Early detection of heart diseases using a low-cost compact ECG sensor
Heart disease patients are continuously increasing. The patients face the problem of a delayed diagnosis as the subjects do not undergo routine tests and consult a doctor only after severe symptoms. Most medical expert systems are designed to aid the doctors in making wise decisions and only such da...
Saved in:
Published in | Multimedia tools and applications Vol. 80; no. 21-23; pp. 32615 - 32637 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1380-7501 1573-7721 |
DOI | 10.1007/s11042-021-11083-9 |
Cover
Abstract | Heart disease patients are continuously increasing. The patients face the problem of a delayed diagnosis as the subjects do not undergo routine tests and consult a doctor only after severe symptoms. Most medical expert systems are designed to aid the doctors in making wise decisions and only such data sets exist in the literature. We attack the problem of an early-stage diagnosis that can be done at the home by the subject himself on a routine basis, using a low cost and compact ECG sensor. Machine learning tools nowadays have become important for data processing and assistance in various fields including medicine. Attributed to an absence of data, we first developed our ECG dataset by collecting ECG signal data from 300 persons including 53 cardiac patients and 247 healthy persons, using a low-cost and compact ECG sensor. To detect the heart diseases from this data, classical methods (Random forest and Gradient boosting) and state of the art Deep Learning models (1D Convolution Neural Net) were used. A problem with machine learning in the specific context is a severe data imbalance, for which oversampling of minority data was used. Since the sensor is a low cost, noise can get added up. Hence, voting across multiple time windows is done to improve the results. After a healthy comparison between all classification methods with different techniques based on their test accuracy, 1D CNN with oversampling and using voting strategy comes out as the best classifiers with a 93% test accuracy. |
---|---|
AbstractList | Heart disease patients are continuously increasing. The patients face the problem of a delayed diagnosis as the subjects do not undergo routine tests and consult a doctor only after severe symptoms. Most medical expert systems are designed to aid the doctors in making wise decisions and only such data sets exist in the literature. We attack the problem of an early-stage diagnosis that can be done at the home by the subject himself on a routine basis, using a low cost and compact ECG sensor. Machine learning tools nowadays have become important for data processing and assistance in various fields including medicine. Attributed to an absence of data, we first developed our ECG dataset by collecting ECG signal data from 300 persons including 53 cardiac patients and 247 healthy persons, using a low-cost and compact ECG sensor. To detect the heart diseases from this data, classical methods (Random forest and Gradient boosting) and state of the art Deep Learning models (1D Convolution Neural Net) were used. A problem with machine learning in the specific context is a severe data imbalance, for which oversampling of minority data was used. Since the sensor is a low cost, noise can get added up. Hence, voting across multiple time windows is done to improve the results. After a healthy comparison between all classification methods with different techniques based on their test accuracy, 1D CNN with oversampling and using voting strategy comes out as the best classifiers with a 93% test accuracy. |
Author | Dixit, Shivam Kala, Rahul |
Author_xml | – sequence: 1 givenname: Shivam orcidid: 0000-0002-6058-3899 surname: Dixit fullname: Dixit, Shivam email: shivamdixit1795@gmail.com organization: Center of Intelligent Robotics, Indian Institute of Information Technology – sequence: 2 givenname: Rahul surname: Kala fullname: Kala, Rahul organization: Center of Intelligent Robotics, Indian Institute of Information Technology |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz9FMstlNjlLWDyh40XOI2dm6pd3UJEX67926guChp5nD-8zHMyOTPvRIyDXwW-C8uksAvBCMC2BDpyUzZ2QKqpKsqgRMhl5qzirF4YLMUlpzDqUSxZTUtYubA20wo89d6Glo6Qe6mGnTJXQJE92nrl9RRzfhi_mQMvVhu3M-03rxSBP2KcRLct66TcKr3zonbw_16-KJLV8enxf3S-YlmMxEg6aRhUYvSl-UpgJvJFQK-HupUWChFThllNTKl8b7RrVGcC248K1D7eSc3IxzdzF87jFluw772A8rrVCagy5FJYaUHlM-hpQittZ32R2_y9F1GwvcHqXZUZodpNkfadYMqPiH7mK3dfFwGpIjlIZwv8L4d9UJ6ht6K38i |
CitedBy_id | crossref_primary_10_1038_s41598_024_58489_7 crossref_primary_10_3390_math11224681 crossref_primary_10_1016_j_artmed_2022_102289 crossref_primary_10_1007_s42600_024_00367_2 crossref_primary_10_1016_j_jestch_2025_101976 crossref_primary_10_1186_s40537_024_01011_7 crossref_primary_10_38124_ijisrt_IJISRT24JUL1400 crossref_primary_10_1007_s11042_023_16850_4 crossref_primary_10_1038_s41598_024_68204_1 crossref_primary_10_3390_a17020078 |
Cites_doi | 10.1613/jair.953 10.1109/TBME.2015.2468589 10.1113/jphysiol.1968.sp008455 10.1109/TBME.2011.2171037 10.1007/BF00344251 10.1109/TIT.1968.1054155 10.1016/j.bspc.2017.12.004 10.1016/j.compbiomed.2018.03.016 10.1007/s00521-015-2089-3 10.1016/j.compbiomed.2017.08.022 10.1016/j.compbiomed.2018.09.009 10.1109/ICASERT.2019.8934463 10.1109/IJCNN.2008.4633969 10.1016/j.imu.2018.06.002 10.1007/11538059_91 10.1109/ACCESS.2018.2833841 10.1016/j.future.2018.03.057 10.1145/1007730.1007735 10.1016/j.cmpb.2015.12.008 10.1109/51.932724 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-021-11083-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 32637 |
ExternalDocumentID | 10_1007_s11042_021_11083_9 |
GrantInformation_xml | – fundername: Department of Science & Technology, Government of India grantid: IMRC/AISTDF/R&D/P-6/2017 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-2de9d348ec26c46971c9317510b68e2e4851a595385c69ccd5f9208202cfae8a3 |
IEDL.DBID | AGYKE |
ISSN | 1380-7501 |
IngestDate | Sat Jul 26 00:09:42 EDT 2025 Thu Apr 24 23:06:39 EDT 2025 Tue Jul 01 04:13:10 EDT 2025 Fri Feb 21 02:47:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21-23 |
Keywords | 1D convolution neural net Machine learning Random forest Medical expert systems ECG signal Oversampling Heart diseases Gradient boosting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-2de9d348ec26c46971c9317510b68e2e4851a595385c69ccd5f9208202cfae8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6058-3899 |
PQID | 2580186272 |
PQPubID | 54626 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2580186272 crossref_citationtrail_10_1007_s11042_021_11083_9 crossref_primary_10_1007_s11042_021_11083_9 springer_journals_10_1007_s11042_021_11083_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210900 2021-09-00 20210901 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210900 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | CR19 CR16 CR14 CR13 Hubel, Wiesel (CR17) 1968; 195 CR12 Hart (CR15) 1968; IT-14 CR32 Chawla, Hall, Bowyer, Kegelmeyer (CR6) 2002; 16 de Lannoy, Francois, Delbeke, Verleysen (CR8) 2012; 59 Mondéjar-Guerraa, Novo, Rouco, Penedo, Ortega (CR22) 2018; 41 Kotsiantis, Pintelas (CR20) 2006; 30 CR2 CR4 CR3 Achary, Oh, Hagiwara, Tan, Adam, Gertych, Tan (CR1) 2017; 89 CR5 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (CR11) 2001; 101 CR7 Rajesh, Dhuli (CR25) 2018; 41 CR29 CR28 CR9 CR26 Yildirim, Pławiak, Tan, Acharya (CR31) 2018; 102 CR24 Yildirim (CR30) 2018; 96 CR23 CR21 Kiranyaz, Ince, Gabbouj (CR18) 2016; 63 Fukushima (CR10) 1980; 36 Semwal, Mondal, Nandi (CR27) 2017; 28 AL Goldberger (11083_CR11) 2001; 101 VB Semwal (11083_CR27) 2017; 28 11083_CR2 G de Lannoy (11083_CR8) 2012; 59 DK Kotsiantis (11083_CR20) 2006; 30 O Yildirim (11083_CR30) 2018; 96 DH Hubel (11083_CR17) 1968; 195 O Yildirim (11083_CR31) 2018; 102 V Chawla (11083_CR6) 2002; 16 S Kiranyaz (11083_CR18) 2016; 63 11083_CR19 11083_CR16 11083_CR3 11083_CR14 11083_CR4 KNVPS Rajesh (11083_CR25) 2018; 41 11083_CR5 11083_CR12 11083_CR13 11083_CR7 11083_CR32 11083_CR9 K Fukushima (11083_CR10) 1980; 36 E Hart (11083_CR15) 1968; IT-14 11083_CR29 UR Achary (11083_CR1) 2017; 89 11083_CR28 11083_CR26 11083_CR23 11083_CR24 11083_CR21 V Mondéjar-Guerraa (11083_CR22) 2018; 41 |
References_xml | – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: CR6 article-title: SMOTE: synthetic minority oversampling technique publication-title: J Artif Intell Res doi: 10.1613/jair.953 – volume: 63 start-page: 664 issue: 3 year: 2016 end-page: 675 ident: CR18 article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2468589 – volume: 41 start-page: 41 year: 2018 end-page: 48 ident: CR22 article-title: Heartbeat classification fusing temporal and morphologicalinformation of ECGs via ensemble of classifiers publication-title: Biomed Signal Process Control – volume: 195 start-page: 215 issue: 1 year: 1968 end-page: 243 ident: CR17 article-title: Receptive fields and functional architecture of monkey striate cortex publication-title: J Physiol doi: 10.1113/jphysiol.1968.sp008455 – ident: CR4 – ident: CR14 – ident: CR2 – ident: CR16 – ident: CR12 – volume: 59 start-page: 241 issue: 1 year: 2012 end-page: 247 ident: CR8 article-title: Weighted conditional random fields for supervised interpatient heartbeat classification publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2171037 – volume: 36 start-page: 193 issue: 4 year: 1980 end-page: 202 ident: CR10 article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol Cybern doi: 10.1007/BF00344251 – volume: 30 start-page: 25 issue: 1 year: 2006 end-page: 36 ident: CR20 article-title: Handling imbalanced datasets: a review publication-title: GESTS Int Trans Comput Sci Eng – ident: CR29 – ident: CR23 – volume: IT-14 start-page: 515 year: 1968 end-page: 516 ident: CR15 article-title: The condensed nearest neighbor rule publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1968.1054155 – volume: 41 start-page: 242 year: 2018 end-page: 254 ident: CR25 article-title: Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.12.004 – ident: CR21 – volume: 101 start-page: e215 issue: 23 year: 2001 end-page: e220 ident: CR11 article-title: PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation – ident: CR19 – volume: 96 start-page: 189 year: 2018 end-page: 202 ident: CR30 article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.03.016 – ident: CR3 – volume: 28 start-page: 565 issue: 3 year: 2017 end-page: 574 ident: CR27 article-title: Robust and accurate feature selection for humanoid push recovery and classification: deep learning approach publication-title: Neural Comput & Applic doi: 10.1007/s00521-015-2089-3 – ident: CR13 – volume: 89 start-page: 389 year: 2017 end-page: 396 ident: CR1 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.08.022 – ident: CR9 – ident: CR32 – ident: CR5 – ident: CR7 – ident: CR28 – ident: CR26 – volume: 102 start-page: 411 year: 2018 end-page: 420 ident: CR31 article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.09.009 – ident: CR24 – ident: 11083_CR3 – ident: 11083_CR24 doi: 10.1109/ICASERT.2019.8934463 – ident: 11083_CR28 – ident: 11083_CR13 doi: 10.1109/IJCNN.2008.4633969 – volume: 36 start-page: 193 issue: 4 year: 1980 ident: 11083_CR10 publication-title: Biol Cybern doi: 10.1007/BF00344251 – ident: 11083_CR2 doi: 10.1016/j.imu.2018.06.002 – ident: 11083_CR14 doi: 10.1007/11538059_91 – ident: 11083_CR19 – volume: 96 start-page: 189 year: 2018 ident: 11083_CR30 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.03.016 – volume: 41 start-page: 41 year: 2018 ident: 11083_CR22 publication-title: Biomed Signal Process Control – volume: 101 start-page: e215 issue: 23 year: 2001 ident: 11083_CR11 publication-title: Circulation – ident: 11083_CR21 – volume: 28 start-page: 565 issue: 3 year: 2017 ident: 11083_CR27 publication-title: Neural Comput & Applic doi: 10.1007/s00521-015-2089-3 – volume: 59 start-page: 241 issue: 1 year: 2012 ident: 11083_CR8 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2171037 – ident: 11083_CR32 doi: 10.1109/ACCESS.2018.2833841 – volume: IT-14 start-page: 515 year: 1968 ident: 11083_CR15 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1968.1054155 – volume: 195 start-page: 215 issue: 1 year: 1968 ident: 11083_CR17 publication-title: J Physiol doi: 10.1113/jphysiol.1968.sp008455 – ident: 11083_CR4 – ident: 11083_CR29 – ident: 11083_CR12 – volume: 89 start-page: 389 year: 2017 ident: 11083_CR1 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.08.022 – volume: 63 start-page: 664 issue: 3 year: 2016 ident: 11083_CR18 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2468589 – ident: 11083_CR26 doi: 10.1016/j.future.2018.03.057 – volume: 102 start-page: 411 year: 2018 ident: 11083_CR31 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.09.009 – ident: 11083_CR5 doi: 10.1145/1007730.1007735 – ident: 11083_CR7 doi: 10.1016/j.cmpb.2015.12.008 – ident: 11083_CR23 doi: 10.1109/51.932724 – volume: 16 start-page: 321 year: 2002 ident: 11083_CR6 publication-title: J Artif Intell Res doi: 10.1613/jair.953 – ident: 11083_CR16 – volume: 41 start-page: 242 year: 2018 ident: 11083_CR25 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.12.004 – ident: 11083_CR9 – volume: 30 start-page: 25 issue: 1 year: 2006 ident: 11083_CR20 publication-title: GESTS Int Trans Comput Sci Eng |
SSID | ssj0016524 |
Score | 2.3194027 |
Snippet | Heart disease patients are continuously increasing. The patients face the problem of a delayed diagnosis as the subjects do not undergo routine tests and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 32615 |
SubjectTerms | Computer Communication Networks Computer Science Data processing Data Structures and Information Theory Decision trees Deep learning Diagnosis Expert systems Heart diseases Low cost Machine learning Multimedia Information Systems Oversampling Physicians Sensors Signs and symptoms Special Purpose and Application-Based Systems Voting Windows (intervals) |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLDDwKCAKBXlgA4vYcdJ4QqjqQ0gwUalb5FxclqopTRB_n7PrNIBE58Qe7vnZd76PkFtM2UEcmIhJg04uldQM8zoCOZBSB3kuFdj7jpfXeDyRz9No6i_cSt9WWcdEF6jzAuwd-YOIMJYi_O6Jx-UHs6xRtrrqKTR2yR7HTGPtPBmONlWEOPKktknAMDNy_2hm_XSO24cptkHBNsKHTP1OTA3a_FMgdXlneEwOPWCkT2sNn5Ads2iTo5qMgXrfbJODH5MFT8nADS6mualcq9WCFjNquasr6isyJbUd7-9U03nxxaAoK-ra0aGig_6Ilni6LVZnZDIcvPXHzDMmMEBXqpjIjcpDmRgQMeDBt8dBWYDAgyxOjDAS9aAjhUEuglgB5NFMCQsCBMy0SXR4TlqLYmEuCAXEhqEyoTaSy0hBkmijs16oZIZuy1WH8FpcKfhx4pbVYp42g5CtiFMUcepEnOKau82a5XqYxta_u7UWUu9YZdqYQYfc15ppPv-_2-X23a7IvrDG4LrHuqRVrT7NNcKNKrtxNvUN687L3w priority: 102 providerName: ProQuest |
Title | Early detection of heart diseases using a low-cost compact ECG sensor |
URI | https://link.springer.com/article/10.1007/s11042-021-11083-9 https://www.proquest.com/docview/2580186272 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50vuiDv8XplDz4ppU2TbrkcY5uQ1FEHOhTSdPMB8cqa0Xwr_fSpZuKCj4V2iS0uVzuS--7O4ATNNl-5BvuMYNKziRTHtp1BHKaMeVnGZPa_u-4vokGQ3b5wB9cUFhRs91rl2S1Uy-C3QIbSmIpBZa6HnpyGVZ4IKRowEqn_3gVz70HEXfFbIXvoUUMXLDMz6N8NUgLlPnNMVrZm94GDOs3ndFMns9fy_Rcv39L4vjfT9mEdQdASWe2YrZgyUy2YaMu7kCcrm_D2qdMhTsQV4mQSWbKiro1IfmI2FrYJXEenoJYBv0TUWScv3k6L0pS0dt1SeJunxR4Ws6nuzDsxffdgecqMHgaVbP0aGZkFjJhNI00HqTbgZYWcAR-GglDDUO5Ki5x0-Q6klpnfCSpBRVUj5QRKtyDxiSfmH0gGrFmKE2oDAsYl1oIZVTaDiVLcRsIZBOCWgyJdunJbZWMcbJIrGxnLcFZS6pZS7DP6bzPyyw5x5-tW7V0E6eoRUI5mmg81bVpE85qYS0e_z7awf-aH8IqtfKu2GktaJTTV3OEcKZMj2FZ9PrHbg3j9SK-ub3Du0Pa-QBgz-ka |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIADb8RjQA5wgog2TbvmgBCPjfGaEAKJW8nSjMvUwlo08af4jThdSgEJbpzbRJHj-HPizzbANkK2Ezjap1zjIeeCS4q4jo6c4lw6ccyFMu8d152gfc8vHvyHMXgvc2EMrbK0iYWhjlNl3sj3mY-2FN3vBjt8fqGma5SJrpYtNEZqcanfhnhlyw7OT3F_dxhrNe9O2tR2FaAK1S2nLNYi9nioFQsUXg4brhIGRF2nG4SaaY5rlb5AQ-CrQCgV-z3BDFAy1ZM6lB7OOw4T3GS01mDiuNm5uf2MWwS-baMbOhSx2LVpOqNkPdekwhhKhKHee1R8h8LKv_0Rki2QrjUHM9ZFJUcjnZqHMZ0swGzZ_oFYa7AA019qGS5CsyiVTGKdF-SuhKQ9Yrpl58TGgDJiOPZPRJJ-OqQqzXJSEOBVTponZyTD-3Q6WIL7f5HmMtSSNNErQBR6o57QntTc5b5QYSi17DY8wbtoKFyxCm4prkjZAuamj0Y_qkovGxFHKOKoEHGEY3Y_xzyPynf8-Xe93IXIHuUsqhRvFfbKnak-_z7b2t-zbcFk--76Kro671yuwxQzilFw1-pQywevegOdnby7aTWMwON_K_UHNJ8JEw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2VIiE4sCMKBXyAE1gkjrP4gBCCLqziQCVuwXVcLlUDJKji1_g6xqlDAYneek5iRePnWTxvZgD20WQ7gaN9yjUeci64pGjX0ZFTnEsnSbhQ5r7j9i5od_jVo_9Ygc-yFsbQKkudWCjqJFXmjvyY-ahL0f0O2XHP0iLuL5qnL6_UTJAymdZynMYIItf6Y4jhW3ZyeYF7fcBYs_Fw3qZ2wgBVCL2cskSLxOORVixQGCiGrhLGoLpON4g00xz_W_oClYKvAqFU4vcEM0aTqZ7UkfRw3RmYDb1QmMAvara-MxiBbwfqRg5Fq-zagp1R2Z5rimIMOcKQ8D0qfhvFsaf7Jzlb2LzmMixaZ5WcjdC1AhU9WIWlchAEsXphFRZ-dDVcg0bRNJkkOi9oXgOS9oiZm50Tmw3KiGHbPxNJ-umQqjTLSUGFVzlpnLdIhpF1-rYOnanIcgOqg3SgN4Eo9Es9oT2puct9oaJIatkNPcG7qDJcUQO3FFesbCtzM1GjH4-bMBsRxyjiuBBxjN8cfn_zMmrkMfHterkLsT3UWTyGYA2Oyp0ZP_5_ta3Jq-3BHEI5vrm8u96GeWZwUZDY6lDN3971Dno9eXe3gBeBp2nj-QsYYAvj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+detection+of+heart+diseases+using+a+low-cost+compact+ECG+sensor&rft.jtitle=Multimedia+tools+and+applications&rft.au=Dixit%2C+Shivam&rft.au=Kala%2C+Rahul&rft.date=2021-09-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=21-23&rft.spage=32615&rft.epage=32637&rft_id=info:doi/10.1007%2Fs11042-021-11083-9&rft.externalDocID=10_1007_s11042_021_11083_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |