Dual integrated convolutional neural network for real-time facial expression recognition in the wild

Automatic recognition of facial expressions in the wild is a challenging problem and has drawn a lot of attention from the computer vision and pattern recognition community. Since their emergence, the deep learning techniques have proved their efficacy in facial expression recognition (FER) tasks. H...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 38; no. 3; pp. 1083 - 1096
Main Authors Saurav, Sumeet, Gidde, Prashant, Saini, Ravi, Singh, Sanjay
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automatic recognition of facial expressions in the wild is a challenging problem and has drawn a lot of attention from the computer vision and pattern recognition community. Since their emergence, the deep learning techniques have proved their efficacy in facial expression recognition (FER) tasks. However, these techniques are parameter intensive, and thus, could not be deployed on resource-constrained embedded platforms for real-world applications. To mitigate these limitations of the deep learning inspired FER systems, in this paper, we present an efficient dual integrated convolution neural network (DICNN) model for the recognition of facial expressions in the wild in real-time, running on an embedded platform. The designed DICNN model with just 1.08M parameters and 5.40 MB memory storage size achieves optimal performance by maintaining a proper balance between recognition accuracy and computational efficiency. We evaluated the DICNN model on four FER benchmark datasets (FER2013, FERPlus, RAF-DB, and CKPlus) using different performance evaluation metrics, namely the recognition accuracy, precision, recall, and F1-score. Finally, to provide a portable solution with high throughput inference, we optimized the designed DICNN model using TensorRT SDK and deployed it on an Nvidia Xavier embedded platform. Comparative analysis results with the other state-of-the-art methods revealed the effectiveness of the designed FER system, which achieved competitive accuracy with multi-fold improvement in the execution speed.
AbstractList Automatic recognition of facial expressions in the wild is a challenging problem and has drawn a lot of attention from the computer vision and pattern recognition community. Since their emergence, the deep learning techniques have proved their efficacy in facial expression recognition (FER) tasks. However, these techniques are parameter intensive, and thus, could not be deployed on resource-constrained embedded platforms for real-world applications. To mitigate these limitations of the deep learning inspired FER systems, in this paper, we present an efficient dual integrated convolution neural network (DICNN) model for the recognition of facial expressions in the wild in real-time, running on an embedded platform. The designed DICNN model with just 1.08M parameters and 5.40 MB memory storage size achieves optimal performance by maintaining a proper balance between recognition accuracy and computational efficiency. We evaluated the DICNN model on four FER benchmark datasets (FER2013, FERPlus, RAF-DB, and CKPlus) using different performance evaluation metrics, namely the recognition accuracy, precision, recall, and F1-score. Finally, to provide a portable solution with high throughput inference, we optimized the designed DICNN model using TensorRT SDK and deployed it on an Nvidia Xavier embedded platform. Comparative analysis results with the other state-of-the-art methods revealed the effectiveness of the designed FER system, which achieved competitive accuracy with multi-fold improvement in the execution speed.
Author Singh, Sanjay
Saurav, Sumeet
Saini, Ravi
Gidde, Prashant
Author_xml – sequence: 1
  givenname: Sumeet
  surname: Saurav
  fullname: Saurav, Sumeet
  email: sumeet@ceeri.res.in
  organization: Academy of Scientific and Innovative Research, CSIR-Central Electronics Engineering Research Institute
– sequence: 2
  givenname: Prashant
  surname: Gidde
  fullname: Gidde, Prashant
  organization: CSIR-Central Electronics Engineering Research Institute
– sequence: 3
  givenname: Ravi
  surname: Saini
  fullname: Saini, Ravi
  organization: Academy of Scientific and Innovative Research, CSIR-Central Electronics Engineering Research Institute
– sequence: 4
  givenname: Sanjay
  surname: Singh
  fullname: Singh, Sanjay
  organization: Academy of Scientific and Innovative Research, CSIR-Central Electronics Engineering Research Institute
BookMark eNp9kMtKAzEUhoMo2FZfwNWA69FcJk2ylHqFghtdh0wmU1OnSU0yVt_eTEcQXHRxOBz-853LPwXHzjsDwAWCVwhCdh0hJAyVEA8B56JkR2CCKoJLTBA9BhOIGC8x4-IUTGNcw1yzSkxAc9urrrAumVVQyTSF9u7Td32y3mXBmT7sU9r58F60PhTBqK5MdmOKVmmbRfO1DSbGDGRN-5WzA5xnFunNFDvbNWfgpFVdNOe_eQZe7-9eFo_l8vnhaXGzLDVBIpW45nWLqDawZqhuKaNVOxeUM4GJQg0WiBKOGZ4rjSnSsGKY47nBrKKQcaTJDFyOc7fBf_QmJrn2fch_RJlhJjjhnOcuPHbp4GMMppXbYDcqfEsE5eCmHN2U2U25d1OyDPF_kLZJDY-moGx3GCUjGvMetzLh76oD1A8ys4tf
CitedBy_id crossref_primary_10_1007_s00371_022_02655_3
crossref_primary_10_1080_01969722_2022_2071408
crossref_primary_10_1016_j_physbeh_2024_114561
crossref_primary_10_1007_s11042_024_19012_2
crossref_primary_10_1155_2022_9563877
crossref_primary_10_7717_peerj_cs_1216
crossref_primary_10_3390_s22228635
crossref_primary_10_1109_ACCESS_2024_3391057
crossref_primary_10_1007_s11760_023_02832_4
crossref_primary_10_1142_S0218001423570021
crossref_primary_10_1109_TFUZZ_2024_3454069
crossref_primary_10_1007_s00530_022_00984_w
crossref_primary_10_1007_s11042_022_14066_6
crossref_primary_10_1109_ACCESS_2023_3264268
crossref_primary_10_1109_TIM_2023_3243661
crossref_primary_10_1038_s41598_024_79167_8
crossref_primary_10_1007_s00371_022_02690_0
crossref_primary_10_1007_s00371_024_03345_y
crossref_primary_10_1007_s11042_024_19004_2
crossref_primary_10_1007_s10489_022_03200_4
crossref_primary_10_1007_s12652_023_04627_4
crossref_primary_10_3390_en17122797
crossref_primary_10_1007_s11042_024_20138_6
crossref_primary_10_33166_AETiC_2023_02_002
crossref_primary_10_1007_s42154_023_00270_z
crossref_primary_10_28979_jarnas_1056664
crossref_primary_10_1007_s10044_022_01112_0
Cites_doi 10.1109/ACCESS.2019.2921220
10.3389/fnbot.2019.00037
10.3390/s20030866
10.1007/s00371-018-1585-8
10.1109/ACCESS.2017.2676238
10.1109/URTC.2017.8284175
10.1007/s00371-019-01635-4
10.1016/j.patcog.2016.07.026
10.1109/TIP.2018.2868382
10.1109/ACCESS.2019.2928364
10.1109/ACCESS.2019.2917266
10.1109/ICCV.2015.414
10.3390/e21050479
10.1109/ACCESS.2019.2901521
10.1016/j.bspc.2018.08.035
10.1007/s00371-018-1477-y
10.1007/s00371-019-01627-4
10.1016/j.patcog.2019.03.019
10.1145/2993148.2993165
10.1109/CVPR.2014.241
10.1016/j.neucom.2019.05.005
10.1109/ACCESS.2020.2964752
10.1109/JPROC.2017.2761740
10.1007/s10489-019-01427-2
10.1109/TBME.2019.2897651
10.3390/s18124270
10.1109/ACIIAsia.2018.8470391
10.1109/CVPR.2017.351
10.1007/s00371-019-01630-9
10.1007/s00138-018-0960-9
10.1145/3240508.3240578
10.1142/S0218001419400159
10.1109/CVPR42600.2020.00693
10.1109/CVPRW.2010.5543262
10.1109/TIP.2018.2886767
10.3390/sym11010052
10.1109/ACCESS.2017.2784096
10.1016/j.patrec.2019.01.008
10.1016/j.patrec.2019.12.013
10.1109/CVPR.2018.00171
10.3390/s20041087
10.1007/s12193-015-0209-0
10.1109/TIP.2019.2956143
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00371-021-02069-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 1096
ExternalDocumentID 10_1007_s00371_021_02069_7
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-2b8bf15ce0b71bf5754f69587923a1d2915382726ac251c0472826e27450781c3
IEDL.DBID U2A
ISSN 0178-2789
IngestDate Fri Jul 25 23:37:57 EDT 2025
Thu Apr 24 22:50:45 EDT 2025
Tue Jul 01 01:05:49 EDT 2025
Fri Feb 21 02:47:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Facial expression recognition
Embedded implementation
Deep convolutional neural network
CNN optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2b8bf15ce0b71bf5754f69587923a1d2915382726ac251c0472826e27450781c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2917983888
PQPubID 2043737
PageCount 14
ParticipantIDs proquest_journals_2917983888
crossref_primary_10_1007_s00371_021_02069_7
crossref_citationtrail_10_1007_s00371_021_02069_7
springer_journals_10_1007_s00371_021_02069_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220300
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 3
  year: 2022
  text: 20220300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Li, Xu, Huang, Song, Liu, Li (CR53) 2018; 2
Uddin, Hassan, Almogren, Alamri, Alrubaian, Fortino (CR5) 2017; 5
Zhao, Mao, Chen (CR1) 2019; 47
CR33
Liu, Zhou (CR29) 2019; 3
Hajarolasvadi, Demirel (CR2) 2019; 21
Ashwin, Guddeti (CR9) 2019; 4
Li, Jin, Akram, Han, Chen (CR36) 2020; 36
Jain, Shamsolmoali, Sehdev (CR27) 2019; 120
Li, Deng (CR50) 2018; 28
Oh, Lee, Kim (CR8) 2020; 20
Gogić, Manhart, Pandžić, Ahlberg (CR39) 2020; 36
Georgescu, Ionescu, Popescu (CR31) 2019; 7
CR49
Xie, Hu, Wu (CR28) 2019; 92
CR48
CR47
Kim, Roh, Dong, Lee (CR24) 2016; 10
CR46
Sonawane, Sharma (CR11) 2020; 7
Shao, Qian (CR25) 2019; 355
CR45
CR43
CR41
King (CR44) 2009; 10
Jeong, Ko (CR12) 2018; 18
Agrawal, Mittal (CR30) 2020; 36
Zhang, Huang, Tian (CR14) 2020; 131
Yang, Cao, Ni, Zhang (CR26) 2017; 6
Avots, Sapiński, Bachmann, Kamińska (CR7) 2019; 30
Li, Deng (CR42) 2020; 3
An, Liu (CR16) 2020; 36
Zhang, Pan, Cui, Zhao, Liu (CR20) 2019; 7
CR59
Choudhary, Mishra, Goswami, Sarangapani (CR55) 2020; 4
CR58
CR13
Li, Kuo, Tsai, Luan (CR15) 2019; 7
CR56
Miao, Xu, Han, Zhu (CR37) 2019; 7
CR52
CR51
Riaz, Shen, Sohail, Guo (CR38) 2020; 20
Sze, Chen, Yang, Emer (CR57) 2017; 105
Pan, Guo, Guo, Li, Xu, Wu (CR19) 2019; 11
Fei, Yang, Li, Butler, Ijomah, Li, Zhou (CR10) 2020; 3
Lopes, de Aguiar, De Souza, Oliveira-Santos (CR35) 2017; 61
Zhao, Mao, Zhang (CR17) 2018; 34
Xing, Li, Xu, Shu, Hu, Xu (CR3) 2019; 13
Zhao, Yang, Yu (CR40) 2020; 8
Li, Wen (CR61) 2019; 49
Wang, Peng, Yang, Meng, Qiao (CR34) 2020; 29
CR23
CR22
CR21
Pan, Zhang, Guo, Zhao, Chuang, Chen, Zhang (CR18) 2019; 3
Nguyen, Yeom, Lee, Yang, Na, Kim (CR6) 2019; 33
CR60
Li, Liu, Si, Li, Li, Zhu, Huang, Zeng, Yao, Zhang (CR4) 2019; 66
Li, Zeng, Shan, Chen (CR32) 2018; 28
Dinelli, Meoni, Rapuano, Benelli, Fanucci (CR54) 2019; 1
S Xie (2069_CR28) 2019; 92
H Zhang (2069_CR14) 2020; 131
G Zhao (2069_CR40) 2020; 8
2069_CR13
2069_CR56
2069_CR51
2069_CR52
Z Fei (2069_CR10) 2020; 3
S Oh (2069_CR8) 2020; 20
2069_CR59
2069_CR58
HD Nguyen (2069_CR6) 2019; 33
S Li (2069_CR50) 2018; 28
BK Kim (2069_CR24) 2016; 10
S Miao (2069_CR37) 2019; 7
X Pan (2069_CR19) 2019; 11
J Shao (2069_CR25) 2019; 355
2069_CR60
MI Georgescu (2069_CR31) 2019; 7
H Li (2069_CR61) 2019; 49
2069_CR22
2069_CR21
2069_CR23
Y Li (2069_CR32) 2018; 28
B Sonawane (2069_CR11) 2020; 7
T Ashwin (2069_CR9) 2019; 4
I Gogić (2069_CR39) 2020; 36
J Zhao (2069_CR17) 2018; 34
X Xing (2069_CR3) 2019; 13
N Hajarolasvadi (2069_CR2) 2019; 21
F An (2069_CR16) 2020; 36
K Wang (2069_CR34) 2020; 29
MZ Uddin (2069_CR5) 2017; 5
B Yang (2069_CR26) 2017; 6
2069_CR33
MN Riaz (2069_CR38) 2020; 20
A Agrawal (2069_CR30) 2020; 36
M Li (2069_CR53) 2018; 2
DE King (2069_CR44) 2009; 10
X Liu (2069_CR29) 2019; 3
AT Lopes (2069_CR35) 2017; 61
S Zhang (2069_CR20) 2019; 7
THS Li (2069_CR15) 2019; 7
G Dinelli (2069_CR54) 2019; 1
T Choudhary (2069_CR55) 2020; 4
V Sze (2069_CR57) 2017; 105
P Li (2069_CR4) 2019; 66
2069_CR43
DK Jain (2069_CR27) 2019; 120
2069_CR46
2069_CR45
K Li (2069_CR36) 2020; 36
2069_CR41
M Jeong (2069_CR12) 2018; 18
2069_CR48
J Zhao (2069_CR1) 2019; 47
2069_CR47
S Li (2069_CR42) 2020; 3
2069_CR49
X Pan (2069_CR18) 2019; 3
E Avots (2069_CR7) 2019; 30
References_xml – ident: CR45
– ident: CR22
– volume: 7
  start-page: 78000
  year: 2019
  end-page: 78011
  ident: CR37
  article-title: Recognizing facial expressions using a shallow convolutional neural network
  publication-title: IEEE Access
– volume: 3
  start-page: 1
  year: 2019
  end-page: 8
  ident: CR18
  article-title: Video-based facial expression recognition using deep temporal-spatial networks
  publication-title: IETE Tech. Rev.
– volume: 7
  start-page: 8
  year: 2020
  ident: CR11
  article-title: Review of automated emotion-based quantification of facial expression in Parkinson’s patients
  publication-title: Vis. Comput.
– volume: 36
  start-page: 405
  issue: 2
  year: 2020
  end-page: 412
  ident: CR30
  article-title: Using cnn for facial expression recognition: a study of the effects of kernel size and number of filters on accuracy
  publication-title: Vis. Comput.
– ident: CR49
– volume: 36
  start-page: 483
  issue: 3
  year: 2020
  end-page: 498
  ident: CR16
  article-title: Facial expression recognition algorithm based on parameter adaptive initialization of cnn and lstm
  publication-title: Vis. Comput
– volume: 6
  start-page: 4630
  year: 2017
  end-page: 4640
  ident: CR26
  article-title: Facial expression recognition using weighted mixture deep neural network based on double-channel facial images
  publication-title: IEEE Access
– ident: CR51
– volume: 3
  start-page: 1
  year: 2019
  end-page: 15
  ident: CR29
  article-title: Improved curriculum learning using ssm for facial expression recognition
  publication-title: Vis. Comput.
– ident: CR58
– volume: 8
  start-page: 38528
  year: 2020
  end-page: 38537
  ident: CR40
  article-title: Expression recognition method based on a lightweight convolutional neural network
  publication-title: IEEE Access
– volume: 355
  start-page: 82
  year: 2019
  end-page: 92
  ident: CR25
  article-title: Three convolutional neural network models for facial expression recognition in the wild
  publication-title: Neurocomputing
– volume: 10
  start-page: 1755
  year: 2009
  end-page: 1758
  ident: CR44
  article-title: Dlib-ml: a machine learning toolkit
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 866
  issue: 3
  year: 2020
  ident: CR8
  article-title: The design of cnn architectures for optimal six basic emotion classification using multiple physiological signals
  publication-title: Sensors
– ident: CR21
– ident: CR46
– volume: 21
  start-page: 479
  issue: 5
  year: 2019
  ident: CR2
  article-title: 3D cnn-based speech emotion recognition using k-means clustering and spectrograms
  publication-title: Entropy
– volume: 49
  start-page: 2956
  issue: 8
  year: 2019
  end-page: 2969
  ident: CR61
  article-title: Sample awareness-based personalized facial expression recognition
  publication-title: Appl. Intell.
– volume: 105
  start-page: 2295
  issue: 12
  year: 2017
  end-page: 2329
  ident: CR57
  article-title: Efficient processing of deep neural networks: a tutorial and survey
  publication-title: Proc. IEEE
– ident: CR60
– volume: 3
  start-page: 10
  year: 2020
  ident: CR10
  article-title: Deep convolution network based emotion analysis towards mental health care
  publication-title: Neurocomputing
– volume: 28
  start-page: 356
  issue: 1
  year: 2018
  end-page: 370
  ident: CR50
  article-title: Reliable crowdsourcing and deep locality-preserving learning for unconstrained facial expression recognition
  publication-title: IEEE Trans. Image Process.
– volume: 11
  start-page: 52
  issue: 1
  year: 2019
  ident: CR19
  article-title: Deep temporal-spatial aggregation for video-based facial expression recognition
  publication-title: Symmetry
– volume: 36
  start-page: 97
  issue: 1
  year: 2020
  end-page: 112
  ident: CR39
  article-title: Fast facial expression recognition using local binary features and shallow neural networks
  publication-title: Vis.Comput.
– volume: 47
  start-page: 312
  year: 2019
  end-page: 323
  ident: CR1
  article-title: Speech emotion recognition using deep 1D & 2D cnn lstm networks
  publication-title: Biomed. Signal Process. Control
– volume: 36
  start-page: 391
  issue: 2
  year: 2020
  end-page: 404
  ident: CR36
  article-title: Facial expression recognition with convolutional neural networks via a new face cropping and rotation strategy
  publication-title: Vis. Comput.
– ident: CR43
– ident: CR47
– volume: 7
  start-page: 32297
  year: 2019
  end-page: 32304
  ident: CR20
  article-title: Learning affective video features for facial expression recognition via hybrid deep learning
  publication-title: IEEE Access
– volume: 5
  start-page: 4525
  year: 2017
  end-page: 4536
  ident: CR5
  article-title: Facial expression recognition utilizing local direction-based robust features and deep belief network
  publication-title: IEEE Access
– volume: 10
  start-page: 173
  issue: 2
  year: 2016
  end-page: 189
  ident: CR24
  article-title: Hierarchical committee of deep convolutional neural networks for robust facial expression recognition
  publication-title: J. Multimodal User Interfaces
– volume: 4
  start-page: 1
  year: 2020
  end-page: 43
  ident: CR55
  article-title: A comprehensive survey on model compression and acceleration
  publication-title: Artif. Intell. Rev.
– volume: 7
  start-page: 93998
  year: 2019
  end-page: 94011
  ident: CR15
  article-title: Cnn and lstm based facial expression analysis model for a humanoid robot
  publication-title: IEEE Access
– volume: 92
  start-page: 177
  year: 2019
  end-page: 191
  ident: CR28
  article-title: Deep multi-path convolutional neural network joint with salient region attention for facial expression recognition
  publication-title: Pattern Recogn.
– ident: CR33
– volume: 18
  start-page: 4270
  issue: 12
  year: 2018
  ident: CR12
  article-title: Driver’s facial expression recognition in real-time for safe driving
  publication-title: Sensors
– volume: 30
  start-page: 975
  issue: 5
  year: 2019
  end-page: 985
  ident: CR7
  article-title: Audiovisual emotion recognition in wild
  publication-title: Mach. Vis. Appl.
– volume: 29
  start-page: 4057
  year: 2020
  end-page: 4069
  ident: CR34
  article-title: Region attention networks for pose and occlusion robust facial expression recognition
  publication-title: IEEE Trans. Image Process.
– volume: 2
  start-page: 71
  year: 2018
  ident: CR53
  article-title: Facial expression recognition with identity and emotion joint learning
  publication-title: IEEE Trans. Affect. Comput.
– volume: 1
  start-page: 84
  year: 2019
  ident: CR54
  article-title: An fpga-based hardware accelerator for cnns using on-chip memories only: Design and benchmarking with intel movidius neural compute stick
  publication-title: Int. J. Reconf. Comput.
– volume: 120
  start-page: 69
  year: 2019
  end-page: 74
  ident: CR27
  article-title: Extended deep neural network for facial emotion recognition
  publication-title: Pattern Recogn. Lett.
– ident: CR56
– ident: CR23
– volume: 7
  start-page: 64827
  year: 2019
  end-page: 64836
  ident: CR31
  article-title: Local learning with deep and handcrafted features for facial expression recognition
  publication-title: IEEE Access
– volume: 4
  start-page: 1
  year: 2019
  end-page: 29
  ident: CR9
  article-title: Automatic detection of students’ affective states in classroom environment using hybrid convolutional neural networks
  publication-title: Educ. Inf. Technol.
– volume: 34
  start-page: 1461
  issue: 10
  year: 2018
  end-page: 1475
  ident: CR17
  article-title: Learning deep facial expression features from image and optical flow sequences using 3D cnn
  publication-title: Vis. Comput.
– volume: 33
  start-page: 1940015
  issue: 11
  year: 2019
  ident: CR6
  article-title: Facial emotion recognition using an ensemble of multi-level convolutional neural networks
  publication-title: Int. J. Pattern Recognit Artif. Intell.
– ident: CR48
– volume: 13
  start-page: 37
  year: 2019
  ident: CR3
  article-title: Sae+ lstm: a new framework for emotion recognition from multi-channel eeg
  publication-title: Front. Neurorobot.
– volume: 20
  start-page: 1087
  issue: 4
  year: 2020
  ident: CR38
  article-title: Exnet: an efficient approach for emotion recognition in the wild
  publication-title: Sensors
– volume: 61
  start-page: 610
  year: 2017
  end-page: 628
  ident: CR35
  article-title: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order
  publication-title: Pattern Recogn.
– ident: CR52
– ident: CR13
– volume: 66
  start-page: 2869
  issue: 10
  year: 2019
  end-page: 2881
  ident: CR4
  article-title: Eeg based emotion recognition by combining functional connectivity network and local activations
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 131
  start-page: 128
  year: 2020
  end-page: 134
  ident: CR14
  article-title: Facial expression recognition based on deep convolution long short-term memory networks of double-channel weighted mixture
  publication-title: Pattern Recogn. Lett.
– ident: CR59
– ident: CR41
– volume: 28
  start-page: 2439
  issue: 5
  year: 2018
  end-page: 2450
  ident: CR32
  article-title: Occlusion aware facial expression recognition using cnn with attention mechanism
  publication-title: IEEE Trans. Image Process.
– volume: 3
  start-page: 91
  year: 2020
  ident: CR42
  article-title: Deep facial expression recognition: a survey
  publication-title: IEEE Trans. Affective Comput.
– volume: 7
  start-page: 78000
  year: 2019
  ident: 2069_CR37
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921220
– volume: 13
  start-page: 37
  year: 2019
  ident: 2069_CR3
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2019.00037
– ident: 2069_CR49
– volume: 3
  start-page: 1
  year: 2019
  ident: 2069_CR18
  publication-title: IETE Tech. Rev.
– ident: 2069_CR41
– volume: 20
  start-page: 866
  issue: 3
  year: 2020
  ident: 2069_CR8
  publication-title: Sensors
  doi: 10.3390/s20030866
– ident: 2069_CR60
– ident: 2069_CR59
– volume: 36
  start-page: 97
  issue: 1
  year: 2020
  ident: 2069_CR39
  publication-title: Vis.Comput.
  doi: 10.1007/s00371-018-1585-8
– volume: 5
  start-page: 4525
  year: 2017
  ident: 2069_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2676238
– ident: 2069_CR22
  doi: 10.1109/URTC.2017.8284175
– volume: 36
  start-page: 483
  issue: 3
  year: 2020
  ident: 2069_CR16
  publication-title: Vis. Comput
  doi: 10.1007/s00371-019-01635-4
– volume: 61
  start-page: 610
  year: 2017
  ident: 2069_CR35
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2016.07.026
– volume: 28
  start-page: 356
  issue: 1
  year: 2018
  ident: 2069_CR50
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2868382
– volume: 7
  start-page: 93998
  year: 2019
  ident: 2069_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928364
– volume: 4
  start-page: 1
  year: 2019
  ident: 2069_CR9
  publication-title: Educ. Inf. Technol.
– volume: 7
  start-page: 64827
  year: 2019
  ident: 2069_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917266
– ident: 2069_CR13
  doi: 10.1109/ICCV.2015.414
– ident: 2069_CR48
– volume: 21
  start-page: 479
  issue: 5
  year: 2019
  ident: 2069_CR2
  publication-title: Entropy
  doi: 10.3390/e21050479
– volume: 7
  start-page: 32297
  year: 2019
  ident: 2069_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2901521
– volume: 47
  start-page: 312
  year: 2019
  ident: 2069_CR1
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.08.035
– volume: 34
  start-page: 1461
  issue: 10
  year: 2018
  ident: 2069_CR17
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-018-1477-y
– volume: 36
  start-page: 391
  issue: 2
  year: 2020
  ident: 2069_CR36
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01627-4
– volume: 92
  start-page: 177
  year: 2019
  ident: 2069_CR28
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2019.03.019
– volume: 7
  start-page: 8
  year: 2020
  ident: 2069_CR11
  publication-title: Vis. Comput.
– volume: 3
  start-page: 1
  year: 2019
  ident: 2069_CR29
  publication-title: Vis. Comput.
– ident: 2069_CR21
  doi: 10.1145/2993148.2993165
– ident: 2069_CR47
– ident: 2069_CR45
  doi: 10.1109/CVPR.2014.241
– volume: 355
  start-page: 82
  year: 2019
  ident: 2069_CR25
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.05.005
– volume: 8
  start-page: 38528
  year: 2020
  ident: 2069_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964752
– volume: 105
  start-page: 2295
  issue: 12
  year: 2017
  ident: 2069_CR57
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2017.2761740
– volume: 49
  start-page: 2956
  issue: 8
  year: 2019
  ident: 2069_CR61
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-019-01427-2
– volume: 66
  start-page: 2869
  issue: 10
  year: 2019
  ident: 2069_CR4
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2897651
– volume: 18
  start-page: 4270
  issue: 12
  year: 2018
  ident: 2069_CR12
  publication-title: Sensors
  doi: 10.3390/s18124270
– ident: 2069_CR52
  doi: 10.1109/ACIIAsia.2018.8470391
– ident: 2069_CR43
  doi: 10.1109/CVPR.2017.351
– volume: 1
  start-page: 84
  year: 2019
  ident: 2069_CR54
  publication-title: Int. J. Reconf. Comput.
– volume: 10
  start-page: 1755
  year: 2009
  ident: 2069_CR44
  publication-title: J. Mach. Learn. Res.
– volume: 4
  start-page: 1
  year: 2020
  ident: 2069_CR55
  publication-title: Artif. Intell. Rev.
– volume: 3
  start-page: 10
  year: 2020
  ident: 2069_CR10
  publication-title: Neurocomputing
– volume: 36
  start-page: 405
  issue: 2
  year: 2020
  ident: 2069_CR30
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01630-9
– ident: 2069_CR46
– volume: 30
  start-page: 975
  issue: 5
  year: 2019
  ident: 2069_CR7
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-018-0960-9
– ident: 2069_CR23
  doi: 10.1145/3240508.3240578
– volume: 33
  start-page: 1940015
  issue: 11
  year: 2019
  ident: 2069_CR6
  publication-title: Int. J. Pattern Recognit Artif. Intell.
  doi: 10.1142/S0218001419400159
– ident: 2069_CR33
  doi: 10.1109/CVPR42600.2020.00693
– ident: 2069_CR51
  doi: 10.1109/CVPRW.2010.5543262
– volume: 28
  start-page: 2439
  issue: 5
  year: 2018
  ident: 2069_CR32
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2886767
– ident: 2069_CR56
– volume: 11
  start-page: 52
  issue: 1
  year: 2019
  ident: 2069_CR19
  publication-title: Symmetry
  doi: 10.3390/sym11010052
– volume: 6
  start-page: 4630
  year: 2017
  ident: 2069_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2784096
– volume: 120
  start-page: 69
  year: 2019
  ident: 2069_CR27
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2019.01.008
– volume: 131
  start-page: 128
  year: 2020
  ident: 2069_CR14
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2019.12.013
– ident: 2069_CR58
  doi: 10.1109/CVPR.2018.00171
– volume: 20
  start-page: 1087
  issue: 4
  year: 2020
  ident: 2069_CR38
  publication-title: Sensors
  doi: 10.3390/s20041087
– volume: 3
  start-page: 91
  year: 2020
  ident: 2069_CR42
  publication-title: IEEE Trans. Affective Comput.
– volume: 10
  start-page: 173
  issue: 2
  year: 2016
  ident: 2069_CR24
  publication-title: J. Multimodal User Interfaces
  doi: 10.1007/s12193-015-0209-0
– volume: 29
  start-page: 4057
  year: 2020
  ident: 2069_CR34
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2956143
– volume: 2
  start-page: 71
  year: 2018
  ident: 2069_CR53
  publication-title: IEEE Trans. Affect. Comput.
SSID ssj0017749
Score 2.4578755
Snippet Automatic recognition of facial expressions in the wild is a challenging problem and has drawn a lot of attention from the computer vision and pattern...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1083
SubjectTerms Accuracy
Artificial Intelligence
Artificial neural networks
Computer Graphics
Computer Science
Computer vision
Datasets
Deep learning
Discriminant analysis
Emotions
Face recognition
Image Processing and Computer Vision
Machine learning
Mathematical models
Neural networks
Original Article
Parameters
Pattern recognition
Performance evaluation
Real time
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60vehBfGK1yh686aJJNtnkJD5aimARsdBbyD4CQkmrbcGf78x2m6pgTwlks4eZ3Zlvdme-AbhQNiqFNJSKIxUXVkiOTi_lykj01wadbELVyM_9pDcQT8N46A_cpj6tcmkTnaE2Y01n5NdhRtRaEQZst5MPTl2j6HbVt9DYhCaa4BSDr-Z9p__yWt8jILhxADjAWIlqPn3ZjCuec2x1nFIUEDIlGZe_XdMKb_65InWep7sLOx4ysruFjvdgw1b7sP2DSPAAzOMcR9TUD4ZRMrlfVPiBSCvdw6V8M8SpDLHiiFNjeVYWdGrO7JdPia1YnVSE7-8VQ4jIEFGbQxh0O28PPe77J3CNG2vGQ5WqMoi1vVEyUCUCM1EmWZwSZWARGJQoWrtQhkmhEeVo4o3EYMNinBoTBZCOjqBRjSt7DEygQkWklC6VFmloVCjjOCpkYU0kVBa0IFiKLteeXJx6XIzymhbZiTtHcedO3LlswWX9z2RBrbF2dHupkdxvs2m-WhQtuFpqafX5_9lO1s92ClshlTm4XLM2NGafc3uG4GOmzv0K-wZzTtS2
  priority: 102
  providerName: ProQuest
Title Dual integrated convolutional neural network for real-time facial expression recognition in the wild
URI https://link.springer.com/article/10.1007/s00371-021-02069-7
https://www.proquest.com/docview/2917983888
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7o9qIP3sV5GXnwTQM2TZv2ceouKA4RB_OpNJeCMKq4Dfz5nmRpp6KCTynkAu1Jcr7TfOcLwKk0YcGFtlQcISk3XFB0egmVWqC_1uhkY5uNfDeMByN-M47GPilsWrHdqyNJt1PXyW5OXY5aSgFCnDilYhWakY3dcRaPWKc-O0BA40BvgPGRzfP0qTI_j_HVHS0x5rdjUedteluw4WEi6Szsug0rptyBzeoKBuJX5A6sf9IT3AV9PcdOtQKEJpZT7ucWVljtSlc45jdBuEoQMk6ovV-eFLn9eU7Mu2fGlqTmFuHzc0kQKRIE1noPRr3u49WA-msUqML1NaNMJrIIImUupAhkgfiMF3EaJVY5MA80S-2mxwSLc4VgR1n5SIw5DIarkVUCUuE-NMqX0hwA4WhXHkqpCql4wrRkIorCXORGh1ymQQuC6mtmymuM26suJlmtjuwskKEFMmeBTLTgrO7zulDY-LP1cWWkzK-2aYavINIkxGC-BeeV4ZbVv492-L_mR7DGbPaDo6AdQ2P2NjcniElmsg2rSa_fhman_3TbxfKyO7x_aLuJ-QHYTNpj
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HNSD-MT1mYOeNGjTtGkPIqKu6_Ok4K02j4Kw1NeK-qf8jc5k264KevPUQtIUJpPMN8nMNwDr2oWFVJZCcZTm0knF0eglXFuF9tqikY0pG_niMu5cy9Ob6GYIPupcGAqrrPdEv1Hbe0Nn5NsiJWqtEB22vYdHTlWj6Ha1LqHRV4sz9_6KLtvz7skhzu-GEO2jq4MOr6oKcIPq1uNCJ7oIIuN2tAp0gXBFFnEaJUSklwcW_4N7gFAizg3afkNsigjBHXpvERHjmBDHHYZRGYYpraikfdzcWiCU8nA7QM-MMkyrJB2fque58TgFRCBAi1OuvhvCAbr9cSHr7Vx7CiYrgMr2-xo1DUOunIGJL7SFs2APX7BHQzRhGYWuVyqMDUSR6R8-wJwhKmaITLucytizIqczeubeqgDckjUhTPh-VzIEpAzxu52D63-R6zyMlPelWwAmUX1kqLUptJGJsFqoKApzlTsbSp0GLQhq0WWmojKnihrdrCFh9uLOUNyZF3emWrDZfPPQJ_L4s_dyPSNZtaifs4EKtmCrnqVB8--jLf492hqMda4uzrPzk8uzJRgXlGDho9yWYaT39OJWEPb09KrXNQa3_63cn4VJDRU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oBNEHL1NxOjUPvmmYTdOmfRzOMW_DBwd7C02TgjDq0A78-Z5kbTdFBZ9ayAWak-R8p_nOF4BzZfyMC22pOEJRbrig6PQiqrRAf63RyYY2G_lxGA5G_G4cjJey-B3bvTqSnOc0WJWmvOhMddapE9-c0hy19AKEO2FMxSqs4Xbs2Xk9Yt36HAHBjQPAHsZKNuezTJv5uY-vrmmBN78dkTrP09-BrRIyku7cxruwYvImbFfXMZBydTZhc0lbcA90b4aNajUITSy_vJxnWGB1LN3DscAJQleC8HFC7V3zJEvsj3RiPkqWbE5qnhG-v-QEUSNBkK33YdS_eb4e0PJKBZri4BSUqUhlXpCaKyU8lSFW41kYB5FVEUw8zWK7ATLBwiRF4JNaKUmMPwyGroFVBUr9A2jkr7k5BMLRxtxXKs1UyiOmFRNB4CciMdrnKvZa4FWjKdNSb9xeezGRtVKys4BEC0hnASlacFG3mc7VNv6s3a6MJMuV9y7xE0Qc-RjYt-CyMtyi-Pfejv5X_QzWn3p9-XA7vD-GDWaTIhwzrQ2N4m1mThCqFOrUzcZPRxbdfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+integrated+convolutional+neural+network+for+real-time+facial+expression+recognition+in+the+wild&rft.jtitle=The+Visual+computer&rft.au=Saurav%2C+Sumeet&rft.au=Gidde%2C+Prashant&rft.au=Saini%2C+Ravi&rft.au=Singh%2C+Sanjay&rft.date=2022-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=38&rft.issue=3&rft.spage=1083&rft.epage=1096&rft_id=info:doi/10.1007%2Fs00371-021-02069-7&rft.externalDocID=10_1007_s00371_021_02069_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon