Research progress on the effects and mechanisms of magnetic field on neurodegenerative diseases

With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinica...

Full description

Saved in:
Bibliographic Details
Published inProgress in biophysics and molecular biology Vol. 193; pp. 35 - 45
Main Authors Ding, Shuxian, Li, Jinhua, Fang, Yanwen, Zhuo, Xingjie, Gu, Lili, Zhang, Xinyue, Yang, Yuanxiao, Wei, Min, Liao, Zhongcai, Li, Qin
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinical applications, magnetic therapy, as a non-invasive brain stimulation therapy technology, has attracted much attention due to its potential in the treatment of motor dysfunction, cognitive impairment and speech disorders in patients with neurodegenerative diseases. However, the role of magnetic fields in the prognosis and treatment of neurodegenerative diseases and their mechanisms remain largely unexplored. In this paper, the therapeutic effect and neuroprotective mechanism of the magnetic field on neurodegenerative diseases are reviewed, and the new magnetic therapy techniques are also summarized. Although the neuroprotective mechanism of magnetic field cannot be fully elaborated, it is helpful to promote the application of magnetic field in neurodegenerative diseases and provide a new theoretical basis for the related magnetic field research in the later period. •Summarize the therapeutic effect of magnetic field on neurodegenerative diseases and new magnetic therapy technology.•A variety of potential mechanisms play a neuroprotective role of magnetic field.•Magnetic therapy technology have great potential in the treatment of neurodegenerative diseases.
AbstractList With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinical applications, magnetic therapy, as a non-invasive brain stimulation therapy technology, has attracted much attention due to its potential in the treatment of motor dysfunction, cognitive impairment and speech disorders in patients with neurodegenerative diseases. However, the role of magnetic fields in the prognosis and treatment of neurodegenerative diseases and their mechanisms remain largely unexplored. In this paper, the therapeutic effect and neuroprotective mechanism of the magnetic field on neurodegenerative diseases are reviewed, and the new magnetic therapy techniques are also summarized. Although the neuroprotective mechanism of magnetic field cannot be fully elaborated, it is helpful to promote the application of magnetic field in neurodegenerative diseases and provide a new theoretical basis for the related magnetic field research in the later period.
With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinical applications, magnetic therapy, as a non-invasive brain stimulation therapy technology, has attracted much attention due to its potential in the treatment of motor dysfunction, cognitive impairment and speech disorders in patients with neurodegenerative diseases. However, the role of magnetic fields in the prognosis and treatment of neurodegenerative diseases and their mechanisms remain largely unexplored. In this paper, the therapeutic effect and neuroprotective mechanism of the magnetic field on neurodegenerative diseases are reviewed, and the new magnetic therapy techniques are also summarized. Although the neuroprotective mechanism of magnetic field cannot be fully elaborated, it is helpful to promote the application of magnetic field in neurodegenerative diseases and provide a new theoretical basis for the related magnetic field research in the later period.With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinical applications, magnetic therapy, as a non-invasive brain stimulation therapy technology, has attracted much attention due to its potential in the treatment of motor dysfunction, cognitive impairment and speech disorders in patients with neurodegenerative diseases. However, the role of magnetic fields in the prognosis and treatment of neurodegenerative diseases and their mechanisms remain largely unexplored. In this paper, the therapeutic effect and neuroprotective mechanism of the magnetic field on neurodegenerative diseases are reviewed, and the new magnetic therapy techniques are also summarized. Although the neuroprotective mechanism of magnetic field cannot be fully elaborated, it is helpful to promote the application of magnetic field in neurodegenerative diseases and provide a new theoretical basis for the related magnetic field research in the later period.
With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinical applications, magnetic therapy, as a non-invasive brain stimulation therapy technology, has attracted much attention due to its potential in the treatment of motor dysfunction, cognitive impairment and speech disorders in patients with neurodegenerative diseases. However, the role of magnetic fields in the prognosis and treatment of neurodegenerative diseases and their mechanisms remain largely unexplored. In this paper, the therapeutic effect and neuroprotective mechanism of the magnetic field on neurodegenerative diseases are reviewed, and the new magnetic therapy techniques are also summarized. Although the neuroprotective mechanism of magnetic field cannot be fully elaborated, it is helpful to promote the application of magnetic field in neurodegenerative diseases and provide a new theoretical basis for the related magnetic field research in the later period. •Summarize the therapeutic effect of magnetic field on neurodegenerative diseases and new magnetic therapy technology.•A variety of potential mechanisms play a neuroprotective role of magnetic field.•Magnetic therapy technology have great potential in the treatment of neurodegenerative diseases.
Author Zhuo, Xingjie
Gu, Lili
Fang, Yanwen
Ding, Shuxian
Liao, Zhongcai
Zhang, Xinyue
Wei, Min
Li, Qin
Yang, Yuanxiao
Li, Jinhua
Author_xml – sequence: 1
  givenname: Shuxian
  surname: Ding
  fullname: Ding, Shuxian
  organization: School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
– sequence: 2
  givenname: Jinhua
  surname: Li
  fullname: Li, Jinhua
  organization: School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
– sequence: 3
  givenname: Yanwen
  surname: Fang
  fullname: Fang, Yanwen
  organization: Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China
– sequence: 4
  givenname: Xingjie
  surname: Zhuo
  fullname: Zhuo, Xingjie
  organization: School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
– sequence: 5
  givenname: Lili
  surname: Gu
  fullname: Gu, Lili
  organization: School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
– sequence: 6
  givenname: Xinyue
  surname: Zhang
  fullname: Zhang, Xinyue
  organization: School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
– sequence: 7
  givenname: Yuanxiao
  surname: Yang
  fullname: Yang, Yuanxiao
  organization: School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
– sequence: 8
  givenname: Min
  surname: Wei
  fullname: Wei, Min
  organization: Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China
– sequence: 9
  givenname: Zhongcai
  surname: Liao
  fullname: Liao, Zhongcai
  email: zhongcai.liao@heaye.com
  organization: Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China
– sequence: 10
  givenname: Qin
  surname: Li
  fullname: Li, Qin
  email: 2020000301@hmc.edu.cn
  organization: School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39277139$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFq3DAQhkVJaTZpX6HomIudkWRbq2MTkjQQKJT2LGRptKvFljaSN5C3r5ZN2mMvM4f55of_uyBnMUUkhDJoGbDhetfux5DmNNXZcuBdC6oF6D6QFVtL0TAp-BlZAUjVDAzkObkoZQcAnMnhEzkXikvJhFoR_RMLmmy3dJ_TJmMpNEW6bJGi92iXQk10dEa7NTGUuV49nc0m4hIs9QEnd-QjHnJyuMGI2SzhBakLNbZg-Uw-ejMV_PK2L8nv-7tft9-bpx8Pj7ffnhormFoa7sAbC4MbLBfjaJnqxlpL-o51aHoxojGd4eMAqsPece57NCCFV30vQVpxSa5OubXG8wHLoudQLE6TiZgORQsGfbdWTPUV_fqGHsYZnd7nMJv8qt-lVGB9AmxOpWT0fxEG-uhf7_Q___roX4PS1X99vTm9Yu36EjDrYgNGiy7kalO7FP4f8gd7Q5RR
Cites_doi 10.1007/s10571-022-01264-x
10.1016/j.brs.2021.01.012
10.1186/s40478-021-01198-3
10.1016/j.jocn.2019.01.025
10.1016/j.brainresbull.2017.10.002
10.1016/j.expneurol.2023.114581
10.1016/j.brs.2023.05.024
10.1016/j.parkreldis.2014.03.018
10.1002/brb3.2569
10.1016/j.rehab.2014.08.003
10.1111/jphp.13233
10.1016/j.brainres.2013.08.051
10.1016/j.jbspin.2013.04.015
10.1212/WNL.48.5.1398
10.3389/fneur.2022.951209
10.1016/j.rehab.2015.05.005
10.1186/s12872-017-0643-x
10.1097/YCT.0000000000000959
10.1007/s13311-019-00732-5
10.1002/mds.28671
10.1016/j.neulet.2018.01.027
10.1016/j.eplepsyres.2008.03.022
10.1097/00006534-199912000-00053
10.3233/JAD-215361
10.1038/s41598-018-33808-x
10.1097/WCO.0000000000000112
10.1097/WCO.0000000000000528
10.1002/bem.22232
10.1016/j.yebeh.2020.107479
10.1016/j.brs.2017.01.427
10.1155/2021/3908677
10.1016/j.brainres.2013.04.053
10.1002/brb3.1740
10.1111/gtc.13030
10.1016/j.toxlet.2021.11.015
10.1016/j.neuroimage.2017.12.048
10.2174/1567205014666170317113159
10.1186/s12974-020-01747-y
10.1016/j.yebeh.2014.05.031
10.18632/aging.203796
10.3233/JAD-215644
10.3390/cells12111525
10.1016/j.jpsychires.2021.02.007
10.1007/s11055-023-01453-1
10.1016/S1388-2457(03)00181-0
10.1007/s12035-023-03573-8
10.1016/j.ensci.2016.06.003
10.3389/fphys.2022.928416
10.34133/research.0097
10.3109/15368378.2012.751394
10.1016/j.brs.2022.04.003
10.1523/JNEUROSCI.2125-11.2011
10.1016/j.parkreldis.2019.07.006
10.1007/s11434-015-0902-0
10.3389/fnagi.2017.00292
10.1177/1545968321104131
10.1152/japplphysiol.01133.2006
10.1007/s00484-020-01896-y
10.3389/fnins.2023.1121043
10.3389/fnhum.2015.00303
10.1016/j.brainresbull.2023.110735
10.1136/jnnp-2017-317879
10.1016/j.lfs.2008.10.009
10.1016/j.redox.2022.102354
10.3389/fneur.2022.813597
10.1177/1545968309345270
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.pbiomolbio.2024.09.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1873-1732
EndPage 45
ExternalDocumentID 39277139
10_1016_j_pbiomolbio_2024_09_004
S0079610724000907
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
0SF
123
1B1
1RT
1~.
1~5
29P
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABTAH
ABUDA
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
ADVLN
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HX~
HZ~
IHE
J1W
KOM
LX3
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SPD
SSU
SSZ
T5K
UNMZH
UQL
VQP
WUQ
ZGI
ZY4
~G-
AATTM
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c319t-2d0fac06d6c23bbc194b0247f414ea53beaa4a2b6094e5d22f5ea073f955707c3
IEDL.DBID .~1
ISSN 0079-6107
1873-1732
IngestDate Fri Jul 11 10:11:32 EDT 2025
Wed Feb 19 02:18:48 EST 2025
Tue Jul 01 00:42:42 EDT 2025
Sat Oct 19 15:55:13 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Magnetic therapy technology
Neurodegenerative diseases
Magnetic field
Neuroprotective mechanism
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2d0fac06d6c23bbc194b0247f414ea53beaa4a2b6094e5d22f5ea073f955707c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 39277139
PQID 3105489195
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_3105489195
pubmed_primary_39277139
crossref_primary_10_1016_j_pbiomolbio_2024_09_004
elsevier_sciencedirect_doi_10_1016_j_pbiomolbio_2024_09_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
2024-Nov
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Progress in biophysics and molecular biology
PublicationTitleAlternate Prog Biophys Mol Biol
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Furukawa, T., Izumi, S.-I., Toyokura, M., Masakado, Y., n.d. Effects of Low-Frequency Repetitive Transcranial Magnetic Stimulation in Parkinson's Disease.
McLean, Engström, Qinkun, Spankovich, Polley (bib45) 2008; 80
Lin, Jin, Lv, Luo, Dai, Li, Tang, Wang, Ye, Lin (bib39) 2021; 9
Liang, Xu, Hu, Wen, Lin, Liu, Xu (bib38) 2021; 2021
Wang, Feng, Liu, Zhou, Yin, Liu, Yang (bib68) 2019; 16
Zeljkovic Jovanovic, Stanojevic, Stevanovic, Stekic, Bolland, Jasnic, Ninkovic, Zaric Kontic, Ilic, Rodger, Nedeljkovic, Dragic (bib74) 2023; 12
Laxer, Trinka, Hirsch, Cendes, Langfitt, Delanty, Resnick, Benbadis (bib31) 2014; 37
Rp, V, Jl, L (bib58) 2024; 82
Engel (bib13) 2018; 31
Chen, Chen, Liang, Ba (bib7) 2019; 2019
Rivadulla, Pardo-Vazquez, de Labra, Aguilar, Suarez, Paz, Álvarez-Dolado, Cudeiro (bib57) 2023; 370
Koch, Bonnì, Pellicciari, Casula, Mancini, Esposito, Ponzo, Picazio, Di Lorenzo, Serra, Motta, Maiella, Marra, Cercignani, Martorana, Caltagirone, Bozzali (bib28) 2018; 169
Chervyakov, Chernyavsky, Sinitsyn, Piradov (bib9) 2015; 9
Wang, Crupi, Liu, Stucky, Cruciata, Di Rocco, Friedman, Quartarone, Ghilardi (bib67) 2011; 31
Xing, Zhang, Li, Luo, Hua, Hu, Bai (bib70) 2023; 43
Yin, Zhao, Qiu (bib72) 2020; 72
Li, Wen, Xie, Hu, Wu, Wang (bib36) 2022; 12
Motta, Di Lorenzo, Ponzo, Pellicciari, Bonnì, Picazio, Mercuri, Caltagirone, Martorana, Koch (bib49) 2018; 89
He, Wang, Tsai (bib17) 2021; 35
Klomjai, Katz, Lackmy-Vallée (bib27) 2015; 58
Riancho, Sanchez De La Torre, Paz-Fajardo, Limia, Santurtun, Cifra, Kourtidis, Fdez-Arroyabe (bib55) 2021; 65
Morris, Skalak (bib48) 2007; 103
Li, Qi, Yu, Lian, Zheng, Wu, Yuan, Zhou (bib37) 2021; 14
Bertolino, Dutra Souza, De Araujo (bib3) 2013; 32
Nikitina, Vasileva, Shchegolev, Savvateeva-Popova (bib52) 2023; 53
Goldman, Postuma (bib15) 2014; 27
Kaur, Kumar, Medhi (bib24) 2016; 4
McNerney, Heath, Narayanan, Yesavage (bib46) 2022; 86
Huang, Zhu, Liao, Gao, Tao, Fang, Lian, Gao (bib19) 2023; 202
Kamble, Netravathi, Pal (bib23) 2014; 20
Huang, Chen, Leng, Kuo, Wang, Cui, Tan, Wang, Dong, Yu (bib20) 2022; 86
Li, Wang, Jiang, Zhang, Liu, Yin, Yang (bib34) 2021; 136
Long, Ye, Zhao, Zhang (bib41) 2015; 60
Kim, Lee, Kim, Kwon, Seo, Lee, Lee, Kim, Lee, Ye (bib26) 2024; 61
Málly, Geisz, Dinya (bib42) 2017; 135
Bao, Bao, Han, Hou, Feng (bib2) 2021; 13
Üstün Özek, Gürses, Bebek, Baykan, Gökyiğit, Öge (bib66) 2020; 112
Dimyan, Cohen (bib12) 2010; 24
Tan, Xie, Tong, Liu, Chen, Tian (bib63) 2013; 1520
Kawasaki, Okano, Ishiwatari, Kishi, Ishida (bib25) 2023; 28
Mao, Zhao, Ding, Liang, Xue, Chan, Cai (bib44) 2018; 668
Rivadulla, Aguilar, Coletti, Aguila, Prieto, Cudeiro (bib56) 2018; 8
Li, Liao, Gu, Zhang, Zhang, Tian, Li, Fang, Zhang (bib35) 2020; 41
Natale, Pignataro, Marino, Campanelli, Calabrese, Cardinale, Pelucchi, Marcello, Gardoni, Viscomi, Picconi, Ammassari‐Teule, Calabresi, Ghiglieri (bib51) 2021; 36
Jin, Chen, Du, He, Qi, Wu, Wang, Lin, Ren (bib22) 2022; 15
Chen, Classen, Gerloff, Celnik, Wassermann, Hallett, Cohen (bib6) 1997; 48
Han, He, Chen, Gao, Wang, Wang (bib16) 2023; 17
Chen, Dong, Wang (bib8) 2020; 10
Oyegbami, Collins, Pardon, Ebling, Heery, Moran (bib53) 2017; 14
Trung, Hanganu, Jobert, Degroot, Mejia-Constain, Kibreab, Bruneau, Lafontaine, Strafella, Monchi (bib65) 2019; 66
Cha, Kim, Kim, Choi, Choi, Kim, Cha, Kim (bib5) 2022; 13
Lin, Jin, Lv, Luo, Dai, Li, Tang, Wang, Ye, Lin (bib40) 2021; 9
Song, Chen, Yu, Zhang, Wang, Feng, Yang, Tian, Fan, Ji, Wang, Xie, Zhang (bib62) 2023; 6
Yingli, Zunke, Wei, Shiyan (bib73) 2022; 13
Pérocheau, Laroche, Perrot (bib54) 2014; 81
Cincotta, Borgheresi, Gambetti, Balestrieri, Rossi, Zaccara, Ulivelli, Rossi, Civardi, Cantello (bib10) 2003; 114
Man, Man, Plosker (bib43) 1999; 104
Mukhtar, Feuer, Beynel, Jones, Regenold, Lisanby (bib50) 2023; 39
László, Gyires (bib30) 2009; 84
Shon, Lim, Lim (bib60) 2019; 63
Wang, Che, Du, Ha, Yarema (bib69) 2010; 5
Lee, Kim, Ko, Lee, Yu, Seo, Cho, Cho (bib33) 2013; 1537
Tao, Zhao, Ge, Liao, Shao, Mo, Hu, Xu, Wu, Mu, Li, Tao, Wang (bib64) 2022; 355
Dileone, Mordillo-Mateos, Carrasco-Lopez, Segundo-Rodriguez, Lopez-Aristegui, Alonso-Frech, Catalan-Alonso, Obeso, Oliviero, Foffani (bib11) 2017; 10
Lee, Kim, Ko, Lee, Yu, Seo, Cho, Cho (bib32) 2013; 1537
Hong, Liu, Peng, Bai, Li, Sun, Guo, Xu, Xie, Li, Liu, Du, Liu, Yang, Xu (bib18) 2020; 17
Shimomura, Shibata, Koganemaru, Minakuchi, Ichimura, Itoh, Shimotake, Mima (bib59) 2023; 16
Arokiaraj (bib1) 2017; 17
Cao, Zuo, Gu, Huang, Yang, Zhu, Jiang, Wang (bib4) 2022; 54
Kyriacou, Rosato (bib29) 2022; 13
Huang, Tan, Du, Chen, Fu, Yu, Zhang, Song, Dong (bib21) 2017; 9
Mert, Sahin, Sahin, Yaman (bib47) 2020; 26
Xing, Zhang, Li, Luo, Hua, Hu, Bai (bib71) 2023; 43
Simonetta-Moreau (bib61) 2014; 57
Kaur (10.1016/j.pbiomolbio.2024.09.004_bib24) 2016; 4
Málly (10.1016/j.pbiomolbio.2024.09.004_bib42) 2017; 135
Lee (10.1016/j.pbiomolbio.2024.09.004_bib32) 2013; 1537
Yin (10.1016/j.pbiomolbio.2024.09.004_bib72) 2020; 72
Morris (10.1016/j.pbiomolbio.2024.09.004_bib48) 2007; 103
Trung (10.1016/j.pbiomolbio.2024.09.004_bib65) 2019; 66
Lee (10.1016/j.pbiomolbio.2024.09.004_bib33) 2013; 1537
Kamble (10.1016/j.pbiomolbio.2024.09.004_bib23) 2014; 20
Shon (10.1016/j.pbiomolbio.2024.09.004_bib60) 2019; 63
Xing (10.1016/j.pbiomolbio.2024.09.004_bib70) 2023; 43
Mao (10.1016/j.pbiomolbio.2024.09.004_bib44) 2018; 668
Shimomura (10.1016/j.pbiomolbio.2024.09.004_bib59) 2023; 16
Lin (10.1016/j.pbiomolbio.2024.09.004_bib40) 2021; 9
Cincotta (10.1016/j.pbiomolbio.2024.09.004_bib10) 2003; 114
Long (10.1016/j.pbiomolbio.2024.09.004_bib41) 2015; 60
Huang (10.1016/j.pbiomolbio.2024.09.004_bib20) 2022; 86
McNerney (10.1016/j.pbiomolbio.2024.09.004_bib46) 2022; 86
Rivadulla (10.1016/j.pbiomolbio.2024.09.004_bib56) 2018; 8
Tao (10.1016/j.pbiomolbio.2024.09.004_bib64) 2022; 355
Motta (10.1016/j.pbiomolbio.2024.09.004_bib49) 2018; 89
Tan (10.1016/j.pbiomolbio.2024.09.004_bib63) 2013; 1520
10.1016/j.pbiomolbio.2024.09.004_bib14
Xing (10.1016/j.pbiomolbio.2024.09.004_bib71) 2023; 43
Cha (10.1016/j.pbiomolbio.2024.09.004_bib5) 2022; 13
Huang (10.1016/j.pbiomolbio.2024.09.004_bib21) 2017; 9
Rivadulla (10.1016/j.pbiomolbio.2024.09.004_bib57) 2023; 370
Chervyakov (10.1016/j.pbiomolbio.2024.09.004_bib9) 2015; 9
Huang (10.1016/j.pbiomolbio.2024.09.004_bib19) 2023; 202
Wang (10.1016/j.pbiomolbio.2024.09.004_bib68) 2019; 16
Pérocheau (10.1016/j.pbiomolbio.2024.09.004_bib54) 2014; 81
Engel (10.1016/j.pbiomolbio.2024.09.004_bib13) 2018; 31
Jin (10.1016/j.pbiomolbio.2024.09.004_bib22) 2022; 15
Laxer (10.1016/j.pbiomolbio.2024.09.004_bib31) 2014; 37
Mert (10.1016/j.pbiomolbio.2024.09.004_bib47) 2020; 26
Bao (10.1016/j.pbiomolbio.2024.09.004_bib2) 2021; 13
Üstün Özek (10.1016/j.pbiomolbio.2024.09.004_bib66) 2020; 112
Riancho (10.1016/j.pbiomolbio.2024.09.004_bib55) 2021; 65
Wang (10.1016/j.pbiomolbio.2024.09.004_bib67) 2011; 31
Dileone (10.1016/j.pbiomolbio.2024.09.004_bib11) 2017; 10
Li (10.1016/j.pbiomolbio.2024.09.004_bib35) 2020; 41
Li (10.1016/j.pbiomolbio.2024.09.004_bib36) 2022; 12
Goldman (10.1016/j.pbiomolbio.2024.09.004_bib15) 2014; 27
Wang (10.1016/j.pbiomolbio.2024.09.004_bib69) 2010; 5
Man (10.1016/j.pbiomolbio.2024.09.004_bib43) 1999; 104
Lin (10.1016/j.pbiomolbio.2024.09.004_bib39) 2021; 9
Li (10.1016/j.pbiomolbio.2024.09.004_bib34) 2021; 136
Natale (10.1016/j.pbiomolbio.2024.09.004_bib51) 2021; 36
Han (10.1016/j.pbiomolbio.2024.09.004_bib16) 2023; 17
Oyegbami (10.1016/j.pbiomolbio.2024.09.004_bib53) 2017; 14
Simonetta-Moreau (10.1016/j.pbiomolbio.2024.09.004_bib61) 2014; 57
Song (10.1016/j.pbiomolbio.2024.09.004_bib62) 2023; 6
Klomjai (10.1016/j.pbiomolbio.2024.09.004_bib27) 2015; 58
László (10.1016/j.pbiomolbio.2024.09.004_bib30) 2009; 84
Zeljkovic Jovanovic (10.1016/j.pbiomolbio.2024.09.004_bib74) 2023; 12
Rp (10.1016/j.pbiomolbio.2024.09.004_bib58) 2024; 82
Kyriacou (10.1016/j.pbiomolbio.2024.09.004_bib29) 2022; 13
Yingli (10.1016/j.pbiomolbio.2024.09.004_bib73) 2022; 13
Dimyan (10.1016/j.pbiomolbio.2024.09.004_bib12) 2010; 24
Koch (10.1016/j.pbiomolbio.2024.09.004_bib28) 2018; 169
Nikitina (10.1016/j.pbiomolbio.2024.09.004_bib52) 2023; 53
Chen (10.1016/j.pbiomolbio.2024.09.004_bib7) 2019; 2019
Li (10.1016/j.pbiomolbio.2024.09.004_bib37) 2021; 14
McLean (10.1016/j.pbiomolbio.2024.09.004_bib45) 2008; 80
Chen (10.1016/j.pbiomolbio.2024.09.004_bib6) 1997; 48
Chen (10.1016/j.pbiomolbio.2024.09.004_bib8) 2020; 10
Liang (10.1016/j.pbiomolbio.2024.09.004_bib38) 2021; 2021
Bertolino (10.1016/j.pbiomolbio.2024.09.004_bib3) 2013; 32
Arokiaraj (10.1016/j.pbiomolbio.2024.09.004_bib1) 2017; 17
Hong (10.1016/j.pbiomolbio.2024.09.004_bib18) 2020; 17
Kim (10.1016/j.pbiomolbio.2024.09.004_bib26) 2024; 61
Mukhtar (10.1016/j.pbiomolbio.2024.09.004_bib50) 2023; 39
Cao (10.1016/j.pbiomolbio.2024.09.004_bib4) 2022; 54
Kawasaki (10.1016/j.pbiomolbio.2024.09.004_bib25) 2023; 28
He (10.1016/j.pbiomolbio.2024.09.004_bib17) 2021; 35
References_xml – volume: 27
  start-page: 434
  year: 2014
  end-page: 441
  ident: bib15
  article-title: Premotor and nonmotor features of Parkinson's disease
  publication-title: Curr. Opin. Neurol.
– volume: 65
  start-page: 107
  year: 2021
  end-page: 117
  ident: bib55
  article-title: The role of magnetic fields in neurodegenerative diseases
  publication-title: Int. J. Biometeorol.
– volume: 8
  year: 2018
  ident: bib56
  article-title: Static magnetic fields reduce epileptiform activity in anesthetized rat and monkey
  publication-title: Sci. Rep.
– volume: 12
  start-page: 1525
  year: 2023
  ident: bib74
  article-title: Intermittent theta burst stimulation improves motor and behavioral dysfunction through modulation of NMDA receptor subunit composition in experimental model of Parkinson's disease
  publication-title: Cells
– volume: 86
  start-page: 499
  year: 2022
  end-page: 507
  ident: bib46
  article-title: Repetitive transcranial magnetic stimulation improves brain-derived neurotrophic factor and cholinergic signaling in the 3xTgAD mouse model of alzheimer's disease
  publication-title: J Alzheimers Dis
– volume: 24
  start-page: 125
  year: 2010
  end-page: 135
  ident: bib12
  article-title: Contribution of transcranial magnetic stimulation to the understanding of functional recovery mechanisms after stroke
  publication-title: Neurorehabilitation Neural Repair
– volume: 13
  start-page: 26034
  year: 2021
  end-page: 26045
  ident: bib2
  article-title: rTMS alleviates AD-induced cognitive impairment by inhibitng apoptosis in SAMP8 mouse
  publication-title: Aging
– volume: 9
  start-page: 303
  year: 2015
  ident: bib9
  article-title: Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation
  publication-title: Front. Hum. Neurosci.
– volume: 82
  year: 2024
  ident: bib58
  article-title: The clinical diagnosis of Parkinson's disease
  publication-title: Arquivos de neuro-psiquiatria
– volume: 35
  start-page: 986
  year: 2021
  end-page: 995
  ident: bib17
  article-title: Theta burst magnetic stimulation improves Parkinson’s-related cognitive impairment: a randomised controlled study
  publication-title: Neurorehabilitation Neural Repair
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib7
  article-title: Administration of repetitive transcranial magnetic stimulation attenuates A
  publication-title: BioMed Res. Int.
– volume: 202
  year: 2023
  ident: bib19
  article-title: The long-term effects of intermittent theta burst stimulation on Alzheimer's disease-type pathologies in APP/PS1 mice
  publication-title: Brain Res. Bull.
– volume: 81
  start-page: 22
  year: 2014
  end-page: 26
  ident: bib54
  article-title: Relieving pain in rheumatology patients: repetitive transcranial magnetic stimulation (rTMS), a developing approach
  publication-title: Joint Bone Spine
– volume: 1520
  start-page: 23
  year: 2013
  end-page: 35
  ident: bib63
  article-title: Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons
  publication-title: Brain Res.
– volume: 28
  start-page: 496
  year: 2023
  end-page: 502
  ident: bib25
  article-title: A role of cryptochrome for magnetic field‐dependent improvement of sleep quality, lifespan, and motor function in
  publication-title: Gene Cell.
– volume: 16
  start-page: 933
  year: 2023
  end-page: 935
  ident: bib59
  article-title: Transcranial static magnetic field stimulation (tSMS) can induce functional recovery in patients with subacute stroke
  publication-title: Brain Stimul.
– volume: 14
  start-page: 503
  year: 2021
  end-page: 510
  ident: bib37
  article-title: Cortical plasticity is correlated with cognitive improvement in Alzheimer's disease patients after rTMS treatment
  publication-title: Brain Stimul.
– reference: Furukawa, T., Izumi, S.-I., Toyokura, M., Masakado, Y., n.d. Effects of Low-Frequency Repetitive Transcranial Magnetic Stimulation in Parkinson's Disease.
– volume: 57
  start-page: 530
  year: 2014
  end-page: 542
  ident: bib61
  article-title: Non-invasive brain stimulation (NIBS) and motor recovery after stroke
  publication-title: Ann Phys Rehabil Med
– volume: 60
  start-page: 2107
  year: 2015
  end-page: 2119
  ident: bib41
  article-title: Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor
  publication-title: Sci. Bull.
– volume: 39
  start-page: 271
  year: 2023
  end-page: 273
  ident: bib50
  article-title: Distinguishing convulsive syncope from seizure induced by repetitive transcranial magnetic stimulation: a case report
  publication-title: J. ECT
– volume: 36
  start-page: 2254
  year: 2021
  end-page: 2263
  ident: bib51
  article-title: Transcranial magnetic stimulation exerts “rejuvenation” effects on corticostriatal synapses after partial dopamine depletion
  publication-title: Mov. Disord.
– volume: 17
  year: 2023
  ident: bib16
  article-title: Intermittent theta burst stimulation vs. high-frequency repetitive transcranial magnetic stimulation for post-stroke cognitive impairment: protocol of a pilot randomized controlled double-blind trial
  publication-title: Front. Neurosci.
– volume: 26
  start-page: 18
  year: 2020
  end-page: 28
  ident: bib47
  article-title: Magnetic field exposure modulates the anti-inflammatory efficiency of minocycline in rats with peripheral acute inflammation
  publication-title: Alternative Ther. Health Med.
– volume: 14
  start-page: 850
  year: 2017
  end-page: 860
  ident: bib53
  article-title: Abnormal clock gene expression and locomotor activity rhythms in two month-old female APPSwe/PS1dE9 mice
  publication-title: Curr. Alzheimer Res.
– volume: 17
  start-page: 209
  year: 2017
  ident: bib1
  article-title: A novel targeted angiogenesis technique using VEGF conjugated magnetic nanoparticles and in-vitro endothelial barrier crossing
  publication-title: BMC Cardiovasc. Disord.
– volume: 20
  start-page: 695
  year: 2014
  end-page: 707
  ident: bib23
  article-title: Therapeutic applications of repetitive transcranial magnetic stimulation (rTMS) in movement disorders: a review
  publication-title: Parkinsonism Relat. Disorders
– volume: 31
  start-page: 192
  year: 2018
  end-page: 197
  ident: bib13
  article-title: The current place of epilepsy surgery
  publication-title: Curr. Opin. Neurol.
– volume: 169
  start-page: 302
  year: 2018
  end-page: 311
  ident: bib28
  article-title: Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer's disease
  publication-title: Neuroimage
– volume: 9
  start-page: 102
  year: 2021
  ident: bib40
  article-title: Repetitive transcranial magnetic stimulation increases the brain's drainage efficiency in a mouse model of Alzheimer's disease
  publication-title: acta neuropathol commun
– volume: 104
  start-page: 2261
  year: 1999
  end-page: 2266
  ident: bib43
  article-title: The influence of permanent magnetic field therapy on wound healing in suction lipectomy patients: a double-blind study
  publication-title: Plast. Reconstr. Surg.
– volume: 16
  start-page: 1210
  year: 2019
  end-page: 1224
  ident: bib68
  article-title: Transcranial magneto-acoustic stimulation improves neuroplasticity in Hippocampus of Parkinson's disease model mice
  publication-title: Neurotherapeutics
– volume: 15
  start-page: 601
  year: 2022
  end-page: 604
  ident: bib22
  article-title: Repetitive transcranial magnetic stimulation to treat benign epilepsy with centrotemporal spikes
  publication-title: Brain Stimul.
– volume: 114
  start-page: 1827
  year: 2003
  end-page: 1833
  ident: bib10
  article-title: Suprathreshold 0.3 Hz repetitive TMS prolongs the cortical silent period: potential implications for therapeutic trials in epilepsy
  publication-title: Clin. Neurophysiol.
– volume: 668
  start-page: 115
  year: 2018
  end-page: 119
  ident: bib44
  article-title: Pyrosequencing analysis of methylation levels of clock genes in leukocytes from Parkinson's disease patients
  publication-title: Neurosci. Lett.
– volume: 10
  start-page: 487
  year: 2017
  ident: bib11
  article-title: Transcranial static magnetic field stimulation modulates motor cortex excitability in off medication PD patients
  publication-title: Brain Stimul.
– volume: 37
  start-page: 59
  year: 2014
  end-page: 70
  ident: bib31
  article-title: The consequences of refractory epilepsy and its treatment
  publication-title: Epilepsy Behav.
– volume: 43
  start-page: 1487
  year: 2023
  end-page: 1497
  ident: bib71
  article-title: Repetitive transcranial magnetic stimulation of the brain after ischemic stroke: mechanisms from animal models
  publication-title: Cell. Mol. Neurobiol.
– volume: 80
  start-page: 119
  year: 2008
  end-page: 131
  ident: bib45
  article-title: Effects of a static magnetic field on audiogenic seizures in black Swiss mice
  publication-title: Epilepsy Res.
– volume: 103
  start-page: 629
  year: 2007
  end-page: 636
  ident: bib48
  article-title: Chronic static magnetic field exposure alters microvessel enlargement resulting from surgical intervention
  publication-title: J. Appl. Physiol.
– volume: 54
  year: 2022
  ident: bib4
  article-title: High frequency repetitive transcranial magnetic stimulation alleviates cognitive deficits in 3xTg-AD mice by modulating the PI3K/Akt/GLT-1 axis
  publication-title: Redox Biol.
– volume: 66
  start-page: 3
  year: 2019
  end-page: 8
  ident: bib65
  article-title: Transcranial magnetic stimulation improves cognition over time in Parkinson's disease
  publication-title: Parkinsonism Relat. Disorders
– volume: 31
  start-page: 11044
  year: 2011
  end-page: 11054
  ident: bib67
  article-title: Repetitive transcranial magnetic stimulation enhances BDNF-TrkB signaling in both brain and lymphocyte
  publication-title: J. Neurosci.
– volume: 10
  year: 2020
  ident: bib8
  article-title: High‐frequency transcranial magnetic stimulation protects APP/PS1 mice against Alzheimer's disease progress by reducing APOE and enhancing autophagy
  publication-title: Brain and Behavior
– volume: 58
  start-page: 208
  year: 2015
  end-page: 213
  ident: bib27
  article-title: Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS)
  publication-title: Ann Phys Rehabil Med
– volume: 89
  start-page: 1237
  year: 2018
  end-page: 1242
  ident: bib49
  article-title: Transcranial magnetic stimulation predicts cognitive decline in patients with Alzheimer's disease
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 135
  start-page: 98
  year: 2017
  end-page: 104
  ident: bib42
  article-title: Follow up study: the influence of rTMS with high and low frequency stimulation on motor and executive function in Parkinson's disease
  publication-title: Brain Res. Bull.
– volume: 1537
  start-page: 290
  year: 2013
  end-page: 302
  ident: bib32
  article-title: Therapeutic effects of repetitive transcranial magnetic stimulation in an animal model of Parkinson's disease
  publication-title: Brain Res.
– volume: 6
  start-page: 97
  year: 2023
  ident: bib62
  article-title: Magnetic fields affect alcoholic liver disease by liver cell oxidative stress and proliferation regulation
  publication-title: Research
– volume: 112
  year: 2020
  ident: bib66
  article-title: Slow repetitive transcranial magnetic stimulation in refractory juvenile myoclonic epilepsies
  publication-title: Epilepsy Behav.
– volume: 5
  year: 2010
  ident: bib69
  article-title: Static magnetic field exposure reproduces cellular effects of the Parkinson's disease drug candidate ZM241385
  publication-title: PLoS One
– volume: 61
  start-page: 1687
  year: 2024
  end-page: 1703
  ident: bib26
  article-title: Protective effects of repetitive transcranial magnetic stimulation against streptozotocin-induced alzheimer's disease
  publication-title: Mol. Neurobiol.
– volume: 2021
  year: 2021
  ident: bib38
  article-title: Repetitive transcranial magnetic stimulation improves neuropathy and oxidative stress levels in rats with experimental cerebral infarction through the Nrf2 signaling pathway
  publication-title: Evid Based Complement Alternat Med
– volume: 72
  start-page: 539
  year: 2020
  end-page: 550
  ident: bib72
  article-title: Brain-derived neurotrophic factor fused with a collagen-binding domain inhibits neuroinflammation and promotes neurological recovery of traumatic brain injury mice via TrkB signalling
  publication-title: J. Pharm. Pharmacol.
– volume: 13
  year: 2022
  ident: bib5
  article-title: Therapeutic effect of repetitive transcranial magnetic stimulation for post-stroke vascular cognitive impairment: a prospective pilot study
  publication-title: Front. Neurol.
– volume: 9
  start-page: 102
  year: 2021
  ident: bib39
  article-title: Repetitive transcranial magnetic stimulation increases the brain's drainage efficiency in a mouse model of Alzheimer's disease
  publication-title: Acta Neuropathol Commun
– volume: 9
  start-page: 292
  year: 2017
  ident: bib21
  article-title: Low-frequency repetitive transcranial magnetic stimulation ameliorates cognitive function and synaptic plasticity in APP23/PS45 mouse model of alzheimer's disease
  publication-title: Front. Aging Neurosci.
– volume: 13
  year: 2022
  ident: bib29
  article-title: Genetic analysis of cryptochrome in insect magnetosensitivity
  publication-title: Front. Physiol.
– volume: 86
  start-page: 983
  year: 2022
  end-page: 999
  ident: bib20
  article-title: Post-stroke cognitive impairment: epidemiology, risk factors, and management
  publication-title: J Alzheimers Dis
– volume: 12
  year: 2022
  ident: bib36
  article-title: Improvement of poststroke cognitive impairment by intermittent theta bursts: a double-blind randomized controlled trial
  publication-title: Brain Behav
– volume: 370
  year: 2023
  ident: bib57
  article-title: Transcranial static magnetic stimulation reduces seizures in a mouse model of Dravet syndrome
  publication-title: Exp. Neurol.
– volume: 136
  start-page: 204
  year: 2021
  end-page: 216
  ident: bib34
  article-title: Early intervention attenuates synaptic plasticity impairment and neuroinflammation in 5xFAD mice
  publication-title: J. Psychiatr. Res.
– volume: 48
  start-page: 1398
  year: 1997
  end-page: 1403
  ident: bib6
  article-title: Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation
  publication-title: Neurology
– volume: 84
  start-page: 12
  year: 2009
  end-page: 17
  ident: bib30
  article-title: 3 T homogeneous static magnetic field of a clinical MR significantly inhibits pain in mice
  publication-title: Life Sci.
– volume: 355
  start-page: 150
  year: 2022
  end-page: 159
  ident: bib64
  article-title: Necroptosis in pulmonary macrophages promotes silica-induced inflammation and interstitial fibrosis in mice
  publication-title: Toxicol. Lett.
– volume: 1537
  start-page: 290
  year: 2013
  end-page: 302
  ident: bib33
  article-title: Therapeutic effects of repetitive transcranial magnetic stimulation in an animal model of Parkinson's disease
  publication-title: Brain Res.
– volume: 13
  year: 2022
  ident: bib73
  article-title: Cerebral activity manipulation of low-frequency repetitive transcranial magnetic stimulation in post-stroke patients with cognitive impairment
  publication-title: Front. Neurol.
– volume: 63
  start-page: 130
  year: 2019
  end-page: 133
  ident: bib60
  article-title: Therapeutic effect of repetitive transcranial magnetic stimulation on non-lesional focal refractory epilepsy
  publication-title: J. Clin. Neurosci.
– volume: 41
  start-page: 52
  year: 2020
  end-page: 62
  ident: bib35
  article-title: Moderate intensity static magnetic fields prevent thrombus formation in rats and mice
  publication-title: Bioelectromagnetics
– volume: 17
  start-page: 150
  year: 2020
  ident: bib18
  article-title: High-frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats
  publication-title: J. Neuroinflammation
– volume: 32
  start-page: 527
  year: 2013
  end-page: 535
  ident: bib3
  article-title: Neuropathology and behavioral impairments in Wistar rats with a 6-OHDA lesion in the substantia nigra compacta and exposure to a static magnetic field
  publication-title: Electromagn. Biol. Med.
– volume: 53
  start-page: 542
  year: 2023
  end-page: 553
  ident: bib52
  article-title: Weak static magnetic field: actions on the nervous system
  publication-title: Neurosci. Behav. Physiol.
– volume: 4
  start-page: 42
  year: 2016
  end-page: 51
  ident: bib24
  article-title: Antiepileptic drugs in development pipeline: a recent update
  publication-title: eNeurologicalSci
– volume: 43
  start-page: 1487
  year: 2023
  end-page: 1497
  ident: bib70
  article-title: Repetitive transcranial magnetic stimulation of the brain after ischemic stroke: mechanisms from animal models
  publication-title: Cell. Mol. Neurobiol.
– volume: 43
  start-page: 1487
  year: 2023
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib70
  article-title: Repetitive transcranial magnetic stimulation of the brain after ischemic stroke: mechanisms from animal models
  publication-title: Cell. Mol. Neurobiol.
  doi: 10.1007/s10571-022-01264-x
– volume: 14
  start-page: 503
  year: 2021
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib37
  article-title: Cortical plasticity is correlated with cognitive improvement in Alzheimer's disease patients after rTMS treatment
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2021.01.012
– volume: 9
  start-page: 102
  year: 2021
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib40
  article-title: Repetitive transcranial magnetic stimulation increases the brain's drainage efficiency in a mouse model of Alzheimer's disease
  publication-title: acta neuropathol commun
  doi: 10.1186/s40478-021-01198-3
– volume: 63
  start-page: 130
  year: 2019
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib60
  article-title: Therapeutic effect of repetitive transcranial magnetic stimulation on non-lesional focal refractory epilepsy
  publication-title: J. Clin. Neurosci.
  doi: 10.1016/j.jocn.2019.01.025
– volume: 135
  start-page: 98
  year: 2017
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib42
  article-title: Follow up study: the influence of rTMS with high and low frequency stimulation on motor and executive function in Parkinson's disease
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2017.10.002
– volume: 370
  year: 2023
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib57
  article-title: Transcranial static magnetic stimulation reduces seizures in a mouse model of Dravet syndrome
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2023.114581
– volume: 16
  start-page: 933
  year: 2023
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib59
  article-title: Transcranial static magnetic field stimulation (tSMS) can induce functional recovery in patients with subacute stroke
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2023.05.024
– volume: 20
  start-page: 695
  year: 2014
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib23
  article-title: Therapeutic applications of repetitive transcranial magnetic stimulation (rTMS) in movement disorders: a review
  publication-title: Parkinsonism Relat. Disorders
  doi: 10.1016/j.parkreldis.2014.03.018
– volume: 12
  year: 2022
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib36
  article-title: Improvement of poststroke cognitive impairment by intermittent theta bursts: a double-blind randomized controlled trial
  publication-title: Brain Behav
  doi: 10.1002/brb3.2569
– volume: 57
  start-page: 530
  year: 2014
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib61
  article-title: Non-invasive brain stimulation (NIBS) and motor recovery after stroke
  publication-title: Ann Phys Rehabil Med
  doi: 10.1016/j.rehab.2014.08.003
– volume: 72
  start-page: 539
  year: 2020
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib72
  article-title: Brain-derived neurotrophic factor fused with a collagen-binding domain inhibits neuroinflammation and promotes neurological recovery of traumatic brain injury mice via TrkB signalling
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/jphp.13233
– volume: 1537
  start-page: 290
  year: 2013
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib32
  article-title: Therapeutic effects of repetitive transcranial magnetic stimulation in an animal model of Parkinson's disease
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2013.08.051
– volume: 81
  start-page: 22
  year: 2014
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib54
  article-title: Relieving pain in rheumatology patients: repetitive transcranial magnetic stimulation (rTMS), a developing approach
  publication-title: Joint Bone Spine
  doi: 10.1016/j.jbspin.2013.04.015
– volume: 48
  start-page: 1398
  year: 1997
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib6
  article-title: Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation
  publication-title: Neurology
  doi: 10.1212/WNL.48.5.1398
– volume: 13
  year: 2022
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib73
  article-title: Cerebral activity manipulation of low-frequency repetitive transcranial magnetic stimulation in post-stroke patients with cognitive impairment
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2022.951209
– volume: 58
  start-page: 208
  year: 2015
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib27
  article-title: Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS)
  publication-title: Ann Phys Rehabil Med
  doi: 10.1016/j.rehab.2015.05.005
– volume: 17
  start-page: 209
  year: 2017
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib1
  article-title: A novel targeted angiogenesis technique using VEGF conjugated magnetic nanoparticles and in-vitro endothelial barrier crossing
  publication-title: BMC Cardiovasc. Disord.
  doi: 10.1186/s12872-017-0643-x
– volume: 39
  start-page: 271
  year: 2023
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib50
  article-title: Distinguishing convulsive syncope from seizure induced by repetitive transcranial magnetic stimulation: a case report
  publication-title: J. ECT
  doi: 10.1097/YCT.0000000000000959
– volume: 16
  start-page: 1210
  year: 2019
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib68
  article-title: Transcranial magneto-acoustic stimulation improves neuroplasticity in Hippocampus of Parkinson's disease model mice
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-019-00732-5
– volume: 36
  start-page: 2254
  year: 2021
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib51
  article-title: Transcranial magnetic stimulation exerts “rejuvenation” effects on corticostriatal synapses after partial dopamine depletion
  publication-title: Mov. Disord.
  doi: 10.1002/mds.28671
– volume: 668
  start-page: 115
  year: 2018
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib44
  article-title: Pyrosequencing analysis of methylation levels of clock genes in leukocytes from Parkinson's disease patients
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2018.01.027
– volume: 80
  start-page: 119
  year: 2008
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib45
  article-title: Effects of a static magnetic field on audiogenic seizures in black Swiss mice
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2008.03.022
– volume: 104
  start-page: 2261
  year: 1999
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib43
  article-title: The influence of permanent magnetic field therapy on wound healing in suction lipectomy patients: a double-blind study
  publication-title: Plast. Reconstr. Surg.
  doi: 10.1097/00006534-199912000-00053
– volume: 82
  year: 2024
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib58
  article-title: The clinical diagnosis of Parkinson's disease
  publication-title: Arquivos de neuro-psiquiatria
– volume: 86
  start-page: 499
  year: 2022
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib46
  article-title: Repetitive transcranial magnetic stimulation improves brain-derived neurotrophic factor and cholinergic signaling in the 3xTgAD mouse model of alzheimer's disease
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-215361
– volume: 8
  year: 2018
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib56
  article-title: Static magnetic fields reduce epileptiform activity in anesthetized rat and monkey
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33808-x
– volume: 27
  start-page: 434
  year: 2014
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib15
  article-title: Premotor and nonmotor features of Parkinson's disease
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0000000000000112
– volume: 31
  start-page: 192
  year: 2018
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib13
  article-title: The current place of epilepsy surgery
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0000000000000528
– volume: 41
  start-page: 52
  year: 2020
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib35
  article-title: Moderate intensity static magnetic fields prevent thrombus formation in rats and mice
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.22232
– volume: 112
  year: 2020
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib66
  article-title: Slow repetitive transcranial magnetic stimulation in refractory juvenile myoclonic epilepsies
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2020.107479
– volume: 10
  start-page: 487
  year: 2017
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib11
  article-title: Transcranial static magnetic field stimulation modulates motor cortex excitability in off medication PD patients
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2017.01.427
– volume: 2021
  year: 2021
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib38
  article-title: Repetitive transcranial magnetic stimulation improves neuropathy and oxidative stress levels in rats with experimental cerebral infarction through the Nrf2 signaling pathway
  publication-title: Evid Based Complement Alternat Med
  doi: 10.1155/2021/3908677
– volume: 5
  year: 2010
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib69
  article-title: Static magnetic field exposure reproduces cellular effects of the Parkinson's disease drug candidate ZM241385
  publication-title: PLoS One
– volume: 1520
  start-page: 23
  year: 2013
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib63
  article-title: Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2013.04.053
– volume: 10
  year: 2020
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib8
  article-title: High‐frequency transcranial magnetic stimulation protects APP/PS1 mice against Alzheimer's disease progress by reducing APOE and enhancing autophagy
  publication-title: Brain and Behavior
  doi: 10.1002/brb3.1740
– volume: 28
  start-page: 496
  year: 2023
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib25
  article-title: A role of cryptochrome for magnetic field‐dependent improvement of sleep quality, lifespan, and motor function in Drosophila
  publication-title: Gene Cell.
  doi: 10.1111/gtc.13030
– volume: 355
  start-page: 150
  year: 2022
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib64
  article-title: Necroptosis in pulmonary macrophages promotes silica-induced inflammation and interstitial fibrosis in mice
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2021.11.015
– volume: 26
  start-page: 18
  year: 2020
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib47
  article-title: Magnetic field exposure modulates the anti-inflammatory efficiency of minocycline in rats with peripheral acute inflammation
  publication-title: Alternative Ther. Health Med.
– volume: 169
  start-page: 302
  year: 2018
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib28
  article-title: Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.12.048
– volume: 14
  start-page: 850
  year: 2017
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib53
  article-title: Abnormal clock gene expression and locomotor activity rhythms in two month-old female APPSwe/PS1dE9 mice
  publication-title: Curr. Alzheimer Res.
  doi: 10.2174/1567205014666170317113159
– volume: 17
  start-page: 150
  year: 2020
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib18
  article-title: High-frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats
  publication-title: J. Neuroinflammation
  doi: 10.1186/s12974-020-01747-y
– volume: 37
  start-page: 59
  year: 2014
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib31
  article-title: The consequences of refractory epilepsy and its treatment
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2014.05.031
– volume: 13
  start-page: 26034
  year: 2021
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib2
  article-title: rTMS alleviates AD-induced cognitive impairment by inhibitng apoptosis in SAMP8 mouse
  publication-title: Aging
  doi: 10.18632/aging.203796
– volume: 86
  start-page: 983
  year: 2022
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib20
  article-title: Post-stroke cognitive impairment: epidemiology, risk factors, and management
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-215644
– volume: 12
  start-page: 1525
  year: 2023
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib74
  article-title: Intermittent theta burst stimulation improves motor and behavioral dysfunction through modulation of NMDA receptor subunit composition in experimental model of Parkinson's disease
  publication-title: Cells
  doi: 10.3390/cells12111525
– volume: 136
  start-page: 204
  year: 2021
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib34
  article-title: Early intervention attenuates synaptic plasticity impairment and neuroinflammation in 5xFAD mice
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2021.02.007
– volume: 53
  start-page: 542
  year: 2023
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib52
  article-title: Weak static magnetic field: actions on the nervous system
  publication-title: Neurosci. Behav. Physiol.
  doi: 10.1007/s11055-023-01453-1
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib7
  article-title: Administration of repetitive transcranial magnetic stimulation attenuates A β 1-42 -induced alzheimer's disease in mice by activating β -catenin signaling
  publication-title: BioMed Res. Int.
– volume: 114
  start-page: 1827
  year: 2003
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib10
  article-title: Suprathreshold 0.3 Hz repetitive TMS prolongs the cortical silent period: potential implications for therapeutic trials in epilepsy
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(03)00181-0
– volume: 61
  start-page: 1687
  year: 2024
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib26
  article-title: Protective effects of repetitive transcranial magnetic stimulation against streptozotocin-induced alzheimer's disease
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-023-03573-8
– volume: 4
  start-page: 42
  year: 2016
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib24
  article-title: Antiepileptic drugs in development pipeline: a recent update
  publication-title: eNeurologicalSci
  doi: 10.1016/j.ensci.2016.06.003
– volume: 13
  year: 2022
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib29
  article-title: Genetic analysis of cryptochrome in insect magnetosensitivity
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2022.928416
– volume: 6
  start-page: 97
  year: 2023
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib62
  article-title: Magnetic fields affect alcoholic liver disease by liver cell oxidative stress and proliferation regulation
  publication-title: Research
  doi: 10.34133/research.0097
– volume: 32
  start-page: 527
  year: 2013
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib3
  article-title: Neuropathology and behavioral impairments in Wistar rats with a 6-OHDA lesion in the substantia nigra compacta and exposure to a static magnetic field
  publication-title: Electromagn. Biol. Med.
  doi: 10.3109/15368378.2012.751394
– volume: 15
  start-page: 601
  year: 2022
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib22
  article-title: Repetitive transcranial magnetic stimulation to treat benign epilepsy with centrotemporal spikes
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2022.04.003
– volume: 31
  start-page: 11044
  year: 2011
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib67
  article-title: Repetitive transcranial magnetic stimulation enhances BDNF-TrkB signaling in both brain and lymphocyte
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2125-11.2011
– volume: 66
  start-page: 3
  year: 2019
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib65
  article-title: Transcranial magnetic stimulation improves cognition over time in Parkinson's disease
  publication-title: Parkinsonism Relat. Disorders
  doi: 10.1016/j.parkreldis.2019.07.006
– volume: 60
  start-page: 2107
  year: 2015
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib41
  article-title: Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor
  publication-title: Sci. Bull.
  doi: 10.1007/s11434-015-0902-0
– volume: 9
  start-page: 292
  year: 2017
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib21
  article-title: Low-frequency repetitive transcranial magnetic stimulation ameliorates cognitive function and synaptic plasticity in APP23/PS45 mouse model of alzheimer's disease
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2017.00292
– volume: 43
  start-page: 1487
  year: 2023
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib71
  article-title: Repetitive transcranial magnetic stimulation of the brain after ischemic stroke: mechanisms from animal models
  publication-title: Cell. Mol. Neurobiol.
  doi: 10.1007/s10571-022-01264-x
– volume: 35
  start-page: 986
  year: 2021
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib17
  article-title: Theta burst magnetic stimulation improves Parkinson’s-related cognitive impairment: a randomised controlled study
  publication-title: Neurorehabilitation Neural Repair
  doi: 10.1177/1545968321104131
– volume: 9
  start-page: 102
  year: 2021
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib39
  article-title: Repetitive transcranial magnetic stimulation increases the brain's drainage efficiency in a mouse model of Alzheimer's disease
  publication-title: Acta Neuropathol Commun
  doi: 10.1186/s40478-021-01198-3
– volume: 103
  start-page: 629
  issue: 1985
  year: 2007
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib48
  article-title: Chronic static magnetic field exposure alters microvessel enlargement resulting from surgical intervention
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01133.2006
– volume: 65
  start-page: 107
  year: 2021
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib55
  article-title: The role of magnetic fields in neurodegenerative diseases
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-020-01896-y
– ident: 10.1016/j.pbiomolbio.2024.09.004_bib14
– volume: 17
  year: 2023
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib16
  article-title: Intermittent theta burst stimulation vs. high-frequency repetitive transcranial magnetic stimulation for post-stroke cognitive impairment: protocol of a pilot randomized controlled double-blind trial
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2023.1121043
– volume: 9
  start-page: 303
  year: 2015
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib9
  article-title: Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00303
– volume: 202
  year: 2023
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib19
  article-title: The long-term effects of intermittent theta burst stimulation on Alzheimer's disease-type pathologies in APP/PS1 mice
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2023.110735
– volume: 89
  start-page: 1237
  year: 2018
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib49
  article-title: Transcranial magnetic stimulation predicts cognitive decline in patients with Alzheimer's disease
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2017-317879
– volume: 1537
  start-page: 290
  year: 2013
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib33
  article-title: Therapeutic effects of repetitive transcranial magnetic stimulation in an animal model of Parkinson's disease
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2013.08.051
– volume: 84
  start-page: 12
  year: 2009
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib30
  article-title: 3 T homogeneous static magnetic field of a clinical MR significantly inhibits pain in mice
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2008.10.009
– volume: 54
  year: 2022
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib4
  article-title: High frequency repetitive transcranial magnetic stimulation alleviates cognitive deficits in 3xTg-AD mice by modulating the PI3K/Akt/GLT-1 axis
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2022.102354
– volume: 13
  year: 2022
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib5
  article-title: Therapeutic effect of repetitive transcranial magnetic stimulation for post-stroke vascular cognitive impairment: a prospective pilot study
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2022.813597
– volume: 24
  start-page: 125
  year: 2010
  ident: 10.1016/j.pbiomolbio.2024.09.004_bib12
  article-title: Contribution of transcranial magnetic stimulation to the understanding of functional recovery mechanisms after stroke
  publication-title: Neurorehabilitation Neural Repair
  doi: 10.1177/1545968309345270
SSID ssj0002176
Score 2.4346387
SecondaryResourceType review_article
Snippet With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 35
SubjectTerms Animals
Humans
Magnetic field
Magnetic Field Therapy - methods
Magnetic Fields
Magnetic therapy technology
Neurodegenerative diseases
Neurodegenerative Diseases - therapy
Neuroprotective mechanism
Title Research progress on the effects and mechanisms of magnetic field on neurodegenerative diseases
URI https://dx.doi.org/10.1016/j.pbiomolbio.2024.09.004
https://www.ncbi.nlm.nih.gov/pubmed/39277139
https://www.proquest.com/docview/3105489195
Volume 193
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA5jIngRv50fI4LXujZJW4OnIY6puJOD3UKapGPiuuG2gxd_u28-6hAUBC-FtilNn6TvB3meNwhdMq0o5WkZqby89gkKB08XZaqQFIZcaWr1zk-DrD9kD6N01EC3tRbG0iqD7fc23VnrcKUT0OzMJxOr8c05OP_csiBj7hTljOV2ll99rGkeEHK79UpoHNnWgc3jOV5zq3GfvcIRMkXiK56GLdt-cFG_haDOFfV20HaIIXHXd3MXNUy1hzb9rpLv-0jUbDrsyFdgyvCswhDo4UDewLLSeGqs5neymMLdEk_luLJyRuwYbba9K3SpzdiVpbY2EYe1nMUBGvbunm_7UdhHIVKA9jIiOi6lijOdKUKLQiWcFfC1eckSZmRKCyMlk6TIINUzqSakTI2EX7_ktj5XrughalazyhwDdAXTkEybhCSaURJzKaHjkipdUhknqoWSGjox9-UyRM0jexFruIWFW8RcANwtdFNjLL4NvQCr_oenL-phEfBn2OUOWZnZaiEgcIV0jCc8baEjP15ffYKoMIf0nJ_8692naMueeWniGWou31bmHGKUZdF2k7CNNrr3j_3BJ3eu6FI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5jQ_RFvDuvEXwta5NeDD6N4djc5WmDvYU0SWXi2uG2B_-9J006ERQEX_rQJjT9TnNyDvm-E4TuQyUpZVHmySR7sAkKg5XOi2UqKJhcKmr0zqNx3JuGz7NoVkOdSgtjaJXO91ufXnprd6fl0Gwt53Oj8U0YLP6JYUH6zCjKG6Y6VVRHjXZ_0BtvHTJE3eWWJbT3TAdH6LE0r6WRuRdvcIVkkdiip-7Uth9Wqd-i0HI16h6gfRdG4rYd6SGq6fwI7diDJT-OEa8IdbjkX4E3w0WOIdbDjr-BRa7wQhvZ73y1gKcZXoiX3CgacUlqM-3LWpdKv5SVqY1bxG47Z3WCpt2nSafnuaMUPAmArz2i_ExIP1axJDRNZcDCFL42ycIg1CKiqRYiFCSNIdvTkSIki7SA2Z8xU6IrkfQU1fMi1-cAXRoqyKd1QAIVUuIzIWDggkqVUeEHsomCCjq-tBUzeEUle-VfcHMDN_cZB7ib6LHCmH-zPgfH_ofed5VZOEwOs-Mhcl1sVhxiV8jIWMCiJjqz9tqOCQLDBDJ0dvGvd9-i3d5kNOTD_nhwifbME6tUvEL19ftGX0PIsk5v3C_5CW4J6wM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+progress+on+the+effects+and+mechanisms+of+magnetic+field+on+neurodegenerative+diseases&rft.jtitle=Progress+in+biophysics+and+molecular+biology&rft.au=Ding%2C+Shuxian&rft.au=Li%2C+Jinhua&rft.au=Fang%2C+Yanwen&rft.au=Zhuo%2C+Xingjie&rft.date=2024-11-01&rft.issn=1873-1732&rft.eissn=1873-1732&rft.volume=193&rft.spage=35&rft_id=info:doi/10.1016%2Fj.pbiomolbio.2024.09.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6107&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6107&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6107&client=summon