Modeling of Carbon Redistribution and Tetragonality Evolution in Supersaturated Ferrite
Martensite and bainite are formed from austenite through the rapid application of Bain’s strain. In several studies, martensite is considered as a body-centered tetragonal phase, but it can also be viewed as bcc ferrite supersaturated with carbon, subject to internal residual stresses from incomplet...
Saved in:
Published in | Metallurgical and materials transactions. A, Physical metallurgy and materials science Vol. 55; no. 12; pp. 4940 - 4953 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Martensite and bainite are formed from austenite through the rapid application of Bain’s strain. In several studies, martensite is considered as a body-centered tetragonal phase, but it can also be viewed as bcc ferrite supersaturated with carbon, subject to internal residual stresses from incomplete relaxation of Bain’s strain. Recent electron backscatter diffraction measurements have revealed a broad spectrum of tetragonality in quenched martensite, which can be attributed to the diversity of internal stress rather than variations in carbon distribution. Therefore, a thermodynamic unit cell model is developed to calculate the kinetics of carbon atom occupancy in particular kinds of octahedral interstitial lattice sites, contributing to tetragonality in loaded ferrite. The model includes a Zener-ordering term that influences carbon atom distribution and consequently affects tetragonality. Simulations suggest that carbon redistribution among octahedral interstitial lattice sites reaches equilibrium with internal stress within an hour at room temperature. The presented model provides a framework for understanding tetragonality in martensite and bainite, incorporating the effects of internal stress and carbon atom distribution in particular kinds of octahedral interstitial lattice sites. |
---|---|
AbstractList | Martensite and bainite are formed from austenite through the rapid application of Bain’s strain. In several studies, martensite is considered as a body-centered tetragonal phase, but it can also be viewed as bcc ferrite supersaturated with carbon, subject to internal residual stresses from incomplete relaxation of Bain’s strain. Recent electron backscatter diffraction measurements have revealed a broad spectrum of tetragonality in quenched martensite, which can be attributed to the diversity of internal stress rather than variations in carbon distribution. Therefore, a thermodynamic unit cell model is developed to calculate the kinetics of carbon atom occupancy in particular kinds of octahedral interstitial lattice sites, contributing to tetragonality in loaded ferrite. The model includes a Zener-ordering term that influences carbon atom distribution and consequently affects tetragonality. Simulations suggest that carbon redistribution among octahedral interstitial lattice sites reaches equilibrium with internal stress within an hour at room temperature. The presented model provides a framework for understanding tetragonality in martensite and bainite, incorporating the effects of internal stress and carbon atom distribution in particular kinds of octahedral interstitial lattice sites. |
Author | Brandl, D. Ressel, G. Svoboda, J. |
Author_xml | – sequence: 1 givenname: J. surname: Svoboda fullname: Svoboda, J. organization: Institute of Physics of Materials, Academy of Science of the Czech Republic – sequence: 2 givenname: G. surname: Ressel fullname: Ressel, G. organization: Materials Center, Leoben Forschung GmbH – sequence: 3 givenname: D. surname: Brandl fullname: Brandl, D. email: dominik.brandl@mcl.at organization: Materials Center, Leoben Forschung GmbH |
BookMark | eNp9kM1KAzEUhYMo2FZfwNWA69Fk8jezlNKqUBG04jJkkkxJGZOaZIS-vakjCC6aTXLJ-S7nnCk4dd4ZAK4QvEEQ8tuIEGOohBUpIaeclfQETBAluEQNgaf5DTkuKavwOZjGuIUQogazCXh_8tr01m0K3xVzGVrvihejbUzBtkOyeZROF2uTgtx4J3ub9sXiy_fjn3XF67AzIco0BJmMLpYmBJvMBTjrZB_N5e89A2_LxXr-UK6e7x_nd6tSYdSkslJQ05ooiokyrEXQkNpQinhbt5iyrpU5V8OJxJVuFM6HK9IRoo2WHDKOZ-B63LsL_nMwMYmtH0L2GQVGFSOkIphmVT2qVPAxBtMJZZM8JMixbC8QFIcaxVijyDWKnxrFAa3-obtgP2TYH4fwCMUsdhsT_lwdob4BhCiHfA |
CitedBy_id | crossref_primary_10_1016_j_scriptamat_2024_116461 |
Cites_doi | 10.1016/j.actamat.2020.07.013 10.1103/PhysRevB.79.224112 10.1007/s11661-022-06724-z 10.1016/j.matchar.2021.111040 10.3390/ma15196653 10.1016/j.commatsci.2018.02.024 10.2355/isijinternational.ISIJINT-2023-144 10.1103/PhysRevB.90.144106 10.1016/j.scriptamat.2020.113632 10.1103/PhysRev.74.639 10.1016/j.pmatsci.2018.10.001 10.1016/j.jallcom.2018.08.060 10.1016/j.micron.2012.02.005 10.2355/isijinternational.ISIJINT-2023-220 10.1016/j.matpr.2015.07.345 10.1088/1361-651X/aaef22 10.1016/0956-7151(91)90200-K 10.1016/j.matchar.2022.111740 10.1007/BF02655099 10.1007/BF01330828 10.1016/j.matchar.2022.111774 10.1016/S0031-8914(41)90517-7 10.1103/PhysRevB.52.9979 10.1002/9781118147726.ch33 10.1103/PhysRevB.85.014112 10.1016/j.actamat.2019.11.051 10.1103/PhysRevB.81.224204 10.1016/0001-6160(75)90112-1 10.1007/s11661-012-1087-7 10.1016/0079-6425(92)90010-5 10.1016/j.jallcom.2022.164502 10.1016/j.matchemphys.2022.126159 10.2355/isijinternational.ISIJINT-2022-086 10.1111/jmi.12980 10.1016/j.actamat.2018.08.001 10.1016/j.scriptamat.2021.114182 10.1016/j.actamat.2015.03.018 10.1179/1743284714Y.0000000691 10.1016/S0921-5093(99)00288-9 10.1016/j.actamat.2020.10.048 10.1038/s41563-020-0677-9 10.2320/matertrans1989.33.208 10.2355/isijinternational.ISIJINT-2023-251 10.1016/j.calphad.2014.03.004 10.1016/j.actamat.2020.06.017 10.1103/PhysRevB.83.184112 10.1016/j.actamat.2017.05.048 10.1007/s11661-021-06249-x 10.1016/j.matlet.2018.05.084 10.2355/isijinternational.ISIJINT-2021-334 10.1103/PhysRevB.96.214104 10.1080/14786435.2013.775518 10.1134/S0031918X1601004X 10.1016/j.actamat.2013.11.050 |
ContentType | Journal Article |
Copyright | The Minerals, Metals & Materials Society and ASM International 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Minerals, Metals & Materials Society and ASM International 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 4T- 4U- 7SR 8BQ 8FD JG9 |
DOI | 10.1007/s11661-024-07576-5 |
DatabaseName | CrossRef Docstoc University Readers Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts University Readers Technology Research Database METADEX Docstoc |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1543-1940 |
EndPage | 4953 |
ExternalDocumentID | 10_1007_s11661_024_07576_5 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 123 199 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5VS 67Z 6NX 6TJ 78A 88I 8AF 8AO 8FE 8FG 8FW 8G5 8UJ 8WZ 95- 95. 95~ 96X A6W AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDUJ AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP CZ9 D1I DDRTE DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GUQSH H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KB. KC. KDC KOV L6V LLZTM M2O M2P M2Q M4Y M7S MA- N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PDBOC PF0 PQQKQ PRG PROAC PT4 PT5 PTHSS PZZ Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RWL RZK S0X S16 S1Z S26 S27 S28 S3B SAP SC5 SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TSG TSK TSV TUC TUS U2A UG4 ULE UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ACMFV ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT 4T- 4U- 7SR 8BQ 8FD ABRTQ JG9 |
ID | FETCH-LOGICAL-c319t-2c0d584c534ce6b10e48e5517b8b356fba166974a32d9c33337c4f44deda70673 |
IEDL.DBID | U2A |
ISSN | 1073-5623 |
IngestDate | Fri Jul 25 19:12:20 EDT 2025 Tue Jul 01 02:52:59 EDT 2025 Thu Apr 24 23:08:56 EDT 2025 Fri Feb 21 02:36:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-2c0d584c534ce6b10e48e5517b8b356fba166974a32d9c33337c4f44deda70673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3126442435 |
PQPubID | 49316 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3126442435 crossref_citationtrail_10_1007_s11661_024_07576_5 crossref_primary_10_1007_s11661_024_07576_5 springer_journals_10_1007_s11661_024_07576_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241200 2024-12-00 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | Physical metallurgy and materials science |
PublicationTitle | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
PublicationTitleAbbrev | Metall Mater Trans A |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | LeeJKEarmmeYYAaronsonHIRussellKCMetall. Trans. A198011A1837184710.1007/BF02655099 HutchinsonBLynchPKadaSWangJISIJ Int.2024641761831:CAS:528:DC%2BB2cXjs1Chs7k%3D10.2355/isijinternational.ISIJINT-2023-220 KohneTDahlströmAWinkelmannAHedströmPBorgenstamAMaterials (Basel)20221511110.3390/ma15196653 MaugisPChentoufSConnétableDJ. Alloys Compd.2018769112111311:CAS:528:DC%2BC1cXhsFOhs77N10.1016/j.jallcom.2018.08.060 ZenerCPhys. Rev.1948746396471:CAS:528:DyaH1cXktVKgtA%3D%3D10.1103/PhysRev.74.639 FischerFDSvobodaJPetrykHActa Mater.2014671201:CAS:528:DC%2BC2cXivFCqtrg%3D10.1016/j.actamat.2013.11.050 ZhangXWangHHickelTRogalJLiYNeugebauerJNat. Mater.2020198498541:CAS:528:DC%2BB3cXosVyqu7s%3D3236707910.1038/s41563-020-0677-9 K.A. Taylor and M. Cohen: Prog. Mater. Sci., 1992, vol. 36, pp. 225–72. KurdjumovGSachsGActa Metall.19306432543 FanZXiaoLJinxiuZMokuangKZhenqiGPhys. Rev. B199552997999871:STN:280:DC%2BC2sfktVylsA%3D%3D10.1103/PhysRevB.52.9979 FinkWLCampbellEDTrans. Am Soc. Steel Treat.192697171:CAS:528:DyaB28XitFOrtw%3D%3D RementeriaRJimenezJAAllainSYPGeandierGPoplawskyJDGuoWUrones-GarroteEGarcia-MateoCCaballeroFGActa Mater.20171333333451:CAS:528:DC%2BC2sXovFGitbs%3D10.1016/j.actamat.2017.05.048 ChenYLiuQXiaoWPingDWangYZhaoXMater. Lett.20182272132161:CAS:528:DC%2BC1cXhtVSlsrvI10.1016/j.matlet.2018.05.084 ZhangXHickelTRogalJNeugebauerJPhys. Rev. B20169419 LerchbacherCZinnerSLeitnerHMicron2012438188261:CAS:528:DC%2BC38XlvFWlsbc%3D2239110110.1016/j.micron.2012.02.005 LinSBorgenstamAStarkAHedströmPMater. Charact.20221851:CAS:528:DC%2BB38XjtFSqsbY%3D10.1016/j.matchar.2022.111774 KraussGMater. Sci. Eng. A1999273–275405710.1016/S0921-5093(99)00288-9 YanJYRubanAVComput. Mater. Sci.20181472933031:CAS:528:DC%2BC1cXjtVCgsLk%3D10.1016/j.commatsci.2018.02.024 ChristianJWMater. Trans.1992332082141:CAS:528:DyaK38Xkslemtb8%3D10.2320/matertrans1989.33.208 UdyanskyAVon PezoldJBugaevVNFriákMNeugebauerJPhys. Rev. B Condens. Matter Mater. Phys.2009791510.1103/PhysRevB.79.224112 TanakaTMaruyamaNNakamuraNWilkinsonAJActa Mater.20201957287381:CAS:528:DC%2BB3cXht1Ciu77L10.1016/j.actamat.2020.06.017 ChirkovPVMirzoevAAMirzaevDAPhys. Met. Metallogr.201611734411:CAS:528:DC%2BC28XktlGgs7w%3D10.1134/S0031918X1601004X NaraghiRSellebyMÅgrenJCalphad Comput. Coupling Phase Diagrams Thermochem.2014461481581:CAS:528:DC%2BC2cXhtFSltrnF10.1016/j.calphad.2014.03.004 BhadeshiaHKDHPhilos. Mag.201393371437251:CAS:528:DC%2BC3sXjsVOhtr8%3D10.1080/14786435.2013.775518 GaudezSTeixeiraJDenisSGeandierGAllainSYPMater. Charact.20221851:CAS:528:DC%2BB38Xht1ygtbY%3D10.1016/j.matchar.2022.111740 MaugisPActa Mater.20181584544651:CAS:528:DC%2BC1cXhsVyntbbM10.1016/j.actamat.2018.08.001 ZhangYMarusawaKKudoKMorookaSHarjoSMiyamotoGFuruharaTISIJ Int.2024642452561:CAS:528:DC%2BB2cXjs1Chtr4%3D10.2355/isijinternational.ISIJINT-2023-251 AdamsDMilesMPHomerERBrownTMishraRKFullwoodDTJ. Microsc.202128260721:CAS:528:DC%2BB3MXptl2rsbc%3D3322612010.1111/jmi.12980 WangYTomotaYOhmuraTMorookaSGongWHarjoSActa Mater.202018430401:CAS:528:DC%2BC1MXit1GltbrP10.1016/j.actamat.2019.11.051 SvobodaJEckerWRazumovskiyVIZicklerGAFischerFDProg. Mater. Sci.20191011722061:CAS:528:DC%2BC1cXisFygt7fL10.1016/j.pmatsci.2018.10.001 MaruyamaNTabataSMetall. Mater. Trans. A Phys. Metall. Mater. Sci.2021522576881:CAS:528:DC%2BB3MXotVams7c%3D10.1007/s11661-021-06249-x OhtsukaHTsuzakiKISIJ Int.202161267726861:CAS:528:DC%2BB3MXis1eisrbK10.2355/isijinternational.ISIJINT-2021-334 KohneTMaimaitiyiliTWinkelmannAMaawadEHedströmPBorgenstamAMetall. Mater. Trans. A Phys. Metall. Mater. Sci.2022533034431:CAS:528:DC%2BB38XhsVCnsLfJ10.1007/s11661-022-06724-z EppJHirschTCurfsCMetall. Mater. Trans. A Phys. Metall. Mater. Sci.201243221071:CAS:528:DC%2BC38Xnt1yqsbo%3D10.1007/s11661-012-1087-7 KurdjumovGVKaminskyEZ. Phys.19295369670710.1007/BF01330828 EyméoudPHuangLMaugisPScr. Mater.2021205101410.1016/j.scriptamat.2021.114182 RubanAVPhys. Rev. B Condens. Matter Mater. Phys.2014901810.1103/PhysRevB.90.144106 MaugisPDanoixFZapolskyHCazottesSGounéMPhys. Rev. B2017961810.1103/PhysRevB.96.214104 Hulme-SmithCNPeetMJLonardelliIDippelACBhadeshiaHKDHMater. Sci. Technol. (U. K.)2015312542561:CAS:528:DC%2BC2cXhslOqtbbL10.1179/1743284714Y.0000000691 ChirkovPVMirzoevAAMirzaevDAMater. Today Proc.20152S553S55610.1016/j.matpr.2015.07.345 UdyanskyAVon PezoldJDickANeugebauerJPhys. Rev. B Condens. Matter Mater. Phys.20118311110.1103/PhysRevB.83.184112 KajiwaraSKikuchiTActa Metall. Mater.199139112311311:CAS:528:DyaK3MXmvVCgs7w%3D10.1016/0956-7151(91)90200-K MaugisPHuangLJ. Alloys Compd.20229071:CAS:528:DC%2BB38XnsFCks7c%3D10.1016/j.jallcom.2022.164502 Al-ZoubiNSkorodumovaNVMedvedevaAAnderssonJNilsonGJohanssonBVitosLPhys. Rev. B Condens. Matter Mater. Phys.2012851710.1103/PhysRevB.85.014112 SinclairCWPerezMVeigaRGAWeckAPhys. Rev. B Condens. Matter Mater. Phys.2010811910.1103/PhysRevB.81.224204 HutchinsonBLindbergFLynchPISIJ Int.202262198119891:CAS:528:DC%2BB38Xisl2ltL7I10.2355/isijinternational.ISIJINT-2022-086 MaugisPConnétableDEyméoudPScr. Mater.20211941:CAS:528:DC%2BB3cXisVSmtrvM10.1016/j.scriptamat.2020.113632 NolzeGWinkelmannACiosGTokarskiTMater. Charact.20211751:CAS:528:DC%2BB3MXntF2hsLg%3D10.1016/j.matchar.2021.111040 SnoekJLPhysica194187117331:CAS:528:DyaH38Xjs12gug%3D%3D10.1016/S0031-8914(41)90517-7 MaruyamaNTabataSISIJ Int.20236423524410.2355/isijinternational.ISIJINT-2023-144 ChenYXiaoWJiaoKPingDXuHZhaoXWangYPhys. Rev. Mater.2018215 RanjanRSinghSBActa Mater.20212023023161:CAS:528:DC%2BB3cXitlygu7fI10.1016/j.actamat.2020.10.048 R. Naraghi and M. Selleby: in Proceedings of the 1st World Congress on Integrated Computational Materials Engineering (ICME), 2011, pp. 235–40. Garcia-MateoCJimenezJAYenHWMillerMKMorales-RivasLKuntzMRingerSPYangJRCaballeroFGActa Mater.2015911621731:CAS:528:DC%2BC2MXls1Gru7c%3D10.1016/j.actamat.2015.03.018 KandaskalovDHuangLEmoJMaugisPMater. Chem. Phys.20222861:CAS:528:DC%2BB38Xht1agtrvK10.1016/j.matchemphys.2022.126159 WasedaOMorthomasJRibeiroFChantrennePSinclairCWPerezMModel. Simul. Mater. Sci. Eng.201810.1088/1361-651X/aaef22 KurdjumovGVKhachaturyanAGActa Metall.1975231077108810.1016/0001-6160(75)90112-1 FukuiDNakadaNOnakaSActa Mater.20201966606681:CAS:528:DC%2BB3cXhsVSksrvO10.1016/j.actamat.2020.07.013 Y Chen (7576_CR9) 2018; 2 JK Lee (7576_CR19) 1980; 11A R Ranjan (7576_CR45) 2021; 202 G Nolze (7576_CR38) 2021; 175 HKDH Bhadeshia (7576_CR11) 2013; 93 CW Sinclair (7576_CR30) 2010; 81 S Kajiwara (7576_CR41) 1991; 39 T Kohne (7576_CR6) 2022; 53 G Kurdjumov (7576_CR2) 1930; 64 N Maruyama (7576_CR54) 2021; 52 H Ohtsuka (7576_CR15) 2021; 61 A Udyansky (7576_CR25) 2009; 79 P Maugis (7576_CR22) 2017; 96 R Naraghi (7576_CR29) 2014; 46 N Maruyama (7576_CR39) 2023; 64 Y Wang (7576_CR8) 2020; 184 S Lin (7576_CR56) 2022; 185 A Udyansky (7576_CR26) 2011; 83 JW Christian (7576_CR40) 1992; 33 D Kandaskalov (7576_CR53) 2022; 286 X Zhang (7576_CR13) 2016; 94 O Waseda (7576_CR32) 2018 P Eyméoud (7576_CR17) 2021; 205 D Fukui (7576_CR14) 2020; 196 Y Chen (7576_CR10) 2018; 227 P Maugis (7576_CR58) 2022; 907 P Maugis (7576_CR33) 2018; 769 WL Fink (7576_CR1) 1926; 9 J Epp (7576_CR4) 2012; 43 AV Ruban (7576_CR12) 2014; 90 CN Hulme-Smith (7576_CR42) 2015; 31 C Garcia-Mateo (7576_CR43) 2015; 91 B Hutchinson (7576_CR18) 2022; 62 B Hutchinson (7576_CR48) 2024; 64 JY Yan (7576_CR34) 2018; 147 S Gaudez (7576_CR5) 2022; 185 GV Kurdjumov (7576_CR7) 1975; 23 C Lerchbacher (7576_CR47) 2012; 43 T Kohne (7576_CR52) 2022; 15 PV Chirkov (7576_CR31) 2015; 2 GV Kurdjumov (7576_CR50) 1929; 53 FD Fischer (7576_CR51) 2014; 67 P Maugis (7576_CR35) 2021; 194 JL Snoek (7576_CR57) 1941; 8 7576_CR20 Y Zhang (7576_CR46) 2024; 64 X Zhang (7576_CR27) 2020; 19 C Zener (7576_CR3) 1948; 74 T Tanaka (7576_CR37) 2020; 195 J Svoboda (7576_CR49) 2019; 101 Z Fan (7576_CR24) 1995; 52 D Adams (7576_CR36) 2021; 282 N Al-Zoubi (7576_CR16) 2012; 85 P Maugis (7576_CR23) 2018; 158 R Rementeria (7576_CR44) 2017; 133 G Krauss (7576_CR55) 1999; 273–275 PV Chirkov (7576_CR21) 2016; 117 7576_CR28 |
References_xml | – reference: UdyanskyAVon PezoldJBugaevVNFriákMNeugebauerJPhys. Rev. B Condens. Matter Mater. Phys.2009791510.1103/PhysRevB.79.224112 – reference: MaugisPChentoufSConnétableDJ. Alloys Compd.2018769112111311:CAS:528:DC%2BC1cXhsFOhs77N10.1016/j.jallcom.2018.08.060 – reference: FukuiDNakadaNOnakaSActa Mater.20201966606681:CAS:528:DC%2BB3cXhsVSksrvO10.1016/j.actamat.2020.07.013 – reference: ZhangXHickelTRogalJNeugebauerJPhys. Rev. B20169419 – reference: ZhangYMarusawaKKudoKMorookaSHarjoSMiyamotoGFuruharaTISIJ Int.2024642452561:CAS:528:DC%2BB2cXjs1Chtr4%3D10.2355/isijinternational.ISIJINT-2023-251 – reference: OhtsukaHTsuzakiKISIJ Int.202161267726861:CAS:528:DC%2BB3MXis1eisrbK10.2355/isijinternational.ISIJINT-2021-334 – reference: KurdjumovGSachsGActa Metall.19306432543 – reference: WangYTomotaYOhmuraTMorookaSGongWHarjoSActa Mater.202018430401:CAS:528:DC%2BC1MXit1GltbrP10.1016/j.actamat.2019.11.051 – reference: YanJYRubanAVComput. Mater. Sci.20181472933031:CAS:528:DC%2BC1cXjtVCgsLk%3D10.1016/j.commatsci.2018.02.024 – reference: FinkWLCampbellEDTrans. Am Soc. Steel Treat.192697171:CAS:528:DyaB28XitFOrtw%3D%3D – reference: ChristianJWMater. Trans.1992332082141:CAS:528:DyaK38Xkslemtb8%3D10.2320/matertrans1989.33.208 – reference: RanjanRSinghSBActa Mater.20212023023161:CAS:528:DC%2BB3cXitlygu7fI10.1016/j.actamat.2020.10.048 – reference: LinSBorgenstamAStarkAHedströmPMater. Charact.20221851:CAS:528:DC%2BB38XjtFSqsbY%3D10.1016/j.matchar.2022.111774 – reference: TanakaTMaruyamaNNakamuraNWilkinsonAJActa Mater.20201957287381:CAS:528:DC%2BB3cXht1Ciu77L10.1016/j.actamat.2020.06.017 – reference: EppJHirschTCurfsCMetall. Mater. Trans. A Phys. Metall. Mater. Sci.201243221071:CAS:528:DC%2BC38Xnt1yqsbo%3D10.1007/s11661-012-1087-7 – reference: BhadeshiaHKDHPhilos. Mag.201393371437251:CAS:528:DC%2BC3sXjsVOhtr8%3D10.1080/14786435.2013.775518 – reference: SinclairCWPerezMVeigaRGAWeckAPhys. Rev. B Condens. Matter Mater. Phys.2010811910.1103/PhysRevB.81.224204 – reference: LeeJKEarmmeYYAaronsonHIRussellKCMetall. Trans. A198011A1837184710.1007/BF02655099 – reference: SvobodaJEckerWRazumovskiyVIZicklerGAFischerFDProg. Mater. Sci.20191011722061:CAS:528:DC%2BC1cXisFygt7fL10.1016/j.pmatsci.2018.10.001 – reference: MaruyamaNTabataSMetall. Mater. Trans. A Phys. Metall. Mater. Sci.2021522576881:CAS:528:DC%2BB3MXotVams7c%3D10.1007/s11661-021-06249-x – reference: Garcia-MateoCJimenezJAYenHWMillerMKMorales-RivasLKuntzMRingerSPYangJRCaballeroFGActa Mater.2015911621731:CAS:528:DC%2BC2MXls1Gru7c%3D10.1016/j.actamat.2015.03.018 – reference: ZhangXWangHHickelTRogalJLiYNeugebauerJNat. Mater.2020198498541:CAS:528:DC%2BB3cXosVyqu7s%3D3236707910.1038/s41563-020-0677-9 – reference: GaudezSTeixeiraJDenisSGeandierGAllainSYPMater. Charact.20221851:CAS:528:DC%2BB38Xht1ygtbY%3D10.1016/j.matchar.2022.111740 – reference: HutchinsonBLindbergFLynchPISIJ Int.202262198119891:CAS:528:DC%2BB38Xisl2ltL7I10.2355/isijinternational.ISIJINT-2022-086 – reference: NaraghiRSellebyMÅgrenJCalphad Comput. Coupling Phase Diagrams Thermochem.2014461481581:CAS:528:DC%2BC2cXhtFSltrnF10.1016/j.calphad.2014.03.004 – reference: WasedaOMorthomasJRibeiroFChantrennePSinclairCWPerezMModel. Simul. Mater. Sci. Eng.201810.1088/1361-651X/aaef22 – reference: KohneTMaimaitiyiliTWinkelmannAMaawadEHedströmPBorgenstamAMetall. Mater. Trans. A Phys. Metall. Mater. Sci.2022533034431:CAS:528:DC%2BB38XhsVCnsLfJ10.1007/s11661-022-06724-z – reference: NolzeGWinkelmannACiosGTokarskiTMater. Charact.20211751:CAS:528:DC%2BB3MXntF2hsLg%3D10.1016/j.matchar.2021.111040 – reference: HutchinsonBLynchPKadaSWangJISIJ Int.2024641761831:CAS:528:DC%2BB2cXjs1Chs7k%3D10.2355/isijinternational.ISIJINT-2023-220 – reference: SnoekJLPhysica194187117331:CAS:528:DyaH38Xjs12gug%3D%3D10.1016/S0031-8914(41)90517-7 – reference: UdyanskyAVon PezoldJDickANeugebauerJPhys. Rev. B Condens. Matter Mater. Phys.20118311110.1103/PhysRevB.83.184112 – reference: AdamsDMilesMPHomerERBrownTMishraRKFullwoodDTJ. Microsc.202128260721:CAS:528:DC%2BB3MXptl2rsbc%3D3322612010.1111/jmi.12980 – reference: KurdjumovGVKhachaturyanAGActa Metall.1975231077108810.1016/0001-6160(75)90112-1 – reference: ChirkovPVMirzoevAAMirzaevDAPhys. Met. Metallogr.201611734411:CAS:528:DC%2BC28XktlGgs7w%3D10.1134/S0031918X1601004X – reference: ChirkovPVMirzoevAAMirzaevDAMater. Today Proc.20152S553S55610.1016/j.matpr.2015.07.345 – reference: ChenYLiuQXiaoWPingDWangYZhaoXMater. Lett.20182272132161:CAS:528:DC%2BC1cXhtVSlsrvI10.1016/j.matlet.2018.05.084 – reference: K.A. Taylor and M. Cohen: Prog. Mater. Sci., 1992, vol. 36, pp. 225–72. – reference: ZenerCPhys. Rev.1948746396471:CAS:528:DyaH1cXktVKgtA%3D%3D10.1103/PhysRev.74.639 – reference: KandaskalovDHuangLEmoJMaugisPMater. Chem. Phys.20222861:CAS:528:DC%2BB38Xht1agtrvK10.1016/j.matchemphys.2022.126159 – reference: LerchbacherCZinnerSLeitnerHMicron2012438188261:CAS:528:DC%2BC38XlvFWlsbc%3D2239110110.1016/j.micron.2012.02.005 – reference: MaruyamaNTabataSISIJ Int.20236423524410.2355/isijinternational.ISIJINT-2023-144 – reference: RubanAVPhys. Rev. B Condens. Matter Mater. Phys.2014901810.1103/PhysRevB.90.144106 – reference: RementeriaRJimenezJAAllainSYPGeandierGPoplawskyJDGuoWUrones-GarroteEGarcia-MateoCCaballeroFGActa Mater.20171333333451:CAS:528:DC%2BC2sXovFGitbs%3D10.1016/j.actamat.2017.05.048 – reference: ChenYXiaoWJiaoKPingDXuHZhaoXWangYPhys. Rev. Mater.2018215 – reference: Al-ZoubiNSkorodumovaNVMedvedevaAAnderssonJNilsonGJohanssonBVitosLPhys. Rev. B Condens. Matter Mater. Phys.2012851710.1103/PhysRevB.85.014112 – reference: FischerFDSvobodaJPetrykHActa Mater.2014671201:CAS:528:DC%2BC2cXivFCqtrg%3D10.1016/j.actamat.2013.11.050 – reference: KraussGMater. Sci. Eng. A1999273–275405710.1016/S0921-5093(99)00288-9 – reference: MaugisPHuangLJ. Alloys Compd.20229071:CAS:528:DC%2BB38XnsFCks7c%3D10.1016/j.jallcom.2022.164502 – reference: FanZXiaoLJinxiuZMokuangKZhenqiGPhys. Rev. B199552997999871:STN:280:DC%2BC2sfktVylsA%3D%3D10.1103/PhysRevB.52.9979 – reference: R. Naraghi and M. Selleby: in Proceedings of the 1st World Congress on Integrated Computational Materials Engineering (ICME), 2011, pp. 235–40. – reference: KohneTDahlströmAWinkelmannAHedströmPBorgenstamAMaterials (Basel)20221511110.3390/ma15196653 – reference: MaugisPDanoixFZapolskyHCazottesSGounéMPhys. Rev. B2017961810.1103/PhysRevB.96.214104 – reference: MaugisPActa Mater.20181584544651:CAS:528:DC%2BC1cXhsVyntbbM10.1016/j.actamat.2018.08.001 – reference: KurdjumovGVKaminskyEZ. Phys.19295369670710.1007/BF01330828 – reference: KajiwaraSKikuchiTActa Metall. Mater.199139112311311:CAS:528:DyaK3MXmvVCgs7w%3D10.1016/0956-7151(91)90200-K – reference: EyméoudPHuangLMaugisPScr. Mater.2021205101410.1016/j.scriptamat.2021.114182 – reference: MaugisPConnétableDEyméoudPScr. Mater.20211941:CAS:528:DC%2BB3cXisVSmtrvM10.1016/j.scriptamat.2020.113632 – reference: Hulme-SmithCNPeetMJLonardelliIDippelACBhadeshiaHKDHMater. Sci. Technol. (U. K.)2015312542561:CAS:528:DC%2BC2cXhslOqtbbL10.1179/1743284714Y.0000000691 – volume: 196 start-page: 660 year: 2020 ident: 7576_CR14 publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.07.013 – volume: 79 start-page: 1 year: 2009 ident: 7576_CR25 publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.79.224112 – volume: 53 start-page: 3034 year: 2022 ident: 7576_CR6 publication-title: Metall. Mater. Trans. A Phys. Metall. Mater. Sci. doi: 10.1007/s11661-022-06724-z – volume: 175 year: 2021 ident: 7576_CR38 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2021.111040 – volume: 15 start-page: 1 year: 2022 ident: 7576_CR52 publication-title: Materials (Basel) doi: 10.3390/ma15196653 – volume: 147 start-page: 293 year: 2018 ident: 7576_CR34 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.02.024 – volume: 64 start-page: 235 year: 2023 ident: 7576_CR39 publication-title: ISIJ Int. doi: 10.2355/isijinternational.ISIJINT-2023-144 – volume: 90 start-page: 1 year: 2014 ident: 7576_CR12 publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.90.144106 – volume: 194 year: 2021 ident: 7576_CR35 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.113632 – volume: 74 start-page: 639 year: 1948 ident: 7576_CR3 publication-title: Phys. Rev. doi: 10.1103/PhysRev.74.639 – volume: 101 start-page: 172 year: 2019 ident: 7576_CR49 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2018.10.001 – volume: 769 start-page: 1121 year: 2018 ident: 7576_CR33 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.08.060 – volume: 9 start-page: 717 year: 1926 ident: 7576_CR1 publication-title: Trans. Am Soc. Steel Treat. – volume: 2 start-page: 1 year: 2018 ident: 7576_CR9 publication-title: Phys. Rev. Mater. – volume: 43 start-page: 818 year: 2012 ident: 7576_CR47 publication-title: Micron doi: 10.1016/j.micron.2012.02.005 – volume: 64 start-page: 176 year: 2024 ident: 7576_CR48 publication-title: ISIJ Int. doi: 10.2355/isijinternational.ISIJINT-2023-220 – volume: 2 start-page: S553 year: 2015 ident: 7576_CR31 publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2015.07.345 – year: 2018 ident: 7576_CR32 publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/1361-651X/aaef22 – volume: 39 start-page: 1123 year: 1991 ident: 7576_CR41 publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(91)90200-K – volume: 185 year: 2022 ident: 7576_CR5 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2022.111740 – volume: 11A start-page: 1837 year: 1980 ident: 7576_CR19 publication-title: Metall. Trans. A doi: 10.1007/BF02655099 – volume: 53 start-page: 696 year: 1929 ident: 7576_CR50 publication-title: Z. Phys. doi: 10.1007/BF01330828 – volume: 185 year: 2022 ident: 7576_CR56 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2022.111774 – volume: 8 start-page: 711 year: 1941 ident: 7576_CR57 publication-title: Physica doi: 10.1016/S0031-8914(41)90517-7 – volume: 52 start-page: 9979 year: 1995 ident: 7576_CR24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.52.9979 – ident: 7576_CR28 doi: 10.1002/9781118147726.ch33 – volume: 64 start-page: 325 year: 1930 ident: 7576_CR2 publication-title: Acta Metall. – volume: 85 start-page: 1 year: 2012 ident: 7576_CR16 publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.85.014112 – volume: 184 start-page: 30 year: 2020 ident: 7576_CR8 publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.11.051 – volume: 81 start-page: 1 year: 2010 ident: 7576_CR30 publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.81.224204 – volume: 23 start-page: 1077 year: 1975 ident: 7576_CR7 publication-title: Acta Metall. doi: 10.1016/0001-6160(75)90112-1 – volume: 43 start-page: 2210 year: 2012 ident: 7576_CR4 publication-title: Metall. Mater. Trans. A Phys. Metall. Mater. Sci. doi: 10.1007/s11661-012-1087-7 – ident: 7576_CR20 doi: 10.1016/0079-6425(92)90010-5 – volume: 907 year: 2022 ident: 7576_CR58 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.164502 – volume: 286 year: 2022 ident: 7576_CR53 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2022.126159 – volume: 62 start-page: 1981 year: 2022 ident: 7576_CR18 publication-title: ISIJ Int. doi: 10.2355/isijinternational.ISIJINT-2022-086 – volume: 282 start-page: 60 year: 2021 ident: 7576_CR36 publication-title: J. Microsc. doi: 10.1111/jmi.12980 – volume: 158 start-page: 454 year: 2018 ident: 7576_CR23 publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.08.001 – volume: 205 start-page: 10 year: 2021 ident: 7576_CR17 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2021.114182 – volume: 91 start-page: 162 year: 2015 ident: 7576_CR43 publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.03.018 – volume: 94 start-page: 1 year: 2016 ident: 7576_CR13 publication-title: Phys. Rev. B – volume: 31 start-page: 254 year: 2015 ident: 7576_CR42 publication-title: Mater. Sci. Technol. (U. K.) doi: 10.1179/1743284714Y.0000000691 – volume: 273–275 start-page: 40 year: 1999 ident: 7576_CR55 publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(99)00288-9 – volume: 202 start-page: 302 year: 2021 ident: 7576_CR45 publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.10.048 – volume: 19 start-page: 849 year: 2020 ident: 7576_CR27 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0677-9 – volume: 33 start-page: 208 year: 1992 ident: 7576_CR40 publication-title: Mater. Trans. doi: 10.2320/matertrans1989.33.208 – volume: 64 start-page: 245 year: 2024 ident: 7576_CR46 publication-title: ISIJ Int. doi: 10.2355/isijinternational.ISIJINT-2023-251 – volume: 46 start-page: 148 year: 2014 ident: 7576_CR29 publication-title: Calphad Comput. Coupling Phase Diagrams Thermochem. doi: 10.1016/j.calphad.2014.03.004 – volume: 195 start-page: 728 year: 2020 ident: 7576_CR37 publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.06.017 – volume: 83 start-page: 1 year: 2011 ident: 7576_CR26 publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.83.184112 – volume: 133 start-page: 333 year: 2017 ident: 7576_CR44 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.05.048 – volume: 52 start-page: 2576 year: 2021 ident: 7576_CR54 publication-title: Metall. Mater. Trans. A Phys. Metall. Mater. Sci. doi: 10.1007/s11661-021-06249-x – volume: 227 start-page: 213 year: 2018 ident: 7576_CR10 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.05.084 – volume: 61 start-page: 2677 year: 2021 ident: 7576_CR15 publication-title: ISIJ Int. doi: 10.2355/isijinternational.ISIJINT-2021-334 – volume: 96 start-page: 1 year: 2017 ident: 7576_CR22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.214104 – volume: 93 start-page: 3714 year: 2013 ident: 7576_CR11 publication-title: Philos. Mag. doi: 10.1080/14786435.2013.775518 – volume: 117 start-page: 34 year: 2016 ident: 7576_CR21 publication-title: Phys. Met. Metallogr. doi: 10.1134/S0031918X1601004X – volume: 67 start-page: 1 year: 2014 ident: 7576_CR51 publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.11.050 |
SSID | ssj0001936 |
Score | 2.3985095 |
Snippet | Martensite and bainite are formed from austenite through the rapid application of Bain’s strain. In several studies, martensite is considered as a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4940 |
SubjectTerms | Bainite Carbon Characterization and Evaluation of Materials Chemistry and Materials Science Electron back scatter Ferrite Lattice sites Martensite Materials Science Metallic Materials Nanotechnology Original Research Article Residual stress Room temperature Strain Stress relaxation Structural Materials Surfaces and Interfaces Tetragonal lattice Thin Films Unit cell |
Title | Modeling of Carbon Redistribution and Tetragonality Evolution in Supersaturated Ferrite |
URI | https://link.springer.com/article/10.1007/s11661-024-07576-5 https://www.proquest.com/docview/3126442435 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oXPRgfEYUSQ_etMk-2l04EgISjR4UIp42bbc1JmYhsPD7nS5dVo2auNe2k-w8Ot-k8wC4RCOQnkwjypk0lDEMUDpt31CFoYaJPMaMZ4uT7x-i4ZjdTvjEFYUtymz38kmyuKmrYjcffQlFn0LRzcVIfRvq3MbuqMXjoLu5fxGSROtMw5Ba7-5KZX6m8dUdVRjz27No4W0G-7DnYCLpruV6AFs6O4TdT80Dj-DZjjGzxeRkakhPzOU0I4-2ynYzw4qILCUjnc_Fq8PbpL9yqkbeMvK0nCH4s509EXCmZGCbNOb6GMaD_qg3pG5MAlVoPzkNlJcijFA8ZEpH0vc0a2sEQrFsy5BHRgr8aQwbRBikHRXiFytmGEt1KmI7p-YEatk006dAMByOfKURxNnAK44lnu0EwsTSM5Jz0wC_5FaiXA9xO8riPam6H1sOJ8jhpOBwwhtwtTkzW3fQ-HN3sxRC4qxpkYS-hW0BIrsGXJeCqZZ_p3b2v-3nsBNY3SiyVZpQy-dLfYGYI5ctqHdvXu76rULVPgBo-c0O |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1JTwIxFIBfFA_qwbhGFLUHb9pkls7CkRAIKnBQiNyaaac1JmYgMPj7fR06jBo1ca5dknld3vfStwBc4yEQjkhDGjChKWNooDRjV1OJpoYOHca0Y4KTB8OwN2b3k2Big8IWpbd7-SRZ3NRVsJuLuoSiTqGo5iKcfRO2EAZi48g19lrr-xeRJFx5GvrUaHcbKvPzHF_VUcWY355FC23T3Yc9i4mktVrXA9hQ2SHsfkoeeATPpoyZCSYnU03ayVxMM_JoomzXNaxIkqVkpPJ58mJ5m3Te7VYjrxl5Ws4Q_kxmTwTOlHRNksZcHcO42xm1e9SWSaASz09OPemkiBEy8JlUoXAdxWKFIBSJWPhBqEWCP41mQ-J7aVP6-EWSacZSlSaRqVNzArVsmqlTIGgOh65UCHHG8IoigWObXqIj4WgRBLoObiktLm0OcVPK4o1X2Y-NhDlKmBcS5kEdbtZjZqsMGn_2bpSLwO1pWnDfNdjmIdnV4bZcmKr599nO_tf9CrZ7o0Gf9--GD-ew45l9UniuNKCWz5fqAvkjF5fFdvsAx6nObQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBfGK16h686dI8Nkl7LLWhvopoi72F7EsESUtN_f3O5tFUUcFcs7shs7M737D7fQNwjouAW1z61GNcU8YwQWm3bE0FphratxjTliEn3w_8_ojdjL3xEos_u-1eHknmnAaj0pSkzanUzYr4ZmNcoRhfKIa8AL-0Cmu4HdvGr0dOZ7EXIzzx81uHLjWRvqDN_DzG19BU4c1vR6RZ5Am3YauAjKSTz_EOrKhkFzaXhAT34NmUNDPEcjLRpBvP-CQhj4Zxu6hnReJEkqFKZ_FLgb1J76NwO_KakKf5FIGgUflE8ClJaAQbU7UPo7A37PZpUTKBCvz5lDrCkggphOcyoXxuW4q1FIKigLe46_max_jTmELEriPbwsUnEEwzJpWMA1Oz5gBqySRRh0AwNfZtoRDQmSQsCDj2bTuxDriluefpOtiltSJR6ImbshZvUaWEbCwcoYWjzMKRV4eLRZ9prqbxZ-tGOQlRsbLeI9c2EM5BlFeHy3Jiqte_j3b0v-ZnsP5wFUZ314PbY9hwjJtkl1gaUEtnc3WCUCTlp5m3fQL-t9Kp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+of+Carbon+Redistribution+and+Tetragonality+Evolution+in+Supersaturated+Ferrite&rft.jtitle=Metallurgical+and+materials+transactions.+A%2C+Physical+metallurgy+and+materials+science&rft.au=Svoboda%2C+J.&rft.au=Ressel%2C+G.&rft.au=Brandl%2C+D.&rft.date=2024-12-01&rft.issn=1073-5623&rft.eissn=1543-1940&rft.volume=55&rft.issue=12&rft.spage=4940&rft.epage=4953&rft_id=info:doi/10.1007%2Fs11661-024-07576-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11661_024_07576_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-5623&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-5623&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-5623&client=summon |