Early detection of heart diseases using a low-cost compact ECG sensor

Heart disease patients are continuously increasing. The patients face the problem of a delayed diagnosis as the subjects do not undergo routine tests and consult a doctor only after severe symptoms. Most medical expert systems are designed to aid the doctors in making wise decisions and only such da...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 80; no. 21-23; pp. 32615 - 32637
Main Authors Dixit, Shivam, Kala, Rahul
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-021-11083-9

Cover

Abstract Heart disease patients are continuously increasing. The patients face the problem of a delayed diagnosis as the subjects do not undergo routine tests and consult a doctor only after severe symptoms. Most medical expert systems are designed to aid the doctors in making wise decisions and only such data sets exist in the literature. We attack the problem of an early-stage diagnosis that can be done at the home by the subject himself on a routine basis, using a low cost and compact ECG sensor. Machine learning tools nowadays have become important for data processing and assistance in various fields including medicine. Attributed to an absence of data, we first developed our ECG dataset by collecting ECG signal data from 300 persons including 53 cardiac patients and 247 healthy persons, using a low-cost and compact ECG sensor. To detect the heart diseases from this data, classical methods (Random forest and Gradient boosting) and state of the art Deep Learning models (1D Convolution Neural Net) were used. A problem with machine learning in the specific context is a severe data imbalance, for which oversampling of minority data was used. Since the sensor is a low cost, noise can get added up. Hence, voting across multiple time windows is done to improve the results. After a healthy comparison between all classification methods with different techniques based on their test accuracy, 1D CNN with oversampling and using voting strategy comes out as the best classifiers with a 93% test accuracy.
AbstractList Heart disease patients are continuously increasing. The patients face the problem of a delayed diagnosis as the subjects do not undergo routine tests and consult a doctor only after severe symptoms. Most medical expert systems are designed to aid the doctors in making wise decisions and only such data sets exist in the literature. We attack the problem of an early-stage diagnosis that can be done at the home by the subject himself on a routine basis, using a low cost and compact ECG sensor. Machine learning tools nowadays have become important for data processing and assistance in various fields including medicine. Attributed to an absence of data, we first developed our ECG dataset by collecting ECG signal data from 300 persons including 53 cardiac patients and 247 healthy persons, using a low-cost and compact ECG sensor. To detect the heart diseases from this data, classical methods (Random forest and Gradient boosting) and state of the art Deep Learning models (1D Convolution Neural Net) were used. A problem with machine learning in the specific context is a severe data imbalance, for which oversampling of minority data was used. Since the sensor is a low cost, noise can get added up. Hence, voting across multiple time windows is done to improve the results. After a healthy comparison between all classification methods with different techniques based on their test accuracy, 1D CNN with oversampling and using voting strategy comes out as the best classifiers with a 93% test accuracy.
Author Dixit, Shivam
Kala, Rahul
Author_xml – sequence: 1
  givenname: Shivam
  orcidid: 0000-0002-6058-3899
  surname: Dixit
  fullname: Dixit, Shivam
  email: shivamdixit1795@gmail.com
  organization: Center of Intelligent Robotics, Indian Institute of Information Technology
– sequence: 2
  givenname: Rahul
  surname: Kala
  fullname: Kala, Rahul
  organization: Center of Intelligent Robotics, Indian Institute of Information Technology
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz9FMstlNjlLWDyh40XOI2dm6pd3UJEX67926guChp5nD-8zHMyOTPvRIyDXwW-C8uksAvBCMC2BDpyUzZ2QKqpKsqgRMhl5qzirF4YLMUlpzDqUSxZTUtYubA20wo89d6Glo6Qe6mGnTJXQJE92nrl9RRzfhi_mQMvVhu3M-03rxSBP2KcRLct66TcKr3zonbw_16-KJLV8enxf3S-YlmMxEg6aRhUYvSl-UpgJvJFQK-HupUWChFThllNTKl8b7RrVGcC248K1D7eSc3IxzdzF87jFluw772A8rrVCagy5FJYaUHlM-hpQittZ32R2_y9F1GwvcHqXZUZodpNkfadYMqPiH7mK3dfFwGpIjlIZwv8L4d9UJ6ht6K38i
CitedBy_id crossref_primary_10_1038_s41598_024_58489_7
crossref_primary_10_3390_math11224681
crossref_primary_10_1016_j_artmed_2022_102289
crossref_primary_10_1007_s42600_024_00367_2
crossref_primary_10_1016_j_jestch_2025_101976
crossref_primary_10_1186_s40537_024_01011_7
crossref_primary_10_38124_ijisrt_IJISRT24JUL1400
crossref_primary_10_1007_s11042_023_16850_4
crossref_primary_10_1038_s41598_024_68204_1
crossref_primary_10_3390_a17020078
Cites_doi 10.1613/jair.953
10.1109/TBME.2015.2468589
10.1113/jphysiol.1968.sp008455
10.1109/TBME.2011.2171037
10.1007/BF00344251
10.1109/TIT.1968.1054155
10.1016/j.bspc.2017.12.004
10.1016/j.compbiomed.2018.03.016
10.1007/s00521-015-2089-3
10.1016/j.compbiomed.2017.08.022
10.1016/j.compbiomed.2018.09.009
10.1109/ICASERT.2019.8934463
10.1109/IJCNN.2008.4633969
10.1016/j.imu.2018.06.002
10.1007/11538059_91
10.1109/ACCESS.2018.2833841
10.1016/j.future.2018.03.057
10.1145/1007730.1007735
10.1016/j.cmpb.2015.12.008
10.1109/51.932724
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-021-11083-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 32637
ExternalDocumentID 10_1007_s11042_021_11083_9
GrantInformation_xml – fundername: Department of Science & Technology, Government of India
  grantid: IMRC/AISTDF/R&D/P-6/2017
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-2de9d348ec26c46971c9317510b68e2e4851a595385c69ccd5f9208202cfae8a3
IEDL.DBID AGYKE
ISSN 1380-7501
IngestDate Sat Jul 26 00:09:42 EDT 2025
Thu Apr 24 23:06:39 EDT 2025
Tue Jul 01 04:13:10 EDT 2025
Fri Feb 21 02:47:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21-23
Keywords 1D convolution neural net
Machine learning
Random forest
Medical expert systems
ECG signal
Oversampling
Heart diseases
Gradient boosting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2de9d348ec26c46971c9317510b68e2e4851a595385c69ccd5f9208202cfae8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6058-3899
PQID 2580186272
PQPubID 54626
PageCount 23
ParticipantIDs proquest_journals_2580186272
crossref_citationtrail_10_1007_s11042_021_11083_9
crossref_primary_10_1007_s11042_021_11083_9
springer_journals_10_1007_s11042_021_11083_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210900
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR19
CR16
CR14
CR13
Hubel, Wiesel (CR17) 1968; 195
CR12
Hart (CR15) 1968; IT-14
CR32
Chawla, Hall, Bowyer, Kegelmeyer (CR6) 2002; 16
de Lannoy, Francois, Delbeke, Verleysen (CR8) 2012; 59
Mondéjar-Guerraa, Novo, Rouco, Penedo, Ortega (CR22) 2018; 41
Kotsiantis, Pintelas (CR20) 2006; 30
CR2
CR4
CR3
Achary, Oh, Hagiwara, Tan, Adam, Gertych, Tan (CR1) 2017; 89
CR5
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (CR11) 2001; 101
CR7
Rajesh, Dhuli (CR25) 2018; 41
CR29
CR28
CR9
CR26
Yildirim, Pławiak, Tan, Acharya (CR31) 2018; 102
CR24
Yildirim (CR30) 2018; 96
CR23
CR21
Kiranyaz, Ince, Gabbouj (CR18) 2016; 63
Fukushima (CR10) 1980; 36
Semwal, Mondal, Nandi (CR27) 2017; 28
AL Goldberger (11083_CR11) 2001; 101
VB Semwal (11083_CR27) 2017; 28
11083_CR2
G de Lannoy (11083_CR8) 2012; 59
DK Kotsiantis (11083_CR20) 2006; 30
O Yildirim (11083_CR30) 2018; 96
DH Hubel (11083_CR17) 1968; 195
O Yildirim (11083_CR31) 2018; 102
V Chawla (11083_CR6) 2002; 16
S Kiranyaz (11083_CR18) 2016; 63
11083_CR19
11083_CR16
11083_CR3
11083_CR14
11083_CR4
KNVPS Rajesh (11083_CR25) 2018; 41
11083_CR5
11083_CR12
11083_CR13
11083_CR7
11083_CR32
11083_CR9
K Fukushima (11083_CR10) 1980; 36
E Hart (11083_CR15) 1968; IT-14
11083_CR29
UR Achary (11083_CR1) 2017; 89
11083_CR28
11083_CR26
11083_CR23
11083_CR24
11083_CR21
V Mondéjar-Guerraa (11083_CR22) 2018; 41
References_xml – volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: CR6
  article-title: SMOTE: synthetic minority oversampling technique
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
– volume: 63
  start-page: 664
  issue: 3
  year: 2016
  end-page: 675
  ident: CR18
  article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2468589
– volume: 41
  start-page: 41
  year: 2018
  end-page: 48
  ident: CR22
  article-title: Heartbeat classification fusing temporal and morphologicalinformation of ECGs via ensemble of classifiers
  publication-title: Biomed Signal Process Control
– volume: 195
  start-page: 215
  issue: 1
  year: 1968
  end-page: 243
  ident: CR17
  article-title: Receptive fields and functional architecture of monkey striate cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1968.sp008455
– ident: CR4
– ident: CR14
– ident: CR2
– ident: CR16
– ident: CR12
– volume: 59
  start-page: 241
  issue: 1
  year: 2012
  end-page: 247
  ident: CR8
  article-title: Weighted conditional random fields for supervised interpatient heartbeat classification
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2171037
– volume: 36
  start-page: 193
  issue: 4
  year: 1980
  end-page: 202
  ident: CR10
  article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol Cybern
  doi: 10.1007/BF00344251
– volume: 30
  start-page: 25
  issue: 1
  year: 2006
  end-page: 36
  ident: CR20
  article-title: Handling imbalanced datasets: a review
  publication-title: GESTS Int Trans Comput Sci Eng
– ident: CR29
– ident: CR23
– volume: IT-14
  start-page: 515
  year: 1968
  end-page: 516
  ident: CR15
  article-title: The condensed nearest neighbor rule
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1968.1054155
– volume: 41
  start-page: 242
  year: 2018
  end-page: 254
  ident: CR25
  article-title: Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.12.004
– ident: CR21
– volume: 101
  start-page: e215
  issue: 23
  year: 2001
  end-page: e220
  ident: CR11
  article-title: PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– ident: CR19
– volume: 96
  start-page: 189
  year: 2018
  end-page: 202
  ident: CR30
  article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.03.016
– ident: CR3
– volume: 28
  start-page: 565
  issue: 3
  year: 2017
  end-page: 574
  ident: CR27
  article-title: Robust and accurate feature selection for humanoid push recovery and classification: deep learning approach
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-015-2089-3
– ident: CR13
– volume: 89
  start-page: 389
  year: 2017
  end-page: 396
  ident: CR1
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.08.022
– ident: CR9
– ident: CR32
– ident: CR5
– ident: CR7
– ident: CR28
– ident: CR26
– volume: 102
  start-page: 411
  year: 2018
  end-page: 420
  ident: CR31
  article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.09.009
– ident: CR24
– ident: 11083_CR3
– ident: 11083_CR24
  doi: 10.1109/ICASERT.2019.8934463
– ident: 11083_CR28
– ident: 11083_CR13
  doi: 10.1109/IJCNN.2008.4633969
– volume: 36
  start-page: 193
  issue: 4
  year: 1980
  ident: 11083_CR10
  publication-title: Biol Cybern
  doi: 10.1007/BF00344251
– ident: 11083_CR2
  doi: 10.1016/j.imu.2018.06.002
– ident: 11083_CR14
  doi: 10.1007/11538059_91
– ident: 11083_CR19
– volume: 96
  start-page: 189
  year: 2018
  ident: 11083_CR30
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.03.016
– volume: 41
  start-page: 41
  year: 2018
  ident: 11083_CR22
  publication-title: Biomed Signal Process Control
– volume: 101
  start-page: e215
  issue: 23
  year: 2001
  ident: 11083_CR11
  publication-title: Circulation
– ident: 11083_CR21
– volume: 28
  start-page: 565
  issue: 3
  year: 2017
  ident: 11083_CR27
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-015-2089-3
– volume: 59
  start-page: 241
  issue: 1
  year: 2012
  ident: 11083_CR8
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2171037
– ident: 11083_CR32
  doi: 10.1109/ACCESS.2018.2833841
– volume: IT-14
  start-page: 515
  year: 1968
  ident: 11083_CR15
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1968.1054155
– volume: 195
  start-page: 215
  issue: 1
  year: 1968
  ident: 11083_CR17
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1968.sp008455
– ident: 11083_CR4
– ident: 11083_CR29
– ident: 11083_CR12
– volume: 89
  start-page: 389
  year: 2017
  ident: 11083_CR1
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.08.022
– volume: 63
  start-page: 664
  issue: 3
  year: 2016
  ident: 11083_CR18
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2468589
– ident: 11083_CR26
  doi: 10.1016/j.future.2018.03.057
– volume: 102
  start-page: 411
  year: 2018
  ident: 11083_CR31
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.09.009
– ident: 11083_CR5
  doi: 10.1145/1007730.1007735
– ident: 11083_CR7
  doi: 10.1016/j.cmpb.2015.12.008
– ident: 11083_CR23
  doi: 10.1109/51.932724
– volume: 16
  start-page: 321
  year: 2002
  ident: 11083_CR6
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
– ident: 11083_CR16
– volume: 41
  start-page: 242
  year: 2018
  ident: 11083_CR25
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.12.004
– ident: 11083_CR9
– volume: 30
  start-page: 25
  issue: 1
  year: 2006
  ident: 11083_CR20
  publication-title: GESTS Int Trans Comput Sci Eng
SSID ssj0016524
Score 2.3194027
Snippet Heart disease patients are continuously increasing. The patients face the problem of a delayed diagnosis as the subjects do not undergo routine tests and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 32615
SubjectTerms Computer Communication Networks
Computer Science
Data processing
Data Structures and Information Theory
Decision trees
Deep learning
Diagnosis
Expert systems
Heart diseases
Low cost
Machine learning
Multimedia Information Systems
Oversampling
Physicians
Sensors
Signs and symptoms
Special Purpose and Application-Based Systems
Voting
Windows (intervals)
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLDDwKCAKBXlgA4vYcdJ4QqjqQ0gwUalb5FxclqopTRB_n7PrNIBE58Qe7vnZd76PkFtM2UEcmIhJg04uldQM8zoCOZBSB3kuFdj7jpfXeDyRz9No6i_cSt9WWcdEF6jzAuwd-YOIMJYi_O6Jx-UHs6xRtrrqKTR2yR7HTGPtPBmONlWEOPKktknAMDNy_2hm_XSO24cptkHBNsKHTP1OTA3a_FMgdXlneEwOPWCkT2sNn5Ads2iTo5qMgXrfbJODH5MFT8nADS6mualcq9WCFjNquasr6isyJbUd7-9U03nxxaAoK-ra0aGig_6Ilni6LVZnZDIcvPXHzDMmMEBXqpjIjcpDmRgQMeDBt8dBWYDAgyxOjDAS9aAjhUEuglgB5NFMCQsCBMy0SXR4TlqLYmEuCAXEhqEyoTaSy0hBkmijs16oZIZuy1WH8FpcKfhx4pbVYp42g5CtiFMUcepEnOKau82a5XqYxta_u7UWUu9YZdqYQYfc15ppPv-_2-X23a7IvrDG4LrHuqRVrT7NNcKNKrtxNvUN687L3w
  priority: 102
  providerName: ProQuest
Title Early detection of heart diseases using a low-cost compact ECG sensor
URI https://link.springer.com/article/10.1007/s11042-021-11083-9
https://www.proquest.com/docview/2580186272
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50vuiDv8XplDz4ppU2TbrkcY5uQ1FEHOhTSdPMB8cqa0Xwr_fSpZuKCj4V2iS0uVzuS--7O4ATNNl-5BvuMYNKziRTHtp1BHKaMeVnGZPa_u-4vokGQ3b5wB9cUFhRs91rl2S1Uy-C3QIbSmIpBZa6HnpyGVZ4IKRowEqn_3gVz70HEXfFbIXvoUUMXLDMz6N8NUgLlPnNMVrZm94GDOs3ndFMns9fy_Rcv39L4vjfT9mEdQdASWe2YrZgyUy2YaMu7kCcrm_D2qdMhTsQV4mQSWbKiro1IfmI2FrYJXEenoJYBv0TUWScv3k6L0pS0dt1SeJunxR4Ws6nuzDsxffdgecqMHgaVbP0aGZkFjJhNI00HqTbgZYWcAR-GglDDUO5Ki5x0-Q6klpnfCSpBRVUj5QRKtyDxiSfmH0gGrFmKE2oDAsYl1oIZVTaDiVLcRsIZBOCWgyJdunJbZWMcbJIrGxnLcFZS6pZS7DP6bzPyyw5x5-tW7V0E6eoRUI5mmg81bVpE85qYS0e_z7awf-aH8IqtfKu2GktaJTTV3OEcKZMj2FZ9PrHbg3j9SK-ub3Du0Pa-QBgz-ka
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIADb8RjQA5wgog2TbvmgBCPjfGaEAKJW8nSjMvUwlo08af4jThdSgEJbpzbRJHj-HPizzbANkK2Ezjap1zjIeeCS4q4jo6c4lw6ccyFMu8d152gfc8vHvyHMXgvc2EMrbK0iYWhjlNl3sj3mY-2FN3vBjt8fqGma5SJrpYtNEZqcanfhnhlyw7OT3F_dxhrNe9O2tR2FaAK1S2nLNYi9nioFQsUXg4brhIGRF2nG4SaaY5rlb5AQ-CrQCgV-z3BDFAy1ZM6lB7OOw4T3GS01mDiuNm5uf2MWwS-baMbOhSx2LVpOqNkPdekwhhKhKHee1R8h8LKv_0Rki2QrjUHM9ZFJUcjnZqHMZ0swGzZ_oFYa7AA019qGS5CsyiVTGKdF-SuhKQ9Yrpl58TGgDJiOPZPRJJ-OqQqzXJSEOBVTponZyTD-3Q6WIL7f5HmMtSSNNErQBR6o57QntTc5b5QYSi17DY8wbtoKFyxCm4prkjZAuamj0Y_qkovGxFHKOKoEHGEY3Y_xzyPynf8-Xe93IXIHuUsqhRvFfbKnak-_z7b2t-zbcFk--76Kro671yuwxQzilFw1-pQywevegOdnby7aTWMwON_K_UHNJ8JEw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2VIiE4sCMKBXyAE1gkjrP4gBCCLqziQCVuwXVcLlUDJKji1_g6xqlDAYneek5iRePnWTxvZgD20WQ7gaN9yjUeci64pGjX0ZFTnEsnSbhQ5r7j9i5od_jVo_9Ygc-yFsbQKkudWCjqJFXmjvyY-ahL0f0O2XHP0iLuL5qnL6_UTJAymdZynMYIItf6Y4jhW3ZyeYF7fcBYs_Fw3qZ2wgBVCL2cskSLxOORVixQGCiGrhLGoLpON4g00xz_W_oClYKvAqFU4vcEM0aTqZ7UkfRw3RmYDb1QmMAvara-MxiBbwfqRg5Fq-zagp1R2Z5rimIMOcKQ8D0qfhvFsaf7Jzlb2LzmMixaZ5WcjdC1AhU9WIWlchAEsXphFRZ-dDVcg0bRNJkkOi9oXgOS9oiZm50Tmw3KiGHbPxNJ-umQqjTLSUGFVzlpnLdIhpF1-rYOnanIcgOqg3SgN4Eo9Es9oT2puct9oaJIatkNPcG7qDJcUQO3FFesbCtzM1GjH4-bMBsRxyjiuBBxjN8cfn_zMmrkMfHterkLsT3UWTyGYA2Oyp0ZP_5_ta3Jq-3BHEI5vrm8u96GeWZwUZDY6lDN3971Dno9eXe3gBeBp2nj-QsYYAvj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+detection+of+heart+diseases+using+a+low-cost+compact+ECG+sensor&rft.jtitle=Multimedia+tools+and+applications&rft.au=Dixit%2C+Shivam&rft.au=Kala%2C+Rahul&rft.date=2021-09-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=21-23&rft.spage=32615&rft.epage=32637&rft_id=info:doi/10.1007%2Fs11042-021-11083-9&rft.externalDocID=10_1007_s11042_021_11083_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon