Exploiting interaction of fine and coarse features and attribute co-occurrence for person attribute recognition
Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of computer vision. Recently, methods based on convolutional neural networks have shown outstanding performance in this area. They usually empl...
Saved in:
Published in | Multimedia tools and applications Vol. 80; no. 8; pp. 11887 - 11902 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of computer vision. Recently, methods based on convolutional neural networks have shown outstanding performance in this area. They usually employ a CNN network to mine the shared feature representation followed by several layers for attribute classification. To improve the representation ability of the model, many methods element-add or concatenate coarse and fine feature maps to fuse information at different feature levels. However, these methods didn’t fully exploit the interaction of multi-level convolutional feature maps for person attribute analysis and not consider the correlation of attributes for the same person. In this paper, we introduce a kind of correlation feature, which exploits the high order interaction of coarse and fine feature maps to capture the robust feature representation from multi-level convolution layers as the image representation for person attribute recognition. Moreover, we propose an intraperson attribute loss to explicitly model the correlation of attributes for the same person. We experiment our proposed model on CIFAR-10 dataset, Berkeley Human Attributes dataset, PA-100 K dataset, and experimental results show the better performance of the feature representation and the effectiveness of intra-person attribute loss. |
---|---|
AbstractList | Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of computer vision. Recently, methods based on convolutional neural networks have shown outstanding performance in this area. They usually employ a CNN network to mine the shared feature representation followed by several layers for attribute classification. To improve the representation ability of the model, many methods element-add or concatenate coarse and fine feature maps to fuse information at different feature levels. However, these methods didn’t fully exploit the interaction of multi-level convolutional feature maps for person attribute analysis and not consider the correlation of attributes for the same person. In this paper, we introduce a kind of correlation feature, which exploits the high order interaction of coarse and fine feature maps to capture the robust feature representation from multi-level convolution layers as the image representation for person attribute recognition. Moreover, we propose an intraperson attribute loss to explicitly model the correlation of attributes for the same person. We experiment our proposed model on CIFAR-10 dataset, Berkeley Human Attributes dataset, PA-100 K dataset, and experimental results show the better performance of the feature representation and the effectiveness of intra-person attribute loss. Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of computer vision. Recently, methods based on convolutional neural networks have shown outstanding performance in this area. They usually employ a CNN network to mine the shared feature representation followed by several layers for attribute classification. To improve the representation ability of the model, many methods element-add or concatenate coarse and fine feature maps to fuse information at different feature levels. However, these methods didn’t fully exploit the interaction of multi-level convolutional feature maps for person attribute analysis and not consider the correlation of attributes for the same person. In this paper, we introduce a kind of correlation feature, which exploits the high order interaction of coarse and fine feature maps to capture the robust feature representation from multi-level convolution layers as the image representation for person attribute recognition. Moreover, we propose an intraperson attribute loss to explicitly model the correlation of attributes for the same person. We experiment our proposed model on CIFAR-10 dataset, Berkeley Human Attributes dataset, PA-100 K dataset, and experimental results show the better performance of the feature representation and the effectiveness of intra-person attribute loss. |
Author | Jiang, Li Wang, Tongqing Li, Yang Sun, Zhiyong Ye, Junyong |
Author_xml | – sequence: 1 givenname: Zhiyong surname: Sun fullname: Sun, Zhiyong organization: Key Laboratory of Optoelectronic Technology and Systems of the Ministry of Education, Chongqing University – sequence: 2 givenname: Junyong orcidid: 0000-0002-0944-2900 surname: Ye fullname: Ye, Junyong email: ygyocr@cqu.edu.cn organization: Key Laboratory of Optoelectronic Technology and Systems of the Ministry of Education, Chongqing University – sequence: 3 givenname: Tongqing surname: Wang fullname: Wang, Tongqing organization: Key Laboratory of Optoelectronic Technology and Systems of the Ministry of Education, Chongqing University – sequence: 4 givenname: Li surname: Jiang fullname: Jiang, Li organization: School of Electronic Information Engineering, Yangtze Normal University – sequence: 5 givenname: Yang surname: Li fullname: Li, Yang organization: Nanjing Pioneer Awareness Information Technology co.,Ltd |
BookMark | eNp9kE1LAzEQhoMo-PkHPC14jmY22a-jSP2Aghc9h-x0tkRqUidZUH-921YoePCUkDzPO8N7Kg5DDCTEJahrUKq5SQDKlFKVSoIC1crvA3ECVaNl05RwON11q2RTKTgWpym9KQV1VZoTEWef61X02Ydl4UMmdph9DEUcisEHKlxYFBgdJyoGcnlkSts3lzP7fsw0_cqIODJTwAmKXKyJ0xSxR5gwLoPfBJ-Lo8GtEl38nmfi9X72cvco588PT3e3c4kauizLHh1Wdd9Q23SLAYyqXF1Rb1xN5BygxsVC96hdazozUI9diUabTjUdOdT6TFztctccP0ZK2b7FkcM00pYVaANdDRuq3VHIMSWmwaLPbrNnZudXFpTd1Gt39dqpXrut135PavlHXbN_d_z1v6R3UprgsCTeb_WP9QOk85Ml |
CitedBy_id | crossref_primary_10_1016_j_neucom_2023_02_019 |
Cites_doi | 10.1109/ICCVW.2015.51 10.1007/978-3-642-33863-2_39 10.1109/CVPR.2016.152 10.5244/C.30.81 10.1109/CVPR.2015.7299046 10.1016/j.patrec.2017.05.012 10.1109/ICME.2018.8486604 10.1109/CVPR.2014.212 10.1109/ICCV.2017.31 10.1109/CVPR.2016.140 10.1109/TII.2019.2963434 10.1109/ICCV.2015.284 10.5244/C.26.24 10.1109/ICCV.2017.46 10.24963/ijcai.2018/441 10.1109/WACV.2017.64 10.1109/CVPR.2013.90 10.1145/1459359.1459470 10.1109/ACPR.2015.7486476 10.1109/IJCNN.2015.7280796 10.1109/CVPR.2017.243 10.1007/978-3-319-46466-4_41 10.1109/ICB.2015.7139070 10.1109/ICCV.2011.6126413 10.1109/ICCV.2017.65 10.1109/CVPRW.2017.186 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2016.387 10.1109/CVPR.2019.00082 10.1109/TPAMI.2017.2703082 10.1109/ICCV.2015.425 10.1109/CVPR.2015.7298594 10.1109/CVPR.2017.634 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2021 Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-020-10108-z |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 11902 |
ExternalDocumentID | 10_1007_s11042_020_10108_z |
GrantInformation_xml | – fundername: Fundamental Research Funds for Central Universities of the Central South University grantid: No.2018CDXYGD0017 funderid: http://dx.doi.org/10.13039/501100012476 – fundername: Chongqing Research Program of Basic Research and Frontier Technology grantid: No.cstc2018jcyjAX0633 funderid: http://dx.doi.org/10.13039/501100013223 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-2bcac56b7e879df1405a65eb4a6eeaa1c3cdd3bc3a8494febc92c4349079eac33 |
IEDL.DBID | U2A |
ISSN | 1380-7501 |
IngestDate | Sat Jul 26 00:02:20 EDT 2025 Tue Jul 01 04:13:07 EDT 2025 Thu Apr 24 22:59:04 EDT 2025 Fri Feb 21 02:48:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Attribute recognition Correlation feature Intraperson attribute loss |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-2bcac56b7e879df1405a65eb4a6eeaa1c3cdd3bc3a8494febc92c4349079eac33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0944-2900 |
PQID | 2513419613 |
PQPubID | 54626 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2513419613 crossref_citationtrail_10_1007_s11042_020_10108_z crossref_primary_10_1007_s11042_020_10108_z springer_journals_10_1007_s11042_020_10108_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210300 2021-03-00 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210300 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Mishkin D, Matas J (2015) All you need is a good init, pp. 1–13 Liu W, Rabinovich A, Berg AC (2015) Parsenet: Looking wider to see better[J]. arXiv preprint arXiv:1506.04579 Zhang N, Paluri M, Ranzato M, Darrell T, Bourdev L (2014) PANDA: Pose aligned networks for deep attribute modeling. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1637–1644 Dong Q, Gong S, Zhu X (2017) Multi-Task curriculum transfer deep learning of clothing attributes. In: IEEE Winter Conference on Applications of Computer Vision, pp. 520–529 Luwei Yang YWSL, Zhu L, Tan P (2016) Attribute recognition from adaptive parts. Proceedings of the British Machine Vision Conference, pp. 81.1–81.11 Layne R, Hospedales T, Gong S (2012) Person re-identification by Attributes. In: Procedings of the British Machine Vision Conference, p. 8 Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 Liu X et al. (2017) HydraPlus-Net: attentive deep features for pedestrian analysis. arXiv Prepr. arXiv1709.09930 Li D, Chen X, Zhang Z, Huang K (2018) Pose guided deep model for pedestrian attribute recognition in surveillance scenarios. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 Schumann A, Stiefelhagen R (2017) Person re-identification by deep learning attribute-complementary information. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28 Chen A (2017) Base pretrained models and datasets in pytorch. [Online]. Available: https://github.com/aaron-xichen/pytorch-playground. Accessed 26 Oct 2019 Matsukawa T, Suzuki E (2016) Person re-identification using CNN feat learned from combination of Attributes.pdf. In: 23rd International Conference on Pattern Recognition, pp. 2428–2433 Zhu J, Liao S, Yi D, Lei Z, Li SZ (2015) Multi-label cnn based pedestrian attribute learning for soft biometrics. International Conference on Biometrics, pp. 535–540 Gkioxari G, Girshick R, Malik J (2015) Actions and attributes from wholes and parts. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2470–2478 Sudowe P, Spitzer H, Leibe B (2015) Person attribute recognition with a jointly-trained holistic CNN model. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 329–337 GuoHFanXWangSHuman attribute recognition by refining attention heat mapPattern Recogn Lett201794384510.1016/j.patrec.2017.05.012 Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 Guo H, Zheng K, Fan X et al. (2019) Visual attention consistency under image transforms for multi-label image classification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 729–739 Krizhevsky A, Hinton G (2009) Learning multiple layers of features from tiny images. Technical report, University of Toronto Zhao X, Sang L, Ding G, Guo Y, Jin X (2018) Grouping attribute recognition for pedestrian with joint recurrent learning. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 3177–3183 Bourdev L, Maji S, Malik J (2011) Describing people: a poselet-based approach to attribute classification. In: 2011 International Conference on Computer Vision, pp. 1543–1550 Cao L, Dikmen M, Fu Y, Huang TS (2008) Gender recognition from body. Proceeding 16th ACM Int. Conf. Multimed., no. January, pp. 725–728 He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 Zhang P, Wang D, Lu H, Wang H, Ruan X (2017) Amulet: aggregating multi-level convolutional features for salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 202–211 Huang G, Liu Z, Van Der Maaten L, et al. (2017) Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition.: 4700–4708 Krizhevsky A, Sutskever I, Geoffrey EH (2012) ImageNet classification with deep convolutional neural networks. Communications of the ACM 60(6):84–90 Xiao T, Li H, Ouyang W, Wang X (2016) Learning deep feature representations with domain guided dropout for person re-identification. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1249–1258 Diba A, Mohammad Pazandeh A, Pirsiavash H, Van Gool L (2016) Deepcamp: Deep convolutional action & attribute mid-level patterns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3557–3565 Honari S, Yosinski J, Vincent P, Pal C (2017) Recombinator networks: learning coarse-to-fine feature aggregation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5743–5752 Li Y, Huang C, Loy CC, Tang X (2016) Human attribute recognition by deep hierarchical contexts. In: European Conference on Computer Vision, pp. 684–700 Shi Z, Hospedales TM, Xiang T, Mary Q, London E (2015) Transferring a semantic representation for person re-identification and search. In: Computer Vision and Pattern Recognition, pp. 4184–4193 McDonnell MD, Vladusich T (2015) Enhanced image classification with a fast-learning shallow convolutional neural network. In: Proceedings of the International Joint Conference on Neural Networks, vol. 2015–Septe Arbel P, Girshick R, Malik J (2015) Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 447–456 Wang J, Zhu X, Gong S, Li W (2017) Attribute recognition by joint recurrent learning of context and correlation. In: IEEE International Conference on Computer Vision Xie S, Girshick R, Dollar P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5987–5995 Liu C, Gong S, Loy CC, Lin X (2012) Person re-identification: what features are important?. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7583 LNCS, no. PART 1, pp. 391–401 QinYYanCLiuGLiZJiangCPairwise Gaussian loss for convolutional neural networksIEEE Trans Industr Inform202016106324633310.1109/TII.2019.2963434 LeeCYGallagherPTuZGeneralizing pooling functions in CNNs: mixed, gated, and treeIEEE Trans Pattern Anal Mach Intell201840486387510.1109/TPAMI.2017.2703082 Liu P, Liu X, Yan J, Shao J (2018) Localization guided learning for pedestrian attribute recognition. arXiv:1808.09102 Sharma G, Jurie F, Schmid C (2013) Expanded parts model for human attribute and action recognition in still images. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 652–659 Liu W et al. (2015) SSD: single shot multibox detector, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9905 LNCS, pp. 21–37 Chollet F (2016) Xception: deep learning with separable convolutions. arXiv Prepr. arXiv1610.02357, pp. 1–14 Matsukawa T, Okabe T, Suzuki E, Sato Y (2016) Hierarchical Gaussian descriptor for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1363–1372 RenSHeKGirshickRSunJFaster R-CNN: towards real-time object detection with region proposal networksIEEE Trans Pattern Anal Mach Intell20173961137114910.1109/TPAMI.2016.2577031 ZhengLYangYHauptmannAGPerson re-identification: past, present and futureArxiv2016148120 Li D, Chen X, Huang K (2015) Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios. In: Proceedings - 3rd IAPR Asian Conference on Pattern Recognition, pp. 111–115 Szegedy C et al. (2015) Going deeper with convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–9 Liu Z, Luo P, Wang X, Tang X (2015) Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 10108_CR41 S Ren (10108_CR34) 2017; 39 10108_CR40 10108_CR21 10108_CR43 10108_CR20 10108_CR42 10108_CR23 10108_CR45 10108_CR22 10108_CR44 10108_CR25 10108_CR24 10108_CR46 10108_CR27 10108_CR26 10108_CR48 10108_CR29 10108_CR28 10108_CR1 10108_CR2 Y Qin (10108_CR33) 2020; 16 10108_CR3 H Guo (10108_CR9) 2017; 94 10108_CR30 10108_CR10 10108_CR32 10108_CR31 10108_CR12 10108_CR11 CY Lee (10108_CR17) 2018; 40 10108_CR14 10108_CR36 10108_CR13 10108_CR35 L Zheng (10108_CR47) 2016; 14 10108_CR8 10108_CR16 10108_CR38 10108_CR15 10108_CR37 10108_CR18 10108_CR39 10108_CR4 10108_CR5 10108_CR19 10108_CR6 10108_CR7 |
References_xml | – reference: Gkioxari G, Girshick R, Malik J (2015) Actions and attributes from wholes and parts. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2470–2478 – reference: RenSHeKGirshickRSunJFaster R-CNN: towards real-time object detection with region proposal networksIEEE Trans Pattern Anal Mach Intell20173961137114910.1109/TPAMI.2016.2577031 – reference: Bourdev L, Maji S, Malik J (2011) Describing people: a poselet-based approach to attribute classification. In: 2011 International Conference on Computer Vision, pp. 1543–1550 – reference: Zhang P, Wang D, Lu H, Wang H, Ruan X (2017) Amulet: aggregating multi-level convolutional features for salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 202–211 – reference: Arbel P, Girshick R, Malik J (2015) Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 447–456 – reference: McDonnell MD, Vladusich T (2015) Enhanced image classification with a fast-learning shallow convolutional neural network. In: Proceedings of the International Joint Conference on Neural Networks, vol. 2015–Septe – reference: He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 – reference: Liu Z, Luo P, Wang X, Tang X (2015) Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 – reference: Szegedy C et al. (2015) Going deeper with convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–9 – reference: Luwei Yang YWSL, Zhu L, Tan P (2016) Attribute recognition from adaptive parts. Proceedings of the British Machine Vision Conference, pp. 81.1–81.11 – reference: Zhang N, Paluri M, Ranzato M, Darrell T, Bourdev L (2014) PANDA: Pose aligned networks for deep attribute modeling. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1637–1644 – reference: Layne R, Hospedales T, Gong S (2012) Person re-identification by Attributes. In: Procedings of the British Machine Vision Conference, p. 8 – reference: Li Y, Huang C, Loy CC, Tang X (2016) Human attribute recognition by deep hierarchical contexts. In: European Conference on Computer Vision, pp. 684–700 – reference: Matsukawa T, Okabe T, Suzuki E, Sato Y (2016) Hierarchical Gaussian descriptor for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1363–1372 – reference: Xie S, Girshick R, Dollar P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5987–5995 – reference: Dong Q, Gong S, Zhu X (2017) Multi-Task curriculum transfer deep learning of clothing attributes. In: IEEE Winter Conference on Applications of Computer Vision, pp. 520–529 – reference: Krizhevsky A, Hinton G (2009) Learning multiple layers of features from tiny images. Technical report, University of Toronto – reference: Liu W et al. (2015) SSD: single shot multibox detector, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9905 LNCS, pp. 21–37 – reference: Guo H, Zheng K, Fan X et al. (2019) Visual attention consistency under image transforms for multi-label image classification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 729–739 – reference: Krizhevsky A, Sutskever I, Geoffrey EH (2012) ImageNet classification with deep convolutional neural networks. Communications of the ACM 60(6):84–90 – reference: Xiao T, Li H, Ouyang W, Wang X (2016) Learning deep feature representations with domain guided dropout for person re-identification. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1249–1258 – reference: Honari S, Yosinski J, Vincent P, Pal C (2017) Recombinator networks: learning coarse-to-fine feature aggregation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5743–5752 – reference: Huang G, Liu Z, Van Der Maaten L, et al. (2017) Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition.: 4700–4708 – reference: Liu X et al. (2017) HydraPlus-Net: attentive deep features for pedestrian analysis. arXiv Prepr. arXiv1709.09930 – reference: Liu C, Gong S, Loy CC, Lin X (2012) Person re-identification: what features are important?. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7583 LNCS, no. PART 1, pp. 391–401 – reference: Zhu J, Liao S, Yi D, Lei Z, Li SZ (2015) Multi-label cnn based pedestrian attribute learning for soft biometrics. International Conference on Biometrics, pp. 535–540 – reference: Chen A (2017) Base pretrained models and datasets in pytorch. [Online]. Available: https://github.com/aaron-xichen/pytorch-playground. Accessed 26 Oct 2019 – reference: GuoHFanXWangSHuman attribute recognition by refining attention heat mapPattern Recogn Lett201794384510.1016/j.patrec.2017.05.012 – reference: Chollet F (2016) Xception: deep learning with separable convolutions. arXiv Prepr. arXiv1610.02357, pp. 1–14 – reference: Diba A, Mohammad Pazandeh A, Pirsiavash H, Van Gool L (2016) Deepcamp: Deep convolutional action & attribute mid-level patterns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3557–3565 – reference: Wang J, Zhu X, Gong S, Li W (2017) Attribute recognition by joint recurrent learning of context and correlation. In: IEEE International Conference on Computer Vision – reference: Liu W, Rabinovich A, Berg AC (2015) Parsenet: Looking wider to see better[J]. arXiv preprint arXiv:1506.04579 – reference: Schumann A, Stiefelhagen R (2017) Person re-identification by deep learning attribute-complementary information. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28 – reference: Sudowe P, Spitzer H, Leibe B (2015) Person attribute recognition with a jointly-trained holistic CNN model. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 329–337 – reference: Matsukawa T, Suzuki E (2016) Person re-identification using CNN feat learned from combination of Attributes.pdf. In: 23rd International Conference on Pattern Recognition, pp. 2428–2433 – reference: Mishkin D, Matas J (2015) All you need is a good init, pp. 1–13 – reference: Sharma G, Jurie F, Schmid C (2013) Expanded parts model for human attribute and action recognition in still images. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 652–659 – reference: Li D, Chen X, Zhang Z, Huang K (2018) Pose guided deep model for pedestrian attribute recognition in surveillance scenarios. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 – reference: Shi Z, Hospedales TM, Xiang T, Mary Q, London E (2015) Transferring a semantic representation for person re-identification and search. In: Computer Vision and Pattern Recognition, pp. 4184–4193 – reference: ZhengLYangYHauptmannAGPerson re-identification: past, present and futureArxiv2016148120 – reference: LeeCYGallagherPTuZGeneralizing pooling functions in CNNs: mixed, gated, and treeIEEE Trans Pattern Anal Mach Intell201840486387510.1109/TPAMI.2017.2703082 – reference: Liu P, Liu X, Yan J, Shao J (2018) Localization guided learning for pedestrian attribute recognition. arXiv:1808.09102 – reference: Li D, Chen X, Huang K (2015) Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios. In: Proceedings - 3rd IAPR Asian Conference on Pattern Recognition, pp. 111–115 – reference: Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 – reference: Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 – reference: QinYYanCLiuGLiZJiangCPairwise Gaussian loss for convolutional neural networksIEEE Trans Industr Inform202016106324633310.1109/TII.2019.2963434 – reference: Cao L, Dikmen M, Fu Y, Huang TS (2008) Gender recognition from body. Proceeding 16th ACM Int. Conf. Multimed., no. January, pp. 725–728 – reference: Zhao X, Sang L, Ding G, Guo Y, Jin X (2018) Grouping attribute recognition for pedestrian with joint recurrent learning. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 3177–3183 – volume: 14 start-page: 1 issue: 8 year: 2016 ident: 10108_CR47 publication-title: Arxiv – ident: 10108_CR39 doi: 10.1109/ICCVW.2015.51 – ident: 10108_CR22 doi: 10.1007/978-3-642-33863-2_39 – ident: 10108_CR30 doi: 10.1109/CVPR.2016.152 – ident: 10108_CR1 – ident: 10108_CR28 doi: 10.5244/C.30.81 – ident: 10108_CR12 – ident: 10108_CR37 doi: 10.1109/CVPR.2015.7299046 – ident: 10108_CR5 – volume: 94 start-page: 38 year: 2017 ident: 10108_CR9 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2017.05.012 – ident: 10108_CR20 doi: 10.1109/ICME.2018.8486604 – ident: 10108_CR14 – ident: 10108_CR44 doi: 10.1109/CVPR.2014.212 – ident: 10108_CR21 – ident: 10108_CR45 doi: 10.1109/ICCV.2017.31 – ident: 10108_CR42 doi: 10.1109/CVPR.2016.140 – ident: 10108_CR23 – volume: 16 start-page: 6324 issue: 10 year: 2020 ident: 10108_CR33 publication-title: IEEE Trans Industr Inform doi: 10.1109/TII.2019.2963434 – ident: 10108_CR8 doi: 10.1109/ICCV.2015.284 – ident: 10108_CR16 doi: 10.5244/C.26.24 – ident: 10108_CR26 doi: 10.1109/ICCV.2017.46 – ident: 10108_CR46 doi: 10.24963/ijcai.2018/441 – ident: 10108_CR7 doi: 10.1109/WACV.2017.64 – ident: 10108_CR27 – ident: 10108_CR36 doi: 10.1109/CVPR.2013.90 – ident: 10108_CR25 – ident: 10108_CR3 doi: 10.1145/1459359.1459470 – ident: 10108_CR18 doi: 10.1109/ACPR.2015.7486476 – ident: 10108_CR31 doi: 10.1109/IJCNN.2015.7280796 – ident: 10108_CR29 – ident: 10108_CR13 doi: 10.1109/CVPR.2017.243 – ident: 10108_CR19 doi: 10.1007/978-3-319-46466-4_41 – ident: 10108_CR48 doi: 10.1109/ICB.2015.7139070 – ident: 10108_CR2 doi: 10.1109/ICCV.2011.6126413 – ident: 10108_CR41 doi: 10.1109/ICCV.2017.65 – ident: 10108_CR32 – ident: 10108_CR35 doi: 10.1109/CVPRW.2017.186 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 10108_CR34 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – ident: 10108_CR11 – ident: 10108_CR6 doi: 10.1109/CVPR.2016.387 – ident: 10108_CR10 doi: 10.1109/CVPR.2019.00082 – volume: 40 start-page: 863 issue: 4 year: 2018 ident: 10108_CR17 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2703082 – ident: 10108_CR4 – ident: 10108_CR24 doi: 10.1109/ICCV.2015.425 – ident: 10108_CR40 doi: 10.1109/CVPR.2015.7298594 – ident: 10108_CR15 – ident: 10108_CR43 doi: 10.1109/CVPR.2017.634 – ident: 10108_CR38 |
SSID | ssj0016524 |
Score | 2.24482 |
Snippet | Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11887 |
SubjectTerms | Artificial neural networks Computer Communication Networks Computer Science Computer vision Convolution Data Structures and Information Theory Datasets Feature maps Model testing Multimedia Information Systems Object recognition Representations Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA4-LnrwLVar5OBNg91N9nUSFUsRFBGF3pZkkoAgu7Wtl_56J9lsWwW9biY57CTzSGa-j5BzpUxRaAGMoz9lQsYRkwCCWZ7ZiFsbF5557vEpHbyJh2EyDBduk1BW2dpEb6h1De6O_Ar9sIMeQ-9zPfpkjjXKva4GCo1Vso4mOMfka_32_un5Zf6OkCaB1jbvMfSNUWibaZrnItea4tIn3Ja9nM1-uqZFvPnridR7nv4O2QohI71pdLxLVky1R7ZbOgYaTuce2VzCFtwnta-ue3dVzdRhQoybDgZaW2pRispKU6gxrTXUGo_uOfHf5LThwDI4ymoAj98EKFSP6ciH50si8_Kjujogb_3717sBC-wKDPDYTVmsQEKSqszkWaEtJlqJTBOjhEyNkTICDlpzBVzmohDWKChiEFxgNl2gteb8kKxVdWWOXHlUJnOZoI65FUqYQvPMCB1JHScy4kmHRO2PLSFAjzsGjI9yAZrslFGiMkqvjHLWIRfzOaMGeONf6W6rrzIcwkm52DIdctnqcDH892rH_692QjZiV9niK9G6ZG06_jKnGJpM1VnYf99juuK8 priority: 102 providerName: ProQuest |
Title | Exploiting interaction of fine and coarse features and attribute co-occurrence for person attribute recognition |
URI | https://link.springer.com/article/10.1007/s11042-020-10108-z https://www.proquest.com/docview/2513419613 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20vejBb7FaSw7eNOBukv04VmktikXEgp6WJJuAILulrZf-eifpbquigqeFzWwO-5LMDHnzBuBMKZOmOdeUoT-lXIYBlVpzallsA2ZtmPrOc_fDaDDit8_iuSoKm9Zs9_pK0p_Uq2K3wJWSuHQHl9FlQufr0BQud8dVPAq7y7uDSFStbJNLiv4wqEplfp7jqztaxZjfrkW9t-nvwFYVJpLuAtddWDPFHmzXLRhItSP3YPOTnuA-lJ5R9-qYzMTpQEwWVQuktMSiFZFFTnSJqawh1nhFz6l_J2eLvlcGR2mptdds0mhUTsjYh-SfTJaUo7I4gFG_93Q9oFVHBapxq81oqLTUIlKxSeI0t5hcCRkJo7iMjJEy0EznOVOayYSn3Bql01BzxjGDTvGEZuwQGkVZmCNHiYplIgXiyixX3KQ5iw3PA5mHQgZMtCCof2ymK7lx1_XiLVsJJTswMgQj82Bk8xacL78ZL8Q2_rRu13hl1cabZhiuOYU6DFJacFFjuBr-fbbj_5mfwEbo2C2ejdaGxmzybk4xPJmpDqwn_ZsONLs3L3c9fF71hg-PHb9GPwBjvOLF |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5UB74NGHWFjAB3pqLZrYefhQVQhYtvRxaqXegj22JSSULLuLEP1R_EbGTrLbVqK3vcYTHzzjGY89830A74xxSlmJXFA85VKnCdeIkntR-ER4n6rIPHd-kY-v5Nfr7HoN_va9MKGssveJ0VHbBsMd-XuKwwF6jKLP8eQnD6xR4XW1p9BozeLU_flNKdvs6OQT6XcvTUefLz-OeccqwJHMbc5Tgxqz3BSuLJT1lGBkOs-ckTp3TusEBVorDApdSiW9M6hSlEJSFqnIS4ULUHL5j6QQKuyocvRl8WqRZx2JbnnIKRInXZNO26qXhEaYkKzRJjgs-c3dQLg83d57kI1xbvQMnnQHVPahtajnsObqLXjakz-wzhdsweYtJMNtaGIt3_dQQ80CAsW07ZdgjWeepJiuLcOGkmjHvItYorP4Tc9bxi1Ho7xBjGhRSELNlE1iMnBLZFHs1NQ7cLWSVd-F9bqp3YtQjFXoUmdkUcJLI52yonDSJtqmmU5ENoCkX9gKO6DzwLfxo1pCNAdlVKSMKiqjuhnA_uKfSQvz8aD0sNdX1W35WbU00AEc9DpcDv9_tpcPz_YWHo8vz8-qs5OL01ewkYaamlgDN4T1-fSXe02Horl5Ey2RwbdVm_4_AIQgpw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1VWwnBAWgBsVCoD3ACq5vY-TpUVaFdtRRWFaJSb8Ee2xISSpbdRYj-NH5dx46zWyq1t15jxwfPy4wnfjMP4I3WtqqMRC4onnKp0oQrRMmdKFwinEuroDz3ZZIfnclP59n5Gvzra2E8rbL3icFRmxb9P_IdisO-9RhFnx0XaRGnB-O96S_uFaT8TWsvp9FB5MT-_UPp23z3-IBs_TZNx4ffPh7xqDDAkaC34KlGhVmuC1sWlXGUbGQqz6yWKrdWqQQFGiM0ClXKSjqrsUpRCkkZZUUey_8MJfe_XlBWNBrA-ofDyenX5R1GnkVJ3XLEKS4nsWSnK9xLfFmMT93okxiV_OL_sLg66167ng1Rb_wYHsbjKtvv8LUBa7bZhEe9FASLnmETHlzpa_gE2sDs--EZ1cz3o5h11ROsdczRLKYaw7CllNoyZ0Nn0Xl4phad_palUd4iht5RSJPaGZuG1ODKlCX1qW2ewtmd7PszGDRtY597alahSpURvoSTWtrKiMJKkyiTZioR2RCSfmNrjG3PvfrGz3rVsNkboyZj1MEY9cUQ3i3fmXZNP26dvdXbq44OYF6v4DqE970NV8M3r_bi9tW24R7Bvv58PDl5CfdTT7AJhLgtGCxmv-0rOiEt9OsIRQbf7xr9lw51Jjk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+interaction+of+fine+and+coarse+features+and+attribute+co-occurrence+for+person+attribute+recognition&rft.jtitle=Multimedia+tools+and+applications&rft.au=Sun%2C+Zhiyong&rft.au=Ye%2C+Junyong&rft.au=Wang%2C+Tongqing&rft.au=Jiang%2C+Li&rft.date=2021-03-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=8&rft.spage=11887&rft.epage=11902&rft_id=info:doi/10.1007%2Fs11042-020-10108-z&rft.externalDocID=10_1007_s11042_020_10108_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |