Remote sensing image location based on improved Yolov7 target detection
Target detection, as a core issue in the field of computer vision, is widely applied in many key areas such as face recognition, license plate recognition, security protection, and driverless driving. Although its detection speed and accuracy continue to break records, there are still many challenge...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 27; no. 2 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Target detection, as a core issue in the field of computer vision, is widely applied in many key areas such as face recognition, license plate recognition, security protection, and driverless driving. Although its detection speed and accuracy continue to break records, there are still many challenges and difficulties in target detection of remote sensing images, which require further in-depth research and exploration. Remote sensing images can be regarded as a "three-dimensional data cube", with more complex background information, dense and small object targets, and more severe weather interference factors. These factors lead to large positioning errors and low detection accuracy in the target detection process of remote sensing images. An improved YOLOv7 object detection model is proposed to address the problem of high false negative rate for dense and small objects in remote sensing images. Firstly, the GAM attention mechanism is introduced, and a global scheduling mechanism is proposed to improve the performance of deep neural networks by reducing information reduction and expanding global interaction representations, thus enhancing the network's sensitivity to targets. Secondly, the loss function CIoU in the original Yolov7 network model is replaced by SIoU, aiming to optimize the loss function, reduce losses, and improve the generalization of the network. Finally, the model is tested on the public available RSOD remote sensing dataset, and its generalization is verified on the Okahublot FloW-Img sub-dataset. The results showed that the accuracy (MAP@0.5) of detecting objects improved by 1.7 percentage points and 1.5 percentage points respectively for the improved Yolov7 network model compared to the original model, effectively improves the accuracy of detecting small targets in remote sensing images and solves the problem of leakage detection of small targets in remote sensing images. |
---|---|
AbstractList | Target detection, as a core issue in the field of computer vision, is widely applied in many key areas such as face recognition, license plate recognition, security protection, and driverless driving. Although its detection speed and accuracy continue to break records, there are still many challenges and difficulties in target detection of remote sensing images, which require further in-depth research and exploration. Remote sensing images can be regarded as a "three-dimensional data cube", with more complex background information, dense and small object targets, and more severe weather interference factors. These factors lead to large positioning errors and low detection accuracy in the target detection process of remote sensing images. An improved YOLOv7 object detection model is proposed to address the problem of high false negative rate for dense and small objects in remote sensing images. Firstly, the GAM attention mechanism is introduced, and a global scheduling mechanism is proposed to improve the performance of deep neural networks by reducing information reduction and expanding global interaction representations, thus enhancing the network's sensitivity to targets. Secondly, the loss function CIoU in the original Yolov7 network model is replaced by SIoU, aiming to optimize the loss function, reduce losses, and improve the generalization of the network. Finally, the model is tested on the public available RSOD remote sensing dataset, and its generalization is verified on the Okahublot FloW-Img sub-dataset. The results showed that the accuracy (MAP@0.5) of detecting objects improved by 1.7 percentage points and 1.5 percentage points respectively for the improved Yolov7 network model compared to the original model, effectively improves the accuracy of detecting small targets in remote sensing images and solves the problem of leakage detection of small targets in remote sensing images. |
ArticleNumber | 50 |
Author | Li, Cui Wang, Jiao |
Author_xml | – sequence: 1 givenname: Cui surname: Li fullname: Li, Cui organization: Dalian Jiaotong University School of Software – sequence: 2 givenname: Jiao surname: Wang fullname: Wang, Jiao email: winggel@163.com organization: Dalian Jiaotong University School of Software |
BookMark | eNp9kM1KAzEUhYNUsK2-gKsB16P5myZZStEqFARR0FXIZO4MU6aTmsRS3960IwouusjNWZzv5uRM0Kh3PSB0SfA1wVjchDQ5zzFNh1Axy3cnaEw4Y7koirfRr-bkDE1CWGHMGKNyjBbPsHYRsgB9aPsma9emgaxz1sTW9VlpAlRZEu1649026XfXua3IovENxKyCCHbvPEentekCXPzcU_R6f_cyf8iXT4vH-e0yt4yomFMQjFNeKiZkrQTHs5SeEKDWKCGrsixBpsSWFmVFJOVVbUBJAbzmUllWsCm6GvamOB-fEKJeuU_fpyc1w3zPKs6TSw4u610IHmpt23j4UfSm7TTBel-bHmrTqTZ9qE3vEkr_oRufSvFfxyE2QCGZ-wb8X6oj1Dd6hIHl |
CitedBy_id | crossref_primary_10_3390_drones9030159 crossref_primary_10_3390_s24227318 |
Cites_doi | 10.1109/ACCESS.2019.2939201 10.1016/j.compag.2022.107412 10.1109/TGRS.2014.2357078 10.1016/j.patcog.2022.108873 10.1016/j.neucom.2021.03.091 10.1016/j.cmpb.2022.106888 10.1109/TCYB.2021.3095305 10.1016/j.infrared.2023.104703 10.1016/j.compag.2023.107905 10.1016/j.compag.2023.107637 10.1016/j.cja.2020.02.024 10.1016/j.neucom.2022.06.018 10.1109/TKDE.2021.3126456 10.1016/j.jksuci.2019.09.012 10.1007/978-3-319-46448-0_2 10.27389/d.cnki.gxadu.2019.000663 10.1016/j.compag.2022.107035 10.48550/arXiv.2004.10934 10.1109/TPAMI.2018.2844175 10.1109/CVPR52729.2023.00721 10.1109/ICCV48922.2021.01077 10.48550/arXiv.1909.00133 10.1016/j.sigpro.2023.108962 10.1609/aaai.v34i07.6999 10.1109/CVPR.2016.91 10.1016/j.ijleo.2022.169051 10.1109/CVPR.2019.00075 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-024-01276-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
ExternalDocumentID | 10_1007_s10044_024_01276_x |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-2e73424b9378f9740600711e2ca978dbbbe8755c25bd1824dfae987e4f489c353 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Fri Jul 25 23:59:45 EDT 2025 Tue Jul 01 01:15:19 EDT 2025 Thu Apr 24 23:05:51 EDT 2025 Fri Feb 21 02:41:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Remote sensing image Upgraded Yolov7 SIOU Target detection GAM attention mechanism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-2e73424b9378f9740600711e2ca978dbbbe8755c25bd1824dfae987e4f489c353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3048755944 |
PQPubID | 2043691 |
ParticipantIDs | proquest_journals_3048755944 crossref_citationtrail_10_1007_s10044_024_01276_x crossref_primary_10_1007_s10044_024_01276_x springer_journals_10_1007_s10044_024_01276_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2024 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Bao, Zhu, Hu, Zhou, Zhang, Yang (CR13) 2023; 205 Zhou, Zhang, Yuan, Lian, Ji, Zhang, Yue (CR25) 2023; 131 Zheng, Wang, Ren (CR31) 2022; 52 Ning, Tian, Yu, Li, Bai, Wang (CR4) 2022; 131 CR18 CR16 Yundong, Han, Hongguang, Xueyan, Baochang, Zhifeng (CR17) 2020; 33 CR14 CR34 CR11 CR33 CR10 CR32 Han, Huang, Fan, Li, Li, Chen (CR19) 2022; 221 CR30 CR2 Zhang, Du, Zhang (CR15) 2015; 53 Zhang, Zhu, Wen (CR12) 2023; 210 CR3 CR6 CR5 CR8 CR7 Niu, Zhong, Yu (CR21) 2021; 452 Brauwers, Frasincar (CR27) 2021; 35 CR29 CR9 CR26 Jiao, Zhang, Liu (CR1) 2019; 7 CR22 Tian, Han, Wang (CR28) 2022; 500 CR20 Liu (CR23) 2021; 1941 Chen, Wang, Zhang, Luo, Wei, Long, Wang (CR24) 2022; 202 1276_CR22 1276_CR20 Z Niu (1276_CR21) 2021; 452 J Zhou (1276_CR25) 2023; 131 1276_CR26 Y Liu (1276_CR23) 2021; 1941 J Chen (1276_CR24) 2022; 202 1276_CR29 X Ning (1276_CR4) 2022; 131 G Brauwers (1276_CR27) 2021; 35 1276_CR30 1276_CR11 F Zhang (1276_CR15) 2015; 53 1276_CR33 1276_CR34 1276_CR10 L Yundong (1276_CR17) 2020; 33 1276_CR32 W Bao (1276_CR13) 2023; 205 D Tian (1276_CR28) 2022; 500 Z Han (1276_CR19) 2022; 221 1276_CR2 1276_CR3 1276_CR5 ZH Zheng (1276_CR31) 2022; 52 1276_CR6 X Zhang (1276_CR12) 2023; 210 1276_CR7 1276_CR16 1276_CR8 1276_CR9 1276_CR14 L Jiao (1276_CR1) 2019; 7 1276_CR18 |
References_xml | – ident: CR22 – volume: 7 start-page: 128837 year: 2019 end-page: 128868 ident: CR1 article-title: A survey of deep learning-based object detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939201 – ident: CR18 – ident: CR14 – ident: CR2 – ident: CR16 – ident: CR30 – ident: CR10 – ident: CR33 – ident: CR6 – volume: 202 year: 2022 ident: CR24 article-title: Weed detection in sesame fields using a YOLO model with an enhanced attention mechanism and feature fusion publication-title: Comput Electron Agric doi: 10.1016/j.compag.2022.107412 – ident: CR29 – volume: 53 start-page: 2175 issue: 4 year: 2015 end-page: 2184 ident: CR15 article-title: Saliency-guided unsupervised feature learning for scene classification publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2014.2357078 – volume: 131 start-page: 108873 year: 2022 ident: CR4 article-title: HCFNN: high-order coverage function neural network for image classification publication-title: Pattern Recognition doi: 10.1016/j.patcog.2022.108873 – ident: CR8 – volume: 452 start-page: 48 year: 2021 end-page: 62 ident: CR21 article-title: A review on the attention mechanism of deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.091 – volume: 221 year: 2022 ident: CR19 article-title: SMD-YOLO: An efficient and lightweight detection method for mask wearing status during the COVID-19 pandemic publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2022.106888 – volume: 52 start-page: 8574 issue: 8 year: 2022 end-page: 8586 ident: CR31 article-title: Enhancing geometric factors in model learning and inference for object detection and instance segmentation publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2021.3095305 – volume: 131 year: 2023 ident: CR25 article-title: YOLO-CIR: the network based on YOLO and ConvNeXt for Infrared object detection publication-title: Infrared Phys Technol doi: 10.1016/j.infrared.2023.104703 – volume: 210 year: 2023 ident: CR12 article-title: SwinT-YOLO: detection of densely distributed maize tassels in remote sensing images publication-title: Comput Electron Agric doi: 10.1016/j.compag.2023.107905 – ident: CR3 – ident: CR11 – volume: 205 year: 2023 ident: CR13 article-title: UAV remote sensing detection of tea leaf blight based on DDMA-YOLO publication-title: Comput Electron Agric doi: 10.1016/j.compag.2023.107637 – volume: 1941 issue: 1 year: 2021 ident: CR23 article-title: Research progress and trend analysis of computer vision based on cite space publication-title: J Phys: Conf Ser – ident: CR9 – ident: CR32 – volume: 33 start-page: 1747 issue: 6 year: 2020 end-page: 1755 ident: CR17 article-title: Multi-block SSD based on small object detection for UAV railway scene surveillance publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2020.02.024 – ident: CR34 – ident: CR5 – ident: CR7 – volume: 500 start-page: 1029 year: 2022 end-page: 1040 ident: CR28 article-title: Absolute size IoU loss for the bounding box regression of the object detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.06.018 – ident: CR26 – ident: CR20 – volume: 35 start-page: 3279 issue: 4 year: 2021 end-page: 3298 ident: CR27 article-title: A general survey on attention mechanisms in deep learning publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2021.3126456 – ident: 1276_CR16 doi: 10.1016/j.jksuci.2019.09.012 – ident: 1276_CR9 doi: 10.1007/978-3-319-46448-0_2 – volume: 452 start-page: 48 year: 2021 ident: 1276_CR21 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.091 – ident: 1276_CR10 doi: 10.27389/d.cnki.gxadu.2019.000663 – ident: 1276_CR20 doi: 10.1016/j.compag.2022.107035 – volume: 221 year: 2022 ident: 1276_CR19 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2022.106888 – ident: 1276_CR7 doi: 10.48550/arXiv.2004.10934 – volume: 131 start-page: 108873 year: 2022 ident: 1276_CR4 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2022.108873 – ident: 1276_CR3 doi: 10.1109/TPAMI.2018.2844175 – ident: 1276_CR14 doi: 10.1109/CVPR52729.2023.00721 – volume: 202 year: 2022 ident: 1276_CR24 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2022.107412 – volume: 131 year: 2023 ident: 1276_CR25 publication-title: Infrared Phys Technol doi: 10.1016/j.infrared.2023.104703 – ident: 1276_CR22 – ident: 1276_CR34 doi: 10.1109/ICCV48922.2021.01077 – ident: 1276_CR33 doi: 10.48550/arXiv.1909.00133 – ident: 1276_CR26 – ident: 1276_CR11 doi: 10.1016/j.sigpro.2023.108962 – ident: 1276_CR32 – volume: 53 start-page: 2175 issue: 4 year: 2015 ident: 1276_CR15 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2014.2357078 – volume: 210 year: 2023 ident: 1276_CR12 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2023.107905 – volume: 1941 issue: 1 year: 2021 ident: 1276_CR23 publication-title: J Phys: Conf Ser – volume: 33 start-page: 1747 issue: 6 year: 2020 ident: 1276_CR17 publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2020.02.024 – volume: 35 start-page: 3279 issue: 4 year: 2021 ident: 1276_CR27 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2021.3126456 – ident: 1276_CR30 doi: 10.1609/aaai.v34i07.6999 – ident: 1276_CR2 – volume: 500 start-page: 1029 year: 2022 ident: 1276_CR28 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.06.018 – volume: 7 start-page: 128837 year: 2019 ident: 1276_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939201 – ident: 1276_CR5 doi: 10.1109/CVPR.2016.91 – ident: 1276_CR6 – volume: 52 start-page: 8574 issue: 8 year: 2022 ident: 1276_CR31 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2021.3095305 – ident: 1276_CR8 – ident: 1276_CR18 doi: 10.1016/j.ijleo.2022.169051 – ident: 1276_CR29 doi: 10.1109/CVPR.2019.00075 – volume: 205 year: 2023 ident: 1276_CR13 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2023.107637 |
SSID | ssj0033328 |
Score | 2.3796468 |
Snippet | Target detection, as a core issue in the field of computer vision, is widely applied in many key areas such as face recognition, license plate recognition,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Accuracy Artificial neural networks Computer Science Computer vision Datasets Face recognition Leak detection Object recognition Pattern Recognition Remote sensing Sensitivity enhancement Survey Target detection |
Title | Remote sensing image location based on improved Yolov7 target detection |
URI | https://link.springer.com/article/10.1007/s10044-024-01276-x https://www.proquest.com/docview/3048755944 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5k9-LFt7i6Ljl400DbpI8ci-wDRQ_iwu6pNG0qC1rFVvHnO8kmrooK3kKa5jCTzMyXeQGcFHmFegyRqsIDgQAlUlRUPKZSVFp7SFSaOt_56jqaTPnFLJzZpLDGRbs7l6SR1J-S3TzOKeoUqt2lEUXLsRsidteBXNMgdfKXMWY6qqIhwGgcct-myvy8x1d1tLIxv7lFjbYZbcGGNRNJuuTrNqypegc2rclI7IVscMp1ZXBzuzC-UUh-RRodml7fkcUDigyidZbmAdFqqyQ4WJjnBBzPUf69xmQZE05K1ZrorHoPpqPh7fmE2nYJtMB71NJAxYwHXKLBkVQIEzxdet73VVDkCBVLKaVCcBIWQShLRBW8rHIlkljxiieiYCHbh079WKsDILngcVl5CuGfdtNFOROFSJKSR5HM0Ubrge-olhW2lrhuaXGfraoga0pnSOnMUDp768Hpxz9Py0oaf67uO2Zk9lY1GfM0vAoF5z04cwxaff59t8P_LT-C9cCcEf3Y0odO-_yijtH2aOUAuul4fjkcmCP3Dmb9z3o |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5VZYCFN6JQwANMYClNnNfAUAGlpY8BtVKZTJw4qBIERAKU_8MP5ewmFBAgMXSzHCeK7s73fWeffQD7YRAjjmGkKtEgMEBxJPVj5lLhxwo9BIKmOu_c7TnNAbsY2sMSvBVnYXS2e7ElqT31p8NuBmMUMYWq7VKHjvNUyrZ8fcFALT1unaJWD0yzcdY_adK8lgAN0cgyakrXYiYTiMZejBzaUPey12rSDAOMoyIhhETmboemLSKk3CyKA4nhuGQx8_xQ14ZARz-H5MNTc2dg1gt_b1mWruCKxMOirs1q-dGcn__5K_xNOe23bViNbo1lWMxpKalP7GgFSjJZhaWcopLcAaTYVVSBKPrW4PxSorolSVUqfHJDRnfooojCSKVzomAyItgY6eULbF-hv312ySQHnUQy09lgyToMZiLSDSgn94ncBBL4zI1iQ2K4qbYFncDyQ9_zIuY4IkBOWIFaITUe5neXqxIat3x667KSNEdJcy1pPq7A4cc7D5ObO_4cXS2UwfNZnHLLUOGc7TNWgaNCQdPHv39t63_D92C-2e92eKfVa2_DgqntRS30VKGcPT7JHeQ9mdjVZkfgetZ2_g7F1gnc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5KBfHiW6xW3YOedGmabF4HD8VaW6tFxEI9xWyykYLGYqLWf-VPdHaTWBUVPPQW8iLMTOb7ZnceALuBHyGOYaQq0CAwQLEEdSNmU-5GEj04gqasdz7vWe0-Ox2YgxK8FbUwKtu92JLMahpkl6Y4rY3CqPap8E1jjCK-ULl1atFxnlbZFa8vGLQlh50manhP11vHV0dtms8VoAEaXEp1YRtMZxyR2YmQT2uyR3u9LvTAx5gq5JwLZPFmoJs8RPrNwsgXGJoLFjHHDdScCHT6M0xWH-Mf1Ncbhe83DENNc0USYlDbZPW8TOfnb_4KhRN--21LViFdaxHmc4pKGplNLUFJxMuwkNNVkjuDBE8VEyGKcytwcilQ9YIkMi0-viXDe3RXROKl1D-RkBkSPBiqpQw8vkbf-2yTLB-dhCJVmWHxKvSnItI1KMcPsVgH4rvMDiNNYOgptwgt33AD13FCZlncR35YgXohNS_I-5jLcRp33qQDs5S0h5L2lKS9cQX2P54ZZV08_ry7WijDy__oxDM0GdqZLmMVOCgUNLn8-9s2_nf7DsxeNFveWafX3YQ5XZmLXPOpQjl9fBJbSIFSvq2sjsDNtM38HZTdDg8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+sensing+image+location+based+on+improved+Yolov7+target+detection&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Cui%2C+Li&rft.au=Wang%2C+Jiao&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=27&rft.issue=2&rft_id=info:doi/10.1007%2Fs10044-024-01276-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |