Dual integrated convolutional neural network for real-time facial expression recognition in the wild
Automatic recognition of facial expressions in the wild is a challenging problem and has drawn a lot of attention from the computer vision and pattern recognition community. Since their emergence, the deep learning techniques have proved their efficacy in facial expression recognition (FER) tasks. H...
Saved in:
Published in | The Visual computer Vol. 38; no. 3; pp. 1083 - 1096 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automatic recognition of facial expressions in the wild is a challenging problem and has drawn a lot of attention from the computer vision and pattern recognition community. Since their emergence, the deep learning techniques have proved their efficacy in facial expression recognition (FER) tasks. However, these techniques are parameter intensive, and thus, could not be deployed on resource-constrained embedded platforms for real-world applications. To mitigate these limitations of the deep learning inspired FER systems, in this paper, we present an efficient dual integrated convolution neural network (DICNN) model for the recognition of facial expressions in the wild in real-time, running on an embedded platform. The designed DICNN model with just 1.08M parameters and 5.40 MB memory storage size achieves optimal performance by maintaining a proper balance between recognition accuracy and computational efficiency. We evaluated the DICNN model on four FER benchmark datasets (FER2013, FERPlus, RAF-DB, and CKPlus) using different performance evaluation metrics, namely the recognition accuracy, precision, recall, and F1-score. Finally, to provide a portable solution with high throughput inference, we optimized the designed DICNN model using TensorRT SDK and deployed it on an Nvidia Xavier embedded platform. Comparative analysis results with the other state-of-the-art methods revealed the effectiveness of the designed FER system, which achieved competitive accuracy with multi-fold improvement in the execution speed. |
---|---|
AbstractList | Automatic recognition of facial expressions in the wild is a challenging problem and has drawn a lot of attention from the computer vision and pattern recognition community. Since their emergence, the deep learning techniques have proved their efficacy in facial expression recognition (FER) tasks. However, these techniques are parameter intensive, and thus, could not be deployed on resource-constrained embedded platforms for real-world applications. To mitigate these limitations of the deep learning inspired FER systems, in this paper, we present an efficient dual integrated convolution neural network (DICNN) model for the recognition of facial expressions in the wild in real-time, running on an embedded platform. The designed DICNN model with just 1.08M parameters and 5.40 MB memory storage size achieves optimal performance by maintaining a proper balance between recognition accuracy and computational efficiency. We evaluated the DICNN model on four FER benchmark datasets (FER2013, FERPlus, RAF-DB, and CKPlus) using different performance evaluation metrics, namely the recognition accuracy, precision, recall, and F1-score. Finally, to provide a portable solution with high throughput inference, we optimized the designed DICNN model using TensorRT SDK and deployed it on an Nvidia Xavier embedded platform. Comparative analysis results with the other state-of-the-art methods revealed the effectiveness of the designed FER system, which achieved competitive accuracy with multi-fold improvement in the execution speed. |
Author | Singh, Sanjay Saurav, Sumeet Saini, Ravi Gidde, Prashant |
Author_xml | – sequence: 1 givenname: Sumeet surname: Saurav fullname: Saurav, Sumeet email: sumeet@ceeri.res.in organization: Academy of Scientific and Innovative Research, CSIR-Central Electronics Engineering Research Institute – sequence: 2 givenname: Prashant surname: Gidde fullname: Gidde, Prashant organization: CSIR-Central Electronics Engineering Research Institute – sequence: 3 givenname: Ravi surname: Saini fullname: Saini, Ravi organization: Academy of Scientific and Innovative Research, CSIR-Central Electronics Engineering Research Institute – sequence: 4 givenname: Sanjay surname: Singh fullname: Singh, Sanjay organization: Academy of Scientific and Innovative Research, CSIR-Central Electronics Engineering Research Institute |
BookMark | eNp9kMtKAzEUhoMo2FZfwNWA69FcJk2ylHqFghtdh0wmU1OnSU0yVt_eTEcQXHRxOBz-853LPwXHzjsDwAWCVwhCdh0hJAyVEA8B56JkR2CCKoJLTBA9BhOIGC8x4-IUTGNcw1yzSkxAc9urrrAumVVQyTSF9u7Td32y3mXBmT7sU9r58F60PhTBqK5MdmOKVmmbRfO1DSbGDGRN-5WzA5xnFunNFDvbNWfgpFVdNOe_eQZe7-9eFo_l8vnhaXGzLDVBIpW45nWLqDawZqhuKaNVOxeUM4GJQg0WiBKOGZ4rjSnSsGKY47nBrKKQcaTJDFyOc7fBf_QmJrn2fch_RJlhJjjhnOcuPHbp4GMMppXbYDcqfEsE5eCmHN2U2U25d1OyDPF_kLZJDY-moGx3GCUjGvMetzLh76oD1A8ys4tf |
CitedBy_id | crossref_primary_10_1007_s00371_022_02655_3 crossref_primary_10_1080_01969722_2022_2071408 crossref_primary_10_1016_j_physbeh_2024_114561 crossref_primary_10_1007_s11042_024_19012_2 crossref_primary_10_1155_2022_9563877 crossref_primary_10_7717_peerj_cs_1216 crossref_primary_10_3390_s22228635 crossref_primary_10_1109_ACCESS_2024_3391057 crossref_primary_10_1007_s11760_023_02832_4 crossref_primary_10_1142_S0218001423570021 crossref_primary_10_1109_TFUZZ_2024_3454069 crossref_primary_10_1007_s00530_022_00984_w crossref_primary_10_1007_s11042_022_14066_6 crossref_primary_10_1109_ACCESS_2023_3264268 crossref_primary_10_1109_TIM_2023_3243661 crossref_primary_10_1038_s41598_024_79167_8 crossref_primary_10_1007_s00371_022_02690_0 crossref_primary_10_1007_s00371_024_03345_y crossref_primary_10_1007_s11042_024_19004_2 crossref_primary_10_1007_s10489_022_03200_4 crossref_primary_10_1007_s12652_023_04627_4 crossref_primary_10_3390_en17122797 crossref_primary_10_1007_s11042_024_20138_6 crossref_primary_10_33166_AETiC_2023_02_002 crossref_primary_10_1007_s42154_023_00270_z crossref_primary_10_28979_jarnas_1056664 crossref_primary_10_1007_s10044_022_01112_0 |
Cites_doi | 10.1109/ACCESS.2019.2921220 10.3389/fnbot.2019.00037 10.3390/s20030866 10.1007/s00371-018-1585-8 10.1109/ACCESS.2017.2676238 10.1109/URTC.2017.8284175 10.1007/s00371-019-01635-4 10.1016/j.patcog.2016.07.026 10.1109/TIP.2018.2868382 10.1109/ACCESS.2019.2928364 10.1109/ACCESS.2019.2917266 10.1109/ICCV.2015.414 10.3390/e21050479 10.1109/ACCESS.2019.2901521 10.1016/j.bspc.2018.08.035 10.1007/s00371-018-1477-y 10.1007/s00371-019-01627-4 10.1016/j.patcog.2019.03.019 10.1145/2993148.2993165 10.1109/CVPR.2014.241 10.1016/j.neucom.2019.05.005 10.1109/ACCESS.2020.2964752 10.1109/JPROC.2017.2761740 10.1007/s10489-019-01427-2 10.1109/TBME.2019.2897651 10.3390/s18124270 10.1109/ACIIAsia.2018.8470391 10.1109/CVPR.2017.351 10.1007/s00371-019-01630-9 10.1007/s00138-018-0960-9 10.1145/3240508.3240578 10.1142/S0218001419400159 10.1109/CVPR42600.2020.00693 10.1109/CVPRW.2010.5543262 10.1109/TIP.2018.2886767 10.3390/sym11010052 10.1109/ACCESS.2017.2784096 10.1016/j.patrec.2019.01.008 10.1016/j.patrec.2019.12.013 10.1109/CVPR.2018.00171 10.3390/s20041087 10.1007/s12193-015-0209-0 10.1109/TIP.2019.2956143 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00371-021-02069-7 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1432-2315 |
EndPage | 1096 |
ExternalDocumentID | 10_1007_s00371_021_02069_7 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-2b8bf15ce0b71bf5754f69587923a1d2915382726ac251c0472826e27450781c3 |
IEDL.DBID | U2A |
ISSN | 0178-2789 |
IngestDate | Fri Jul 25 23:37:57 EDT 2025 Thu Apr 24 22:50:45 EDT 2025 Tue Jul 01 01:05:49 EDT 2025 Fri Feb 21 02:47:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Facial expression recognition Embedded implementation Deep convolutional neural network CNN optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-2b8bf15ce0b71bf5754f69587923a1d2915382726ac251c0472826e27450781c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2917983888 |
PQPubID | 2043737 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2917983888 crossref_primary_10_1007_s00371_021_02069_7 crossref_citationtrail_10_1007_s00371_021_02069_7 springer_journals_10_1007_s00371_021_02069_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220300 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 3 year: 2022 text: 20220300 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | International Journal of Computer Graphics |
PublicationTitle | The Visual computer |
PublicationTitleAbbrev | Vis Comput |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Li, Xu, Huang, Song, Liu, Li (CR53) 2018; 2 Uddin, Hassan, Almogren, Alamri, Alrubaian, Fortino (CR5) 2017; 5 Zhao, Mao, Chen (CR1) 2019; 47 CR33 Liu, Zhou (CR29) 2019; 3 Hajarolasvadi, Demirel (CR2) 2019; 21 Ashwin, Guddeti (CR9) 2019; 4 Li, Jin, Akram, Han, Chen (CR36) 2020; 36 Jain, Shamsolmoali, Sehdev (CR27) 2019; 120 Li, Deng (CR50) 2018; 28 Oh, Lee, Kim (CR8) 2020; 20 Gogić, Manhart, Pandžić, Ahlberg (CR39) 2020; 36 Georgescu, Ionescu, Popescu (CR31) 2019; 7 CR49 Xie, Hu, Wu (CR28) 2019; 92 CR48 CR47 Kim, Roh, Dong, Lee (CR24) 2016; 10 CR46 Sonawane, Sharma (CR11) 2020; 7 Shao, Qian (CR25) 2019; 355 CR45 CR43 CR41 King (CR44) 2009; 10 Jeong, Ko (CR12) 2018; 18 Agrawal, Mittal (CR30) 2020; 36 Zhang, Huang, Tian (CR14) 2020; 131 Yang, Cao, Ni, Zhang (CR26) 2017; 6 Avots, Sapiński, Bachmann, Kamińska (CR7) 2019; 30 Li, Deng (CR42) 2020; 3 An, Liu (CR16) 2020; 36 Zhang, Pan, Cui, Zhao, Liu (CR20) 2019; 7 CR59 Choudhary, Mishra, Goswami, Sarangapani (CR55) 2020; 4 CR58 CR13 Li, Kuo, Tsai, Luan (CR15) 2019; 7 CR56 Miao, Xu, Han, Zhu (CR37) 2019; 7 CR52 CR51 Riaz, Shen, Sohail, Guo (CR38) 2020; 20 Sze, Chen, Yang, Emer (CR57) 2017; 105 Pan, Guo, Guo, Li, Xu, Wu (CR19) 2019; 11 Fei, Yang, Li, Butler, Ijomah, Li, Zhou (CR10) 2020; 3 Lopes, de Aguiar, De Souza, Oliveira-Santos (CR35) 2017; 61 Zhao, Mao, Zhang (CR17) 2018; 34 Xing, Li, Xu, Shu, Hu, Xu (CR3) 2019; 13 Zhao, Yang, Yu (CR40) 2020; 8 Li, Wen (CR61) 2019; 49 Wang, Peng, Yang, Meng, Qiao (CR34) 2020; 29 CR23 CR22 CR21 Pan, Zhang, Guo, Zhao, Chuang, Chen, Zhang (CR18) 2019; 3 Nguyen, Yeom, Lee, Yang, Na, Kim (CR6) 2019; 33 CR60 Li, Liu, Si, Li, Li, Zhu, Huang, Zeng, Yao, Zhang (CR4) 2019; 66 Li, Zeng, Shan, Chen (CR32) 2018; 28 Dinelli, Meoni, Rapuano, Benelli, Fanucci (CR54) 2019; 1 S Xie (2069_CR28) 2019; 92 H Zhang (2069_CR14) 2020; 131 G Zhao (2069_CR40) 2020; 8 2069_CR13 2069_CR56 2069_CR51 2069_CR52 Z Fei (2069_CR10) 2020; 3 S Oh (2069_CR8) 2020; 20 2069_CR59 2069_CR58 HD Nguyen (2069_CR6) 2019; 33 S Li (2069_CR50) 2018; 28 BK Kim (2069_CR24) 2016; 10 S Miao (2069_CR37) 2019; 7 X Pan (2069_CR19) 2019; 11 J Shao (2069_CR25) 2019; 355 2069_CR60 MI Georgescu (2069_CR31) 2019; 7 H Li (2069_CR61) 2019; 49 2069_CR22 2069_CR21 2069_CR23 Y Li (2069_CR32) 2018; 28 B Sonawane (2069_CR11) 2020; 7 T Ashwin (2069_CR9) 2019; 4 I Gogić (2069_CR39) 2020; 36 J Zhao (2069_CR17) 2018; 34 X Xing (2069_CR3) 2019; 13 N Hajarolasvadi (2069_CR2) 2019; 21 F An (2069_CR16) 2020; 36 K Wang (2069_CR34) 2020; 29 MZ Uddin (2069_CR5) 2017; 5 B Yang (2069_CR26) 2017; 6 2069_CR33 MN Riaz (2069_CR38) 2020; 20 A Agrawal (2069_CR30) 2020; 36 M Li (2069_CR53) 2018; 2 DE King (2069_CR44) 2009; 10 X Liu (2069_CR29) 2019; 3 AT Lopes (2069_CR35) 2017; 61 S Zhang (2069_CR20) 2019; 7 THS Li (2069_CR15) 2019; 7 G Dinelli (2069_CR54) 2019; 1 T Choudhary (2069_CR55) 2020; 4 V Sze (2069_CR57) 2017; 105 P Li (2069_CR4) 2019; 66 2069_CR43 DK Jain (2069_CR27) 2019; 120 2069_CR46 2069_CR45 K Li (2069_CR36) 2020; 36 2069_CR41 M Jeong (2069_CR12) 2018; 18 2069_CR48 J Zhao (2069_CR1) 2019; 47 2069_CR47 S Li (2069_CR42) 2020; 3 2069_CR49 X Pan (2069_CR18) 2019; 3 E Avots (2069_CR7) 2019; 30 |
References_xml | – ident: CR45 – ident: CR22 – volume: 7 start-page: 78000 year: 2019 end-page: 78011 ident: CR37 article-title: Recognizing facial expressions using a shallow convolutional neural network publication-title: IEEE Access – volume: 3 start-page: 1 year: 2019 end-page: 8 ident: CR18 article-title: Video-based facial expression recognition using deep temporal-spatial networks publication-title: IETE Tech. Rev. – volume: 7 start-page: 8 year: 2020 ident: CR11 article-title: Review of automated emotion-based quantification of facial expression in Parkinson’s patients publication-title: Vis. Comput. – volume: 36 start-page: 405 issue: 2 year: 2020 end-page: 412 ident: CR30 article-title: Using cnn for facial expression recognition: a study of the effects of kernel size and number of filters on accuracy publication-title: Vis. Comput. – ident: CR49 – volume: 36 start-page: 483 issue: 3 year: 2020 end-page: 498 ident: CR16 article-title: Facial expression recognition algorithm based on parameter adaptive initialization of cnn and lstm publication-title: Vis. Comput – volume: 6 start-page: 4630 year: 2017 end-page: 4640 ident: CR26 article-title: Facial expression recognition using weighted mixture deep neural network based on double-channel facial images publication-title: IEEE Access – ident: CR51 – volume: 3 start-page: 1 year: 2019 end-page: 15 ident: CR29 article-title: Improved curriculum learning using ssm for facial expression recognition publication-title: Vis. Comput. – ident: CR58 – volume: 8 start-page: 38528 year: 2020 end-page: 38537 ident: CR40 article-title: Expression recognition method based on a lightweight convolutional neural network publication-title: IEEE Access – volume: 355 start-page: 82 year: 2019 end-page: 92 ident: CR25 article-title: Three convolutional neural network models for facial expression recognition in the wild publication-title: Neurocomputing – volume: 10 start-page: 1755 year: 2009 end-page: 1758 ident: CR44 article-title: Dlib-ml: a machine learning toolkit publication-title: J. Mach. Learn. Res. – volume: 20 start-page: 866 issue: 3 year: 2020 ident: CR8 article-title: The design of cnn architectures for optimal six basic emotion classification using multiple physiological signals publication-title: Sensors – ident: CR21 – ident: CR46 – volume: 21 start-page: 479 issue: 5 year: 2019 ident: CR2 article-title: 3D cnn-based speech emotion recognition using k-means clustering and spectrograms publication-title: Entropy – volume: 49 start-page: 2956 issue: 8 year: 2019 end-page: 2969 ident: CR61 article-title: Sample awareness-based personalized facial expression recognition publication-title: Appl. Intell. – volume: 105 start-page: 2295 issue: 12 year: 2017 end-page: 2329 ident: CR57 article-title: Efficient processing of deep neural networks: a tutorial and survey publication-title: Proc. IEEE – ident: CR60 – volume: 3 start-page: 10 year: 2020 ident: CR10 article-title: Deep convolution network based emotion analysis towards mental health care publication-title: Neurocomputing – volume: 28 start-page: 356 issue: 1 year: 2018 end-page: 370 ident: CR50 article-title: Reliable crowdsourcing and deep locality-preserving learning for unconstrained facial expression recognition publication-title: IEEE Trans. Image Process. – volume: 11 start-page: 52 issue: 1 year: 2019 ident: CR19 article-title: Deep temporal-spatial aggregation for video-based facial expression recognition publication-title: Symmetry – volume: 36 start-page: 97 issue: 1 year: 2020 end-page: 112 ident: CR39 article-title: Fast facial expression recognition using local binary features and shallow neural networks publication-title: Vis.Comput. – volume: 47 start-page: 312 year: 2019 end-page: 323 ident: CR1 article-title: Speech emotion recognition using deep 1D & 2D cnn lstm networks publication-title: Biomed. Signal Process. Control – volume: 36 start-page: 391 issue: 2 year: 2020 end-page: 404 ident: CR36 article-title: Facial expression recognition with convolutional neural networks via a new face cropping and rotation strategy publication-title: Vis. Comput. – ident: CR43 – ident: CR47 – volume: 7 start-page: 32297 year: 2019 end-page: 32304 ident: CR20 article-title: Learning affective video features for facial expression recognition via hybrid deep learning publication-title: IEEE Access – volume: 5 start-page: 4525 year: 2017 end-page: 4536 ident: CR5 article-title: Facial expression recognition utilizing local direction-based robust features and deep belief network publication-title: IEEE Access – volume: 10 start-page: 173 issue: 2 year: 2016 end-page: 189 ident: CR24 article-title: Hierarchical committee of deep convolutional neural networks for robust facial expression recognition publication-title: J. Multimodal User Interfaces – volume: 4 start-page: 1 year: 2020 end-page: 43 ident: CR55 article-title: A comprehensive survey on model compression and acceleration publication-title: Artif. Intell. Rev. – volume: 7 start-page: 93998 year: 2019 end-page: 94011 ident: CR15 article-title: Cnn and lstm based facial expression analysis model for a humanoid robot publication-title: IEEE Access – volume: 92 start-page: 177 year: 2019 end-page: 191 ident: CR28 article-title: Deep multi-path convolutional neural network joint with salient region attention for facial expression recognition publication-title: Pattern Recogn. – ident: CR33 – volume: 18 start-page: 4270 issue: 12 year: 2018 ident: CR12 article-title: Driver’s facial expression recognition in real-time for safe driving publication-title: Sensors – volume: 30 start-page: 975 issue: 5 year: 2019 end-page: 985 ident: CR7 article-title: Audiovisual emotion recognition in wild publication-title: Mach. Vis. Appl. – volume: 29 start-page: 4057 year: 2020 end-page: 4069 ident: CR34 article-title: Region attention networks for pose and occlusion robust facial expression recognition publication-title: IEEE Trans. Image Process. – volume: 2 start-page: 71 year: 2018 ident: CR53 article-title: Facial expression recognition with identity and emotion joint learning publication-title: IEEE Trans. Affect. Comput. – volume: 1 start-page: 84 year: 2019 ident: CR54 article-title: An fpga-based hardware accelerator for cnns using on-chip memories only: Design and benchmarking with intel movidius neural compute stick publication-title: Int. J. Reconf. Comput. – volume: 120 start-page: 69 year: 2019 end-page: 74 ident: CR27 article-title: Extended deep neural network for facial emotion recognition publication-title: Pattern Recogn. Lett. – ident: CR56 – ident: CR23 – volume: 7 start-page: 64827 year: 2019 end-page: 64836 ident: CR31 article-title: Local learning with deep and handcrafted features for facial expression recognition publication-title: IEEE Access – volume: 4 start-page: 1 year: 2019 end-page: 29 ident: CR9 article-title: Automatic detection of students’ affective states in classroom environment using hybrid convolutional neural networks publication-title: Educ. Inf. Technol. – volume: 34 start-page: 1461 issue: 10 year: 2018 end-page: 1475 ident: CR17 article-title: Learning deep facial expression features from image and optical flow sequences using 3D cnn publication-title: Vis. Comput. – volume: 33 start-page: 1940015 issue: 11 year: 2019 ident: CR6 article-title: Facial emotion recognition using an ensemble of multi-level convolutional neural networks publication-title: Int. J. Pattern Recognit Artif. Intell. – ident: CR48 – volume: 13 start-page: 37 year: 2019 ident: CR3 article-title: Sae+ lstm: a new framework for emotion recognition from multi-channel eeg publication-title: Front. Neurorobot. – volume: 20 start-page: 1087 issue: 4 year: 2020 ident: CR38 article-title: Exnet: an efficient approach for emotion recognition in the wild publication-title: Sensors – volume: 61 start-page: 610 year: 2017 end-page: 628 ident: CR35 article-title: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order publication-title: Pattern Recogn. – ident: CR52 – ident: CR13 – volume: 66 start-page: 2869 issue: 10 year: 2019 end-page: 2881 ident: CR4 article-title: Eeg based emotion recognition by combining functional connectivity network and local activations publication-title: IEEE Trans. Biomed. Eng. – volume: 131 start-page: 128 year: 2020 end-page: 134 ident: CR14 article-title: Facial expression recognition based on deep convolution long short-term memory networks of double-channel weighted mixture publication-title: Pattern Recogn. Lett. – ident: CR59 – ident: CR41 – volume: 28 start-page: 2439 issue: 5 year: 2018 end-page: 2450 ident: CR32 article-title: Occlusion aware facial expression recognition using cnn with attention mechanism publication-title: IEEE Trans. Image Process. – volume: 3 start-page: 91 year: 2020 ident: CR42 article-title: Deep facial expression recognition: a survey publication-title: IEEE Trans. Affective Comput. – volume: 7 start-page: 78000 year: 2019 ident: 2069_CR37 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921220 – volume: 13 start-page: 37 year: 2019 ident: 2069_CR3 publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2019.00037 – ident: 2069_CR49 – volume: 3 start-page: 1 year: 2019 ident: 2069_CR18 publication-title: IETE Tech. Rev. – ident: 2069_CR41 – volume: 20 start-page: 866 issue: 3 year: 2020 ident: 2069_CR8 publication-title: Sensors doi: 10.3390/s20030866 – ident: 2069_CR60 – ident: 2069_CR59 – volume: 36 start-page: 97 issue: 1 year: 2020 ident: 2069_CR39 publication-title: Vis.Comput. doi: 10.1007/s00371-018-1585-8 – volume: 5 start-page: 4525 year: 2017 ident: 2069_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2676238 – ident: 2069_CR22 doi: 10.1109/URTC.2017.8284175 – volume: 36 start-page: 483 issue: 3 year: 2020 ident: 2069_CR16 publication-title: Vis. Comput doi: 10.1007/s00371-019-01635-4 – volume: 61 start-page: 610 year: 2017 ident: 2069_CR35 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2016.07.026 – volume: 28 start-page: 356 issue: 1 year: 2018 ident: 2069_CR50 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2868382 – volume: 7 start-page: 93998 year: 2019 ident: 2069_CR15 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928364 – volume: 4 start-page: 1 year: 2019 ident: 2069_CR9 publication-title: Educ. Inf. Technol. – volume: 7 start-page: 64827 year: 2019 ident: 2069_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917266 – ident: 2069_CR13 doi: 10.1109/ICCV.2015.414 – ident: 2069_CR48 – volume: 21 start-page: 479 issue: 5 year: 2019 ident: 2069_CR2 publication-title: Entropy doi: 10.3390/e21050479 – volume: 7 start-page: 32297 year: 2019 ident: 2069_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2901521 – volume: 47 start-page: 312 year: 2019 ident: 2069_CR1 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.08.035 – volume: 34 start-page: 1461 issue: 10 year: 2018 ident: 2069_CR17 publication-title: Vis. Comput. doi: 10.1007/s00371-018-1477-y – volume: 36 start-page: 391 issue: 2 year: 2020 ident: 2069_CR36 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01627-4 – volume: 92 start-page: 177 year: 2019 ident: 2069_CR28 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2019.03.019 – volume: 7 start-page: 8 year: 2020 ident: 2069_CR11 publication-title: Vis. Comput. – volume: 3 start-page: 1 year: 2019 ident: 2069_CR29 publication-title: Vis. Comput. – ident: 2069_CR21 doi: 10.1145/2993148.2993165 – ident: 2069_CR47 – ident: 2069_CR45 doi: 10.1109/CVPR.2014.241 – volume: 355 start-page: 82 year: 2019 ident: 2069_CR25 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.05.005 – volume: 8 start-page: 38528 year: 2020 ident: 2069_CR40 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964752 – volume: 105 start-page: 2295 issue: 12 year: 2017 ident: 2069_CR57 publication-title: Proc. IEEE doi: 10.1109/JPROC.2017.2761740 – volume: 49 start-page: 2956 issue: 8 year: 2019 ident: 2069_CR61 publication-title: Appl. Intell. doi: 10.1007/s10489-019-01427-2 – volume: 66 start-page: 2869 issue: 10 year: 2019 ident: 2069_CR4 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2897651 – volume: 18 start-page: 4270 issue: 12 year: 2018 ident: 2069_CR12 publication-title: Sensors doi: 10.3390/s18124270 – ident: 2069_CR52 doi: 10.1109/ACIIAsia.2018.8470391 – ident: 2069_CR43 doi: 10.1109/CVPR.2017.351 – volume: 1 start-page: 84 year: 2019 ident: 2069_CR54 publication-title: Int. J. Reconf. Comput. – volume: 10 start-page: 1755 year: 2009 ident: 2069_CR44 publication-title: J. Mach. Learn. Res. – volume: 4 start-page: 1 year: 2020 ident: 2069_CR55 publication-title: Artif. Intell. Rev. – volume: 3 start-page: 10 year: 2020 ident: 2069_CR10 publication-title: Neurocomputing – volume: 36 start-page: 405 issue: 2 year: 2020 ident: 2069_CR30 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01630-9 – ident: 2069_CR46 – volume: 30 start-page: 975 issue: 5 year: 2019 ident: 2069_CR7 publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-018-0960-9 – ident: 2069_CR23 doi: 10.1145/3240508.3240578 – volume: 33 start-page: 1940015 issue: 11 year: 2019 ident: 2069_CR6 publication-title: Int. J. Pattern Recognit Artif. Intell. doi: 10.1142/S0218001419400159 – ident: 2069_CR33 doi: 10.1109/CVPR42600.2020.00693 – ident: 2069_CR51 doi: 10.1109/CVPRW.2010.5543262 – volume: 28 start-page: 2439 issue: 5 year: 2018 ident: 2069_CR32 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2886767 – ident: 2069_CR56 – volume: 11 start-page: 52 issue: 1 year: 2019 ident: 2069_CR19 publication-title: Symmetry doi: 10.3390/sym11010052 – volume: 6 start-page: 4630 year: 2017 ident: 2069_CR26 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2784096 – volume: 120 start-page: 69 year: 2019 ident: 2069_CR27 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2019.01.008 – volume: 131 start-page: 128 year: 2020 ident: 2069_CR14 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2019.12.013 – ident: 2069_CR58 doi: 10.1109/CVPR.2018.00171 – volume: 20 start-page: 1087 issue: 4 year: 2020 ident: 2069_CR38 publication-title: Sensors doi: 10.3390/s20041087 – volume: 3 start-page: 91 year: 2020 ident: 2069_CR42 publication-title: IEEE Trans. Affective Comput. – volume: 10 start-page: 173 issue: 2 year: 2016 ident: 2069_CR24 publication-title: J. Multimodal User Interfaces doi: 10.1007/s12193-015-0209-0 – volume: 29 start-page: 4057 year: 2020 ident: 2069_CR34 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2956143 – volume: 2 start-page: 71 year: 2018 ident: 2069_CR53 publication-title: IEEE Trans. Affect. Comput. |
SSID | ssj0017749 |
Score | 2.4578755 |
Snippet | Automatic recognition of facial expressions in the wild is a challenging problem and has drawn a lot of attention from the computer vision and pattern... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1083 |
SubjectTerms | Accuracy Artificial Intelligence Artificial neural networks Computer Graphics Computer Science Computer vision Datasets Deep learning Discriminant analysis Emotions Face recognition Image Processing and Computer Vision Machine learning Mathematical models Neural networks Original Article Parameters Pattern recognition Performance evaluation Real time |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60vehBfGK1yh686aJJNtnkJD5aimARsdBbyD4CQkmrbcGf78x2m6pgTwlks4eZ3Zlvdme-AbhQNiqFNJSKIxUXVkiOTi_lykj01wadbELVyM_9pDcQT8N46A_cpj6tcmkTnaE2Y01n5NdhRtRaEQZst5MPTl2j6HbVt9DYhCaa4BSDr-Z9p__yWt8jILhxADjAWIlqPn3ZjCuec2x1nFIUEDIlGZe_XdMKb_65InWep7sLOx4ysruFjvdgw1b7sP2DSPAAzOMcR9TUD4ZRMrlfVPiBSCvdw6V8M8SpDLHiiFNjeVYWdGrO7JdPia1YnVSE7-8VQ4jIEFGbQxh0O28PPe77J3CNG2vGQ5WqMoi1vVEyUCUCM1EmWZwSZWARGJQoWrtQhkmhEeVo4o3EYMNinBoTBZCOjqBRjSt7DEygQkWklC6VFmloVCjjOCpkYU0kVBa0IFiKLteeXJx6XIzymhbZiTtHcedO3LlswWX9z2RBrbF2dHupkdxvs2m-WhQtuFpqafX5_9lO1s92ClshlTm4XLM2NGafc3uG4GOmzv0K-wZzTtS2 priority: 102 providerName: ProQuest |
Title | Dual integrated convolutional neural network for real-time facial expression recognition in the wild |
URI | https://link.springer.com/article/10.1007/s00371-021-02069-7 https://www.proquest.com/docview/2917983888 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7o9qIP3sV5GXnwTQM2TZv2ceouKA4RB_OpNJeCMKq4Dfz5nmRpp6KCTynkAu1Jcr7TfOcLwKk0YcGFtlQcISk3XFB0egmVWqC_1uhkY5uNfDeMByN-M47GPilsWrHdqyNJt1PXyW5OXY5aSgFCnDilYhWakY3dcRaPWKc-O0BA40BvgPGRzfP0qTI_j_HVHS0x5rdjUedteluw4WEi6Szsug0rptyBzeoKBuJX5A6sf9IT3AV9PcdOtQKEJpZT7ucWVljtSlc45jdBuEoQMk6ovV-eFLn9eU7Mu2fGlqTmFuHzc0kQKRIE1noPRr3u49WA-msUqML1NaNMJrIIImUupAhkgfiMF3EaJVY5MA80S-2mxwSLc4VgR1n5SIw5DIarkVUCUuE-NMqX0hwA4WhXHkqpCql4wrRkIorCXORGh1ymQQuC6mtmymuM26suJlmtjuwskKEFMmeBTLTgrO7zulDY-LP1cWWkzK-2aYavINIkxGC-BeeV4ZbVv492-L_mR7DGbPaDo6AdQ2P2NjcniElmsg2rSa_fhman_3TbxfKyO7x_aLuJ-QHYTNpj |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HNSD-MT1mYOeNGjTtGkPIqKu6_Ok4K02j4Kw1NeK-qf8jc5k264KevPUQtIUJpPMN8nMNwDr2oWFVJZCcZTm0knF0eglXFuF9tqikY0pG_niMu5cy9Ob6GYIPupcGAqrrPdEv1Hbe0Nn5NsiJWqtEB22vYdHTlWj6Ha1LqHRV4sz9_6KLtvz7skhzu-GEO2jq4MOr6oKcIPq1uNCJ7oIIuN2tAp0gXBFFnEaJUSklwcW_4N7gFAizg3afkNsigjBHXpvERHjmBDHHYZRGYYpraikfdzcWiCU8nA7QM-MMkyrJB2fque58TgFRCBAi1OuvhvCAbr9cSHr7Vx7CiYrgMr2-xo1DUOunIGJL7SFs2APX7BHQzRhGYWuVyqMDUSR6R8-wJwhKmaITLucytizIqczeubeqgDckjUhTPh-VzIEpAzxu52D63-R6zyMlPelWwAmUX1kqLUptJGJsFqoKApzlTsbSp0GLQhq0WWmojKnihrdrCFh9uLOUNyZF3emWrDZfPPQJ_L4s_dyPSNZtaifs4EKtmCrnqVB8--jLf492hqMda4uzrPzk8uzJRgXlGDho9yWYaT39OJWEPb09KrXNQa3_63cn4VJDRU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oBNEHL1NxOjUPvmmYTdOmfRzOMW_DBwd7C02TgjDq0A78-Z5kbTdFBZ9ayAWak-R8p_nOF4BzZfyMC22pOEJRbrig6PQiqrRAf63RyYY2G_lxGA5G_G4cjJey-B3bvTqSnOc0WJWmvOhMddapE9-c0hy19AKEO2FMxSqs4Xbs2Xk9Yt36HAHBjQPAHsZKNuezTJv5uY-vrmmBN78dkTrP09-BrRIyku7cxruwYvImbFfXMZBydTZhc0lbcA90b4aNajUITSy_vJxnWGB1LN3DscAJQleC8HFC7V3zJEvsj3RiPkqWbE5qnhG-v-QEUSNBkK33YdS_eb4e0PJKBZri4BSUqUhlXpCaKyU8lSFW41kYB5FVEUw8zWK7ATLBwiRF4JNaKUmMPwyGroFVBUr9A2jkr7k5BMLRxtxXKs1UyiOmFRNB4CciMdrnKvZa4FWjKdNSb9xeezGRtVKys4BEC0hnASlacFG3mc7VNv6s3a6MJMuV9y7xE0Qc-RjYt-CyMtyi-Pfejv5X_QzWn3p9-XA7vD-GDWaTIhwzrQ2N4m1mThCqFOrUzcZPRxbdfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+integrated+convolutional+neural+network+for+real-time+facial+expression+recognition+in+the+wild&rft.jtitle=The+Visual+computer&rft.au=Saurav%2C+Sumeet&rft.au=Gidde%2C+Prashant&rft.au=Saini%2C+Ravi&rft.au=Singh%2C+Sanjay&rft.date=2022-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=38&rft.issue=3&rft.spage=1083&rft.epage=1096&rft_id=info:doi/10.1007%2Fs00371-021-02069-7&rft.externalDocID=10_1007_s00371_021_02069_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |