Remote sensing image location based on improved Yolov7 target detection

Target detection, as a core issue in the field of computer vision, is widely applied in many key areas such as face recognition, license plate recognition, security protection, and driverless driving. Although its detection speed and accuracy continue to break records, there are still many challenge...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 27; no. 2
Main Authors Li, Cui, Wang, Jiao
Format Journal Article
LanguageEnglish
Published London Springer London 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Target detection, as a core issue in the field of computer vision, is widely applied in many key areas such as face recognition, license plate recognition, security protection, and driverless driving. Although its detection speed and accuracy continue to break records, there are still many challenges and difficulties in target detection of remote sensing images, which require further in-depth research and exploration. Remote sensing images can be regarded as a "three-dimensional data cube", with more complex background information, dense and small object targets, and more severe weather interference factors. These factors lead to large positioning errors and low detection accuracy in the target detection process of remote sensing images. An improved YOLOv7 object detection model is proposed to address the problem of high false negative rate for dense and small objects in remote sensing images. Firstly, the GAM attention mechanism is introduced, and a global scheduling mechanism is proposed to improve the performance of deep neural networks by reducing information reduction and expanding global interaction representations, thus enhancing the network's sensitivity to targets. Secondly, the loss function CIoU in the original Yolov7 network model is replaced by SIoU, aiming to optimize the loss function, reduce losses, and improve the generalization of the network. Finally, the model is tested on the public available RSOD remote sensing dataset, and its generalization is verified on the Okahublot FloW-Img sub-dataset. The results showed that the accuracy (MAP@0.5) of detecting objects improved by 1.7 percentage points and 1.5 percentage points respectively for the improved Yolov7 network model compared to the original model, effectively improves the accuracy of detecting small targets in remote sensing images and solves the problem of leakage detection of small targets in remote sensing images.
AbstractList Target detection, as a core issue in the field of computer vision, is widely applied in many key areas such as face recognition, license plate recognition, security protection, and driverless driving. Although its detection speed and accuracy continue to break records, there are still many challenges and difficulties in target detection of remote sensing images, which require further in-depth research and exploration. Remote sensing images can be regarded as a "three-dimensional data cube", with more complex background information, dense and small object targets, and more severe weather interference factors. These factors lead to large positioning errors and low detection accuracy in the target detection process of remote sensing images. An improved YOLOv7 object detection model is proposed to address the problem of high false negative rate for dense and small objects in remote sensing images. Firstly, the GAM attention mechanism is introduced, and a global scheduling mechanism is proposed to improve the performance of deep neural networks by reducing information reduction and expanding global interaction representations, thus enhancing the network's sensitivity to targets. Secondly, the loss function CIoU in the original Yolov7 network model is replaced by SIoU, aiming to optimize the loss function, reduce losses, and improve the generalization of the network. Finally, the model is tested on the public available RSOD remote sensing dataset, and its generalization is verified on the Okahublot FloW-Img sub-dataset. The results showed that the accuracy (MAP@0.5) of detecting objects improved by 1.7 percentage points and 1.5 percentage points respectively for the improved Yolov7 network model compared to the original model, effectively improves the accuracy of detecting small targets in remote sensing images and solves the problem of leakage detection of small targets in remote sensing images.
ArticleNumber 50
Author Li, Cui
Wang, Jiao
Author_xml – sequence: 1
  givenname: Cui
  surname: Li
  fullname: Li, Cui
  organization: Dalian Jiaotong University School of Software
– sequence: 2
  givenname: Jiao
  surname: Wang
  fullname: Wang, Jiao
  email: winggel@163.com
  organization: Dalian Jiaotong University School of Software
BookMark eNp9kM1KAzEUhYNUsK2-gKsB16P5myZZStEqFARR0FXIZO4MU6aTmsRS3960IwouusjNWZzv5uRM0Kh3PSB0SfA1wVjchDQ5zzFNh1Axy3cnaEw4Y7koirfRr-bkDE1CWGHMGKNyjBbPsHYRsgB9aPsma9emgaxz1sTW9VlpAlRZEu1649026XfXua3IovENxKyCCHbvPEentekCXPzcU_R6f_cyf8iXT4vH-e0yt4yomFMQjFNeKiZkrQTHs5SeEKDWKCGrsixBpsSWFmVFJOVVbUBJAbzmUllWsCm6GvamOB-fEKJeuU_fpyc1w3zPKs6TSw4u610IHmpt23j4UfSm7TTBel-bHmrTqTZ9qE3vEkr_oRufSvFfxyE2QCGZ-wb8X6oj1Dd6hIHl
CitedBy_id crossref_primary_10_3390_drones9030159
crossref_primary_10_3390_s24227318
Cites_doi 10.1109/ACCESS.2019.2939201
10.1016/j.compag.2022.107412
10.1109/TGRS.2014.2357078
10.1016/j.patcog.2022.108873
10.1016/j.neucom.2021.03.091
10.1016/j.cmpb.2022.106888
10.1109/TCYB.2021.3095305
10.1016/j.infrared.2023.104703
10.1016/j.compag.2023.107905
10.1016/j.compag.2023.107637
10.1016/j.cja.2020.02.024
10.1016/j.neucom.2022.06.018
10.1109/TKDE.2021.3126456
10.1016/j.jksuci.2019.09.012
10.1007/978-3-319-46448-0_2
10.27389/d.cnki.gxadu.2019.000663
10.1016/j.compag.2022.107035
10.48550/arXiv.2004.10934
10.1109/TPAMI.2018.2844175
10.1109/CVPR52729.2023.00721
10.1109/ICCV48922.2021.01077
10.48550/arXiv.1909.00133
10.1016/j.sigpro.2023.108962
10.1609/aaai.v34i07.6999
10.1109/CVPR.2016.91
10.1016/j.ijleo.2022.169051
10.1109/CVPR.2019.00075
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10044-024-01276-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
ExternalDocumentID 10_1007_s10044_024_01276_x
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-2e73424b9378f9740600711e2ca978dbbbe8755c25bd1824dfae987e4f489c353
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Fri Jul 25 23:59:45 EDT 2025
Tue Jul 01 01:15:19 EDT 2025
Thu Apr 24 23:05:51 EDT 2025
Fri Feb 21 02:41:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Remote sensing image
Upgraded Yolov7
SIOU
Target detection
GAM attention mechanism
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2e73424b9378f9740600711e2ca978dbbbe8755c25bd1824dfae987e4f489c353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3048755944
PQPubID 2043691
ParticipantIDs proquest_journals_3048755944
crossref_citationtrail_10_1007_s10044_024_01276_x
crossref_primary_10_1007_s10044_024_01276_x
springer_journals_10_1007_s10044_024_01276_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Bao, Zhu, Hu, Zhou, Zhang, Yang (CR13) 2023; 205
Zhou, Zhang, Yuan, Lian, Ji, Zhang, Yue (CR25) 2023; 131
Zheng, Wang, Ren (CR31) 2022; 52
Ning, Tian, Yu, Li, Bai, Wang (CR4) 2022; 131
CR18
CR16
Yundong, Han, Hongguang, Xueyan, Baochang, Zhifeng (CR17) 2020; 33
CR14
CR34
CR11
CR33
CR10
CR32
Han, Huang, Fan, Li, Li, Chen (CR19) 2022; 221
CR30
CR2
Zhang, Du, Zhang (CR15) 2015; 53
Zhang, Zhu, Wen (CR12) 2023; 210
CR3
CR6
CR5
CR8
CR7
Niu, Zhong, Yu (CR21) 2021; 452
Brauwers, Frasincar (CR27) 2021; 35
CR29
CR9
CR26
Jiao, Zhang, Liu (CR1) 2019; 7
CR22
Tian, Han, Wang (CR28) 2022; 500
CR20
Liu (CR23) 2021; 1941
Chen, Wang, Zhang, Luo, Wei, Long, Wang (CR24) 2022; 202
1276_CR22
1276_CR20
Z Niu (1276_CR21) 2021; 452
J Zhou (1276_CR25) 2023; 131
1276_CR26
Y Liu (1276_CR23) 2021; 1941
J Chen (1276_CR24) 2022; 202
1276_CR29
X Ning (1276_CR4) 2022; 131
G Brauwers (1276_CR27) 2021; 35
1276_CR30
1276_CR11
F Zhang (1276_CR15) 2015; 53
1276_CR33
1276_CR34
1276_CR10
L Yundong (1276_CR17) 2020; 33
1276_CR32
W Bao (1276_CR13) 2023; 205
D Tian (1276_CR28) 2022; 500
Z Han (1276_CR19) 2022; 221
1276_CR2
1276_CR3
1276_CR5
ZH Zheng (1276_CR31) 2022; 52
1276_CR6
X Zhang (1276_CR12) 2023; 210
1276_CR7
1276_CR16
1276_CR8
1276_CR9
1276_CR14
L Jiao (1276_CR1) 2019; 7
1276_CR18
References_xml – ident: CR22
– volume: 7
  start-page: 128837
  year: 2019
  end-page: 128868
  ident: CR1
  article-title: A survey of deep learning-based object detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939201
– ident: CR18
– ident: CR14
– ident: CR2
– ident: CR16
– ident: CR30
– ident: CR10
– ident: CR33
– ident: CR6
– volume: 202
  year: 2022
  ident: CR24
  article-title: Weed detection in sesame fields using a YOLO model with an enhanced attention mechanism and feature fusion
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2022.107412
– ident: CR29
– volume: 53
  start-page: 2175
  issue: 4
  year: 2015
  end-page: 2184
  ident: CR15
  article-title: Saliency-guided unsupervised feature learning for scene classification
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2014.2357078
– volume: 131
  start-page: 108873
  year: 2022
  ident: CR4
  article-title: HCFNN: high-order coverage function neural network for image classification
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2022.108873
– ident: CR8
– volume: 452
  start-page: 48
  year: 2021
  end-page: 62
  ident: CR21
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– volume: 221
  year: 2022
  ident: CR19
  article-title: SMD-YOLO: An efficient and lightweight detection method for mask wearing status during the COVID-19 pandemic
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2022.106888
– volume: 52
  start-page: 8574
  issue: 8
  year: 2022
  end-page: 8586
  ident: CR31
  article-title: Enhancing geometric factors in model learning and inference for object detection and instance segmentation
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2021.3095305
– volume: 131
  year: 2023
  ident: CR25
  article-title: YOLO-CIR: the network based on YOLO and ConvNeXt for Infrared object detection
  publication-title: Infrared Phys Technol
  doi: 10.1016/j.infrared.2023.104703
– volume: 210
  year: 2023
  ident: CR12
  article-title: SwinT-YOLO: detection of densely distributed maize tassels in remote sensing images
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2023.107905
– ident: CR3
– ident: CR11
– volume: 205
  year: 2023
  ident: CR13
  article-title: UAV remote sensing detection of tea leaf blight based on DDMA-YOLO
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2023.107637
– volume: 1941
  issue: 1
  year: 2021
  ident: CR23
  article-title: Research progress and trend analysis of computer vision based on cite space
  publication-title: J Phys: Conf Ser
– ident: CR9
– ident: CR32
– volume: 33
  start-page: 1747
  issue: 6
  year: 2020
  end-page: 1755
  ident: CR17
  article-title: Multi-block SSD based on small object detection for UAV railway scene surveillance
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2020.02.024
– ident: CR34
– ident: CR5
– ident: CR7
– volume: 500
  start-page: 1029
  year: 2022
  end-page: 1040
  ident: CR28
  article-title: Absolute size IoU loss for the bounding box regression of the object detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.06.018
– ident: CR26
– ident: CR20
– volume: 35
  start-page: 3279
  issue: 4
  year: 2021
  end-page: 3298
  ident: CR27
  article-title: A general survey on attention mechanisms in deep learning
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2021.3126456
– ident: 1276_CR16
  doi: 10.1016/j.jksuci.2019.09.012
– ident: 1276_CR9
  doi: 10.1007/978-3-319-46448-0_2
– volume: 452
  start-page: 48
  year: 2021
  ident: 1276_CR21
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– ident: 1276_CR10
  doi: 10.27389/d.cnki.gxadu.2019.000663
– ident: 1276_CR20
  doi: 10.1016/j.compag.2022.107035
– volume: 221
  year: 2022
  ident: 1276_CR19
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2022.106888
– ident: 1276_CR7
  doi: 10.48550/arXiv.2004.10934
– volume: 131
  start-page: 108873
  year: 2022
  ident: 1276_CR4
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2022.108873
– ident: 1276_CR3
  doi: 10.1109/TPAMI.2018.2844175
– ident: 1276_CR14
  doi: 10.1109/CVPR52729.2023.00721
– volume: 202
  year: 2022
  ident: 1276_CR24
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2022.107412
– volume: 131
  year: 2023
  ident: 1276_CR25
  publication-title: Infrared Phys Technol
  doi: 10.1016/j.infrared.2023.104703
– ident: 1276_CR22
– ident: 1276_CR34
  doi: 10.1109/ICCV48922.2021.01077
– ident: 1276_CR33
  doi: 10.48550/arXiv.1909.00133
– ident: 1276_CR26
– ident: 1276_CR11
  doi: 10.1016/j.sigpro.2023.108962
– ident: 1276_CR32
– volume: 53
  start-page: 2175
  issue: 4
  year: 2015
  ident: 1276_CR15
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2014.2357078
– volume: 210
  year: 2023
  ident: 1276_CR12
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2023.107905
– volume: 1941
  issue: 1
  year: 2021
  ident: 1276_CR23
  publication-title: J Phys: Conf Ser
– volume: 33
  start-page: 1747
  issue: 6
  year: 2020
  ident: 1276_CR17
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2020.02.024
– volume: 35
  start-page: 3279
  issue: 4
  year: 2021
  ident: 1276_CR27
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2021.3126456
– ident: 1276_CR30
  doi: 10.1609/aaai.v34i07.6999
– ident: 1276_CR2
– volume: 500
  start-page: 1029
  year: 2022
  ident: 1276_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.06.018
– volume: 7
  start-page: 128837
  year: 2019
  ident: 1276_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939201
– ident: 1276_CR5
  doi: 10.1109/CVPR.2016.91
– ident: 1276_CR6
– volume: 52
  start-page: 8574
  issue: 8
  year: 2022
  ident: 1276_CR31
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2021.3095305
– ident: 1276_CR8
– ident: 1276_CR18
  doi: 10.1016/j.ijleo.2022.169051
– ident: 1276_CR29
  doi: 10.1109/CVPR.2019.00075
– volume: 205
  year: 2023
  ident: 1276_CR13
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2023.107637
SSID ssj0033328
Score 2.3796468
Snippet Target detection, as a core issue in the field of computer vision, is widely applied in many key areas such as face recognition, license plate recognition,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Artificial neural networks
Computer Science
Computer vision
Datasets
Face recognition
Leak detection
Object recognition
Pattern Recognition
Remote sensing
Sensitivity enhancement
Survey
Target detection
Title Remote sensing image location based on improved Yolov7 target detection
URI https://link.springer.com/article/10.1007/s10044-024-01276-x
https://www.proquest.com/docview/3048755944
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5k9-LFt7i6Ljl400DbpI8ci-wDRQ_iwu6pNG0qC1rFVvHnO8kmrooK3kKa5jCTzMyXeQGcFHmFegyRqsIDgQAlUlRUPKZSVFp7SFSaOt_56jqaTPnFLJzZpLDGRbs7l6SR1J-S3TzOKeoUqt2lEUXLsRsidteBXNMgdfKXMWY6qqIhwGgcct-myvy8x1d1tLIxv7lFjbYZbcGGNRNJuuTrNqypegc2rclI7IVscMp1ZXBzuzC-UUh-RRodml7fkcUDigyidZbmAdFqqyQ4WJjnBBzPUf69xmQZE05K1ZrorHoPpqPh7fmE2nYJtMB71NJAxYwHXKLBkVQIEzxdet73VVDkCBVLKaVCcBIWQShLRBW8rHIlkljxiieiYCHbh079WKsDILngcVl5CuGfdtNFOROFSJKSR5HM0Ubrge-olhW2lrhuaXGfraoga0pnSOnMUDp768Hpxz9Py0oaf67uO2Zk9lY1GfM0vAoF5z04cwxaff59t8P_LT-C9cCcEf3Y0odO-_yijtH2aOUAuul4fjkcmCP3Dmb9z3o
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5VZYCFN6JQwANMYClNnNfAUAGlpY8BtVKZTJw4qBIERAKU_8MP5ewmFBAgMXSzHCeK7s73fWeffQD7YRAjjmGkKtEgMEBxJPVj5lLhxwo9BIKmOu_c7TnNAbsY2sMSvBVnYXS2e7ElqT31p8NuBmMUMYWq7VKHjvNUyrZ8fcFALT1unaJWD0yzcdY_adK8lgAN0cgyakrXYiYTiMZejBzaUPey12rSDAOMoyIhhETmboemLSKk3CyKA4nhuGQx8_xQ14ZARz-H5MNTc2dg1gt_b1mWruCKxMOirs1q-dGcn__5K_xNOe23bViNbo1lWMxpKalP7GgFSjJZhaWcopLcAaTYVVSBKPrW4PxSorolSVUqfHJDRnfooojCSKVzomAyItgY6eULbF-hv312ySQHnUQy09lgyToMZiLSDSgn94ncBBL4zI1iQ2K4qbYFncDyQ9_zIuY4IkBOWIFaITUe5neXqxIat3x667KSNEdJcy1pPq7A4cc7D5ObO_4cXS2UwfNZnHLLUOGc7TNWgaNCQdPHv39t63_D92C-2e92eKfVa2_DgqntRS30VKGcPT7JHeQ9mdjVZkfgetZ2_g7F1gnc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5KBfHiW6xW3YOedGmabF4HD8VaW6tFxEI9xWyykYLGYqLWf-VPdHaTWBUVPPQW8iLMTOb7ZnceALuBHyGOYaQq0CAwQLEEdSNmU-5GEj04gqasdz7vWe0-Ox2YgxK8FbUwKtu92JLMahpkl6Y4rY3CqPap8E1jjCK-ULl1atFxnlbZFa8vGLQlh50manhP11vHV0dtms8VoAEaXEp1YRtMZxyR2YmQT2uyR3u9LvTAx5gq5JwLZPFmoJs8RPrNwsgXGJoLFjHHDdScCHT6M0xWH-Mf1Ncbhe83DENNc0USYlDbZPW8TOfnb_4KhRN--21LViFdaxHmc4pKGplNLUFJxMuwkNNVkjuDBE8VEyGKcytwcilQ9YIkMi0-viXDe3RXROKl1D-RkBkSPBiqpQw8vkbf-2yTLB-dhCJVmWHxKvSnItI1KMcPsVgH4rvMDiNNYOgptwgt33AD13FCZlncR35YgXohNS_I-5jLcRp33qQDs5S0h5L2lKS9cQX2P54ZZV08_ry7WijDy__oxDM0GdqZLmMVOCgUNLn8-9s2_nf7DsxeNFveWafX3YQ5XZmLXPOpQjl9fBJbSIFSvq2sjsDNtM38HZTdDg8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+sensing+image+location+based+on+improved+Yolov7+target+detection&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Cui%2C+Li&rft.au=Wang%2C+Jiao&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=27&rft.issue=2&rft_id=info:doi/10.1007%2Fs10044-024-01276-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon