Modeling of Carbon Redistribution and Tetragonality Evolution in Supersaturated Ferrite

Martensite and bainite are formed from austenite through the rapid application of Bain’s strain. In several studies, martensite is considered as a body-centered tetragonal phase, but it can also be viewed as bcc ferrite supersaturated with carbon, subject to internal residual stresses from incomplet...

Full description

Saved in:
Bibliographic Details
Published inMetallurgical and materials transactions. A, Physical metallurgy and materials science Vol. 55; no. 12; pp. 4940 - 4953
Main Authors Svoboda, J., Ressel, G., Brandl, D.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Martensite and bainite are formed from austenite through the rapid application of Bain’s strain. In several studies, martensite is considered as a body-centered tetragonal phase, but it can also be viewed as bcc ferrite supersaturated with carbon, subject to internal residual stresses from incomplete relaxation of Bain’s strain. Recent electron backscatter diffraction measurements have revealed a broad spectrum of tetragonality in quenched martensite, which can be attributed to the diversity of internal stress rather than variations in carbon distribution. Therefore, a thermodynamic unit cell model is developed to calculate the kinetics of carbon atom occupancy in particular kinds of octahedral interstitial lattice sites, contributing to tetragonality in loaded ferrite. The model includes a Zener-ordering term that influences carbon atom distribution and consequently affects tetragonality. Simulations suggest that carbon redistribution among octahedral interstitial lattice sites reaches equilibrium with internal stress within an hour at room temperature. The presented model provides a framework for understanding tetragonality in martensite and bainite, incorporating the effects of internal stress and carbon atom distribution in particular kinds of octahedral interstitial lattice sites.
AbstractList Martensite and bainite are formed from austenite through the rapid application of Bain’s strain. In several studies, martensite is considered as a body-centered tetragonal phase, but it can also be viewed as bcc ferrite supersaturated with carbon, subject to internal residual stresses from incomplete relaxation of Bain’s strain. Recent electron backscatter diffraction measurements have revealed a broad spectrum of tetragonality in quenched martensite, which can be attributed to the diversity of internal stress rather than variations in carbon distribution. Therefore, a thermodynamic unit cell model is developed to calculate the kinetics of carbon atom occupancy in particular kinds of octahedral interstitial lattice sites, contributing to tetragonality in loaded ferrite. The model includes a Zener-ordering term that influences carbon atom distribution and consequently affects tetragonality. Simulations suggest that carbon redistribution among octahedral interstitial lattice sites reaches equilibrium with internal stress within an hour at room temperature. The presented model provides a framework for understanding tetragonality in martensite and bainite, incorporating the effects of internal stress and carbon atom distribution in particular kinds of octahedral interstitial lattice sites.
Author Brandl, D.
Ressel, G.
Svoboda, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Svoboda
  fullname: Svoboda, J.
  organization: Institute of Physics of Materials, Academy of Science of the Czech Republic
– sequence: 2
  givenname: G.
  surname: Ressel
  fullname: Ressel, G.
  organization: Materials Center, Leoben Forschung GmbH
– sequence: 3
  givenname: D.
  surname: Brandl
  fullname: Brandl, D.
  email: dominik.brandl@mcl.at
  organization: Materials Center, Leoben Forschung GmbH
BookMark eNp9kM1KAzEUhYMo2FZfwNWA69Fk8jezlNKqUBG04jJkkkxJGZOaZIS-vakjCC6aTXLJ-S7nnCk4dd4ZAK4QvEEQ8tuIEGOohBUpIaeclfQETBAluEQNgaf5DTkuKavwOZjGuIUQogazCXh_8tr01m0K3xVzGVrvihejbUzBtkOyeZROF2uTgtx4J3ub9sXiy_fjn3XF67AzIco0BJmMLpYmBJvMBTjrZB_N5e89A2_LxXr-UK6e7x_nd6tSYdSkslJQ05ooiokyrEXQkNpQinhbt5iyrpU5V8OJxJVuFM6HK9IRoo2WHDKOZ-B63LsL_nMwMYmtH0L2GQVGFSOkIphmVT2qVPAxBtMJZZM8JMixbC8QFIcaxVijyDWKnxrFAa3-obtgP2TYH4fwCMUsdhsT_lwdob4BhCiHfA
CitedBy_id crossref_primary_10_1016_j_scriptamat_2024_116461
Cites_doi 10.1016/j.actamat.2020.07.013
10.1103/PhysRevB.79.224112
10.1007/s11661-022-06724-z
10.1016/j.matchar.2021.111040
10.3390/ma15196653
10.1016/j.commatsci.2018.02.024
10.2355/isijinternational.ISIJINT-2023-144
10.1103/PhysRevB.90.144106
10.1016/j.scriptamat.2020.113632
10.1103/PhysRev.74.639
10.1016/j.pmatsci.2018.10.001
10.1016/j.jallcom.2018.08.060
10.1016/j.micron.2012.02.005
10.2355/isijinternational.ISIJINT-2023-220
10.1016/j.matpr.2015.07.345
10.1088/1361-651X/aaef22
10.1016/0956-7151(91)90200-K
10.1016/j.matchar.2022.111740
10.1007/BF02655099
10.1007/BF01330828
10.1016/j.matchar.2022.111774
10.1016/S0031-8914(41)90517-7
10.1103/PhysRevB.52.9979
10.1002/9781118147726.ch33
10.1103/PhysRevB.85.014112
10.1016/j.actamat.2019.11.051
10.1103/PhysRevB.81.224204
10.1016/0001-6160(75)90112-1
10.1007/s11661-012-1087-7
10.1016/0079-6425(92)90010-5
10.1016/j.jallcom.2022.164502
10.1016/j.matchemphys.2022.126159
10.2355/isijinternational.ISIJINT-2022-086
10.1111/jmi.12980
10.1016/j.actamat.2018.08.001
10.1016/j.scriptamat.2021.114182
10.1016/j.actamat.2015.03.018
10.1179/1743284714Y.0000000691
10.1016/S0921-5093(99)00288-9
10.1016/j.actamat.2020.10.048
10.1038/s41563-020-0677-9
10.2320/matertrans1989.33.208
10.2355/isijinternational.ISIJINT-2023-251
10.1016/j.calphad.2014.03.004
10.1016/j.actamat.2020.06.017
10.1103/PhysRevB.83.184112
10.1016/j.actamat.2017.05.048
10.1007/s11661-021-06249-x
10.1016/j.matlet.2018.05.084
10.2355/isijinternational.ISIJINT-2021-334
10.1103/PhysRevB.96.214104
10.1080/14786435.2013.775518
10.1134/S0031918X1601004X
10.1016/j.actamat.2013.11.050
ContentType Journal Article
Copyright The Minerals, Metals & Materials Society and ASM International 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Minerals, Metals & Materials Society and ASM International 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
4T-
4U-
7SR
8BQ
8FD
JG9
DOI 10.1007/s11661-024-07576-5
DatabaseName CrossRef
Docstoc
University Readers
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
University Readers
Technology Research Database
METADEX
Docstoc
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1543-1940
EndPage 4953
ExternalDocumentID 10_1007_s11661_024_07576_5
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
123
199
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5VS
67Z
6NX
6TJ
78A
88I
8AF
8AO
8FE
8FG
8FW
8G5
8UJ
8WZ
95-
95.
95~
96X
A6W
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIDUJ
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
CZ9
D1I
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GUQSH
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KB.
KC.
KDC
KOV
L6V
LLZTM
M2O
M2P
M2Q
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PDBOC
PF0
PQQKQ
PRG
PROAC
PT4
PT5
PTHSS
PZZ
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RWL
RZK
S0X
S16
S1Z
S26
S27
S28
S3B
SAP
SC5
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TSG
TSK
TSV
TUC
TUS
U2A
UG4
ULE
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ACMFV
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
4T-
4U-
7SR
8BQ
8FD
ABRTQ
JG9
ID FETCH-LOGICAL-c319t-2c0d584c534ce6b10e48e5517b8b356fba166974a32d9c33337c4f44deda70673
IEDL.DBID U2A
ISSN 1073-5623
IngestDate Fri Jul 25 19:12:20 EDT 2025
Tue Jul 01 02:52:59 EDT 2025
Thu Apr 24 23:08:56 EDT 2025
Fri Feb 21 02:36:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2c0d584c534ce6b10e48e5517b8b356fba166974a32d9c33337c4f44deda70673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3126442435
PQPubID 49316
PageCount 14
ParticipantIDs proquest_journals_3126442435
crossref_citationtrail_10_1007_s11661_024_07576_5
crossref_primary_10_1007_s11661_024_07576_5
springer_journals_10_1007_s11661_024_07576_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Physical metallurgy and materials science
PublicationTitle Metallurgical and materials transactions. A, Physical metallurgy and materials science
PublicationTitleAbbrev Metall Mater Trans A
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References LeeJKEarmmeYYAaronsonHIRussellKCMetall. Trans. A198011A1837184710.1007/BF02655099
HutchinsonBLynchPKadaSWangJISIJ Int.2024641761831:CAS:528:DC%2BB2cXjs1Chs7k%3D10.2355/isijinternational.ISIJINT-2023-220
KohneTDahlströmAWinkelmannAHedströmPBorgenstamAMaterials (Basel)20221511110.3390/ma15196653
MaugisPChentoufSConnétableDJ. Alloys Compd.2018769112111311:CAS:528:DC%2BC1cXhsFOhs77N10.1016/j.jallcom.2018.08.060
ZenerCPhys. Rev.1948746396471:CAS:528:DyaH1cXktVKgtA%3D%3D10.1103/PhysRev.74.639
FischerFDSvobodaJPetrykHActa Mater.2014671201:CAS:528:DC%2BC2cXivFCqtrg%3D10.1016/j.actamat.2013.11.050
ZhangXWangHHickelTRogalJLiYNeugebauerJNat. Mater.2020198498541:CAS:528:DC%2BB3cXosVyqu7s%3D3236707910.1038/s41563-020-0677-9
K.A. Taylor and M. Cohen: Prog. Mater. Sci., 1992, vol. 36, pp. 225–72.
KurdjumovGSachsGActa Metall.19306432543
FanZXiaoLJinxiuZMokuangKZhenqiGPhys. Rev. B199552997999871:STN:280:DC%2BC2sfktVylsA%3D%3D10.1103/PhysRevB.52.9979
FinkWLCampbellEDTrans. Am Soc. Steel Treat.192697171:CAS:528:DyaB28XitFOrtw%3D%3D
RementeriaRJimenezJAAllainSYPGeandierGPoplawskyJDGuoWUrones-GarroteEGarcia-MateoCCaballeroFGActa Mater.20171333333451:CAS:528:DC%2BC2sXovFGitbs%3D10.1016/j.actamat.2017.05.048
ChenYLiuQXiaoWPingDWangYZhaoXMater. Lett.20182272132161:CAS:528:DC%2BC1cXhtVSlsrvI10.1016/j.matlet.2018.05.084
ZhangXHickelTRogalJNeugebauerJPhys. Rev. B20169419
LerchbacherCZinnerSLeitnerHMicron2012438188261:CAS:528:DC%2BC38XlvFWlsbc%3D2239110110.1016/j.micron.2012.02.005
LinSBorgenstamAStarkAHedströmPMater. Charact.20221851:CAS:528:DC%2BB38XjtFSqsbY%3D10.1016/j.matchar.2022.111774
KraussGMater. Sci. Eng. A1999273–275405710.1016/S0921-5093(99)00288-9
YanJYRubanAVComput. Mater. Sci.20181472933031:CAS:528:DC%2BC1cXjtVCgsLk%3D10.1016/j.commatsci.2018.02.024
ChristianJWMater. Trans.1992332082141:CAS:528:DyaK38Xkslemtb8%3D10.2320/matertrans1989.33.208
UdyanskyAVon PezoldJBugaevVNFriákMNeugebauerJPhys. Rev. B Condens. Matter Mater. Phys.2009791510.1103/PhysRevB.79.224112
TanakaTMaruyamaNNakamuraNWilkinsonAJActa Mater.20201957287381:CAS:528:DC%2BB3cXht1Ciu77L10.1016/j.actamat.2020.06.017
ChirkovPVMirzoevAAMirzaevDAPhys. Met. Metallogr.201611734411:CAS:528:DC%2BC28XktlGgs7w%3D10.1134/S0031918X1601004X
NaraghiRSellebyMÅgrenJCalphad Comput. Coupling Phase Diagrams Thermochem.2014461481581:CAS:528:DC%2BC2cXhtFSltrnF10.1016/j.calphad.2014.03.004
BhadeshiaHKDHPhilos. Mag.201393371437251:CAS:528:DC%2BC3sXjsVOhtr8%3D10.1080/14786435.2013.775518
GaudezSTeixeiraJDenisSGeandierGAllainSYPMater. Charact.20221851:CAS:528:DC%2BB38Xht1ygtbY%3D10.1016/j.matchar.2022.111740
MaugisPActa Mater.20181584544651:CAS:528:DC%2BC1cXhsVyntbbM10.1016/j.actamat.2018.08.001
ZhangYMarusawaKKudoKMorookaSHarjoSMiyamotoGFuruharaTISIJ Int.2024642452561:CAS:528:DC%2BB2cXjs1Chtr4%3D10.2355/isijinternational.ISIJINT-2023-251
AdamsDMilesMPHomerERBrownTMishraRKFullwoodDTJ. Microsc.202128260721:CAS:528:DC%2BB3MXptl2rsbc%3D3322612010.1111/jmi.12980
WangYTomotaYOhmuraTMorookaSGongWHarjoSActa Mater.202018430401:CAS:528:DC%2BC1MXit1GltbrP10.1016/j.actamat.2019.11.051
SvobodaJEckerWRazumovskiyVIZicklerGAFischerFDProg. Mater. Sci.20191011722061:CAS:528:DC%2BC1cXisFygt7fL10.1016/j.pmatsci.2018.10.001
MaruyamaNTabataSMetall. Mater. Trans. A Phys. Metall. Mater. Sci.2021522576881:CAS:528:DC%2BB3MXotVams7c%3D10.1007/s11661-021-06249-x
OhtsukaHTsuzakiKISIJ Int.202161267726861:CAS:528:DC%2BB3MXis1eisrbK10.2355/isijinternational.ISIJINT-2021-334
KohneTMaimaitiyiliTWinkelmannAMaawadEHedströmPBorgenstamAMetall. Mater. Trans. A Phys. Metall. Mater. Sci.2022533034431:CAS:528:DC%2BB38XhsVCnsLfJ10.1007/s11661-022-06724-z
EppJHirschTCurfsCMetall. Mater. Trans. A Phys. Metall. Mater. Sci.201243221071:CAS:528:DC%2BC38Xnt1yqsbo%3D10.1007/s11661-012-1087-7
KurdjumovGVKaminskyEZ. Phys.19295369670710.1007/BF01330828
EyméoudPHuangLMaugisPScr. Mater.2021205101410.1016/j.scriptamat.2021.114182
RubanAVPhys. Rev. B Condens. Matter Mater. Phys.2014901810.1103/PhysRevB.90.144106
MaugisPDanoixFZapolskyHCazottesSGounéMPhys. Rev. B2017961810.1103/PhysRevB.96.214104
Hulme-SmithCNPeetMJLonardelliIDippelACBhadeshiaHKDHMater. Sci. Technol. (U. K.)2015312542561:CAS:528:DC%2BC2cXhslOqtbbL10.1179/1743284714Y.0000000691
ChirkovPVMirzoevAAMirzaevDAMater. Today Proc.20152S553S55610.1016/j.matpr.2015.07.345
UdyanskyAVon PezoldJDickANeugebauerJPhys. Rev. B Condens. Matter Mater. Phys.20118311110.1103/PhysRevB.83.184112
KajiwaraSKikuchiTActa Metall. Mater.199139112311311:CAS:528:DyaK3MXmvVCgs7w%3D10.1016/0956-7151(91)90200-K
MaugisPHuangLJ. Alloys Compd.20229071:CAS:528:DC%2BB38XnsFCks7c%3D10.1016/j.jallcom.2022.164502
Al-ZoubiNSkorodumovaNVMedvedevaAAnderssonJNilsonGJohanssonBVitosLPhys. Rev. B Condens. Matter Mater. Phys.2012851710.1103/PhysRevB.85.014112
SinclairCWPerezMVeigaRGAWeckAPhys. Rev. B Condens. Matter Mater. Phys.2010811910.1103/PhysRevB.81.224204
HutchinsonBLindbergFLynchPISIJ Int.202262198119891:CAS:528:DC%2BB38Xisl2ltL7I10.2355/isijinternational.ISIJINT-2022-086
MaugisPConnétableDEyméoudPScr. Mater.20211941:CAS:528:DC%2BB3cXisVSmtrvM10.1016/j.scriptamat.2020.113632
NolzeGWinkelmannACiosGTokarskiTMater. Charact.20211751:CAS:528:DC%2BB3MXntF2hsLg%3D10.1016/j.matchar.2021.111040
SnoekJLPhysica194187117331:CAS:528:DyaH38Xjs12gug%3D%3D10.1016/S0031-8914(41)90517-7
MaruyamaNTabataSISIJ Int.20236423524410.2355/isijinternational.ISIJINT-2023-144
ChenYXiaoWJiaoKPingDXuHZhaoXWangYPhys. Rev. Mater.2018215
RanjanRSinghSBActa Mater.20212023023161:CAS:528:DC%2BB3cXitlygu7fI10.1016/j.actamat.2020.10.048
R. Naraghi and M. Selleby: in Proceedings of the 1st World Congress on Integrated Computational Materials Engineering (ICME), 2011, pp. 235–40.
Garcia-MateoCJimenezJAYenHWMillerMKMorales-RivasLKuntzMRingerSPYangJRCaballeroFGActa Mater.2015911621731:CAS:528:DC%2BC2MXls1Gru7c%3D10.1016/j.actamat.2015.03.018
KandaskalovDHuangLEmoJMaugisPMater. Chem. Phys.20222861:CAS:528:DC%2BB38Xht1agtrvK10.1016/j.matchemphys.2022.126159
WasedaOMorthomasJRibeiroFChantrennePSinclairCWPerezMModel. Simul. Mater. Sci. Eng.201810.1088/1361-651X/aaef22
KurdjumovGVKhachaturyanAGActa Metall.1975231077108810.1016/0001-6160(75)90112-1
FukuiDNakadaNOnakaSActa Mater.20201966606681:CAS:528:DC%2BB3cXhsVSksrvO10.1016/j.actamat.2020.07.013
Y Chen (7576_CR9) 2018; 2
JK Lee (7576_CR19) 1980; 11A
R Ranjan (7576_CR45) 2021; 202
G Nolze (7576_CR38) 2021; 175
HKDH Bhadeshia (7576_CR11) 2013; 93
CW Sinclair (7576_CR30) 2010; 81
S Kajiwara (7576_CR41) 1991; 39
T Kohne (7576_CR6) 2022; 53
G Kurdjumov (7576_CR2) 1930; 64
N Maruyama (7576_CR54) 2021; 52
H Ohtsuka (7576_CR15) 2021; 61
A Udyansky (7576_CR25) 2009; 79
P Maugis (7576_CR22) 2017; 96
R Naraghi (7576_CR29) 2014; 46
N Maruyama (7576_CR39) 2023; 64
Y Wang (7576_CR8) 2020; 184
S Lin (7576_CR56) 2022; 185
A Udyansky (7576_CR26) 2011; 83
JW Christian (7576_CR40) 1992; 33
D Kandaskalov (7576_CR53) 2022; 286
X Zhang (7576_CR13) 2016; 94
O Waseda (7576_CR32) 2018
P Eyméoud (7576_CR17) 2021; 205
D Fukui (7576_CR14) 2020; 196
Y Chen (7576_CR10) 2018; 227
P Maugis (7576_CR58) 2022; 907
P Maugis (7576_CR33) 2018; 769
WL Fink (7576_CR1) 1926; 9
J Epp (7576_CR4) 2012; 43
AV Ruban (7576_CR12) 2014; 90
CN Hulme-Smith (7576_CR42) 2015; 31
C Garcia-Mateo (7576_CR43) 2015; 91
B Hutchinson (7576_CR18) 2022; 62
B Hutchinson (7576_CR48) 2024; 64
JY Yan (7576_CR34) 2018; 147
S Gaudez (7576_CR5) 2022; 185
GV Kurdjumov (7576_CR7) 1975; 23
C Lerchbacher (7576_CR47) 2012; 43
T Kohne (7576_CR52) 2022; 15
PV Chirkov (7576_CR31) 2015; 2
GV Kurdjumov (7576_CR50) 1929; 53
FD Fischer (7576_CR51) 2014; 67
P Maugis (7576_CR35) 2021; 194
JL Snoek (7576_CR57) 1941; 8
7576_CR20
Y Zhang (7576_CR46) 2024; 64
X Zhang (7576_CR27) 2020; 19
C Zener (7576_CR3) 1948; 74
T Tanaka (7576_CR37) 2020; 195
J Svoboda (7576_CR49) 2019; 101
Z Fan (7576_CR24) 1995; 52
D Adams (7576_CR36) 2021; 282
N Al-Zoubi (7576_CR16) 2012; 85
P Maugis (7576_CR23) 2018; 158
R Rementeria (7576_CR44) 2017; 133
G Krauss (7576_CR55) 1999; 273–275
PV Chirkov (7576_CR21) 2016; 117
7576_CR28
References_xml – reference: UdyanskyAVon PezoldJBugaevVNFriákMNeugebauerJPhys. Rev. B Condens. Matter Mater. Phys.2009791510.1103/PhysRevB.79.224112
– reference: MaugisPChentoufSConnétableDJ. Alloys Compd.2018769112111311:CAS:528:DC%2BC1cXhsFOhs77N10.1016/j.jallcom.2018.08.060
– reference: FukuiDNakadaNOnakaSActa Mater.20201966606681:CAS:528:DC%2BB3cXhsVSksrvO10.1016/j.actamat.2020.07.013
– reference: ZhangXHickelTRogalJNeugebauerJPhys. Rev. B20169419
– reference: ZhangYMarusawaKKudoKMorookaSHarjoSMiyamotoGFuruharaTISIJ Int.2024642452561:CAS:528:DC%2BB2cXjs1Chtr4%3D10.2355/isijinternational.ISIJINT-2023-251
– reference: OhtsukaHTsuzakiKISIJ Int.202161267726861:CAS:528:DC%2BB3MXis1eisrbK10.2355/isijinternational.ISIJINT-2021-334
– reference: KurdjumovGSachsGActa Metall.19306432543
– reference: WangYTomotaYOhmuraTMorookaSGongWHarjoSActa Mater.202018430401:CAS:528:DC%2BC1MXit1GltbrP10.1016/j.actamat.2019.11.051
– reference: YanJYRubanAVComput. Mater. Sci.20181472933031:CAS:528:DC%2BC1cXjtVCgsLk%3D10.1016/j.commatsci.2018.02.024
– reference: FinkWLCampbellEDTrans. Am Soc. Steel Treat.192697171:CAS:528:DyaB28XitFOrtw%3D%3D
– reference: ChristianJWMater. Trans.1992332082141:CAS:528:DyaK38Xkslemtb8%3D10.2320/matertrans1989.33.208
– reference: RanjanRSinghSBActa Mater.20212023023161:CAS:528:DC%2BB3cXitlygu7fI10.1016/j.actamat.2020.10.048
– reference: LinSBorgenstamAStarkAHedströmPMater. Charact.20221851:CAS:528:DC%2BB38XjtFSqsbY%3D10.1016/j.matchar.2022.111774
– reference: TanakaTMaruyamaNNakamuraNWilkinsonAJActa Mater.20201957287381:CAS:528:DC%2BB3cXht1Ciu77L10.1016/j.actamat.2020.06.017
– reference: EppJHirschTCurfsCMetall. Mater. Trans. A Phys. Metall. Mater. Sci.201243221071:CAS:528:DC%2BC38Xnt1yqsbo%3D10.1007/s11661-012-1087-7
– reference: BhadeshiaHKDHPhilos. Mag.201393371437251:CAS:528:DC%2BC3sXjsVOhtr8%3D10.1080/14786435.2013.775518
– reference: SinclairCWPerezMVeigaRGAWeckAPhys. Rev. B Condens. Matter Mater. Phys.2010811910.1103/PhysRevB.81.224204
– reference: LeeJKEarmmeYYAaronsonHIRussellKCMetall. Trans. A198011A1837184710.1007/BF02655099
– reference: SvobodaJEckerWRazumovskiyVIZicklerGAFischerFDProg. Mater. Sci.20191011722061:CAS:528:DC%2BC1cXisFygt7fL10.1016/j.pmatsci.2018.10.001
– reference: MaruyamaNTabataSMetall. Mater. Trans. A Phys. Metall. Mater. Sci.2021522576881:CAS:528:DC%2BB3MXotVams7c%3D10.1007/s11661-021-06249-x
– reference: Garcia-MateoCJimenezJAYenHWMillerMKMorales-RivasLKuntzMRingerSPYangJRCaballeroFGActa Mater.2015911621731:CAS:528:DC%2BC2MXls1Gru7c%3D10.1016/j.actamat.2015.03.018
– reference: ZhangXWangHHickelTRogalJLiYNeugebauerJNat. Mater.2020198498541:CAS:528:DC%2BB3cXosVyqu7s%3D3236707910.1038/s41563-020-0677-9
– reference: GaudezSTeixeiraJDenisSGeandierGAllainSYPMater. Charact.20221851:CAS:528:DC%2BB38Xht1ygtbY%3D10.1016/j.matchar.2022.111740
– reference: HutchinsonBLindbergFLynchPISIJ Int.202262198119891:CAS:528:DC%2BB38Xisl2ltL7I10.2355/isijinternational.ISIJINT-2022-086
– reference: NaraghiRSellebyMÅgrenJCalphad Comput. Coupling Phase Diagrams Thermochem.2014461481581:CAS:528:DC%2BC2cXhtFSltrnF10.1016/j.calphad.2014.03.004
– reference: WasedaOMorthomasJRibeiroFChantrennePSinclairCWPerezMModel. Simul. Mater. Sci. Eng.201810.1088/1361-651X/aaef22
– reference: KohneTMaimaitiyiliTWinkelmannAMaawadEHedströmPBorgenstamAMetall. Mater. Trans. A Phys. Metall. Mater. Sci.2022533034431:CAS:528:DC%2BB38XhsVCnsLfJ10.1007/s11661-022-06724-z
– reference: NolzeGWinkelmannACiosGTokarskiTMater. Charact.20211751:CAS:528:DC%2BB3MXntF2hsLg%3D10.1016/j.matchar.2021.111040
– reference: HutchinsonBLynchPKadaSWangJISIJ Int.2024641761831:CAS:528:DC%2BB2cXjs1Chs7k%3D10.2355/isijinternational.ISIJINT-2023-220
– reference: SnoekJLPhysica194187117331:CAS:528:DyaH38Xjs12gug%3D%3D10.1016/S0031-8914(41)90517-7
– reference: UdyanskyAVon PezoldJDickANeugebauerJPhys. Rev. B Condens. Matter Mater. Phys.20118311110.1103/PhysRevB.83.184112
– reference: AdamsDMilesMPHomerERBrownTMishraRKFullwoodDTJ. Microsc.202128260721:CAS:528:DC%2BB3MXptl2rsbc%3D3322612010.1111/jmi.12980
– reference: KurdjumovGVKhachaturyanAGActa Metall.1975231077108810.1016/0001-6160(75)90112-1
– reference: ChirkovPVMirzoevAAMirzaevDAPhys. Met. Metallogr.201611734411:CAS:528:DC%2BC28XktlGgs7w%3D10.1134/S0031918X1601004X
– reference: ChirkovPVMirzoevAAMirzaevDAMater. Today Proc.20152S553S55610.1016/j.matpr.2015.07.345
– reference: ChenYLiuQXiaoWPingDWangYZhaoXMater. Lett.20182272132161:CAS:528:DC%2BC1cXhtVSlsrvI10.1016/j.matlet.2018.05.084
– reference: K.A. Taylor and M. Cohen: Prog. Mater. Sci., 1992, vol. 36, pp. 225–72.
– reference: ZenerCPhys. Rev.1948746396471:CAS:528:DyaH1cXktVKgtA%3D%3D10.1103/PhysRev.74.639
– reference: KandaskalovDHuangLEmoJMaugisPMater. Chem. Phys.20222861:CAS:528:DC%2BB38Xht1agtrvK10.1016/j.matchemphys.2022.126159
– reference: LerchbacherCZinnerSLeitnerHMicron2012438188261:CAS:528:DC%2BC38XlvFWlsbc%3D2239110110.1016/j.micron.2012.02.005
– reference: MaruyamaNTabataSISIJ Int.20236423524410.2355/isijinternational.ISIJINT-2023-144
– reference: RubanAVPhys. Rev. B Condens. Matter Mater. Phys.2014901810.1103/PhysRevB.90.144106
– reference: RementeriaRJimenezJAAllainSYPGeandierGPoplawskyJDGuoWUrones-GarroteEGarcia-MateoCCaballeroFGActa Mater.20171333333451:CAS:528:DC%2BC2sXovFGitbs%3D10.1016/j.actamat.2017.05.048
– reference: ChenYXiaoWJiaoKPingDXuHZhaoXWangYPhys. Rev. Mater.2018215
– reference: Al-ZoubiNSkorodumovaNVMedvedevaAAnderssonJNilsonGJohanssonBVitosLPhys. Rev. B Condens. Matter Mater. Phys.2012851710.1103/PhysRevB.85.014112
– reference: FischerFDSvobodaJPetrykHActa Mater.2014671201:CAS:528:DC%2BC2cXivFCqtrg%3D10.1016/j.actamat.2013.11.050
– reference: KraussGMater. Sci. Eng. A1999273–275405710.1016/S0921-5093(99)00288-9
– reference: MaugisPHuangLJ. Alloys Compd.20229071:CAS:528:DC%2BB38XnsFCks7c%3D10.1016/j.jallcom.2022.164502
– reference: FanZXiaoLJinxiuZMokuangKZhenqiGPhys. Rev. B199552997999871:STN:280:DC%2BC2sfktVylsA%3D%3D10.1103/PhysRevB.52.9979
– reference: R. Naraghi and M. Selleby: in Proceedings of the 1st World Congress on Integrated Computational Materials Engineering (ICME), 2011, pp. 235–40.
– reference: KohneTDahlströmAWinkelmannAHedströmPBorgenstamAMaterials (Basel)20221511110.3390/ma15196653
– reference: MaugisPDanoixFZapolskyHCazottesSGounéMPhys. Rev. B2017961810.1103/PhysRevB.96.214104
– reference: MaugisPActa Mater.20181584544651:CAS:528:DC%2BC1cXhsVyntbbM10.1016/j.actamat.2018.08.001
– reference: KurdjumovGVKaminskyEZ. Phys.19295369670710.1007/BF01330828
– reference: KajiwaraSKikuchiTActa Metall. Mater.199139112311311:CAS:528:DyaK3MXmvVCgs7w%3D10.1016/0956-7151(91)90200-K
– reference: EyméoudPHuangLMaugisPScr. Mater.2021205101410.1016/j.scriptamat.2021.114182
– reference: MaugisPConnétableDEyméoudPScr. Mater.20211941:CAS:528:DC%2BB3cXisVSmtrvM10.1016/j.scriptamat.2020.113632
– reference: Hulme-SmithCNPeetMJLonardelliIDippelACBhadeshiaHKDHMater. Sci. Technol. (U. K.)2015312542561:CAS:528:DC%2BC2cXhslOqtbbL10.1179/1743284714Y.0000000691
– volume: 196
  start-page: 660
  year: 2020
  ident: 7576_CR14
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.07.013
– volume: 79
  start-page: 1
  year: 2009
  ident: 7576_CR25
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.79.224112
– volume: 53
  start-page: 3034
  year: 2022
  ident: 7576_CR6
  publication-title: Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
  doi: 10.1007/s11661-022-06724-z
– volume: 175
  year: 2021
  ident: 7576_CR38
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2021.111040
– volume: 15
  start-page: 1
  year: 2022
  ident: 7576_CR52
  publication-title: Materials (Basel)
  doi: 10.3390/ma15196653
– volume: 147
  start-page: 293
  year: 2018
  ident: 7576_CR34
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.02.024
– volume: 64
  start-page: 235
  year: 2023
  ident: 7576_CR39
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.ISIJINT-2023-144
– volume: 90
  start-page: 1
  year: 2014
  ident: 7576_CR12
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.90.144106
– volume: 194
  year: 2021
  ident: 7576_CR35
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2020.113632
– volume: 74
  start-page: 639
  year: 1948
  ident: 7576_CR3
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.74.639
– volume: 101
  start-page: 172
  year: 2019
  ident: 7576_CR49
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2018.10.001
– volume: 769
  start-page: 1121
  year: 2018
  ident: 7576_CR33
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.08.060
– volume: 9
  start-page: 717
  year: 1926
  ident: 7576_CR1
  publication-title: Trans. Am Soc. Steel Treat.
– volume: 2
  start-page: 1
  year: 2018
  ident: 7576_CR9
  publication-title: Phys. Rev. Mater.
– volume: 43
  start-page: 818
  year: 2012
  ident: 7576_CR47
  publication-title: Micron
  doi: 10.1016/j.micron.2012.02.005
– volume: 64
  start-page: 176
  year: 2024
  ident: 7576_CR48
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.ISIJINT-2023-220
– volume: 2
  start-page: S553
  year: 2015
  ident: 7576_CR31
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2015.07.345
– year: 2018
  ident: 7576_CR32
  publication-title: Model. Simul. Mater. Sci. Eng.
  doi: 10.1088/1361-651X/aaef22
– volume: 39
  start-page: 1123
  year: 1991
  ident: 7576_CR41
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(91)90200-K
– volume: 185
  year: 2022
  ident: 7576_CR5
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2022.111740
– volume: 11A
  start-page: 1837
  year: 1980
  ident: 7576_CR19
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02655099
– volume: 53
  start-page: 696
  year: 1929
  ident: 7576_CR50
  publication-title: Z. Phys.
  doi: 10.1007/BF01330828
– volume: 185
  year: 2022
  ident: 7576_CR56
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2022.111774
– volume: 8
  start-page: 711
  year: 1941
  ident: 7576_CR57
  publication-title: Physica
  doi: 10.1016/S0031-8914(41)90517-7
– volume: 52
  start-page: 9979
  year: 1995
  ident: 7576_CR24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.52.9979
– ident: 7576_CR28
  doi: 10.1002/9781118147726.ch33
– volume: 64
  start-page: 325
  year: 1930
  ident: 7576_CR2
  publication-title: Acta Metall.
– volume: 85
  start-page: 1
  year: 2012
  ident: 7576_CR16
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.85.014112
– volume: 184
  start-page: 30
  year: 2020
  ident: 7576_CR8
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.11.051
– volume: 81
  start-page: 1
  year: 2010
  ident: 7576_CR30
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.81.224204
– volume: 23
  start-page: 1077
  year: 1975
  ident: 7576_CR7
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(75)90112-1
– volume: 43
  start-page: 2210
  year: 2012
  ident: 7576_CR4
  publication-title: Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
  doi: 10.1007/s11661-012-1087-7
– ident: 7576_CR20
  doi: 10.1016/0079-6425(92)90010-5
– volume: 907
  year: 2022
  ident: 7576_CR58
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.164502
– volume: 286
  year: 2022
  ident: 7576_CR53
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2022.126159
– volume: 62
  start-page: 1981
  year: 2022
  ident: 7576_CR18
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.ISIJINT-2022-086
– volume: 282
  start-page: 60
  year: 2021
  ident: 7576_CR36
  publication-title: J. Microsc.
  doi: 10.1111/jmi.12980
– volume: 158
  start-page: 454
  year: 2018
  ident: 7576_CR23
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.08.001
– volume: 205
  start-page: 10
  year: 2021
  ident: 7576_CR17
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2021.114182
– volume: 91
  start-page: 162
  year: 2015
  ident: 7576_CR43
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.03.018
– volume: 94
  start-page: 1
  year: 2016
  ident: 7576_CR13
  publication-title: Phys. Rev. B
– volume: 31
  start-page: 254
  year: 2015
  ident: 7576_CR42
  publication-title: Mater. Sci. Technol. (U. K.)
  doi: 10.1179/1743284714Y.0000000691
– volume: 273–275
  start-page: 40
  year: 1999
  ident: 7576_CR55
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(99)00288-9
– volume: 202
  start-page: 302
  year: 2021
  ident: 7576_CR45
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.10.048
– volume: 19
  start-page: 849
  year: 2020
  ident: 7576_CR27
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0677-9
– volume: 33
  start-page: 208
  year: 1992
  ident: 7576_CR40
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans1989.33.208
– volume: 64
  start-page: 245
  year: 2024
  ident: 7576_CR46
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.ISIJINT-2023-251
– volume: 46
  start-page: 148
  year: 2014
  ident: 7576_CR29
  publication-title: Calphad Comput. Coupling Phase Diagrams Thermochem.
  doi: 10.1016/j.calphad.2014.03.004
– volume: 195
  start-page: 728
  year: 2020
  ident: 7576_CR37
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.06.017
– volume: 83
  start-page: 1
  year: 2011
  ident: 7576_CR26
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.83.184112
– volume: 133
  start-page: 333
  year: 2017
  ident: 7576_CR44
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.05.048
– volume: 52
  start-page: 2576
  year: 2021
  ident: 7576_CR54
  publication-title: Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
  doi: 10.1007/s11661-021-06249-x
– volume: 227
  start-page: 213
  year: 2018
  ident: 7576_CR10
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.05.084
– volume: 61
  start-page: 2677
  year: 2021
  ident: 7576_CR15
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.ISIJINT-2021-334
– volume: 96
  start-page: 1
  year: 2017
  ident: 7576_CR22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.214104
– volume: 93
  start-page: 3714
  year: 2013
  ident: 7576_CR11
  publication-title: Philos. Mag.
  doi: 10.1080/14786435.2013.775518
– volume: 117
  start-page: 34
  year: 2016
  ident: 7576_CR21
  publication-title: Phys. Met. Metallogr.
  doi: 10.1134/S0031918X1601004X
– volume: 67
  start-page: 1
  year: 2014
  ident: 7576_CR51
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.11.050
SSID ssj0001936
Score 2.3985095
Snippet Martensite and bainite are formed from austenite through the rapid application of Bain’s strain. In several studies, martensite is considered as a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4940
SubjectTerms Bainite
Carbon
Characterization and Evaluation of Materials
Chemistry and Materials Science
Electron back scatter
Ferrite
Lattice sites
Martensite
Materials Science
Metallic Materials
Nanotechnology
Original Research Article
Residual stress
Room temperature
Strain
Stress relaxation
Structural Materials
Surfaces and Interfaces
Tetragonal lattice
Thin Films
Unit cell
Title Modeling of Carbon Redistribution and Tetragonality Evolution in Supersaturated Ferrite
URI https://link.springer.com/article/10.1007/s11661-024-07576-5
https://www.proquest.com/docview/3126442435
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oXPRgfEYUSQ_etMk-2l04EgISjR4UIp42bbc1JmYhsPD7nS5dVo2auNe2k-w8Ot-k8wC4RCOQnkwjypk0lDEMUDpt31CFoYaJPMaMZ4uT7x-i4ZjdTvjEFYUtymz38kmyuKmrYjcffQlFn0LRzcVIfRvq3MbuqMXjoLu5fxGSROtMw5Ba7-5KZX6m8dUdVRjz27No4W0G-7DnYCLpruV6AFs6O4TdT80Dj-DZjjGzxeRkakhPzOU0I4-2ynYzw4qILCUjnc_Fq8PbpL9yqkbeMvK0nCH4s509EXCmZGCbNOb6GMaD_qg3pG5MAlVoPzkNlJcijFA8ZEpH0vc0a2sEQrFsy5BHRgr8aQwbRBikHRXiFytmGEt1KmI7p-YEatk006dAMByOfKURxNnAK44lnu0EwsTSM5Jz0wC_5FaiXA9xO8riPam6H1sOJ8jhpOBwwhtwtTkzW3fQ-HN3sxRC4qxpkYS-hW0BIrsGXJeCqZZ_p3b2v-3nsBNY3SiyVZpQy-dLfYGYI5ctqHdvXu76rULVPgBo-c0O
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1JTwIxFIBfFA_qwbhGFLUHb9pkls7CkRAIKnBQiNyaaac1JmYgMPj7fR06jBo1ca5dknld3vfStwBc4yEQjkhDGjChKWNooDRjV1OJpoYOHca0Y4KTB8OwN2b3k2Big8IWpbd7-SRZ3NRVsJuLuoSiTqGo5iKcfRO2EAZi48g19lrr-xeRJFx5GvrUaHcbKvPzHF_VUcWY355FC23T3Yc9i4mktVrXA9hQ2SHsfkoeeATPpoyZCSYnU03ayVxMM_JoomzXNaxIkqVkpPJ58mJ5m3Te7VYjrxl5Ws4Q_kxmTwTOlHRNksZcHcO42xm1e9SWSaASz09OPemkiBEy8JlUoXAdxWKFIBSJWPhBqEWCP41mQ-J7aVP6-EWSacZSlSaRqVNzArVsmqlTIGgOh65UCHHG8IoigWObXqIj4WgRBLoObiktLm0OcVPK4o1X2Y-NhDlKmBcS5kEdbtZjZqsMGn_2bpSLwO1pWnDfNdjmIdnV4bZcmKr599nO_tf9CrZ7o0Gf9--GD-ew45l9UniuNKCWz5fqAvkjF5fFdvsAx6nObQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBfGK16h686dI8Nkl7LLWhvopoi72F7EsESUtN_f3O5tFUUcFcs7shs7M737D7fQNwjouAW1z61GNcU8YwQWm3bE0FphratxjTliEn3w_8_ojdjL3xEos_u-1eHknmnAaj0pSkzanUzYr4ZmNcoRhfKIa8AL-0Cmu4HdvGr0dOZ7EXIzzx81uHLjWRvqDN_DzG19BU4c1vR6RZ5Am3YauAjKSTz_EOrKhkFzaXhAT34NmUNDPEcjLRpBvP-CQhj4Zxu6hnReJEkqFKZ_FLgb1J76NwO_KakKf5FIGgUflE8ClJaAQbU7UPo7A37PZpUTKBCvz5lDrCkggphOcyoXxuW4q1FIKigLe46_max_jTmELEriPbwsUnEEwzJpWMA1Oz5gBqySRRh0AwNfZtoRDQmSQsCDj2bTuxDriluefpOtiltSJR6ImbshZvUaWEbCwcoYWjzMKRV4eLRZ9prqbxZ-tGOQlRsbLeI9c2EM5BlFeHy3Jiqte_j3b0v-ZnsP5wFUZ314PbY9hwjJtkl1gaUEtnc3WCUCTlp5m3fQL-t9Kp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+of+Carbon+Redistribution+and+Tetragonality+Evolution+in+Supersaturated+Ferrite&rft.jtitle=Metallurgical+and+materials+transactions.+A%2C+Physical+metallurgy+and+materials+science&rft.au=Svoboda%2C+J.&rft.au=Ressel%2C+G.&rft.au=Brandl%2C+D.&rft.date=2024-12-01&rft.issn=1073-5623&rft.eissn=1543-1940&rft.volume=55&rft.issue=12&rft.spage=4940&rft.epage=4953&rft_id=info:doi/10.1007%2Fs11661-024-07576-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11661_024_07576_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-5623&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-5623&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-5623&client=summon