Exploiting interaction of fine and coarse features and attribute co-occurrence for person attribute recognition

Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of computer vision. Recently, methods based on convolutional neural networks have shown outstanding performance in this area. They usually empl...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 80; no. 8; pp. 11887 - 11902
Main Authors Sun, Zhiyong, Ye, Junyong, Wang, Tongqing, Jiang, Li, Li, Yang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of computer vision. Recently, methods based on convolutional neural networks have shown outstanding performance in this area. They usually employ a CNN network to mine the shared feature representation followed by several layers for attribute classification. To improve the representation ability of the model, many methods element-add or concatenate coarse and fine feature maps to fuse information at different feature levels. However, these methods didn’t fully exploit the interaction of multi-level convolutional feature maps for person attribute analysis and not consider the correlation of attributes for the same person. In this paper, we introduce a kind of correlation feature, which exploits the high order interaction of coarse and fine feature maps to capture the robust feature representation from multi-level convolution layers as the image representation for person attribute recognition. Moreover, we propose an intraperson attribute loss to explicitly model the correlation of attributes for the same person. We experiment our proposed model on CIFAR-10 dataset, Berkeley Human Attributes dataset, PA-100 K dataset, and experimental results show the better performance of the feature representation and the effectiveness of intra-person attribute loss.
AbstractList Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of computer vision. Recently, methods based on convolutional neural networks have shown outstanding performance in this area. They usually employ a CNN network to mine the shared feature representation followed by several layers for attribute classification. To improve the representation ability of the model, many methods element-add or concatenate coarse and fine feature maps to fuse information at different feature levels. However, these methods didn’t fully exploit the interaction of multi-level convolutional feature maps for person attribute analysis and not consider the correlation of attributes for the same person. In this paper, we introduce a kind of correlation feature, which exploits the high order interaction of coarse and fine feature maps to capture the robust feature representation from multi-level convolution layers as the image representation for person attribute recognition. Moreover, we propose an intraperson attribute loss to explicitly model the correlation of attributes for the same person. We experiment our proposed model on CIFAR-10 dataset, Berkeley Human Attributes dataset, PA-100 K dataset, and experimental results show the better performance of the feature representation and the effectiveness of intra-person attribute loss.
Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of computer vision. Recently, methods based on convolutional neural networks have shown outstanding performance in this area. They usually employ a CNN network to mine the shared feature representation followed by several layers for attribute classification. To improve the representation ability of the model, many methods element-add or concatenate coarse and fine feature maps to fuse information at different feature levels. However, these methods didn’t fully exploit the interaction of multi-level convolutional feature maps for person attribute analysis and not consider the correlation of attributes for the same person. In this paper, we introduce a kind of correlation feature, which exploits the high order interaction of coarse and fine feature maps to capture the robust feature representation from multi-level convolution layers as the image representation for person attribute recognition. Moreover, we propose an intraperson attribute loss to explicitly model the correlation of attributes for the same person. We experiment our proposed model on CIFAR-10 dataset, Berkeley Human Attributes dataset, PA-100 K dataset, and experimental results show the better performance of the feature representation and the effectiveness of intra-person attribute loss.
Author Jiang, Li
Wang, Tongqing
Li, Yang
Sun, Zhiyong
Ye, Junyong
Author_xml – sequence: 1
  givenname: Zhiyong
  surname: Sun
  fullname: Sun, Zhiyong
  organization: Key Laboratory of Optoelectronic Technology and Systems of the Ministry of Education, Chongqing University
– sequence: 2
  givenname: Junyong
  orcidid: 0000-0002-0944-2900
  surname: Ye
  fullname: Ye, Junyong
  email: ygyocr@cqu.edu.cn
  organization: Key Laboratory of Optoelectronic Technology and Systems of the Ministry of Education, Chongqing University
– sequence: 3
  givenname: Tongqing
  surname: Wang
  fullname: Wang, Tongqing
  organization: Key Laboratory of Optoelectronic Technology and Systems of the Ministry of Education, Chongqing University
– sequence: 4
  givenname: Li
  surname: Jiang
  fullname: Jiang, Li
  organization: School of Electronic Information Engineering, Yangtze Normal University
– sequence: 5
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  organization: Nanjing Pioneer Awareness Information Technology co.,Ltd
BookMark eNp9kE1LAzEQhoMo-PkHPC14jmY22a-jSP2Aghc9h-x0tkRqUidZUH-921YoePCUkDzPO8N7Kg5DDCTEJahrUKq5SQDKlFKVSoIC1crvA3ECVaNl05RwON11q2RTKTgWpym9KQV1VZoTEWef61X02Ydl4UMmdph9DEUcisEHKlxYFBgdJyoGcnlkSts3lzP7fsw0_cqIODJTwAmKXKyJ0xSxR5gwLoPfBJ-Lo8GtEl38nmfi9X72cvco588PT3e3c4kauizLHh1Wdd9Q23SLAYyqXF1Rb1xN5BygxsVC96hdazozUI9diUabTjUdOdT6TFztctccP0ZK2b7FkcM00pYVaANdDRuq3VHIMSWmwaLPbrNnZudXFpTd1Gt39dqpXrut135PavlHXbN_d_z1v6R3UprgsCTeb_WP9QOk85Ml
CitedBy_id crossref_primary_10_1016_j_neucom_2023_02_019
Cites_doi 10.1109/ICCVW.2015.51
10.1007/978-3-642-33863-2_39
10.1109/CVPR.2016.152
10.5244/C.30.81
10.1109/CVPR.2015.7299046
10.1016/j.patrec.2017.05.012
10.1109/ICME.2018.8486604
10.1109/CVPR.2014.212
10.1109/ICCV.2017.31
10.1109/CVPR.2016.140
10.1109/TII.2019.2963434
10.1109/ICCV.2015.284
10.5244/C.26.24
10.1109/ICCV.2017.46
10.24963/ijcai.2018/441
10.1109/WACV.2017.64
10.1109/CVPR.2013.90
10.1145/1459359.1459470
10.1109/ACPR.2015.7486476
10.1109/IJCNN.2015.7280796
10.1109/CVPR.2017.243
10.1007/978-3-319-46466-4_41
10.1109/ICB.2015.7139070
10.1109/ICCV.2011.6126413
10.1109/ICCV.2017.65
10.1109/CVPRW.2017.186
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2016.387
10.1109/CVPR.2019.00082
10.1109/TPAMI.2017.2703082
10.1109/ICCV.2015.425
10.1109/CVPR.2015.7298594
10.1109/CVPR.2017.634
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-020-10108-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 11902
ExternalDocumentID 10_1007_s11042_020_10108_z
GrantInformation_xml – fundername: Fundamental Research Funds for Central Universities of the Central South University
  grantid: No.2018CDXYGD0017
  funderid: http://dx.doi.org/10.13039/501100012476
– fundername: Chongqing Research Program of Basic Research and Frontier Technology
  grantid: No.cstc2018jcyjAX0633
  funderid: http://dx.doi.org/10.13039/501100013223
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-2bcac56b7e879df1405a65eb4a6eeaa1c3cdd3bc3a8494febc92c4349079eac33
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Sat Jul 26 00:02:20 EDT 2025
Tue Jul 01 04:13:07 EDT 2025
Thu Apr 24 22:59:04 EDT 2025
Fri Feb 21 02:48:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Attribute recognition
Correlation feature
Intraperson attribute loss
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2bcac56b7e879df1405a65eb4a6eeaa1c3cdd3bc3a8494febc92c4349079eac33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0944-2900
PQID 2513419613
PQPubID 54626
PageCount 16
ParticipantIDs proquest_journals_2513419613
crossref_citationtrail_10_1007_s11042_020_10108_z
crossref_primary_10_1007_s11042_020_10108_z
springer_journals_10_1007_s11042_020_10108_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210300
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 3
  year: 2021
  text: 20210300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Mishkin D, Matas J (2015) All you need is a good init, pp. 1–13
Liu W, Rabinovich A, Berg AC (2015) Parsenet: Looking wider to see better[J]. arXiv preprint arXiv:1506.04579
Zhang N, Paluri M, Ranzato M, Darrell T, Bourdev L (2014) PANDA: Pose aligned networks for deep attribute modeling. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1637–1644
Dong Q, Gong S, Zhu X (2017) Multi-Task curriculum transfer deep learning of clothing attributes. In: IEEE Winter Conference on Applications of Computer Vision, pp. 520–529
Luwei Yang YWSL, Zhu L, Tan P (2016) Attribute recognition from adaptive parts. Proceedings of the British Machine Vision Conference, pp. 81.1–81.11
Layne R, Hospedales T, Gong S (2012) Person re-identification by Attributes. In: Procedings of the British Machine Vision Conference, p. 8
Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
Liu X et al. (2017) HydraPlus-Net: attentive deep features for pedestrian analysis. arXiv Prepr. arXiv1709.09930
Li D, Chen X, Zhang Z, Huang K (2018) Pose guided deep model for pedestrian attribute recognition in surveillance scenarios. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6
Schumann A, Stiefelhagen R (2017) Person re-identification by deep learning attribute-complementary information. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28
Chen A (2017) Base pretrained models and datasets in pytorch. [Online]. Available: https://github.com/aaron-xichen/pytorch-playground. Accessed 26 Oct 2019
Matsukawa T, Suzuki E (2016) Person re-identification using CNN feat learned from combination of Attributes.pdf. In: 23rd International Conference on Pattern Recognition, pp. 2428–2433
Zhu J, Liao S, Yi D, Lei Z, Li SZ (2015) Multi-label cnn based pedestrian attribute learning for soft biometrics. International Conference on Biometrics, pp. 535–540
Gkioxari G, Girshick R, Malik J (2015) Actions and attributes from wholes and parts. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2470–2478
Sudowe P, Spitzer H, Leibe B (2015) Person attribute recognition with a jointly-trained holistic CNN model. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 329–337
GuoHFanXWangSHuman attribute recognition by refining attention heat mapPattern Recogn Lett201794384510.1016/j.patrec.2017.05.012
Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125
Guo H, Zheng K, Fan X et al. (2019) Visual attention consistency under image transforms for multi-label image classification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 729–739
Krizhevsky A, Hinton G (2009) Learning multiple layers of features from tiny images. Technical report, University of Toronto
Zhao X, Sang L, Ding G, Guo Y, Jin X (2018) Grouping attribute recognition for pedestrian with joint recurrent learning. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 3177–3183
Bourdev L, Maji S, Malik J (2011) Describing people: a poselet-based approach to attribute classification. In: 2011 International Conference on Computer Vision, pp. 1543–1550
Cao L, Dikmen M, Fu Y, Huang TS (2008) Gender recognition from body. Proceeding 16th ACM Int. Conf. Multimed., no. January, pp. 725–728
He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
Zhang P, Wang D, Lu H, Wang H, Ruan X (2017) Amulet: aggregating multi-level convolutional features for salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 202–211
Huang G, Liu Z, Van Der Maaten L, et al. (2017) Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition.: 4700–4708
Krizhevsky A, Sutskever I, Geoffrey EH (2012) ImageNet classification with deep convolutional neural networks. Communications of the ACM 60(6):84–90
Xiao T, Li H, Ouyang W, Wang X (2016) Learning deep feature representations with domain guided dropout for person re-identification. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1249–1258
Diba A, Mohammad Pazandeh A, Pirsiavash H, Van Gool L (2016) Deepcamp: Deep convolutional action & attribute mid-level patterns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3557–3565
Honari S, Yosinski J, Vincent P, Pal C (2017) Recombinator networks: learning coarse-to-fine feature aggregation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5743–5752
Li Y, Huang C, Loy CC, Tang X (2016) Human attribute recognition by deep hierarchical contexts. In: European Conference on Computer Vision, pp. 684–700
Shi Z, Hospedales TM, Xiang T, Mary Q, London E (2015) Transferring a semantic representation for person re-identification and search. In: Computer Vision and Pattern Recognition, pp. 4184–4193
McDonnell MD, Vladusich T (2015) Enhanced image classification with a fast-learning shallow convolutional neural network. In: Proceedings of the International Joint Conference on Neural Networks, vol. 2015–Septe
Arbel P, Girshick R, Malik J (2015) Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 447–456
Wang J, Zhu X, Gong S, Li W (2017) Attribute recognition by joint recurrent learning of context and correlation. In: IEEE International Conference on Computer Vision
Xie S, Girshick R, Dollar P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5987–5995
Liu C, Gong S, Loy CC, Lin X (2012) Person re-identification: what features are important?. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7583 LNCS, no. PART 1, pp. 391–401
QinYYanCLiuGLiZJiangCPairwise Gaussian loss for convolutional neural networksIEEE Trans Industr Inform202016106324633310.1109/TII.2019.2963434
LeeCYGallagherPTuZGeneralizing pooling functions in CNNs: mixed, gated, and treeIEEE Trans Pattern Anal Mach Intell201840486387510.1109/TPAMI.2017.2703082
Liu P, Liu X, Yan J, Shao J (2018) Localization guided learning for pedestrian attribute recognition. arXiv:1808.09102
Sharma G, Jurie F, Schmid C (2013) Expanded parts model for human attribute and action recognition in still images. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 652–659
Liu W et al. (2015) SSD: single shot multibox detector, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9905 LNCS, pp. 21–37
Chollet F (2016) Xception: deep learning with separable convolutions. arXiv Prepr. arXiv1610.02357, pp. 1–14
Matsukawa T, Okabe T, Suzuki E, Sato Y (2016) Hierarchical Gaussian descriptor for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1363–1372
RenSHeKGirshickRSunJFaster R-CNN: towards real-time object detection with region proposal networksIEEE Trans Pattern Anal Mach Intell20173961137114910.1109/TPAMI.2016.2577031
ZhengLYangYHauptmannAGPerson re-identification: past, present and futureArxiv2016148120
Li D, Chen X, Huang K (2015) Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios. In: Proceedings - 3rd IAPR Asian Conference on Pattern Recognition, pp. 111–115
Szegedy C et al. (2015) Going deeper with convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–9
Liu Z, Luo P, Wang X, Tang X (2015) Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738
10108_CR41
S Ren (10108_CR34) 2017; 39
10108_CR40
10108_CR21
10108_CR43
10108_CR20
10108_CR42
10108_CR23
10108_CR45
10108_CR22
10108_CR44
10108_CR25
10108_CR24
10108_CR46
10108_CR27
10108_CR26
10108_CR48
10108_CR29
10108_CR28
10108_CR1
10108_CR2
Y Qin (10108_CR33) 2020; 16
10108_CR3
H Guo (10108_CR9) 2017; 94
10108_CR30
10108_CR10
10108_CR32
10108_CR31
10108_CR12
10108_CR11
CY Lee (10108_CR17) 2018; 40
10108_CR14
10108_CR36
10108_CR13
10108_CR35
L Zheng (10108_CR47) 2016; 14
10108_CR8
10108_CR16
10108_CR38
10108_CR15
10108_CR37
10108_CR18
10108_CR39
10108_CR4
10108_CR5
10108_CR19
10108_CR6
10108_CR7
References_xml – reference: Gkioxari G, Girshick R, Malik J (2015) Actions and attributes from wholes and parts. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2470–2478
– reference: RenSHeKGirshickRSunJFaster R-CNN: towards real-time object detection with region proposal networksIEEE Trans Pattern Anal Mach Intell20173961137114910.1109/TPAMI.2016.2577031
– reference: Bourdev L, Maji S, Malik J (2011) Describing people: a poselet-based approach to attribute classification. In: 2011 International Conference on Computer Vision, pp. 1543–1550
– reference: Zhang P, Wang D, Lu H, Wang H, Ruan X (2017) Amulet: aggregating multi-level convolutional features for salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 202–211
– reference: Arbel P, Girshick R, Malik J (2015) Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 447–456
– reference: McDonnell MD, Vladusich T (2015) Enhanced image classification with a fast-learning shallow convolutional neural network. In: Proceedings of the International Joint Conference on Neural Networks, vol. 2015–Septe
– reference: He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
– reference: Liu Z, Luo P, Wang X, Tang X (2015) Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738
– reference: Szegedy C et al. (2015) Going deeper with convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–9
– reference: Luwei Yang YWSL, Zhu L, Tan P (2016) Attribute recognition from adaptive parts. Proceedings of the British Machine Vision Conference, pp. 81.1–81.11
– reference: Zhang N, Paluri M, Ranzato M, Darrell T, Bourdev L (2014) PANDA: Pose aligned networks for deep attribute modeling. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1637–1644
– reference: Layne R, Hospedales T, Gong S (2012) Person re-identification by Attributes. In: Procedings of the British Machine Vision Conference, p. 8
– reference: Li Y, Huang C, Loy CC, Tang X (2016) Human attribute recognition by deep hierarchical contexts. In: European Conference on Computer Vision, pp. 684–700
– reference: Matsukawa T, Okabe T, Suzuki E, Sato Y (2016) Hierarchical Gaussian descriptor for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1363–1372
– reference: Xie S, Girshick R, Dollar P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5987–5995
– reference: Dong Q, Gong S, Zhu X (2017) Multi-Task curriculum transfer deep learning of clothing attributes. In: IEEE Winter Conference on Applications of Computer Vision, pp. 520–529
– reference: Krizhevsky A, Hinton G (2009) Learning multiple layers of features from tiny images. Technical report, University of Toronto
– reference: Liu W et al. (2015) SSD: single shot multibox detector, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9905 LNCS, pp. 21–37
– reference: Guo H, Zheng K, Fan X et al. (2019) Visual attention consistency under image transforms for multi-label image classification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 729–739
– reference: Krizhevsky A, Sutskever I, Geoffrey EH (2012) ImageNet classification with deep convolutional neural networks. Communications of the ACM 60(6):84–90
– reference: Xiao T, Li H, Ouyang W, Wang X (2016) Learning deep feature representations with domain guided dropout for person re-identification. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1249–1258
– reference: Honari S, Yosinski J, Vincent P, Pal C (2017) Recombinator networks: learning coarse-to-fine feature aggregation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5743–5752
– reference: Huang G, Liu Z, Van Der Maaten L, et al. (2017) Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition.: 4700–4708
– reference: Liu X et al. (2017) HydraPlus-Net: attentive deep features for pedestrian analysis. arXiv Prepr. arXiv1709.09930
– reference: Liu C, Gong S, Loy CC, Lin X (2012) Person re-identification: what features are important?. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7583 LNCS, no. PART 1, pp. 391–401
– reference: Zhu J, Liao S, Yi D, Lei Z, Li SZ (2015) Multi-label cnn based pedestrian attribute learning for soft biometrics. International Conference on Biometrics, pp. 535–540
– reference: Chen A (2017) Base pretrained models and datasets in pytorch. [Online]. Available: https://github.com/aaron-xichen/pytorch-playground. Accessed 26 Oct 2019
– reference: GuoHFanXWangSHuman attribute recognition by refining attention heat mapPattern Recogn Lett201794384510.1016/j.patrec.2017.05.012
– reference: Chollet F (2016) Xception: deep learning with separable convolutions. arXiv Prepr. arXiv1610.02357, pp. 1–14
– reference: Diba A, Mohammad Pazandeh A, Pirsiavash H, Van Gool L (2016) Deepcamp: Deep convolutional action & attribute mid-level patterns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3557–3565
– reference: Wang J, Zhu X, Gong S, Li W (2017) Attribute recognition by joint recurrent learning of context and correlation. In: IEEE International Conference on Computer Vision
– reference: Liu W, Rabinovich A, Berg AC (2015) Parsenet: Looking wider to see better[J]. arXiv preprint arXiv:1506.04579
– reference: Schumann A, Stiefelhagen R (2017) Person re-identification by deep learning attribute-complementary information. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28
– reference: Sudowe P, Spitzer H, Leibe B (2015) Person attribute recognition with a jointly-trained holistic CNN model. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 329–337
– reference: Matsukawa T, Suzuki E (2016) Person re-identification using CNN feat learned from combination of Attributes.pdf. In: 23rd International Conference on Pattern Recognition, pp. 2428–2433
– reference: Mishkin D, Matas J (2015) All you need is a good init, pp. 1–13
– reference: Sharma G, Jurie F, Schmid C (2013) Expanded parts model for human attribute and action recognition in still images. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 652–659
– reference: Li D, Chen X, Zhang Z, Huang K (2018) Pose guided deep model for pedestrian attribute recognition in surveillance scenarios. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6
– reference: Shi Z, Hospedales TM, Xiang T, Mary Q, London E (2015) Transferring a semantic representation for person re-identification and search. In: Computer Vision and Pattern Recognition, pp. 4184–4193
– reference: ZhengLYangYHauptmannAGPerson re-identification: past, present and futureArxiv2016148120
– reference: LeeCYGallagherPTuZGeneralizing pooling functions in CNNs: mixed, gated, and treeIEEE Trans Pattern Anal Mach Intell201840486387510.1109/TPAMI.2017.2703082
– reference: Liu P, Liu X, Yan J, Shao J (2018) Localization guided learning for pedestrian attribute recognition. arXiv:1808.09102
– reference: Li D, Chen X, Huang K (2015) Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios. In: Proceedings - 3rd IAPR Asian Conference on Pattern Recognition, pp. 111–115
– reference: Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
– reference: Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125
– reference: QinYYanCLiuGLiZJiangCPairwise Gaussian loss for convolutional neural networksIEEE Trans Industr Inform202016106324633310.1109/TII.2019.2963434
– reference: Cao L, Dikmen M, Fu Y, Huang TS (2008) Gender recognition from body. Proceeding 16th ACM Int. Conf. Multimed., no. January, pp. 725–728
– reference: Zhao X, Sang L, Ding G, Guo Y, Jin X (2018) Grouping attribute recognition for pedestrian with joint recurrent learning. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 3177–3183
– volume: 14
  start-page: 1
  issue: 8
  year: 2016
  ident: 10108_CR47
  publication-title: Arxiv
– ident: 10108_CR39
  doi: 10.1109/ICCVW.2015.51
– ident: 10108_CR22
  doi: 10.1007/978-3-642-33863-2_39
– ident: 10108_CR30
  doi: 10.1109/CVPR.2016.152
– ident: 10108_CR1
– ident: 10108_CR28
  doi: 10.5244/C.30.81
– ident: 10108_CR12
– ident: 10108_CR37
  doi: 10.1109/CVPR.2015.7299046
– ident: 10108_CR5
– volume: 94
  start-page: 38
  year: 2017
  ident: 10108_CR9
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2017.05.012
– ident: 10108_CR20
  doi: 10.1109/ICME.2018.8486604
– ident: 10108_CR14
– ident: 10108_CR44
  doi: 10.1109/CVPR.2014.212
– ident: 10108_CR21
– ident: 10108_CR45
  doi: 10.1109/ICCV.2017.31
– ident: 10108_CR42
  doi: 10.1109/CVPR.2016.140
– ident: 10108_CR23
– volume: 16
  start-page: 6324
  issue: 10
  year: 2020
  ident: 10108_CR33
  publication-title: IEEE Trans Industr Inform
  doi: 10.1109/TII.2019.2963434
– ident: 10108_CR8
  doi: 10.1109/ICCV.2015.284
– ident: 10108_CR16
  doi: 10.5244/C.26.24
– ident: 10108_CR26
  doi: 10.1109/ICCV.2017.46
– ident: 10108_CR46
  doi: 10.24963/ijcai.2018/441
– ident: 10108_CR7
  doi: 10.1109/WACV.2017.64
– ident: 10108_CR27
– ident: 10108_CR36
  doi: 10.1109/CVPR.2013.90
– ident: 10108_CR25
– ident: 10108_CR3
  doi: 10.1145/1459359.1459470
– ident: 10108_CR18
  doi: 10.1109/ACPR.2015.7486476
– ident: 10108_CR31
  doi: 10.1109/IJCNN.2015.7280796
– ident: 10108_CR29
– ident: 10108_CR13
  doi: 10.1109/CVPR.2017.243
– ident: 10108_CR19
  doi: 10.1007/978-3-319-46466-4_41
– ident: 10108_CR48
  doi: 10.1109/ICB.2015.7139070
– ident: 10108_CR2
  doi: 10.1109/ICCV.2011.6126413
– ident: 10108_CR41
  doi: 10.1109/ICCV.2017.65
– ident: 10108_CR32
– ident: 10108_CR35
  doi: 10.1109/CVPRW.2017.186
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 10108_CR34
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– ident: 10108_CR11
– ident: 10108_CR6
  doi: 10.1109/CVPR.2016.387
– ident: 10108_CR10
  doi: 10.1109/CVPR.2019.00082
– volume: 40
  start-page: 863
  issue: 4
  year: 2018
  ident: 10108_CR17
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2703082
– ident: 10108_CR4
– ident: 10108_CR24
  doi: 10.1109/ICCV.2015.425
– ident: 10108_CR40
  doi: 10.1109/CVPR.2015.7298594
– ident: 10108_CR15
– ident: 10108_CR43
  doi: 10.1109/CVPR.2017.634
– ident: 10108_CR38
SSID ssj0016524
Score 2.24482
Snippet Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11887
SubjectTerms Artificial neural networks
Computer Communication Networks
Computer Science
Computer vision
Convolution
Data Structures and Information Theory
Datasets
Feature maps
Model testing
Multimedia Information Systems
Object recognition
Representations
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA4-LnrwLVar5OBNg91N9nUSFUsRFBGF3pZkkoAgu7Wtl_56J9lsWwW9biY57CTzSGa-j5BzpUxRaAGMoz9lQsYRkwCCWZ7ZiFsbF5557vEpHbyJh2EyDBduk1BW2dpEb6h1De6O_Ar9sIMeQ-9zPfpkjjXKva4GCo1Vso4mOMfka_32_un5Zf6OkCaB1jbvMfSNUWibaZrnItea4tIn3Ja9nM1-uqZFvPnridR7nv4O2QohI71pdLxLVky1R7ZbOgYaTuce2VzCFtwnta-ue3dVzdRhQoybDgZaW2pRispKU6gxrTXUGo_uOfHf5LThwDI4ymoAj98EKFSP6ciH50si8_Kjujogb_3717sBC-wKDPDYTVmsQEKSqszkWaEtJlqJTBOjhEyNkTICDlpzBVzmohDWKChiEFxgNl2gteb8kKxVdWWOXHlUJnOZoI65FUqYQvPMCB1JHScy4kmHRO2PLSFAjzsGjI9yAZrslFGiMkqvjHLWIRfzOaMGeONf6W6rrzIcwkm52DIdctnqcDH892rH_692QjZiV9niK9G6ZG06_jKnGJpM1VnYf99juuK8
  priority: 102
  providerName: ProQuest
Title Exploiting interaction of fine and coarse features and attribute co-occurrence for person attribute recognition
URI https://link.springer.com/article/10.1007/s11042-020-10108-z
https://www.proquest.com/docview/2513419613
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20vejBb7FaSw7eNOBukv04VmktikXEgp6WJJuAILulrZf-eifpbquigqeFzWwO-5LMDHnzBuBMKZOmOdeUoT-lXIYBlVpzallsA2ZtmPrOc_fDaDDit8_iuSoKm9Zs9_pK0p_Uq2K3wJWSuHQHl9FlQufr0BQud8dVPAq7y7uDSFStbJNLiv4wqEplfp7jqztaxZjfrkW9t-nvwFYVJpLuAtddWDPFHmzXLRhItSP3YPOTnuA-lJ5R9-qYzMTpQEwWVQuktMSiFZFFTnSJqawh1nhFz6l_J2eLvlcGR2mptdds0mhUTsjYh-SfTJaUo7I4gFG_93Q9oFVHBapxq81oqLTUIlKxSeI0t5hcCRkJo7iMjJEy0EznOVOayYSn3Bql01BzxjGDTvGEZuwQGkVZmCNHiYplIgXiyixX3KQ5iw3PA5mHQgZMtCCof2ymK7lx1_XiLVsJJTswMgQj82Bk8xacL78ZL8Q2_rRu13hl1cabZhiuOYU6DFJacFFjuBr-fbbj_5mfwEbo2C2ejdaGxmzybk4xPJmpDqwn_ZsONLs3L3c9fF71hg-PHb9GPwBjvOLF
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5UB74NGHWFjAB3pqLZrYefhQVQhYtvRxaqXegj22JSSULLuLEP1R_EbGTrLbVqK3vcYTHzzjGY89830A74xxSlmJXFA85VKnCdeIkntR-ER4n6rIPHd-kY-v5Nfr7HoN_va9MKGssveJ0VHbBsMd-XuKwwF6jKLP8eQnD6xR4XW1p9BozeLU_flNKdvs6OQT6XcvTUefLz-OeccqwJHMbc5Tgxqz3BSuLJT1lGBkOs-ckTp3TusEBVorDApdSiW9M6hSlEJSFqnIS4ULUHL5j6QQKuyocvRl8WqRZx2JbnnIKRInXZNO26qXhEaYkKzRJjgs-c3dQLg83d57kI1xbvQMnnQHVPahtajnsObqLXjakz-wzhdsweYtJMNtaGIt3_dQQ80CAsW07ZdgjWeepJiuLcOGkmjHvItYorP4Tc9bxi1Ho7xBjGhRSELNlE1iMnBLZFHs1NQ7cLWSVd-F9bqp3YtQjFXoUmdkUcJLI52yonDSJtqmmU5ENoCkX9gKO6DzwLfxo1pCNAdlVKSMKiqjuhnA_uKfSQvz8aD0sNdX1W35WbU00AEc9DpcDv9_tpcPz_YWHo8vz8-qs5OL01ewkYaamlgDN4T1-fSXe02Horl5Ey2RwbdVm_4_AIQgpw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1VWwnBAWgBsVCoD3ACq5vY-TpUVaFdtRRWFaJSb8Ee2xISSpbdRYj-NH5dx46zWyq1t15jxwfPy4wnfjMP4I3WtqqMRC4onnKp0oQrRMmdKFwinEuroDz3ZZIfnclP59n5Gvzra2E8rbL3icFRmxb9P_IdisO-9RhFnx0XaRGnB-O96S_uFaT8TWsvp9FB5MT-_UPp23z3-IBs_TZNx4ffPh7xqDDAkaC34KlGhVmuC1sWlXGUbGQqz6yWKrdWqQQFGiM0ClXKSjqrsUpRCkkZZUUey_8MJfe_XlBWNBrA-ofDyenX5R1GnkVJ3XLEKS4nsWSnK9xLfFmMT93okxiV_OL_sLg66167ng1Rb_wYHsbjKtvv8LUBa7bZhEe9FASLnmETHlzpa_gE2sDs--EZ1cz3o5h11ROsdczRLKYaw7CllNoyZ0Nn0Xl4phad_palUd4iht5RSJPaGZuG1ODKlCX1qW2ewtmd7PszGDRtY597alahSpURvoSTWtrKiMJKkyiTZioR2RCSfmNrjG3PvfrGz3rVsNkboyZj1MEY9cUQ3i3fmXZNP26dvdXbq44OYF6v4DqE970NV8M3r_bi9tW24R7Bvv58PDl5CfdTT7AJhLgtGCxmv-0rOiEt9OsIRQbf7xr9lw51Jjk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+interaction+of+fine+and+coarse+features+and+attribute+co-occurrence+for+person+attribute+recognition&rft.jtitle=Multimedia+tools+and+applications&rft.au=Sun%2C+Zhiyong&rft.au=Ye%2C+Junyong&rft.au=Wang%2C+Tongqing&rft.au=Jiang%2C+Li&rft.date=2021-03-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=8&rft.spage=11887&rft.epage=11902&rft_id=info:doi/10.1007%2Fs11042-020-10108-z&rft.externalDocID=10_1007_s11042_020_10108_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon