Research progress on the effects and mechanisms of magnetic field on neurodegenerative diseases
With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinica...
Saved in:
Published in | Progress in biophysics and molecular biology Vol. 193; pp. 35 - 45 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinical applications, magnetic therapy, as a non-invasive brain stimulation therapy technology, has attracted much attention due to its potential in the treatment of motor dysfunction, cognitive impairment and speech disorders in patients with neurodegenerative diseases. However, the role of magnetic fields in the prognosis and treatment of neurodegenerative diseases and their mechanisms remain largely unexplored. In this paper, the therapeutic effect and neuroprotective mechanism of the magnetic field on neurodegenerative diseases are reviewed, and the new magnetic therapy techniques are also summarized. Although the neuroprotective mechanism of magnetic field cannot be fully elaborated, it is helpful to promote the application of magnetic field in neurodegenerative diseases and provide a new theoretical basis for the related magnetic field research in the later period.
•Summarize the therapeutic effect of magnetic field on neurodegenerative diseases and new magnetic therapy technology.•A variety of potential mechanisms play a neuroprotective role of magnetic field.•Magnetic therapy technology have great potential in the treatment of neurodegenerative diseases. |
---|---|
AbstractList | With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinical applications, magnetic therapy, as a non-invasive brain stimulation therapy technology, has attracted much attention due to its potential in the treatment of motor dysfunction, cognitive impairment and speech disorders in patients with neurodegenerative diseases. However, the role of magnetic fields in the prognosis and treatment of neurodegenerative diseases and their mechanisms remain largely unexplored. In this paper, the therapeutic effect and neuroprotective mechanism of the magnetic field on neurodegenerative diseases are reviewed, and the new magnetic therapy techniques are also summarized. Although the neuroprotective mechanism of magnetic field cannot be fully elaborated, it is helpful to promote the application of magnetic field in neurodegenerative diseases and provide a new theoretical basis for the related magnetic field research in the later period. With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinical applications, magnetic therapy, as a non-invasive brain stimulation therapy technology, has attracted much attention due to its potential in the treatment of motor dysfunction, cognitive impairment and speech disorders in patients with neurodegenerative diseases. However, the role of magnetic fields in the prognosis and treatment of neurodegenerative diseases and their mechanisms remain largely unexplored. In this paper, the therapeutic effect and neuroprotective mechanism of the magnetic field on neurodegenerative diseases are reviewed, and the new magnetic therapy techniques are also summarized. Although the neuroprotective mechanism of magnetic field cannot be fully elaborated, it is helpful to promote the application of magnetic field in neurodegenerative diseases and provide a new theoretical basis for the related magnetic field research in the later period.With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinical applications, magnetic therapy, as a non-invasive brain stimulation therapy technology, has attracted much attention due to its potential in the treatment of motor dysfunction, cognitive impairment and speech disorders in patients with neurodegenerative diseases. However, the role of magnetic fields in the prognosis and treatment of neurodegenerative diseases and their mechanisms remain largely unexplored. In this paper, the therapeutic effect and neuroprotective mechanism of the magnetic field on neurodegenerative diseases are reviewed, and the new magnetic therapy techniques are also summarized. Although the neuroprotective mechanism of magnetic field cannot be fully elaborated, it is helpful to promote the application of magnetic field in neurodegenerative diseases and provide a new theoretical basis for the related magnetic field research in the later period. With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinical applications, magnetic therapy, as a non-invasive brain stimulation therapy technology, has attracted much attention due to its potential in the treatment of motor dysfunction, cognitive impairment and speech disorders in patients with neurodegenerative diseases. However, the role of magnetic fields in the prognosis and treatment of neurodegenerative diseases and their mechanisms remain largely unexplored. In this paper, the therapeutic effect and neuroprotective mechanism of the magnetic field on neurodegenerative diseases are reviewed, and the new magnetic therapy techniques are also summarized. Although the neuroprotective mechanism of magnetic field cannot be fully elaborated, it is helpful to promote the application of magnetic field in neurodegenerative diseases and provide a new theoretical basis for the related magnetic field research in the later period. •Summarize the therapeutic effect of magnetic field on neurodegenerative diseases and new magnetic therapy technology.•A variety of potential mechanisms play a neuroprotective role of magnetic field.•Magnetic therapy technology have great potential in the treatment of neurodegenerative diseases. |
Author | Zhuo, Xingjie Gu, Lili Fang, Yanwen Ding, Shuxian Liao, Zhongcai Zhang, Xinyue Wei, Min Li, Qin Yang, Yuanxiao Li, Jinhua |
Author_xml | – sequence: 1 givenname: Shuxian surname: Ding fullname: Ding, Shuxian organization: School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China – sequence: 2 givenname: Jinhua surname: Li fullname: Li, Jinhua organization: School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China – sequence: 3 givenname: Yanwen surname: Fang fullname: Fang, Yanwen organization: Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China – sequence: 4 givenname: Xingjie surname: Zhuo fullname: Zhuo, Xingjie organization: School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China – sequence: 5 givenname: Lili surname: Gu fullname: Gu, Lili organization: School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China – sequence: 6 givenname: Xinyue surname: Zhang fullname: Zhang, Xinyue organization: School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China – sequence: 7 givenname: Yuanxiao surname: Yang fullname: Yang, Yuanxiao organization: School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China – sequence: 8 givenname: Min surname: Wei fullname: Wei, Min organization: Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China – sequence: 9 givenname: Zhongcai surname: Liao fullname: Liao, Zhongcai email: zhongcai.liao@heaye.com organization: Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China – sequence: 10 givenname: Qin surname: Li fullname: Li, Qin email: 2020000301@hmc.edu.cn organization: School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39277139$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMFq3DAQhkVJaTZpX6HomIudkWRbq2MTkjQQKJT2LGRptKvFljaSN5C3r5ZN2mMvM4f55of_uyBnMUUkhDJoGbDhetfux5DmNNXZcuBdC6oF6D6QFVtL0TAp-BlZAUjVDAzkObkoZQcAnMnhEzkXikvJhFoR_RMLmmy3dJ_TJmMpNEW6bJGi92iXQk10dEa7NTGUuV49nc0m4hIs9QEnd-QjHnJyuMGI2SzhBakLNbZg-Uw-ejMV_PK2L8nv-7tft9-bpx8Pj7ffnhormFoa7sAbC4MbLBfjaJnqxlpL-o51aHoxojGd4eMAqsPece57NCCFV30vQVpxSa5OubXG8wHLoudQLE6TiZgORQsGfbdWTPUV_fqGHsYZnd7nMJv8qt-lVGB9AmxOpWT0fxEG-uhf7_Q___roX4PS1X99vTm9Yu36EjDrYgNGiy7kalO7FP4f8gd7Q5RR |
Cites_doi | 10.1007/s10571-022-01264-x 10.1016/j.brs.2021.01.012 10.1186/s40478-021-01198-3 10.1016/j.jocn.2019.01.025 10.1016/j.brainresbull.2017.10.002 10.1016/j.expneurol.2023.114581 10.1016/j.brs.2023.05.024 10.1016/j.parkreldis.2014.03.018 10.1002/brb3.2569 10.1016/j.rehab.2014.08.003 10.1111/jphp.13233 10.1016/j.brainres.2013.08.051 10.1016/j.jbspin.2013.04.015 10.1212/WNL.48.5.1398 10.3389/fneur.2022.951209 10.1016/j.rehab.2015.05.005 10.1186/s12872-017-0643-x 10.1097/YCT.0000000000000959 10.1007/s13311-019-00732-5 10.1002/mds.28671 10.1016/j.neulet.2018.01.027 10.1016/j.eplepsyres.2008.03.022 10.1097/00006534-199912000-00053 10.3233/JAD-215361 10.1038/s41598-018-33808-x 10.1097/WCO.0000000000000112 10.1097/WCO.0000000000000528 10.1002/bem.22232 10.1016/j.yebeh.2020.107479 10.1016/j.brs.2017.01.427 10.1155/2021/3908677 10.1016/j.brainres.2013.04.053 10.1002/brb3.1740 10.1111/gtc.13030 10.1016/j.toxlet.2021.11.015 10.1016/j.neuroimage.2017.12.048 10.2174/1567205014666170317113159 10.1186/s12974-020-01747-y 10.1016/j.yebeh.2014.05.031 10.18632/aging.203796 10.3233/JAD-215644 10.3390/cells12111525 10.1016/j.jpsychires.2021.02.007 10.1007/s11055-023-01453-1 10.1016/S1388-2457(03)00181-0 10.1007/s12035-023-03573-8 10.1016/j.ensci.2016.06.003 10.3389/fphys.2022.928416 10.34133/research.0097 10.3109/15368378.2012.751394 10.1016/j.brs.2022.04.003 10.1523/JNEUROSCI.2125-11.2011 10.1016/j.parkreldis.2019.07.006 10.1007/s11434-015-0902-0 10.3389/fnagi.2017.00292 10.1177/1545968321104131 10.1152/japplphysiol.01133.2006 10.1007/s00484-020-01896-y 10.3389/fnins.2023.1121043 10.3389/fnhum.2015.00303 10.1016/j.brainresbull.2023.110735 10.1136/jnnp-2017-317879 10.1016/j.lfs.2008.10.009 10.1016/j.redox.2022.102354 10.3389/fneur.2022.813597 10.1177/1545968309345270 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.pbiomolbio.2024.09.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1873-1732 |
EndPage | 45 |
ExternalDocumentID | 39277139 10_1016_j_pbiomolbio_2024_09_004 S0079610724000907 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 0SF 123 1B1 1RT 1~. 1~5 29P 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABTAH ABUDA ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX ADVLN AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HX~ HZ~ IHE J1W KOM LX3 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SPD SSU SSZ T5K UNMZH UQL VQP WUQ ZGI ZY4 ~G- AATTM AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c319t-2d0fac06d6c23bbc194b0247f414ea53beaa4a2b6094e5d22f5ea073f955707c3 |
IEDL.DBID | .~1 |
ISSN | 0079-6107 1873-1732 |
IngestDate | Fri Jul 11 10:11:32 EDT 2025 Wed Feb 19 02:18:48 EST 2025 Tue Jul 01 00:42:42 EDT 2025 Sat Oct 19 15:55:13 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Magnetic therapy technology Neurodegenerative diseases Magnetic field Neuroprotective mechanism |
Language | English |
License | Copyright © 2024 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-2d0fac06d6c23bbc194b0247f414ea53beaa4a2b6094e5d22f5ea073f955707c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 39277139 |
PQID | 3105489195 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3105489195 pubmed_primary_39277139 crossref_primary_10_1016_j_pbiomolbio_2024_09_004 elsevier_sciencedirect_doi_10_1016_j_pbiomolbio_2024_09_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 2024-Nov 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Progress in biophysics and molecular biology |
PublicationTitleAlternate | Prog Biophys Mol Biol |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Furukawa, T., Izumi, S.-I., Toyokura, M., Masakado, Y., n.d. Effects of Low-Frequency Repetitive Transcranial Magnetic Stimulation in Parkinson's Disease. McLean, Engström, Qinkun, Spankovich, Polley (bib45) 2008; 80 Lin, Jin, Lv, Luo, Dai, Li, Tang, Wang, Ye, Lin (bib39) 2021; 9 Liang, Xu, Hu, Wen, Lin, Liu, Xu (bib38) 2021; 2021 Wang, Feng, Liu, Zhou, Yin, Liu, Yang (bib68) 2019; 16 Zeljkovic Jovanovic, Stanojevic, Stevanovic, Stekic, Bolland, Jasnic, Ninkovic, Zaric Kontic, Ilic, Rodger, Nedeljkovic, Dragic (bib74) 2023; 12 Laxer, Trinka, Hirsch, Cendes, Langfitt, Delanty, Resnick, Benbadis (bib31) 2014; 37 Rp, V, Jl, L (bib58) 2024; 82 Engel (bib13) 2018; 31 Chen, Chen, Liang, Ba (bib7) 2019; 2019 Rivadulla, Pardo-Vazquez, de Labra, Aguilar, Suarez, Paz, Álvarez-Dolado, Cudeiro (bib57) 2023; 370 Koch, Bonnì, Pellicciari, Casula, Mancini, Esposito, Ponzo, Picazio, Di Lorenzo, Serra, Motta, Maiella, Marra, Cercignani, Martorana, Caltagirone, Bozzali (bib28) 2018; 169 Chervyakov, Chernyavsky, Sinitsyn, Piradov (bib9) 2015; 9 Wang, Crupi, Liu, Stucky, Cruciata, Di Rocco, Friedman, Quartarone, Ghilardi (bib67) 2011; 31 Xing, Zhang, Li, Luo, Hua, Hu, Bai (bib70) 2023; 43 Yin, Zhao, Qiu (bib72) 2020; 72 Li, Wen, Xie, Hu, Wu, Wang (bib36) 2022; 12 Motta, Di Lorenzo, Ponzo, Pellicciari, Bonnì, Picazio, Mercuri, Caltagirone, Martorana, Koch (bib49) 2018; 89 He, Wang, Tsai (bib17) 2021; 35 Klomjai, Katz, Lackmy-Vallée (bib27) 2015; 58 Riancho, Sanchez De La Torre, Paz-Fajardo, Limia, Santurtun, Cifra, Kourtidis, Fdez-Arroyabe (bib55) 2021; 65 Morris, Skalak (bib48) 2007; 103 Li, Qi, Yu, Lian, Zheng, Wu, Yuan, Zhou (bib37) 2021; 14 Bertolino, Dutra Souza, De Araujo (bib3) 2013; 32 Nikitina, Vasileva, Shchegolev, Savvateeva-Popova (bib52) 2023; 53 Goldman, Postuma (bib15) 2014; 27 Kaur, Kumar, Medhi (bib24) 2016; 4 McNerney, Heath, Narayanan, Yesavage (bib46) 2022; 86 Huang, Zhu, Liao, Gao, Tao, Fang, Lian, Gao (bib19) 2023; 202 Kamble, Netravathi, Pal (bib23) 2014; 20 Huang, Chen, Leng, Kuo, Wang, Cui, Tan, Wang, Dong, Yu (bib20) 2022; 86 Li, Wang, Jiang, Zhang, Liu, Yin, Yang (bib34) 2021; 136 Long, Ye, Zhao, Zhang (bib41) 2015; 60 Kim, Lee, Kim, Kwon, Seo, Lee, Lee, Kim, Lee, Ye (bib26) 2024; 61 Málly, Geisz, Dinya (bib42) 2017; 135 Bao, Bao, Han, Hou, Feng (bib2) 2021; 13 Üstün Özek, Gürses, Bebek, Baykan, Gökyiğit, Öge (bib66) 2020; 112 Dimyan, Cohen (bib12) 2010; 24 Tan, Xie, Tong, Liu, Chen, Tian (bib63) 2013; 1520 Kawasaki, Okano, Ishiwatari, Kishi, Ishida (bib25) 2023; 28 Mao, Zhao, Ding, Liang, Xue, Chan, Cai (bib44) 2018; 668 Rivadulla, Aguilar, Coletti, Aguila, Prieto, Cudeiro (bib56) 2018; 8 Li, Liao, Gu, Zhang, Zhang, Tian, Li, Fang, Zhang (bib35) 2020; 41 Natale, Pignataro, Marino, Campanelli, Calabrese, Cardinale, Pelucchi, Marcello, Gardoni, Viscomi, Picconi, Ammassari‐Teule, Calabresi, Ghiglieri (bib51) 2021; 36 Jin, Chen, Du, He, Qi, Wu, Wang, Lin, Ren (bib22) 2022; 15 Chen, Classen, Gerloff, Celnik, Wassermann, Hallett, Cohen (bib6) 1997; 48 Han, He, Chen, Gao, Wang, Wang (bib16) 2023; 17 Chen, Dong, Wang (bib8) 2020; 10 Oyegbami, Collins, Pardon, Ebling, Heery, Moran (bib53) 2017; 14 Trung, Hanganu, Jobert, Degroot, Mejia-Constain, Kibreab, Bruneau, Lafontaine, Strafella, Monchi (bib65) 2019; 66 Cha, Kim, Kim, Choi, Choi, Kim, Cha, Kim (bib5) 2022; 13 Lin, Jin, Lv, Luo, Dai, Li, Tang, Wang, Ye, Lin (bib40) 2021; 9 Song, Chen, Yu, Zhang, Wang, Feng, Yang, Tian, Fan, Ji, Wang, Xie, Zhang (bib62) 2023; 6 Yingli, Zunke, Wei, Shiyan (bib73) 2022; 13 Pérocheau, Laroche, Perrot (bib54) 2014; 81 Cincotta, Borgheresi, Gambetti, Balestrieri, Rossi, Zaccara, Ulivelli, Rossi, Civardi, Cantello (bib10) 2003; 114 Man, Man, Plosker (bib43) 1999; 104 Mukhtar, Feuer, Beynel, Jones, Regenold, Lisanby (bib50) 2023; 39 László, Gyires (bib30) 2009; 84 Shon, Lim, Lim (bib60) 2019; 63 Wang, Che, Du, Ha, Yarema (bib69) 2010; 5 Lee, Kim, Ko, Lee, Yu, Seo, Cho, Cho (bib33) 2013; 1537 Tao, Zhao, Ge, Liao, Shao, Mo, Hu, Xu, Wu, Mu, Li, Tao, Wang (bib64) 2022; 355 Dileone, Mordillo-Mateos, Carrasco-Lopez, Segundo-Rodriguez, Lopez-Aristegui, Alonso-Frech, Catalan-Alonso, Obeso, Oliviero, Foffani (bib11) 2017; 10 Lee, Kim, Ko, Lee, Yu, Seo, Cho, Cho (bib32) 2013; 1537 Hong, Liu, Peng, Bai, Li, Sun, Guo, Xu, Xie, Li, Liu, Du, Liu, Yang, Xu (bib18) 2020; 17 Shimomura, Shibata, Koganemaru, Minakuchi, Ichimura, Itoh, Shimotake, Mima (bib59) 2023; 16 Arokiaraj (bib1) 2017; 17 Cao, Zuo, Gu, Huang, Yang, Zhu, Jiang, Wang (bib4) 2022; 54 Kyriacou, Rosato (bib29) 2022; 13 Huang, Tan, Du, Chen, Fu, Yu, Zhang, Song, Dong (bib21) 2017; 9 Mert, Sahin, Sahin, Yaman (bib47) 2020; 26 Xing, Zhang, Li, Luo, Hua, Hu, Bai (bib71) 2023; 43 Simonetta-Moreau (bib61) 2014; 57 Kaur (10.1016/j.pbiomolbio.2024.09.004_bib24) 2016; 4 Málly (10.1016/j.pbiomolbio.2024.09.004_bib42) 2017; 135 Lee (10.1016/j.pbiomolbio.2024.09.004_bib32) 2013; 1537 Yin (10.1016/j.pbiomolbio.2024.09.004_bib72) 2020; 72 Morris (10.1016/j.pbiomolbio.2024.09.004_bib48) 2007; 103 Trung (10.1016/j.pbiomolbio.2024.09.004_bib65) 2019; 66 Lee (10.1016/j.pbiomolbio.2024.09.004_bib33) 2013; 1537 Kamble (10.1016/j.pbiomolbio.2024.09.004_bib23) 2014; 20 Shon (10.1016/j.pbiomolbio.2024.09.004_bib60) 2019; 63 Xing (10.1016/j.pbiomolbio.2024.09.004_bib70) 2023; 43 Mao (10.1016/j.pbiomolbio.2024.09.004_bib44) 2018; 668 Shimomura (10.1016/j.pbiomolbio.2024.09.004_bib59) 2023; 16 Lin (10.1016/j.pbiomolbio.2024.09.004_bib40) 2021; 9 Cincotta (10.1016/j.pbiomolbio.2024.09.004_bib10) 2003; 114 Long (10.1016/j.pbiomolbio.2024.09.004_bib41) 2015; 60 Huang (10.1016/j.pbiomolbio.2024.09.004_bib20) 2022; 86 McNerney (10.1016/j.pbiomolbio.2024.09.004_bib46) 2022; 86 Rivadulla (10.1016/j.pbiomolbio.2024.09.004_bib56) 2018; 8 Tao (10.1016/j.pbiomolbio.2024.09.004_bib64) 2022; 355 Motta (10.1016/j.pbiomolbio.2024.09.004_bib49) 2018; 89 Tan (10.1016/j.pbiomolbio.2024.09.004_bib63) 2013; 1520 10.1016/j.pbiomolbio.2024.09.004_bib14 Xing (10.1016/j.pbiomolbio.2024.09.004_bib71) 2023; 43 Cha (10.1016/j.pbiomolbio.2024.09.004_bib5) 2022; 13 Huang (10.1016/j.pbiomolbio.2024.09.004_bib21) 2017; 9 Rivadulla (10.1016/j.pbiomolbio.2024.09.004_bib57) 2023; 370 Chervyakov (10.1016/j.pbiomolbio.2024.09.004_bib9) 2015; 9 Huang (10.1016/j.pbiomolbio.2024.09.004_bib19) 2023; 202 Wang (10.1016/j.pbiomolbio.2024.09.004_bib68) 2019; 16 Pérocheau (10.1016/j.pbiomolbio.2024.09.004_bib54) 2014; 81 Engel (10.1016/j.pbiomolbio.2024.09.004_bib13) 2018; 31 Jin (10.1016/j.pbiomolbio.2024.09.004_bib22) 2022; 15 Laxer (10.1016/j.pbiomolbio.2024.09.004_bib31) 2014; 37 Mert (10.1016/j.pbiomolbio.2024.09.004_bib47) 2020; 26 Bao (10.1016/j.pbiomolbio.2024.09.004_bib2) 2021; 13 Üstün Özek (10.1016/j.pbiomolbio.2024.09.004_bib66) 2020; 112 Riancho (10.1016/j.pbiomolbio.2024.09.004_bib55) 2021; 65 Wang (10.1016/j.pbiomolbio.2024.09.004_bib67) 2011; 31 Dileone (10.1016/j.pbiomolbio.2024.09.004_bib11) 2017; 10 Li (10.1016/j.pbiomolbio.2024.09.004_bib35) 2020; 41 Li (10.1016/j.pbiomolbio.2024.09.004_bib36) 2022; 12 Goldman (10.1016/j.pbiomolbio.2024.09.004_bib15) 2014; 27 Wang (10.1016/j.pbiomolbio.2024.09.004_bib69) 2010; 5 Man (10.1016/j.pbiomolbio.2024.09.004_bib43) 1999; 104 Lin (10.1016/j.pbiomolbio.2024.09.004_bib39) 2021; 9 Li (10.1016/j.pbiomolbio.2024.09.004_bib34) 2021; 136 Natale (10.1016/j.pbiomolbio.2024.09.004_bib51) 2021; 36 Han (10.1016/j.pbiomolbio.2024.09.004_bib16) 2023; 17 Oyegbami (10.1016/j.pbiomolbio.2024.09.004_bib53) 2017; 14 Simonetta-Moreau (10.1016/j.pbiomolbio.2024.09.004_bib61) 2014; 57 Song (10.1016/j.pbiomolbio.2024.09.004_bib62) 2023; 6 Klomjai (10.1016/j.pbiomolbio.2024.09.004_bib27) 2015; 58 László (10.1016/j.pbiomolbio.2024.09.004_bib30) 2009; 84 Zeljkovic Jovanovic (10.1016/j.pbiomolbio.2024.09.004_bib74) 2023; 12 Rp (10.1016/j.pbiomolbio.2024.09.004_bib58) 2024; 82 Kyriacou (10.1016/j.pbiomolbio.2024.09.004_bib29) 2022; 13 Yingli (10.1016/j.pbiomolbio.2024.09.004_bib73) 2022; 13 Dimyan (10.1016/j.pbiomolbio.2024.09.004_bib12) 2010; 24 Koch (10.1016/j.pbiomolbio.2024.09.004_bib28) 2018; 169 Nikitina (10.1016/j.pbiomolbio.2024.09.004_bib52) 2023; 53 Chen (10.1016/j.pbiomolbio.2024.09.004_bib7) 2019; 2019 Li (10.1016/j.pbiomolbio.2024.09.004_bib37) 2021; 14 McLean (10.1016/j.pbiomolbio.2024.09.004_bib45) 2008; 80 Chen (10.1016/j.pbiomolbio.2024.09.004_bib6) 1997; 48 Chen (10.1016/j.pbiomolbio.2024.09.004_bib8) 2020; 10 Liang (10.1016/j.pbiomolbio.2024.09.004_bib38) 2021; 2021 Bertolino (10.1016/j.pbiomolbio.2024.09.004_bib3) 2013; 32 Arokiaraj (10.1016/j.pbiomolbio.2024.09.004_bib1) 2017; 17 Hong (10.1016/j.pbiomolbio.2024.09.004_bib18) 2020; 17 Kim (10.1016/j.pbiomolbio.2024.09.004_bib26) 2024; 61 Mukhtar (10.1016/j.pbiomolbio.2024.09.004_bib50) 2023; 39 Cao (10.1016/j.pbiomolbio.2024.09.004_bib4) 2022; 54 Kawasaki (10.1016/j.pbiomolbio.2024.09.004_bib25) 2023; 28 He (10.1016/j.pbiomolbio.2024.09.004_bib17) 2021; 35 |
References_xml | – volume: 27 start-page: 434 year: 2014 end-page: 441 ident: bib15 article-title: Premotor and nonmotor features of Parkinson's disease publication-title: Curr. Opin. Neurol. – volume: 65 start-page: 107 year: 2021 end-page: 117 ident: bib55 article-title: The role of magnetic fields in neurodegenerative diseases publication-title: Int. J. Biometeorol. – volume: 8 year: 2018 ident: bib56 article-title: Static magnetic fields reduce epileptiform activity in anesthetized rat and monkey publication-title: Sci. Rep. – volume: 12 start-page: 1525 year: 2023 ident: bib74 article-title: Intermittent theta burst stimulation improves motor and behavioral dysfunction through modulation of NMDA receptor subunit composition in experimental model of Parkinson's disease publication-title: Cells – volume: 86 start-page: 499 year: 2022 end-page: 507 ident: bib46 article-title: Repetitive transcranial magnetic stimulation improves brain-derived neurotrophic factor and cholinergic signaling in the 3xTgAD mouse model of alzheimer's disease publication-title: J Alzheimers Dis – volume: 24 start-page: 125 year: 2010 end-page: 135 ident: bib12 article-title: Contribution of transcranial magnetic stimulation to the understanding of functional recovery mechanisms after stroke publication-title: Neurorehabilitation Neural Repair – volume: 13 start-page: 26034 year: 2021 end-page: 26045 ident: bib2 article-title: rTMS alleviates AD-induced cognitive impairment by inhibitng apoptosis in SAMP8 mouse publication-title: Aging – volume: 9 start-page: 303 year: 2015 ident: bib9 article-title: Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation publication-title: Front. Hum. Neurosci. – volume: 82 year: 2024 ident: bib58 article-title: The clinical diagnosis of Parkinson's disease publication-title: Arquivos de neuro-psiquiatria – volume: 35 start-page: 986 year: 2021 end-page: 995 ident: bib17 article-title: Theta burst magnetic stimulation improves Parkinson’s-related cognitive impairment: a randomised controlled study publication-title: Neurorehabilitation Neural Repair – volume: 2019 start-page: 1 year: 2019 end-page: 8 ident: bib7 article-title: Administration of repetitive transcranial magnetic stimulation attenuates A publication-title: BioMed Res. Int. – volume: 202 year: 2023 ident: bib19 article-title: The long-term effects of intermittent theta burst stimulation on Alzheimer's disease-type pathologies in APP/PS1 mice publication-title: Brain Res. Bull. – volume: 81 start-page: 22 year: 2014 end-page: 26 ident: bib54 article-title: Relieving pain in rheumatology patients: repetitive transcranial magnetic stimulation (rTMS), a developing approach publication-title: Joint Bone Spine – volume: 1520 start-page: 23 year: 2013 end-page: 35 ident: bib63 article-title: Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons publication-title: Brain Res. – volume: 28 start-page: 496 year: 2023 end-page: 502 ident: bib25 article-title: A role of cryptochrome for magnetic field‐dependent improvement of sleep quality, lifespan, and motor function in publication-title: Gene Cell. – volume: 16 start-page: 933 year: 2023 end-page: 935 ident: bib59 article-title: Transcranial static magnetic field stimulation (tSMS) can induce functional recovery in patients with subacute stroke publication-title: Brain Stimul. – volume: 14 start-page: 503 year: 2021 end-page: 510 ident: bib37 article-title: Cortical plasticity is correlated with cognitive improvement in Alzheimer's disease patients after rTMS treatment publication-title: Brain Stimul. – reference: Furukawa, T., Izumi, S.-I., Toyokura, M., Masakado, Y., n.d. Effects of Low-Frequency Repetitive Transcranial Magnetic Stimulation in Parkinson's Disease. – volume: 57 start-page: 530 year: 2014 end-page: 542 ident: bib61 article-title: Non-invasive brain stimulation (NIBS) and motor recovery after stroke publication-title: Ann Phys Rehabil Med – volume: 60 start-page: 2107 year: 2015 end-page: 2119 ident: bib41 article-title: Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor publication-title: Sci. Bull. – volume: 39 start-page: 271 year: 2023 end-page: 273 ident: bib50 article-title: Distinguishing convulsive syncope from seizure induced by repetitive transcranial magnetic stimulation: a case report publication-title: J. ECT – volume: 36 start-page: 2254 year: 2021 end-page: 2263 ident: bib51 article-title: Transcranial magnetic stimulation exerts “rejuvenation” effects on corticostriatal synapses after partial dopamine depletion publication-title: Mov. Disord. – volume: 17 year: 2023 ident: bib16 article-title: Intermittent theta burst stimulation vs. high-frequency repetitive transcranial magnetic stimulation for post-stroke cognitive impairment: protocol of a pilot randomized controlled double-blind trial publication-title: Front. Neurosci. – volume: 26 start-page: 18 year: 2020 end-page: 28 ident: bib47 article-title: Magnetic field exposure modulates the anti-inflammatory efficiency of minocycline in rats with peripheral acute inflammation publication-title: Alternative Ther. Health Med. – volume: 14 start-page: 850 year: 2017 end-page: 860 ident: bib53 article-title: Abnormal clock gene expression and locomotor activity rhythms in two month-old female APPSwe/PS1dE9 mice publication-title: Curr. Alzheimer Res. – volume: 17 start-page: 209 year: 2017 ident: bib1 article-title: A novel targeted angiogenesis technique using VEGF conjugated magnetic nanoparticles and in-vitro endothelial barrier crossing publication-title: BMC Cardiovasc. Disord. – volume: 20 start-page: 695 year: 2014 end-page: 707 ident: bib23 article-title: Therapeutic applications of repetitive transcranial magnetic stimulation (rTMS) in movement disorders: a review publication-title: Parkinsonism Relat. Disorders – volume: 31 start-page: 192 year: 2018 end-page: 197 ident: bib13 article-title: The current place of epilepsy surgery publication-title: Curr. Opin. Neurol. – volume: 169 start-page: 302 year: 2018 end-page: 311 ident: bib28 article-title: Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer's disease publication-title: Neuroimage – volume: 9 start-page: 102 year: 2021 ident: bib40 article-title: Repetitive transcranial magnetic stimulation increases the brain's drainage efficiency in a mouse model of Alzheimer's disease publication-title: acta neuropathol commun – volume: 104 start-page: 2261 year: 1999 end-page: 2266 ident: bib43 article-title: The influence of permanent magnetic field therapy on wound healing in suction lipectomy patients: a double-blind study publication-title: Plast. Reconstr. Surg. – volume: 16 start-page: 1210 year: 2019 end-page: 1224 ident: bib68 article-title: Transcranial magneto-acoustic stimulation improves neuroplasticity in Hippocampus of Parkinson's disease model mice publication-title: Neurotherapeutics – volume: 15 start-page: 601 year: 2022 end-page: 604 ident: bib22 article-title: Repetitive transcranial magnetic stimulation to treat benign epilepsy with centrotemporal spikes publication-title: Brain Stimul. – volume: 114 start-page: 1827 year: 2003 end-page: 1833 ident: bib10 article-title: Suprathreshold 0.3 Hz repetitive TMS prolongs the cortical silent period: potential implications for therapeutic trials in epilepsy publication-title: Clin. Neurophysiol. – volume: 668 start-page: 115 year: 2018 end-page: 119 ident: bib44 article-title: Pyrosequencing analysis of methylation levels of clock genes in leukocytes from Parkinson's disease patients publication-title: Neurosci. Lett. – volume: 10 start-page: 487 year: 2017 ident: bib11 article-title: Transcranial static magnetic field stimulation modulates motor cortex excitability in off medication PD patients publication-title: Brain Stimul. – volume: 37 start-page: 59 year: 2014 end-page: 70 ident: bib31 article-title: The consequences of refractory epilepsy and its treatment publication-title: Epilepsy Behav. – volume: 43 start-page: 1487 year: 2023 end-page: 1497 ident: bib71 article-title: Repetitive transcranial magnetic stimulation of the brain after ischemic stroke: mechanisms from animal models publication-title: Cell. Mol. Neurobiol. – volume: 80 start-page: 119 year: 2008 end-page: 131 ident: bib45 article-title: Effects of a static magnetic field on audiogenic seizures in black Swiss mice publication-title: Epilepsy Res. – volume: 103 start-page: 629 year: 2007 end-page: 636 ident: bib48 article-title: Chronic static magnetic field exposure alters microvessel enlargement resulting from surgical intervention publication-title: J. Appl. Physiol. – volume: 54 year: 2022 ident: bib4 article-title: High frequency repetitive transcranial magnetic stimulation alleviates cognitive deficits in 3xTg-AD mice by modulating the PI3K/Akt/GLT-1 axis publication-title: Redox Biol. – volume: 66 start-page: 3 year: 2019 end-page: 8 ident: bib65 article-title: Transcranial magnetic stimulation improves cognition over time in Parkinson's disease publication-title: Parkinsonism Relat. Disorders – volume: 31 start-page: 11044 year: 2011 end-page: 11054 ident: bib67 article-title: Repetitive transcranial magnetic stimulation enhances BDNF-TrkB signaling in both brain and lymphocyte publication-title: J. Neurosci. – volume: 10 year: 2020 ident: bib8 article-title: High‐frequency transcranial magnetic stimulation protects APP/PS1 mice against Alzheimer's disease progress by reducing APOE and enhancing autophagy publication-title: Brain and Behavior – volume: 58 start-page: 208 year: 2015 end-page: 213 ident: bib27 article-title: Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS) publication-title: Ann Phys Rehabil Med – volume: 89 start-page: 1237 year: 2018 end-page: 1242 ident: bib49 article-title: Transcranial magnetic stimulation predicts cognitive decline in patients with Alzheimer's disease publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 135 start-page: 98 year: 2017 end-page: 104 ident: bib42 article-title: Follow up study: the influence of rTMS with high and low frequency stimulation on motor and executive function in Parkinson's disease publication-title: Brain Res. Bull. – volume: 1537 start-page: 290 year: 2013 end-page: 302 ident: bib32 article-title: Therapeutic effects of repetitive transcranial magnetic stimulation in an animal model of Parkinson's disease publication-title: Brain Res. – volume: 6 start-page: 97 year: 2023 ident: bib62 article-title: Magnetic fields affect alcoholic liver disease by liver cell oxidative stress and proliferation regulation publication-title: Research – volume: 112 year: 2020 ident: bib66 article-title: Slow repetitive transcranial magnetic stimulation in refractory juvenile myoclonic epilepsies publication-title: Epilepsy Behav. – volume: 5 year: 2010 ident: bib69 article-title: Static magnetic field exposure reproduces cellular effects of the Parkinson's disease drug candidate ZM241385 publication-title: PLoS One – volume: 61 start-page: 1687 year: 2024 end-page: 1703 ident: bib26 article-title: Protective effects of repetitive transcranial magnetic stimulation against streptozotocin-induced alzheimer's disease publication-title: Mol. Neurobiol. – volume: 2021 year: 2021 ident: bib38 article-title: Repetitive transcranial magnetic stimulation improves neuropathy and oxidative stress levels in rats with experimental cerebral infarction through the Nrf2 signaling pathway publication-title: Evid Based Complement Alternat Med – volume: 72 start-page: 539 year: 2020 end-page: 550 ident: bib72 article-title: Brain-derived neurotrophic factor fused with a collagen-binding domain inhibits neuroinflammation and promotes neurological recovery of traumatic brain injury mice via TrkB signalling publication-title: J. Pharm. Pharmacol. – volume: 13 year: 2022 ident: bib5 article-title: Therapeutic effect of repetitive transcranial magnetic stimulation for post-stroke vascular cognitive impairment: a prospective pilot study publication-title: Front. Neurol. – volume: 9 start-page: 102 year: 2021 ident: bib39 article-title: Repetitive transcranial magnetic stimulation increases the brain's drainage efficiency in a mouse model of Alzheimer's disease publication-title: Acta Neuropathol Commun – volume: 9 start-page: 292 year: 2017 ident: bib21 article-title: Low-frequency repetitive transcranial magnetic stimulation ameliorates cognitive function and synaptic plasticity in APP23/PS45 mouse model of alzheimer's disease publication-title: Front. Aging Neurosci. – volume: 13 year: 2022 ident: bib29 article-title: Genetic analysis of cryptochrome in insect magnetosensitivity publication-title: Front. Physiol. – volume: 86 start-page: 983 year: 2022 end-page: 999 ident: bib20 article-title: Post-stroke cognitive impairment: epidemiology, risk factors, and management publication-title: J Alzheimers Dis – volume: 12 year: 2022 ident: bib36 article-title: Improvement of poststroke cognitive impairment by intermittent theta bursts: a double-blind randomized controlled trial publication-title: Brain Behav – volume: 370 year: 2023 ident: bib57 article-title: Transcranial static magnetic stimulation reduces seizures in a mouse model of Dravet syndrome publication-title: Exp. Neurol. – volume: 136 start-page: 204 year: 2021 end-page: 216 ident: bib34 article-title: Early intervention attenuates synaptic plasticity impairment and neuroinflammation in 5xFAD mice publication-title: J. Psychiatr. Res. – volume: 48 start-page: 1398 year: 1997 end-page: 1403 ident: bib6 article-title: Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation publication-title: Neurology – volume: 84 start-page: 12 year: 2009 end-page: 17 ident: bib30 article-title: 3 T homogeneous static magnetic field of a clinical MR significantly inhibits pain in mice publication-title: Life Sci. – volume: 355 start-page: 150 year: 2022 end-page: 159 ident: bib64 article-title: Necroptosis in pulmonary macrophages promotes silica-induced inflammation and interstitial fibrosis in mice publication-title: Toxicol. Lett. – volume: 1537 start-page: 290 year: 2013 end-page: 302 ident: bib33 article-title: Therapeutic effects of repetitive transcranial magnetic stimulation in an animal model of Parkinson's disease publication-title: Brain Res. – volume: 13 year: 2022 ident: bib73 article-title: Cerebral activity manipulation of low-frequency repetitive transcranial magnetic stimulation in post-stroke patients with cognitive impairment publication-title: Front. Neurol. – volume: 63 start-page: 130 year: 2019 end-page: 133 ident: bib60 article-title: Therapeutic effect of repetitive transcranial magnetic stimulation on non-lesional focal refractory epilepsy publication-title: J. Clin. Neurosci. – volume: 41 start-page: 52 year: 2020 end-page: 62 ident: bib35 article-title: Moderate intensity static magnetic fields prevent thrombus formation in rats and mice publication-title: Bioelectromagnetics – volume: 17 start-page: 150 year: 2020 ident: bib18 article-title: High-frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats publication-title: J. Neuroinflammation – volume: 32 start-page: 527 year: 2013 end-page: 535 ident: bib3 article-title: Neuropathology and behavioral impairments in Wistar rats with a 6-OHDA lesion in the substantia nigra compacta and exposure to a static magnetic field publication-title: Electromagn. Biol. Med. – volume: 53 start-page: 542 year: 2023 end-page: 553 ident: bib52 article-title: Weak static magnetic field: actions on the nervous system publication-title: Neurosci. Behav. Physiol. – volume: 4 start-page: 42 year: 2016 end-page: 51 ident: bib24 article-title: Antiepileptic drugs in development pipeline: a recent update publication-title: eNeurologicalSci – volume: 43 start-page: 1487 year: 2023 end-page: 1497 ident: bib70 article-title: Repetitive transcranial magnetic stimulation of the brain after ischemic stroke: mechanisms from animal models publication-title: Cell. Mol. Neurobiol. – volume: 43 start-page: 1487 year: 2023 ident: 10.1016/j.pbiomolbio.2024.09.004_bib70 article-title: Repetitive transcranial magnetic stimulation of the brain after ischemic stroke: mechanisms from animal models publication-title: Cell. Mol. Neurobiol. doi: 10.1007/s10571-022-01264-x – volume: 14 start-page: 503 year: 2021 ident: 10.1016/j.pbiomolbio.2024.09.004_bib37 article-title: Cortical plasticity is correlated with cognitive improvement in Alzheimer's disease patients after rTMS treatment publication-title: Brain Stimul. doi: 10.1016/j.brs.2021.01.012 – volume: 9 start-page: 102 year: 2021 ident: 10.1016/j.pbiomolbio.2024.09.004_bib40 article-title: Repetitive transcranial magnetic stimulation increases the brain's drainage efficiency in a mouse model of Alzheimer's disease publication-title: acta neuropathol commun doi: 10.1186/s40478-021-01198-3 – volume: 63 start-page: 130 year: 2019 ident: 10.1016/j.pbiomolbio.2024.09.004_bib60 article-title: Therapeutic effect of repetitive transcranial magnetic stimulation on non-lesional focal refractory epilepsy publication-title: J. Clin. Neurosci. doi: 10.1016/j.jocn.2019.01.025 – volume: 135 start-page: 98 year: 2017 ident: 10.1016/j.pbiomolbio.2024.09.004_bib42 article-title: Follow up study: the influence of rTMS with high and low frequency stimulation on motor and executive function in Parkinson's disease publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2017.10.002 – volume: 370 year: 2023 ident: 10.1016/j.pbiomolbio.2024.09.004_bib57 article-title: Transcranial static magnetic stimulation reduces seizures in a mouse model of Dravet syndrome publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2023.114581 – volume: 16 start-page: 933 year: 2023 ident: 10.1016/j.pbiomolbio.2024.09.004_bib59 article-title: Transcranial static magnetic field stimulation (tSMS) can induce functional recovery in patients with subacute stroke publication-title: Brain Stimul. doi: 10.1016/j.brs.2023.05.024 – volume: 20 start-page: 695 year: 2014 ident: 10.1016/j.pbiomolbio.2024.09.004_bib23 article-title: Therapeutic applications of repetitive transcranial magnetic stimulation (rTMS) in movement disorders: a review publication-title: Parkinsonism Relat. Disorders doi: 10.1016/j.parkreldis.2014.03.018 – volume: 12 year: 2022 ident: 10.1016/j.pbiomolbio.2024.09.004_bib36 article-title: Improvement of poststroke cognitive impairment by intermittent theta bursts: a double-blind randomized controlled trial publication-title: Brain Behav doi: 10.1002/brb3.2569 – volume: 57 start-page: 530 year: 2014 ident: 10.1016/j.pbiomolbio.2024.09.004_bib61 article-title: Non-invasive brain stimulation (NIBS) and motor recovery after stroke publication-title: Ann Phys Rehabil Med doi: 10.1016/j.rehab.2014.08.003 – volume: 72 start-page: 539 year: 2020 ident: 10.1016/j.pbiomolbio.2024.09.004_bib72 article-title: Brain-derived neurotrophic factor fused with a collagen-binding domain inhibits neuroinflammation and promotes neurological recovery of traumatic brain injury mice via TrkB signalling publication-title: J. Pharm. Pharmacol. doi: 10.1111/jphp.13233 – volume: 1537 start-page: 290 year: 2013 ident: 10.1016/j.pbiomolbio.2024.09.004_bib32 article-title: Therapeutic effects of repetitive transcranial magnetic stimulation in an animal model of Parkinson's disease publication-title: Brain Res. doi: 10.1016/j.brainres.2013.08.051 – volume: 81 start-page: 22 year: 2014 ident: 10.1016/j.pbiomolbio.2024.09.004_bib54 article-title: Relieving pain in rheumatology patients: repetitive transcranial magnetic stimulation (rTMS), a developing approach publication-title: Joint Bone Spine doi: 10.1016/j.jbspin.2013.04.015 – volume: 48 start-page: 1398 year: 1997 ident: 10.1016/j.pbiomolbio.2024.09.004_bib6 article-title: Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation publication-title: Neurology doi: 10.1212/WNL.48.5.1398 – volume: 13 year: 2022 ident: 10.1016/j.pbiomolbio.2024.09.004_bib73 article-title: Cerebral activity manipulation of low-frequency repetitive transcranial magnetic stimulation in post-stroke patients with cognitive impairment publication-title: Front. Neurol. doi: 10.3389/fneur.2022.951209 – volume: 58 start-page: 208 year: 2015 ident: 10.1016/j.pbiomolbio.2024.09.004_bib27 article-title: Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS) publication-title: Ann Phys Rehabil Med doi: 10.1016/j.rehab.2015.05.005 – volume: 17 start-page: 209 year: 2017 ident: 10.1016/j.pbiomolbio.2024.09.004_bib1 article-title: A novel targeted angiogenesis technique using VEGF conjugated magnetic nanoparticles and in-vitro endothelial barrier crossing publication-title: BMC Cardiovasc. Disord. doi: 10.1186/s12872-017-0643-x – volume: 39 start-page: 271 year: 2023 ident: 10.1016/j.pbiomolbio.2024.09.004_bib50 article-title: Distinguishing convulsive syncope from seizure induced by repetitive transcranial magnetic stimulation: a case report publication-title: J. ECT doi: 10.1097/YCT.0000000000000959 – volume: 16 start-page: 1210 year: 2019 ident: 10.1016/j.pbiomolbio.2024.09.004_bib68 article-title: Transcranial magneto-acoustic stimulation improves neuroplasticity in Hippocampus of Parkinson's disease model mice publication-title: Neurotherapeutics doi: 10.1007/s13311-019-00732-5 – volume: 36 start-page: 2254 year: 2021 ident: 10.1016/j.pbiomolbio.2024.09.004_bib51 article-title: Transcranial magnetic stimulation exerts “rejuvenation” effects on corticostriatal synapses after partial dopamine depletion publication-title: Mov. Disord. doi: 10.1002/mds.28671 – volume: 668 start-page: 115 year: 2018 ident: 10.1016/j.pbiomolbio.2024.09.004_bib44 article-title: Pyrosequencing analysis of methylation levels of clock genes in leukocytes from Parkinson's disease patients publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2018.01.027 – volume: 80 start-page: 119 year: 2008 ident: 10.1016/j.pbiomolbio.2024.09.004_bib45 article-title: Effects of a static magnetic field on audiogenic seizures in black Swiss mice publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2008.03.022 – volume: 104 start-page: 2261 year: 1999 ident: 10.1016/j.pbiomolbio.2024.09.004_bib43 article-title: The influence of permanent magnetic field therapy on wound healing in suction lipectomy patients: a double-blind study publication-title: Plast. Reconstr. Surg. doi: 10.1097/00006534-199912000-00053 – volume: 82 year: 2024 ident: 10.1016/j.pbiomolbio.2024.09.004_bib58 article-title: The clinical diagnosis of Parkinson's disease publication-title: Arquivos de neuro-psiquiatria – volume: 86 start-page: 499 year: 2022 ident: 10.1016/j.pbiomolbio.2024.09.004_bib46 article-title: Repetitive transcranial magnetic stimulation improves brain-derived neurotrophic factor and cholinergic signaling in the 3xTgAD mouse model of alzheimer's disease publication-title: J Alzheimers Dis doi: 10.3233/JAD-215361 – volume: 8 year: 2018 ident: 10.1016/j.pbiomolbio.2024.09.004_bib56 article-title: Static magnetic fields reduce epileptiform activity in anesthetized rat and monkey publication-title: Sci. Rep. doi: 10.1038/s41598-018-33808-x – volume: 27 start-page: 434 year: 2014 ident: 10.1016/j.pbiomolbio.2024.09.004_bib15 article-title: Premotor and nonmotor features of Parkinson's disease publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0000000000000112 – volume: 31 start-page: 192 year: 2018 ident: 10.1016/j.pbiomolbio.2024.09.004_bib13 article-title: The current place of epilepsy surgery publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0000000000000528 – volume: 41 start-page: 52 year: 2020 ident: 10.1016/j.pbiomolbio.2024.09.004_bib35 article-title: Moderate intensity static magnetic fields prevent thrombus formation in rats and mice publication-title: Bioelectromagnetics doi: 10.1002/bem.22232 – volume: 112 year: 2020 ident: 10.1016/j.pbiomolbio.2024.09.004_bib66 article-title: Slow repetitive transcranial magnetic stimulation in refractory juvenile myoclonic epilepsies publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2020.107479 – volume: 10 start-page: 487 year: 2017 ident: 10.1016/j.pbiomolbio.2024.09.004_bib11 article-title: Transcranial static magnetic field stimulation modulates motor cortex excitability in off medication PD patients publication-title: Brain Stimul. doi: 10.1016/j.brs.2017.01.427 – volume: 2021 year: 2021 ident: 10.1016/j.pbiomolbio.2024.09.004_bib38 article-title: Repetitive transcranial magnetic stimulation improves neuropathy and oxidative stress levels in rats with experimental cerebral infarction through the Nrf2 signaling pathway publication-title: Evid Based Complement Alternat Med doi: 10.1155/2021/3908677 – volume: 5 year: 2010 ident: 10.1016/j.pbiomolbio.2024.09.004_bib69 article-title: Static magnetic field exposure reproduces cellular effects of the Parkinson's disease drug candidate ZM241385 publication-title: PLoS One – volume: 1520 start-page: 23 year: 2013 ident: 10.1016/j.pbiomolbio.2024.09.004_bib63 article-title: Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons publication-title: Brain Res. doi: 10.1016/j.brainres.2013.04.053 – volume: 10 year: 2020 ident: 10.1016/j.pbiomolbio.2024.09.004_bib8 article-title: High‐frequency transcranial magnetic stimulation protects APP/PS1 mice against Alzheimer's disease progress by reducing APOE and enhancing autophagy publication-title: Brain and Behavior doi: 10.1002/brb3.1740 – volume: 28 start-page: 496 year: 2023 ident: 10.1016/j.pbiomolbio.2024.09.004_bib25 article-title: A role of cryptochrome for magnetic field‐dependent improvement of sleep quality, lifespan, and motor function in Drosophila publication-title: Gene Cell. doi: 10.1111/gtc.13030 – volume: 355 start-page: 150 year: 2022 ident: 10.1016/j.pbiomolbio.2024.09.004_bib64 article-title: Necroptosis in pulmonary macrophages promotes silica-induced inflammation and interstitial fibrosis in mice publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2021.11.015 – volume: 26 start-page: 18 year: 2020 ident: 10.1016/j.pbiomolbio.2024.09.004_bib47 article-title: Magnetic field exposure modulates the anti-inflammatory efficiency of minocycline in rats with peripheral acute inflammation publication-title: Alternative Ther. Health Med. – volume: 169 start-page: 302 year: 2018 ident: 10.1016/j.pbiomolbio.2024.09.004_bib28 article-title: Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.12.048 – volume: 14 start-page: 850 year: 2017 ident: 10.1016/j.pbiomolbio.2024.09.004_bib53 article-title: Abnormal clock gene expression and locomotor activity rhythms in two month-old female APPSwe/PS1dE9 mice publication-title: Curr. Alzheimer Res. doi: 10.2174/1567205014666170317113159 – volume: 17 start-page: 150 year: 2020 ident: 10.1016/j.pbiomolbio.2024.09.004_bib18 article-title: High-frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats publication-title: J. Neuroinflammation doi: 10.1186/s12974-020-01747-y – volume: 37 start-page: 59 year: 2014 ident: 10.1016/j.pbiomolbio.2024.09.004_bib31 article-title: The consequences of refractory epilepsy and its treatment publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2014.05.031 – volume: 13 start-page: 26034 year: 2021 ident: 10.1016/j.pbiomolbio.2024.09.004_bib2 article-title: rTMS alleviates AD-induced cognitive impairment by inhibitng apoptosis in SAMP8 mouse publication-title: Aging doi: 10.18632/aging.203796 – volume: 86 start-page: 983 year: 2022 ident: 10.1016/j.pbiomolbio.2024.09.004_bib20 article-title: Post-stroke cognitive impairment: epidemiology, risk factors, and management publication-title: J Alzheimers Dis doi: 10.3233/JAD-215644 – volume: 12 start-page: 1525 year: 2023 ident: 10.1016/j.pbiomolbio.2024.09.004_bib74 article-title: Intermittent theta burst stimulation improves motor and behavioral dysfunction through modulation of NMDA receptor subunit composition in experimental model of Parkinson's disease publication-title: Cells doi: 10.3390/cells12111525 – volume: 136 start-page: 204 year: 2021 ident: 10.1016/j.pbiomolbio.2024.09.004_bib34 article-title: Early intervention attenuates synaptic plasticity impairment and neuroinflammation in 5xFAD mice publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2021.02.007 – volume: 53 start-page: 542 year: 2023 ident: 10.1016/j.pbiomolbio.2024.09.004_bib52 article-title: Weak static magnetic field: actions on the nervous system publication-title: Neurosci. Behav. Physiol. doi: 10.1007/s11055-023-01453-1 – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2024.09.004_bib7 article-title: Administration of repetitive transcranial magnetic stimulation attenuates A β 1-42 -induced alzheimer's disease in mice by activating β -catenin signaling publication-title: BioMed Res. Int. – volume: 114 start-page: 1827 year: 2003 ident: 10.1016/j.pbiomolbio.2024.09.004_bib10 article-title: Suprathreshold 0.3 Hz repetitive TMS prolongs the cortical silent period: potential implications for therapeutic trials in epilepsy publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(03)00181-0 – volume: 61 start-page: 1687 year: 2024 ident: 10.1016/j.pbiomolbio.2024.09.004_bib26 article-title: Protective effects of repetitive transcranial magnetic stimulation against streptozotocin-induced alzheimer's disease publication-title: Mol. Neurobiol. doi: 10.1007/s12035-023-03573-8 – volume: 4 start-page: 42 year: 2016 ident: 10.1016/j.pbiomolbio.2024.09.004_bib24 article-title: Antiepileptic drugs in development pipeline: a recent update publication-title: eNeurologicalSci doi: 10.1016/j.ensci.2016.06.003 – volume: 13 year: 2022 ident: 10.1016/j.pbiomolbio.2024.09.004_bib29 article-title: Genetic analysis of cryptochrome in insect magnetosensitivity publication-title: Front. Physiol. doi: 10.3389/fphys.2022.928416 – volume: 6 start-page: 97 year: 2023 ident: 10.1016/j.pbiomolbio.2024.09.004_bib62 article-title: Magnetic fields affect alcoholic liver disease by liver cell oxidative stress and proliferation regulation publication-title: Research doi: 10.34133/research.0097 – volume: 32 start-page: 527 year: 2013 ident: 10.1016/j.pbiomolbio.2024.09.004_bib3 article-title: Neuropathology and behavioral impairments in Wistar rats with a 6-OHDA lesion in the substantia nigra compacta and exposure to a static magnetic field publication-title: Electromagn. Biol. Med. doi: 10.3109/15368378.2012.751394 – volume: 15 start-page: 601 year: 2022 ident: 10.1016/j.pbiomolbio.2024.09.004_bib22 article-title: Repetitive transcranial magnetic stimulation to treat benign epilepsy with centrotemporal spikes publication-title: Brain Stimul. doi: 10.1016/j.brs.2022.04.003 – volume: 31 start-page: 11044 year: 2011 ident: 10.1016/j.pbiomolbio.2024.09.004_bib67 article-title: Repetitive transcranial magnetic stimulation enhances BDNF-TrkB signaling in both brain and lymphocyte publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2125-11.2011 – volume: 66 start-page: 3 year: 2019 ident: 10.1016/j.pbiomolbio.2024.09.004_bib65 article-title: Transcranial magnetic stimulation improves cognition over time in Parkinson's disease publication-title: Parkinsonism Relat. Disorders doi: 10.1016/j.parkreldis.2019.07.006 – volume: 60 start-page: 2107 year: 2015 ident: 10.1016/j.pbiomolbio.2024.09.004_bib41 article-title: Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor publication-title: Sci. Bull. doi: 10.1007/s11434-015-0902-0 – volume: 9 start-page: 292 year: 2017 ident: 10.1016/j.pbiomolbio.2024.09.004_bib21 article-title: Low-frequency repetitive transcranial magnetic stimulation ameliorates cognitive function and synaptic plasticity in APP23/PS45 mouse model of alzheimer's disease publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2017.00292 – volume: 43 start-page: 1487 year: 2023 ident: 10.1016/j.pbiomolbio.2024.09.004_bib71 article-title: Repetitive transcranial magnetic stimulation of the brain after ischemic stroke: mechanisms from animal models publication-title: Cell. Mol. Neurobiol. doi: 10.1007/s10571-022-01264-x – volume: 35 start-page: 986 year: 2021 ident: 10.1016/j.pbiomolbio.2024.09.004_bib17 article-title: Theta burst magnetic stimulation improves Parkinson’s-related cognitive impairment: a randomised controlled study publication-title: Neurorehabilitation Neural Repair doi: 10.1177/1545968321104131 – volume: 9 start-page: 102 year: 2021 ident: 10.1016/j.pbiomolbio.2024.09.004_bib39 article-title: Repetitive transcranial magnetic stimulation increases the brain's drainage efficiency in a mouse model of Alzheimer's disease publication-title: Acta Neuropathol Commun doi: 10.1186/s40478-021-01198-3 – volume: 103 start-page: 629 issue: 1985 year: 2007 ident: 10.1016/j.pbiomolbio.2024.09.004_bib48 article-title: Chronic static magnetic field exposure alters microvessel enlargement resulting from surgical intervention publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01133.2006 – volume: 65 start-page: 107 year: 2021 ident: 10.1016/j.pbiomolbio.2024.09.004_bib55 article-title: The role of magnetic fields in neurodegenerative diseases publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-020-01896-y – ident: 10.1016/j.pbiomolbio.2024.09.004_bib14 – volume: 17 year: 2023 ident: 10.1016/j.pbiomolbio.2024.09.004_bib16 article-title: Intermittent theta burst stimulation vs. high-frequency repetitive transcranial magnetic stimulation for post-stroke cognitive impairment: protocol of a pilot randomized controlled double-blind trial publication-title: Front. Neurosci. doi: 10.3389/fnins.2023.1121043 – volume: 9 start-page: 303 year: 2015 ident: 10.1016/j.pbiomolbio.2024.09.004_bib9 article-title: Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00303 – volume: 202 year: 2023 ident: 10.1016/j.pbiomolbio.2024.09.004_bib19 article-title: The long-term effects of intermittent theta burst stimulation on Alzheimer's disease-type pathologies in APP/PS1 mice publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2023.110735 – volume: 89 start-page: 1237 year: 2018 ident: 10.1016/j.pbiomolbio.2024.09.004_bib49 article-title: Transcranial magnetic stimulation predicts cognitive decline in patients with Alzheimer's disease publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp-2017-317879 – volume: 1537 start-page: 290 year: 2013 ident: 10.1016/j.pbiomolbio.2024.09.004_bib33 article-title: Therapeutic effects of repetitive transcranial magnetic stimulation in an animal model of Parkinson's disease publication-title: Brain Res. doi: 10.1016/j.brainres.2013.08.051 – volume: 84 start-page: 12 year: 2009 ident: 10.1016/j.pbiomolbio.2024.09.004_bib30 article-title: 3 T homogeneous static magnetic field of a clinical MR significantly inhibits pain in mice publication-title: Life Sci. doi: 10.1016/j.lfs.2008.10.009 – volume: 54 year: 2022 ident: 10.1016/j.pbiomolbio.2024.09.004_bib4 article-title: High frequency repetitive transcranial magnetic stimulation alleviates cognitive deficits in 3xTg-AD mice by modulating the PI3K/Akt/GLT-1 axis publication-title: Redox Biol. doi: 10.1016/j.redox.2022.102354 – volume: 13 year: 2022 ident: 10.1016/j.pbiomolbio.2024.09.004_bib5 article-title: Therapeutic effect of repetitive transcranial magnetic stimulation for post-stroke vascular cognitive impairment: a prospective pilot study publication-title: Front. Neurol. doi: 10.3389/fneur.2022.813597 – volume: 24 start-page: 125 year: 2010 ident: 10.1016/j.pbiomolbio.2024.09.004_bib12 article-title: Contribution of transcranial magnetic stimulation to the understanding of functional recovery mechanisms after stroke publication-title: Neurorehabilitation Neural Repair doi: 10.1177/1545968309345270 |
SSID | ssj0002176 |
Score | 2.4346387 |
SecondaryResourceType | review_article |
Snippet | With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 35 |
SubjectTerms | Animals Humans Magnetic field Magnetic Field Therapy - methods Magnetic Fields Magnetic therapy technology Neurodegenerative diseases Neurodegenerative Diseases - therapy Neuroprotective mechanism |
Title | Research progress on the effects and mechanisms of magnetic field on neurodegenerative diseases |
URI | https://dx.doi.org/10.1016/j.pbiomolbio.2024.09.004 https://www.ncbi.nlm.nih.gov/pubmed/39277139 https://www.proquest.com/docview/3105489195 |
Volume | 193 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA5jIngRv50fI4LXujZJW4OnIY6puJOD3UKapGPiuuG2gxd_u28-6hAUBC-FtilNn6TvB3meNwhdMq0o5WkZqby89gkKB08XZaqQFIZcaWr1zk-DrD9kD6N01EC3tRbG0iqD7fc23VnrcKUT0OzMJxOr8c05OP_csiBj7hTljOV2ll99rGkeEHK79UpoHNnWgc3jOV5zq3GfvcIRMkXiK56GLdt-cFG_haDOFfV20HaIIXHXd3MXNUy1hzb9rpLv-0jUbDrsyFdgyvCswhDo4UDewLLSeGqs5neymMLdEk_luLJyRuwYbba9K3SpzdiVpbY2EYe1nMUBGvbunm_7UdhHIVKA9jIiOi6lijOdKUKLQiWcFfC1eckSZmRKCyMlk6TIINUzqSakTI2EX7_ktj5XrughalazyhwDdAXTkEybhCSaURJzKaHjkipdUhknqoWSGjox9-UyRM0jexFruIWFW8RcANwtdFNjLL4NvQCr_oenL-phEfBn2OUOWZnZaiEgcIV0jCc8baEjP15ffYKoMIf0nJ_8692naMueeWniGWou31bmHGKUZdF2k7CNNrr3j_3BJ3eu6FI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5jQ_RFvDuvEXwta5NeDD6N4djc5WmDvYU0SWXi2uG2B_-9J006ERQEX_rQJjT9TnNyDvm-E4TuQyUpZVHmySR7sAkKg5XOi2UqKJhcKmr0zqNx3JuGz7NoVkOdSgtjaJXO91ufXnprd6fl0Gwt53Oj8U0YLP6JYUH6zCjKG6Y6VVRHjXZ_0BtvHTJE3eWWJbT3TAdH6LE0r6WRuRdvcIVkkdiip-7Uth9Wqd-i0HI16h6gfRdG4rYd6SGq6fwI7diDJT-OEa8IdbjkX4E3w0WOIdbDjr-BRa7wQhvZ73y1gKcZXoiX3CgacUlqM-3LWpdKv5SVqY1bxG47Z3WCpt2nSafnuaMUPAmArz2i_ExIP1axJDRNZcDCFL42ycIg1CKiqRYiFCSNIdvTkSIki7SA2Z8xU6IrkfQU1fMi1-cAXRoqyKd1QAIVUuIzIWDggkqVUeEHsomCCjq-tBUzeEUle-VfcHMDN_cZB7ib6LHCmH-zPgfH_ofed5VZOEwOs-Mhcl1sVhxiV8jIWMCiJjqz9tqOCQLDBDJ0dvGvd9-i3d5kNOTD_nhwifbME6tUvEL19ftGX0PIsk5v3C_5CW4J6wM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+progress+on+the+effects+and+mechanisms+of+magnetic+field+on+neurodegenerative+diseases&rft.jtitle=Progress+in+biophysics+and+molecular+biology&rft.au=Ding%2C+Shuxian&rft.au=Li%2C+Jinhua&rft.au=Fang%2C+Yanwen&rft.au=Zhuo%2C+Xingjie&rft.date=2024-11-01&rft.issn=1873-1732&rft.eissn=1873-1732&rft.volume=193&rft.spage=35&rft_id=info:doi/10.1016%2Fj.pbiomolbio.2024.09.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6107&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6107&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6107&client=summon |