z
– year: 1984
  ident: CR3
  publication-title: Nonlinear Singular Perturbation Phenomena: Theory and Applications, Applied Mathematical Sciences
  doi: 10.1007/978-1-4612-1114-3
– volume: 38
  start-page: 179
  issue: 2
  year: 2008
  end-page: 200
  ident: CR5
  article-title: Richardson extrapolation mehtod for singularly perturbed coupled system of convection-diffusion boundary-value problems
  publication-title: CMES Comput. Model. Eng. Sci.
– volume: 10
  start-page: 17
  issue: 1
  year: 2013
  ident: CR4
  article-title: Numerical solution of a system of singularly perturbed convection-diffusion boundary-value problems using mesh equidistribution technique
  publication-title: Aust. J. Math. Anal. Appl.
– year: 2012
  ident: CR13
  publication-title: Fitted Numerical Methods for Singular Perturbation Problems
  doi: 10.1142/8410
– year: 1980
  ident: CR6
  publication-title: Uniform Numerical Methods for Problems with Initial and Boundary Layers
– year: 2000
  ident: CR7
  publication-title: Robust Computational Techniques for Boundary Layers
  doi: 10.1201/9781482285727
– year: 1996
  ident: CR14
  publication-title: Numerical Solution of Convection-Diffusion Problems, Applied Mathematics and Mathematical Computation
– volume: 51
  start-page: 171
  issue: 2–3
  year: 2004
  end-page: 186
  ident: CR1
  article-title: A parameter robust numerical method for a system of two singularly perturbed convection-diffusion equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2004.05.006
– year: 2010
  ident: CR10
  publication-title: Layer-adapted Meshes for Reaction-Convection-Diffusion Problems
  doi: 10.1007/978-3-642-05134-0
– volume: 61
  start-page: 1
  issue: 1
  year: 2014
  end-page: 16
  ident: CR12
  article-title: A robust adaptive grid method for a system of two singularly perturbed convection-diffusion equations with weak coupling
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-013-9814-9
– volume: 79
  start-page: 23
  year: 2007
  end-page: 32
  ident: CR11
  article-title: Analysis of an upwind finite-difference scheme for a system of coupled singularly perturbed convection-diffusion equations.
  publication-title: Computing
  doi: 10.1007/s00607-006-0215-x
– volume: 21
  start-page: 289
  issue: 3
  year: 1988
  end-page: 310
  ident: CR15
  article-title: Numerical methods for time-dependent convection-diffusion equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(88)90315-9
– volume-title: Layer-adapted Meshes for Reaction-Convection-Diffusion Problems
  year: 2010
  ident: 462_CR10
  doi: 10.1007/978-3-642-05134-0
– volume-title: Numerical Solution of Convection-Diffusion Problems, Applied Mathematics and Mathematical Computation
  year: 1996
  ident: 462_CR14
– volume: 38
  start-page: 179
  issue: 2
  year: 2008
  ident: 462_CR5
  publication-title: CMES Comput. Model. Eng. Sci.
– volume-title: Robust Computational Techniques for Boundary Layers
  year: 2000
  ident: 462_CR7
  doi: 10.1201/9781482285727
– volume: 51
  start-page: 171
  issue: 2–3
  year: 2004
  ident: 462_CR1
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2004.05.006
– volume-title: Linear and Quasi-Linear Equations of Parabolic Type
  year: 1968
  ident: 462_CR9
  doi: 10.1090/mmono/023
– volume: 30
  start-page: 101
  issue: 2
  year: 2009
  ident: 462_CR16
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-007-9058-z
– volume: 19
  start-page: 1287
  issue: 5
  year: 2016
  ident: 462_CR8
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.scpde14.21s
– volume: 61
  start-page: 1
  issue: 1
  year: 2014
  ident: 462_CR12
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-013-9814-9
– volume-title: Uniform Numerical Methods for Problems with Initial and Boundary Layers
  year: 1980
  ident: 462_CR6
– volume: 79
  start-page: 23
  year: 2007
  ident: 462_CR11
  publication-title: Computing
  doi: 10.1007/s00607-006-0215-x
– volume: 21
  start-page: 289
  issue: 3
  year: 1988
  ident: 462_CR15
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(88)90315-9
– volume-title: Nonlinear Parabolic and Elliptic Equations
  year: 1992
  ident: 462_CR17
– volume-title: Nonlinear Singular Perturbation Phenomena: Theory and Applications, Applied Mathematical Sciences
  year: 1984
  ident: 462_CR3
  doi: 10.1007/978-1-4612-1114-3
– volume: 10
  start-page: 17
  issue: 1
  year: 2013
  ident: 462_CR4
  publication-title: Aust. J. Math. Anal. Appl.
– volume: 82
  start-page: 177
  issue: 2
  year: 2005
  ident: 462_CR2
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/0020716042000301798
– volume-title: Fitted Numerical Methods for Singular Perturbation Problems
  year: 2012
  ident: 462_CR13
  doi: 10.1142/8410
SSID ssj0067947
Score 2.2973354
Snippet In this article, we obtain the numerical solution of singularly perturbed system of parabolic convection–diffusion problems exhibiting boundary layer. The...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 695
SubjectTerms Boundary layers
Computer Science
Convection
Diffusion layers
Engineering
Error analysis
Finite difference method
Mathematics
Mathematics and Statistics
Numerical analysis
Original Research
Parameters
Perturbation
Stability analysis
Title Numerical Analysis of Singularly Perturbed System of Parabolic Convection–Diffusion Problem with Regular Boundary Layers
URI https://link.springer.com/article/10.1007/s12591-019-00462-2
https://www.proquest.com/docview/2680865579
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NThsxEB614UIP_KMGaORDb9QI22uvfUwoAdESRW0jwWm1Xnsl1Cig_BzgxDvwhjwJttdLAAESx5VnR7vjmfHYnvkG4DvxvRwUI1jqlOIksQyrXHCsbWpSI6UWAXbxtCeOB8nJGT-LRWGTOtu9vpIMnnpe7OYidb_1VThUVGLneBc4kUo2YKF9dP7rsPbAwulYKJNWKQmZ6rFY5nUuzxekeZT54mI0rDfdZRjUX1qlmfzfm031XnHzAsTxo7-yAksxAEXtSmNW4ZMdrcFy3dwBRVtfgy9PkArd0-kjvOtkHW56s-qix_GJoCboskR_HanPah1eo74du7VMW4MqSHQ_3M_HTuOGFwU68KnuoaDi_vbu50VZzvyZHepXzW2QPxtGf2zghTqh79P4Gv3O_e5gAwbdw38Hxzg2ccCFs-4pptZ5AFYaJVLKeFlo7oICw0yiFVFGJCbdLwU1yjJHISUvkpwJww1xjkZSy9gmNEaXI_sVkA_1ilJZoY1N0jyRyhItWc4Koq2wpAmknsmsiAjnvtHGMJtjM3vBZ07wWRB8Rpuw-_jOVYXv8S71Tq0gWbT1SUZ99xLBeaqa8KOe7_nw29y2Pka-DYvU116EXOEdaEzHM_vNRURT3XIG0O10eq1oCC34PKDtBzPKA3c
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGG6MHtSDH6gRRe3Bmzax7da1R0QJKhCikHBb1rVLSAiYAQc8-R_8h_4S224DNWricem7HvZ-rn3f5wHgHFsuB0Ex4jIgyPM0RSJiPpI6UIHiXDIHu9hqs0bPu-_7_XwobFJ0uxdXki5SL4fdTKVuf30FchOVyATeNVMMcMtb0CPVIv4yY2FuSFoE2PWp56MyP-_xNR0ta8xv16Iu29R3wFZeJsJqptddsKJHJbBdUDDA3CNLYPMTnqB5ai1AWCd74KU9y65jzD459AgcJ_DJiNre0-EcdnRqMo7UCmbA5Xa5E6XGLoaDGNZsQ7obe3h_fbsZJMnMnqzBTkZBA-0JLnx0VPYpvHbsTOkcNiNbw--DXv22W2ugnGoBxcYHp4ho46c0UYIFhPpJLH2TuhVVnhRYKOap4CphRAlNjQTnfuxFlClfYRMOONGUHoDV0XikDwG0BVmcCM2k0l4QeVxoLDmNaIylZhqXAS6-eBjnOOSWDmMYLhGUrZZCo6XQaSkkZXCxeOc5Q-H4U7pSKDLMPXISEssxwnw_EGVwWSh3ufz7bkf_Ez8D641uqxk279oPx2CD2GkJ191bAavTdKZPTA0zlafOZD8Abkbm7g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGG4MJkYPfqBGFLUHb9pg261bjwgSVCBEJeG2rGuXkBAgAw548j_4D_0ltt0maNTE49J3Pez9XPu-zwPABTZcDpxi5AuPIMdRFPGQuUgoT3rS9wWzsIvtDmv2nPu-21-Z4rfd7vmVZDrTYFCaRrPKRMaV5eCbrtrNbzBHdroS6SC8rsMxNpbeI9U8FjNtbXZgmnvY9qxnYzM_7_E1NS3rzW9XpDbzNHbBdlYywmqq4z2wpkZFsJPTMcDMO4tgawVbUD-1PwFZp_vgpTNPr2b0PhkMCRzH8EmLmj7U4QJ2VaKzj1ASpiDmZrkbJtpGhoMI1kxzuh2BeH99qw_ieG5O2WA3paOB5jQXPlpa-wTeWKamZAFboannD0Cvcftca6KMdgFF2h9niCjtszSWnHmEunEkXJ3GJZWO4JhL5kjvOmZEckW1hO-7kRNSJl2JdWjwiaL0EBRG45E6AtAUZ1HMFRNSOV7o-Fxh4dOQRlgopnAJ4PyLB1GGSW6oMYbBEk3ZaCnQWgqslgJSApef70xSRI4_pcu5IoPMO6cBMXwjzHU9XgJXuXKXy7_vdvw_8XOw0a03gtZd5-EEbBIzOGEbfcugMEvm6lSXMzNxZi32A8KY6yo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Analysis+of+Singularly+Perturbed+System+of+Parabolic+Convection%E2%80%93Diffusion+Problem+with+Regular+Boundary+Layers&rft.jtitle=Differential+equations+and+dynamical+systems&rft.au=Singh%2C+Maneesh+Kumar&rft.au=Natesan%2C+Srinivasan&rft.date=2022-07-01&rft.issn=0971-3514&rft.eissn=0974-6870&rft.volume=30&rft.issue=3&rft.spage=695&rft.epage=717&rft_id=info:doi/10.1007%2Fs12591-019-00462-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12591_019_00462_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0971-3514&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0971-3514&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0971-3514&client=summon