Shear mechanical responses of sandstone exposed to high temperature under constant normal stiffness boundary conditions

Characterizing the temperature-dependent shear mechanical responses of rock masses under constant normal stiffness (CNS) boundary conditions is of crucial importance for evaluating the stability and performance of deep underground projects. This paper experimentally analysed the shear mechanical pro...

Full description

Saved in:
Bibliographic Details
Published inGeomechanics and geophysics for geo-energy and geo-resources. Vol. 7; no. 2
Main Authors Yin, Qian, Wu, Jiangyu, Zhu, Chun, He, Manchao, Meng, Qingxiang, Jing, Hongwen
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.05.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2363-8419
2363-8427
DOI10.1007/s40948-021-00234-9

Cover

Abstract Characterizing the temperature-dependent shear mechanical responses of rock masses under constant normal stiffness (CNS) boundary conditions is of crucial importance for evaluating the stability and performance of deep underground projects. This paper experimentally analysed the shear mechanical properties and dilatancy deformation of sandstone exposed to high temperature with respect to various initial normal stresses under a constant normal stiffness. The results indicate that the developed thermally induced defects cause the porosity of sandstone to increase by 42.48% in a temperature range of 25–800 °C, while the P-wave velocity, unit weight and fractal dimension of pores are reduced. A typical shear failure process including a fracture surface generation process and a shear slipping process of surface asperities is identified. Due to the formation of fracture surfaces, both the normal displacement and normal stress curves show notable sudden drops. The peak shear strength, residual shear strength and terminal normal stress all display an exponential variation with temperature, i.e., initial fluctuations or a slight increase, then a dramatic decrease, achieving a threshold temperature of 400 °C. The secant peak shear stiffness declines by 43.79–70.48% in a temperature range of 400–800 °C due to enhanced ductility and decreasing peak shear strength. With increasing initial normal stress, both shear strength and terminal normal stress increase, but the terminal normal displacement decreases by 52.68–57.37% due to weakened dilation effects. The normal stress–shear stress variation paths are plotted, and the apparent internal friction angle decreases with temperature. Two representative failure patterns, including shear off of surface asperities and edge spalling of the rock matrix, are identified. Both the shear area and mass loss ratios of the sheared rock samples increase with both temperature and initial normal stress due to weakened shear strength and strong shear dilation inhibition effects. Article Highlights Temperature-dependent shear properties of sandstone under CNS conditions. Identifying a typical shear failure process of intact sandstone samples. Evaluating the dilatancy deformation with various initial normal stresses.
AbstractList Characterizing the temperature-dependent shear mechanical responses of rock masses under constant normal stiffness (CNS) boundary conditions is of crucial importance for evaluating the stability and performance of deep underground projects. This paper experimentally analysed the shear mechanical properties and dilatancy deformation of sandstone exposed to high temperature with respect to various initial normal stresses under a constant normal stiffness. The results indicate that the developed thermally induced defects cause the porosity of sandstone to increase by 42.48% in a temperature range of 25–800 °C, while the P-wave velocity, unit weight and fractal dimension of pores are reduced. A typical shear failure process including a fracture surface generation process and a shear slipping process of surface asperities is identified. Due to the formation of fracture surfaces, both the normal displacement and normal stress curves show notable sudden drops. The peak shear strength, residual shear strength and terminal normal stress all display an exponential variation with temperature, i.e., initial fluctuations or a slight increase, then a dramatic decrease, achieving a threshold temperature of 400 °C. The secant peak shear stiffness declines by 43.79–70.48% in a temperature range of 400–800 °C due to enhanced ductility and decreasing peak shear strength. With increasing initial normal stress, both shear strength and terminal normal stress increase, but the terminal normal displacement decreases by 52.68–57.37% due to weakened dilation effects. The normal stress–shear stress variation paths are plotted, and the apparent internal friction angle decreases with temperature. Two representative failure patterns, including shear off of surface asperities and edge spalling of the rock matrix, are identified. Both the shear area and mass loss ratios of the sheared rock samples increase with both temperature and initial normal stress due to weakened shear strength and strong shear dilation inhibition effects. Article Highlights Temperature-dependent shear properties of sandstone under CNS conditions. Identifying a typical shear failure process of intact sandstone samples. Evaluating the dilatancy deformation with various initial normal stresses.
Characterizing the temperature-dependent shear mechanical responses of rock masses under constant normal stiffness (CNS) boundary conditions is of crucial importance for evaluating the stability and performance of deep underground projects. This paper experimentally analysed the shear mechanical properties and dilatancy deformation of sandstone exposed to high temperature with respect to various initial normal stresses under a constant normal stiffness. The results indicate that the developed thermally induced defects cause the porosity of sandstone to increase by 42.48% in a temperature range of 25–800 °C, while the P-wave velocity, unit weight and fractal dimension of pores are reduced. A typical shear failure process including a fracture surface generation process and a shear slipping process of surface asperities is identified. Due to the formation of fracture surfaces, both the normal displacement and normal stress curves show notable sudden drops. The peak shear strength, residual shear strength and terminal normal stress all display an exponential variation with temperature, i.e., initial fluctuations or a slight increase, then a dramatic decrease, achieving a threshold temperature of 400 °C. The secant peak shear stiffness declines by 43.79–70.48% in a temperature range of 400–800 °C due to enhanced ductility and decreasing peak shear strength. With increasing initial normal stress, both shear strength and terminal normal stress increase, but the terminal normal displacement decreases by 52.68–57.37% due to weakened dilation effects. The normal stress–shear stress variation paths are plotted, and the apparent internal friction angle decreases with temperature. Two representative failure patterns, including shear off of surface asperities and edge spalling of the rock matrix, are identified. Both the shear area and mass loss ratios of the sheared rock samples increase with both temperature and initial normal stress due to weakened shear strength and strong shear dilation inhibition effects.Article HighlightsTemperature-dependent shear properties of sandstone under CNS conditions.Identifying a typical shear failure process of intact sandstone samples.Evaluating the dilatancy deformation with various initial normal stresses.
ArticleNumber 35
Author Meng, Qingxiang
Wu, Jiangyu
Zhu, Chun
He, Manchao
Jing, Hongwen
Yin, Qian
Author_xml – sequence: 1
  givenname: Qian
  surname: Yin
  fullname: Yin, Qian
  organization: State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology
– sequence: 2
  givenname: Jiangyu
  surname: Wu
  fullname: Wu, Jiangyu
  organization: State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology
– sequence: 3
  givenname: Chun
  orcidid: 0000-0003-2867-6478
  surname: Zhu
  fullname: Zhu, Chun
  email: zhuchuncumtb@163.com
  organization: State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing), School of Earth Sciences and Engineering, Hohai University
– sequence: 4
  givenname: Manchao
  surname: He
  fullname: He, Manchao
  organization: State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing)
– sequence: 5
  givenname: Qingxiang
  surname: Meng
  fullname: Meng, Qingxiang
  organization: School of Earth Sciences and Engineering, Hohai University
– sequence: 6
  givenname: Hongwen
  surname: Jing
  fullname: Jing, Hongwen
  organization: State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology
BookMark eNp9kMtKAzEUhoMoWGtfwFXA9Wguc8kspXiDggt1HTKZM22kTcacFPXtTa0ouHCVLL7v_Of8J-TQBw-EnHF2wRlrLrFkbakKJnjBmJBl0R6QiZC1LFQpmsOfP2-PyQzRdaxqasFY2U7I2-MKTKQbsCvjnTVrGgHH4BGQhoGi8T2mHEfhfQwIPU2BrtxyRRNsRogmbSPQre8hUputZHyiPsRNHoTJDYMHRNqFTJj4sUN6l1wGT8nRYNYIs-93Sp5vrp_md8Xi4fZ-frUorORtKoQxJeMN2I63oq-UFVyBAiZlbS1j-T5pQXSCc9s1tpK27a0dDFdqGGRdGTkl5_u5YwyvW8CkX8I2-hypRcW5UGXdNJkSe8rGgBhh0GN0m7yx5kzvOtb7jnXuWH91rNssqT-SdcnsrkvRuPX_qtyrmHP8EuLvVv9Yn9VCldA
CitedBy_id crossref_primary_10_1155_2021_8684596
crossref_primary_10_1016_j_cscm_2023_e02012
crossref_primary_10_3389_feart_2022_905642
crossref_primary_10_3390_app132413343
crossref_primary_10_2113_2022_9775460
crossref_primary_10_1155_2021_8490864
crossref_primary_10_3390_app14051687
crossref_primary_10_1007_s11771_024_5638_z
crossref_primary_10_1155_2021_9098250
crossref_primary_10_1155_2021_9946628
crossref_primary_10_1177_01445987221095116
crossref_primary_10_3389_feart_2023_1289662
crossref_primary_10_1007_s40948_022_00447_6
crossref_primary_10_1155_2021_6713581
crossref_primary_10_1371_journal_pone_0312460
crossref_primary_10_1155_2021_8651467
crossref_primary_10_1007_s12613_024_2893_9
crossref_primary_10_1007_s40948_023_00635_y
crossref_primary_10_1155_2021_7624166
crossref_primary_10_1007_s00603_024_04255_0
crossref_primary_10_1155_2021_8575108
crossref_primary_10_3389_feart_2024_1407084
crossref_primary_10_1016_j_jmrt_2022_11_183
crossref_primary_10_1016_j_engfracmech_2025_110939
crossref_primary_10_1155_2021_1016412
crossref_primary_10_1155_2021_8248443
crossref_primary_10_1155_2021_9670151
crossref_primary_10_3390_app131911010
crossref_primary_10_3390_app132111809
crossref_primary_10_1007_s11771_023_5497_z
crossref_primary_10_3389_feart_2023_1274369
crossref_primary_10_1016_j_compgeo_2024_106792
crossref_primary_10_1016_j_enggeo_2023_107272
crossref_primary_10_1007_s40948_024_00855_w
crossref_primary_10_1007_s11629_023_8048_z
crossref_primary_10_1155_2022_8260169
crossref_primary_10_1016_j_jrmge_2022_04_006
crossref_primary_10_1007_s40948_022_00516_w
crossref_primary_10_3390_en14175221
crossref_primary_10_1155_2021_8052827
crossref_primary_10_3389_feart_2024_1392320
crossref_primary_10_3390_app132111646
crossref_primary_10_1016_j_enggeo_2023_107358
crossref_primary_10_1155_2021_2060311
crossref_primary_10_1155_2021_8549094
crossref_primary_10_3389_feart_2023_1276461
crossref_primary_10_1016_j_geoen_2024_213104
crossref_primary_10_1016_j_tafmec_2024_104327
crossref_primary_10_3389_feart_2023_1233485
crossref_primary_10_1155_2021_6071957
crossref_primary_10_1007_s10064_023_03315_z
crossref_primary_10_1016_j_jrmge_2024_03_042
crossref_primary_10_1155_2021_9352208
crossref_primary_10_1016_j_sesci_2024_100180
crossref_primary_10_1007_s12613_024_2916_6
crossref_primary_10_1016_j_geothermics_2024_102974
crossref_primary_10_3389_feart_2024_1360647
crossref_primary_10_1007_s11043_023_09652_6
crossref_primary_10_3389_fenrg_2023_1249985
crossref_primary_10_3389_feart_2023_1238055
crossref_primary_10_3390_lubricants11040181
crossref_primary_10_1155_2021_4355977
crossref_primary_10_2113_2021_5810181
crossref_primary_10_1155_2021_1939505
crossref_primary_10_1155_2021_8644288
crossref_primary_10_3389_fphy_2021_759513
crossref_primary_10_1016_j_jmrt_2023_05_271
crossref_primary_10_1016_j_jrmge_2024_10_026
crossref_primary_10_1016_j_petsci_2024_03_005
crossref_primary_10_1139_cgj_2023_0318
crossref_primary_10_1155_2021_8282493
crossref_primary_10_1155_2021_6388687
crossref_primary_10_3389_feart_2023_1292945
crossref_primary_10_3389_feart_2024_1307275
crossref_primary_10_1155_2021_1719553
crossref_primary_10_1155_2021_4846977
crossref_primary_10_2113_2021_4029886
crossref_primary_10_1007_s11771_024_5722_4
crossref_primary_10_1155_2021_3158504
crossref_primary_10_1155_2021_7824527
crossref_primary_10_1007_s00603_024_04121_z
crossref_primary_10_1007_s40948_022_00388_0
crossref_primary_10_1038_s41598_023_33841_5
crossref_primary_10_1155_2021_7491887
crossref_primary_10_3390_en14133762
crossref_primary_10_1016_j_jrmge_2023_11_035
crossref_primary_10_1155_2022_3834188
crossref_primary_10_3389_feart_2023_1278308
crossref_primary_10_1155_2021_5177777
crossref_primary_10_3389_feart_2024_1338670
crossref_primary_10_3390_su151813608
crossref_primary_10_3389_fenrg_2023_1267228
Cites_doi 10.1007/s40948-019-00131-2
10.1007/s10064-020-01729-7
10.1007/s00603-020-02149-5
10.1007/s00603-020-02186-0
10.2118/199282-PA
10.1016/j.apenergy.2011.11.009
10.1007/s00603-018-1493-2
10.1007/s10064-019-01620-0
10.1016/j.ijrmms.2020.104575
10.1680/geolett.14.00121
10.1016/j.tust.2021.103903
10.1007/s10706-018-0674-9
10.1007/s00603-019-1741-0
10.1007/s40948-020-00203-8
10.1016/j.compgeo.2018.11.005
10.1007/s00231-018-2376-5
10.1016/j.ijrmms.2003.08.004
10.1061/(ASCE)GM.1943-5622.0001713
10.1007/s00603-016-1088-8
10.1016/j.enggeo.2016.01.018
10.1016/j.applthermaleng.2016.11.061
10.1016/j.geothermics.2016.09.008
10.1016/j.jrmge.2017.09.009
10.1016/j.enggeo.2014.11.013
10.2138/rmg.2015.80.04
10.1007/s00603-017-1328-6
10.1016/j.tust.2018.12.013
10.1007/s00603-019-01866-w
10.1016/j.jrmge.2015.10.006
10.1023/A:1008880112926
10.1016/j.ijrmms.2005.09.007
10.1016/j.ijrmms.2009.09.014
10.1016/j.applthermaleng.2016.09.075
10.1007/s00603-013-0452-1
10.1007/s40948-018-0098-2
10.1016/j.enggeo.2013.07.013
10.1007/s00603-020-02136-w
10.1007/s40948-020-00159-9
10.1016/j.enggeo.2018.09.005
10.1007/s00254-007-1094-y
10.1007/s00603-018-1405-5
10.4028/www.scientific.net/AMM.190-191.482
10.1016/S0013-7952(97)00038-0
10.1016/j.ijrmms.2014.05.005
10.1021/ie801569r
10.1016/j.apenergy.2016.03.061
10.1002/2014WR016427
10.1007/s10064-019-01628-6
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
DBID AAYXX
CITATION
7TN
F1W
H96
L.G
DOI 10.1007/s40948-021-00234-9
DatabaseName CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2363-8427
ExternalDocumentID 10_1007_s40948_021_00234_9
GrantInformation_xml – fundername: Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection
  grantid: SKLGP2020K021
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20180663
  funderid: http://dx.doi.org/10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 51904290; 51734009
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -EM
0R~
203
AAHNG
AAIAL
AAJSJ
AAKKN
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAYQN
AAYZJ
ABDZT
ABECU
ABEEZ
ABFTV
ABJOX
ABKCH
ABMQK
ABQBU
ABTMW
ABXPI
ACACY
ACGFS
ACIWK
ACMLO
ACOKC
ACULB
ACZOJ
ADHHG
ADINQ
ADKNI
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEOHA
AEPYU
AEXYK
AFBBN
AFGXO
AFPKN
AFQWF
AGAYW
AGDGC
AGMZJ
AGQMX
AHBYD
AHKAY
AHSBF
AIAKS
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
BGNMA
C24
C6C
DNIVK
EBLON
EBS
EIOEI
EJD
FERAY
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
GROUPED_DOAJ
IKXTQ
IWAJR
J-C
JZLTJ
KOV
M4Y
NQJWS
NU0
O9J
RLLFE
RSV
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
ZMTXR
AAFWJ
AAYXX
ABDBE
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
AYFIA
CITATION
7TN
F1W
H96
L.G
ID FETCH-LOGICAL-c319t-2aa4017ecb192d58c218e8e0336cc008423ce2b211cb7c53c9dccfa188ff365a3
ISSN 2363-8419
IngestDate Thu Aug 28 12:40:46 EDT 2025
Thu Apr 24 22:56:46 EDT 2025
Tue Jul 01 03:44:32 EDT 2025
Fri Feb 21 02:48:23 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Dilation
Peak shear strength
Fracture surface
High temperature
Normal stress
CNS boundary conditions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-2aa4017ecb192d58c218e8e0336cc008423ce2b211cb7c53c9dccfa188ff365a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2867-6478
PQID 2511284677
PQPubID 2044450
ParticipantIDs proquest_journals_2511284677
crossref_primary_10_1007_s40948_021_00234_9
crossref_citationtrail_10_1007_s40948_021_00234_9
springer_journals_10_1007_s40948_021_00234_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Geomechanics and geophysics for geo-energy and geo-resources.
PublicationTitleAbbrev Geomech. Geophys. Geo-energ. Geo-resour
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Han, Jing, Jiang, Liu, Wu (CR8) 2020; 53
Xie, Gao, Ju, Ge, Wang, Zhang, Gao, Wu, Liu (CR41) 2017; 42
Jiang, Xiao, Tanabashi, Mizokami (CR12) 2004; 41
Su, Jing, Yin, Yu, Wang, Wu (CR30) 2017; 33
Indraratna, Haque, Aziz (CR11) 1998; 16
Huang, Guo, Cen, Zhong, Song (CR9) 2020; 53
Gautam, Verma, Sharma, Singh (CR6) 2018; 51
Mirzaghorbanali, Nemcik, Aziz (CR23) 2014; 47
Li, Bao, Wang, Liu, Zhao (CR19) 2021; 54
Thirukumaran, Indraratna (CR35) 2016; 8
Chen, Yang, Wang (CR5) 2017; 110
Qin, Wu, Tian, Wu, Yao (CR24) 2012; 190–191
Zhang, Jiang, Asahina, Wang (CR50) 2020
Tao, Zhu, He, Liu (CR34) 2020; 6
Yin, Jing, Ma (CR45) 2015; 5
Yin, Liu, Jing, Su, Yu, He (CR46) 2019; 52
Giménez, Perfect, Rawls, Pachepsky (CR7) 1997; 48
Anovitz, Cole (CR2) 2015; 88
Siegesmund, Mosch, Scheffzük, Nikolayev (CR29) 2007; 55
Kumari, Beaumont, Ranjith, Perera, Isaka, Khandelwal (CR14) 2019; 5
Zhu, He, Yin, Zhang (CR53) 2021; 7
Usefzadeh, Yousefzadeh, Salari-Rad, Sharifzadeh (CR38) 2013; 164
Li, Oh, Mitra, Canbulat (CR16) 2017; 50
Wang, Kang, Gao (CR39) 2019; 106
Koca, Ozden, Yavuz, Kincal, Onargan, Kucuk (CR13) 2006; 43
Shi, Jing, Yin, Zhao, Gao (CR28) 2020
Bahaaddini, Hagan, Mitra, Khosravi (CR4) 2016; 204
Wang, Gao, Jiang, Li, He, Qin (CR40) 2021; 138
Shafirovich, Varma (CR26) 2009; 48
Yasuhara, Kinoshita, Ohfuji, Takahashi, Ito, Kishida (CR43) 2015; 51
Tang (CR33) 2020
Yin, Jing, Meng, Liu, Wu (CR47) 2020; 39
Tremel, Haselsteiner, Kunze, Spliethoff (CR37) 2012; 92
Lee, Park, Song (CR15) 2014; 70
Tiskatine, Eddemani, Gourdo, Abnay, Ihlal, Aharoune, Bouirden (CR36) 2016; 171
Yin, Jing, Liu, Su, Yu, Han (CR48) 2020; 79
Yavuz, Demirdag, Caran (CR44) 2010; 47
Li, Dai, Liu, Du, Jiang (CR18) 2021; 112
Meng, Wong, Zhou, Wang (CR21) 2018; 425
Zhang, Sun, He, Cao, Zhang, Wang (CR49) 2017; 113
Su, Guo, Jing, Yu, Gao (CR31) 2020; 20
Yang, Ranjith, Jing, Tian, Ju (CR42) 2017; 65
Rong, Yao, Peng, Sha, Tan (CR25) 2018; 214
Shen, Yang, Yang, Hou, Ye, You, Xi (CR27) 2018; 54
Huang, Babadagli, Chen, Li (CR10) 2020; 23
Asadizadeh, Moosavi, Hossaini, Masoumi (CR3) 2018; 51
Zhu, Li, Wang, Sun, Liu (CR52) 2019; 37
Li, Wu, Li (CR17) 2018; 51
Meng, Wang, Liu, Zhang, Lu, Wu (CR22) 2020; 79
Liu, Xu (CR20) 2015; 185
Abdulagatova, Kallaev, Omarov, Bakmaev, Abdulagatov (CR1) 2020
Talukdar, Roy, Singh (CR32) 2018; 10
Zhao, Chen, Shi, Chen, Zhao (CR51) 2019; 85
Q Yin (234_CR46) 2019; 52
Y Li (234_CR16) 2017; 50
A Tremel (234_CR37) 2012; 92
PK Gautam (234_CR6) 2018; 51
X Zhao (234_CR51) 2019; 85
Q Yin (234_CR45) 2015; 5
M Talukdar (234_CR32) 2018; 10
Y Shen (234_CR27) 2018; 54
YK Lee (234_CR15) 2014; 70
MY Koca (234_CR13) 2006; 43
E Shafirovich (234_CR26) 2009; 48
A Usefzadeh (234_CR38) 2013; 164
Q Yin (234_CR47) 2020; 39
Q Yin (234_CR48) 2020; 79
H Huang (234_CR10) 2020; 23
G Rong (234_CR25) 2018; 214
Y Zhang (234_CR49) 2017; 113
Q Wang (234_CR40) 2021; 138
LM Anovitz (234_CR2) 2015; 88
ZG Tao (234_CR34) 2020; 6
WGP Kumari (234_CR14) 2019; 5
C Zhu (234_CR53) 2021; 7
HP Xie (234_CR41) 2017; 42
M Asadizadeh (234_CR3) 2018; 51
Q Meng (234_CR22) 2020; 79
A Mirzaghorbanali (234_CR23) 2014; 47
SG Qin (234_CR24) 2012; 190–191
S Liu (234_CR20) 2015; 185
D Giménez (234_CR7) 1997; 48
S Chen (234_CR5) 2017; 110
B Indraratna (234_CR11) 1998; 16
ZZ Abdulagatova (234_CR1) 2020
M Bahaaddini (234_CR4) 2016; 204
S Siegesmund (234_CR29) 2007; 55
F Meng (234_CR21) 2018; 425
H Yasuhara (234_CR43) 2015; 51
H Su (234_CR30) 2017; 33
D Huang (234_CR9) 2020; 53
ZC Tang (234_CR33) 2020
Y Zhang (234_CR50) 2020
X Shi (234_CR28) 2020
SQ Yang (234_CR42) 2017; 65
A Li (234_CR18) 2021; 112
H Su (234_CR31) 2020; 20
H Yavuz (234_CR44) 2010; 47
Y Jiang (234_CR12) 2004; 41
B Li (234_CR19) 2021; 54
X Wang (234_CR39) 2019; 106
X Zhu (234_CR52) 2019; 37
Y Li (234_CR17) 2018; 51
S Thirukumaran (234_CR35) 2016; 8
G Han (234_CR8) 2020; 53
R Tiskatine (234_CR36) 2016; 171
References_xml – year: 2020
  ident: CR1
  article-title: Temperature effect on thermal-diffusivity and heat-capacity and derived values of thermal-conductivity of reservoir rock materials
  publication-title: Geomech Geophys Geo-Energy Geo-Resour
  doi: 10.1007/s40948-019-00131-2
– volume: 5
  start-page: 47
  issue: 1
  year: 2019
  end-page: 64
  ident: CR14
  article-title: An experimental study on tensile characteristics of granite rocks exposed to different high-temperature treatments
  publication-title: Geomech Geophys Geo-Energy Geo-Resour
– volume: 16
  start-page: 17
  year: 1998
  end-page: 44
  ident: CR11
  article-title: Laboratory modelling of shear behaviour of soft joints under constant normal stiffness conditions
  publication-title: Geotech Geol Eng
– year: 2020
  ident: CR28
  article-title: Investigation on physical and mechanical properties of bedded sandstone after high-temperature exposure
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-020-01729-7
– volume: 53
  start-page: 3779
  issue: 8
  year: 2020
  end-page: 3792
  ident: CR9
  article-title: Experimental investigation on shear mechanical behavior of sandstone containing a pre-existing flaw under unloading normal stress with constant shear stress
  publication-title: Rock Mech Rock Eng
– volume: 41
  start-page: 275
  year: 2004
  end-page: 286
  ident: CR12
  article-title: Development of an automated servo-controlled direct shear apparatus applying a constant normal stiffness condition
  publication-title: Int J Rock Mech Min Sci
– volume: 92
  start-page: 279
  year: 2012
  end-page: 285
  ident: CR37
  article-title: Experimental investigation of high temperature and high pressure coal gasification
  publication-title: Appl Energy
– volume: 65
  start-page: 180
  year: 2017
  end-page: 197
  ident: CR42
  article-title: An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments
  publication-title: Geothermics
– volume: 88
  start-page: 61
  year: 2015
  end-page: 164
  ident: CR2
  article-title: Characterization and analysis of porosity and pore structures
  publication-title: Rev Mineral Geochem
– volume: 50
  start-page: 67
  issue: 1
  year: 2017
  end-page: 79
  ident: CR16
  article-title: A fractal model for the shear behaviour of large-scale opened rock joints
  publication-title: Rock Mech Rock Eng
– volume: 10
  start-page: 91
  issue: 1
  year: 2018
  end-page: 101
  ident: CR32
  article-title: Correlating mode-i fracture toughness and mechanical properties of heat-treated crystalline rocks
  publication-title: J Rock Mech Geotech Eng
– volume: 54
  start-page: 1
  issue: 3
  year: 2021
  end-page: 20
  ident: CR19
  article-title: Permeability evolution of two-dimensional fracture networks during shear under constant normal stiffness boundary conditions
  publication-title: Rock Mech Rock Eng
– year: 2020
  ident: CR33
  article-title: Experimental investigation on temperature-dependent shear behaviors of granite discontinuity
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-020-02149-5
– volume: 37
  start-page: 1147
  issue: 3
  year: 2019
  end-page: 1154
  ident: CR52
  article-title: Deformation failure characteristics and loading rate effect of sandstone under uniaxial cyclic loading and unloading
  publication-title: Geotech Geol Eng
– volume: 52
  start-page: 2963
  year: 2019
  end-page: 2983
  ident: CR46
  article-title: Experimental study of nonlinear flow behaviors through fractured rock samples after high-temperature exposure
  publication-title: Rock Mech Rock Eng
– volume: 425
  start-page: 356
  year: 2018
  end-page: 369
  ident: CR21
  article-title: Comparative study on dynamic shear behavior and failure mechanism of two types of granite joint
  publication-title: Eng Geol
– volume: 138
  start-page: 104575
  year: 2021
  ident: CR40
  article-title: In-situ test and bolt-grouting design evaluation method of underground engineering based on digital drilling
  publication-title: Int J Rock Mech Min Sci
– volume: 190–191
  start-page: 482
  year: 2012
  end-page: 486
  ident: CR24
  article-title: Fractal characteristics of the pore structure of low permeability sandstone
  publication-title: Appl Mech Mater
– volume: 185
  start-page: 63
  year: 2015
  end-page: 70
  ident: CR20
  article-title: An experimental study on the physico-mechanical properties of two post-high-temperature rocks
  publication-title: Eng Geol
– volume: 204
  start-page: 41
  year: 2016
  end-page: 52
  ident: CR4
  article-title: Experimental and numerical study of asperity degradation in the direct shear test
  publication-title: Eng Geol
– volume: 112
  start-page: 103903
  year: 2021
  ident: CR18
  article-title: Dynamic stability evaluation of underground cavern sidewalls against flexural toppling considering excavation-induced damage
  publication-title: Tunn Undergr Space Technol
– volume: 55
  start-page: 1437
  issue: 7
  year: 2007
  end-page: 1448
  ident: CR29
  article-title: The bowing potential of granitic rocks: rock fabric, thermal properties and residual strain
  publication-title: Environ Geol
– volume: 164
  start-page: 243
  year: 2013
  end-page: 252
  ident: CR38
  article-title: Empirical and mathematical formulation of the shear behavior of rock joints
  publication-title: Eng Geol
– volume: 47
  start-page: 1373
  issue: 4
  year: 2014
  end-page: 1391
  ident: CR23
  article-title: Effects of cyclic loading on the shear behaviour of infilled rock joints under constant normal stiffness conditions
  publication-title: Rock Mech Rock Eng
– volume: 42
  start-page: 547
  issue: 3
  year: 2017
  end-page: 556
  ident: CR41
  article-title: Theoretical and technological conception of the fluidization mining for deep coal resources
  publication-title: J China Coal Soc
– year: 2020
  ident: CR50
  article-title: Experimental and numerical investigation on shear failure behavior of rock-like samples containing multiple non-persistent joints
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-020-02186-0
– volume: 214
  start-page: 1886
  year: 2018
  end-page: 1900
  ident: CR25
  article-title: Influence of initial thermal cracking on physical and mechanical behaviour of a coarse marble: insights from uniaxial compression tests with acoustic emission monitoring
  publication-title: Geophys J Int
– volume: 33
  start-page: 1
  issue: 5
  year: 2017
  end-page: 13
  ident: CR30
  article-title: Strength and deformation behaviors of veined marble specimens after vacuum heat treatment under conventional triaxial compression
  publication-title: Acta Mech Sin
– volume: 53
  start-page: 31
  year: 2020
  end-page: 57
  ident: CR8
  article-title: Effect of cyclic loading on the shear behaviours of both unfilled and infilled rough rock joints under constant normal stiffness conditions
  publication-title: Rock Mech Rock Eng
– volume: 7
  start-page: 11
  year: 2021
  ident: CR53
  article-title: Numerical simulation of rockfalls colliding with a gravel cushion with varying thicknesses and particle sizes
  publication-title: Geomech Geophys Geo-Energy Geo-Resour
– volume: 39
  start-page: 2213
  issue: 11
  year: 2020
  end-page: 2225
  ident: CR47
  article-title: Shear mechanical properties of 3D rough-walled rock surfaces under constant normal stiffness conditions
  publication-title: Chin J Rock Mechan Eng
– volume: 23
  start-page: 1150
  issue: 4
  year: 2020
  end-page: 1158
  ident: CR10
  article-title: Zhang YM (2020) Performance comparison of novel chemical agents for mitigating water-blocking problem in tight gas sandstones
  publication-title: SPE Reserv Evaluat Eng
– volume: 113
  start-page: 537
  year: 2017
  end-page: 543
  ident: CR49
  article-title: Pore characteristics and mechanical properties of sandstone under the influence of temperature
  publication-title: Appl Therm Eng
– volume: 20
  start-page: 06020011
  issue: 7
  year: 2020
  ident: CR31
  article-title: Mechanical performances and pore features of coal subjected to heat treatment in approximately vacuum environment
  publication-title: Int J Geomech
– volume: 51
  start-page: 2949
  year: 2018
  end-page: 2956
  ident: CR6
  article-title: Evolution of thermal damage threshold of jalore granite
  publication-title: Rock Mech Rock Eng
– volume: 79
  start-page: 1259
  year: 2020
  end-page: 1274
  ident: CR22
  article-title: Physical and micro-structural characteristics of limestone after high temperature exposure
  publication-title: Bull Eng Geol Environ
– volume: 171
  start-page: 243
  year: 2016
  end-page: 255
  ident: CR36
  article-title: Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage
  publication-title: Appl Energy
– volume: 51
  start-page: 415
  year: 2018
  end-page: 428
  ident: CR3
  article-title: Shear strength and cracking process of non-persistent jointed rocks: an extensive experimental investigation
  publication-title: Rock Mech Rock Eng
– volume: 106
  start-page: 274
  year: 2019
  end-page: 285
  ident: CR39
  article-title: Numerical investigation on the shear behavior of jointed coal mass
  publication-title: Comput Geotech
– volume: 51
  start-page: 5425
  issue: 7
  year: 2015
  end-page: 5449
  ident: CR43
  article-title: Long-term observation of permeability in sedimentary rocks under high-temperature and stress conditions and its interpretation mediated by microstructural investigations
  publication-title: Water Resour Res
– volume: 51
  start-page: 1431
  year: 2018
  end-page: 1445
  ident: CR17
  article-title: An analytical model for two-order asperity degradation of rock joints under constant normal stiffness conditions
  publication-title: Rock Mech Rock Eng
– volume: 70
  start-page: 252
  year: 2014
  end-page: 263
  ident: CR15
  article-title: Model for the shear behavior of rock joints under CNL and CNS conditions
  publication-title: Int J Rock Mech Min Sci
– volume: 110
  start-page: 1533
  year: 2017
  end-page: 1542
  ident: CR5
  article-title: Evolution of thermal damage and permeability of Beishan granite
  publication-title: Appl Therm Eng
– volume: 6
  start-page: 36
  year: 2020
  ident: CR34
  article-title: Research on the safe mining depth of anti-dip bedding slope in Changshanhao Mine
  publication-title: Geomech Geophys Geo-Energy Geo-Resour
– volume: 47
  start-page: 94
  issue: 1
  year: 2010
  end-page: 103
  ident: CR44
  article-title: Thermal effect on the physical properties of carbonate rocks
  publication-title: Int J Rock Mech Min Sci
– volume: 54
  start-page: 3389
  issue: 11
  year: 2018
  end-page: 3407
  ident: CR27
  article-title: Damage characteristics and thermo-physical properties changes of limestone and sandstone during thermal treatment from – 30 °C to 1000 °C
  publication-title: Heat Mass Transf
– volume: 85
  start-page: 252
  year: 2019
  end-page: 258
  ident: CR51
  article-title: An extended model for predicting the temperature distribution of large area fire ascribed to multiple fuel source in tunnel
  publication-title: Tunn Undergr Space Technol
– volume: 48
  start-page: 7865
  issue: 17
  year: 2009
  end-page: 7875
  ident: CR26
  article-title: Underground coal gasification: a brief review of current status
  publication-title: Ind Eng Chem Res
– volume: 79
  start-page: 1239
  year: 2020
  end-page: 1257
  ident: CR48
  article-title: Pore characteristics and nonlinear flow behaviors of granite exposed to high temperature
  publication-title: Bull Eng Geol Env
– volume: 8
  start-page: 405
  year: 2016
  end-page: 414
  ident: CR35
  article-title: A review of shear strength models for rock joints subjected to constant normal stiffness
  publication-title: J Rock Mech Geotech Eng
– volume: 48
  start-page: 161
  issue: 3–4
  year: 1997
  end-page: 183
  ident: CR7
  article-title: Fractal models for predicting soil hydraulic properties: a review
  publication-title: Eng Geol
– volume: 43
  start-page: 520
  year: 2006
  end-page: 530
  ident: CR13
  article-title: Changes in the engineering properties of marble in fire-exposed columns
  publication-title: Int J Rock Mech Min Sci
– volume: 5
  start-page: 43
  year: 2015
  end-page: 48
  ident: CR45
  article-title: Experimental study on mechanical properties of sandstone specimens containing a single hole after high-temperature exposure
  publication-title: Geotechnique Lett
– volume: 23
  start-page: 1150
  issue: 4
  year: 2020
  ident: 234_CR10
  publication-title: SPE Reserv Evaluat Eng
  doi: 10.2118/199282-PA
– volume: 92
  start-page: 279
  year: 2012
  ident: 234_CR37
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.11.009
– volume: 51
  start-page: 2949
  year: 2018
  ident: 234_CR6
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-018-1493-2
– volume: 79
  start-page: 1259
  year: 2020
  ident: 234_CR22
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-019-01620-0
– volume: 138
  start-page: 104575
  year: 2021
  ident: 234_CR40
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2020.104575
– volume: 5
  start-page: 43
  year: 2015
  ident: 234_CR45
  publication-title: Geotechnique Lett
  doi: 10.1680/geolett.14.00121
– volume: 112
  start-page: 103903
  year: 2021
  ident: 234_CR18
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2021.103903
– volume: 37
  start-page: 1147
  issue: 3
  year: 2019
  ident: 234_CR52
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-018-0674-9
– volume: 52
  start-page: 2963
  year: 2019
  ident: 234_CR46
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-019-1741-0
– volume: 7
  start-page: 11
  year: 2021
  ident: 234_CR53
  publication-title: Geomech Geophys Geo-Energy Geo-Resour
  doi: 10.1007/s40948-020-00203-8
– volume: 106
  start-page: 274
  year: 2019
  ident: 234_CR39
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2018.11.005
– volume: 54
  start-page: 3389
  issue: 11
  year: 2018
  ident: 234_CR27
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-018-2376-5
– volume: 41
  start-page: 275
  year: 2004
  ident: 234_CR12
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2003.08.004
– volume: 20
  start-page: 06020011
  issue: 7
  year: 2020
  ident: 234_CR31
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)GM.1943-5622.0001713
– volume: 50
  start-page: 67
  issue: 1
  year: 2017
  ident: 234_CR16
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-1088-8
– volume: 214
  start-page: 1886
  year: 2018
  ident: 234_CR25
  publication-title: Geophys J Int
– volume: 204
  start-page: 41
  year: 2016
  ident: 234_CR4
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2016.01.018
– volume: 39
  start-page: 2213
  issue: 11
  year: 2020
  ident: 234_CR47
  publication-title: Chin J Rock Mechan Eng
– volume: 113
  start-page: 537
  year: 2017
  ident: 234_CR49
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.11.061
– volume: 42
  start-page: 547
  issue: 3
  year: 2017
  ident: 234_CR41
  publication-title: J China Coal Soc
– volume: 65
  start-page: 180
  year: 2017
  ident: 234_CR42
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2016.09.008
– volume: 10
  start-page: 91
  issue: 1
  year: 2018
  ident: 234_CR32
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2017.09.009
– volume: 185
  start-page: 63
  year: 2015
  ident: 234_CR20
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2014.11.013
– volume: 88
  start-page: 61
  year: 2015
  ident: 234_CR2
  publication-title: Rev Mineral Geochem
  doi: 10.2138/rmg.2015.80.04
– volume: 51
  start-page: 415
  year: 2018
  ident: 234_CR3
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-017-1328-6
– volume: 85
  start-page: 252
  year: 2019
  ident: 234_CR51
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.12.013
– volume: 53
  start-page: 31
  year: 2020
  ident: 234_CR8
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-019-01866-w
– volume: 8
  start-page: 405
  year: 2016
  ident: 234_CR35
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2015.10.006
– volume: 16
  start-page: 17
  year: 1998
  ident: 234_CR11
  publication-title: Geotech Geol Eng
  doi: 10.1023/A:1008880112926
– year: 2020
  ident: 234_CR33
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-020-02149-5
– volume: 43
  start-page: 520
  year: 2006
  ident: 234_CR13
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2005.09.007
– volume: 33
  start-page: 1
  issue: 5
  year: 2017
  ident: 234_CR30
  publication-title: Acta Mech Sin
– volume: 47
  start-page: 94
  issue: 1
  year: 2010
  ident: 234_CR44
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2009.09.014
– volume: 110
  start-page: 1533
  year: 2017
  ident: 234_CR5
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.09.075
– volume: 47
  start-page: 1373
  issue: 4
  year: 2014
  ident: 234_CR23
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-013-0452-1
– volume: 5
  start-page: 47
  issue: 1
  year: 2019
  ident: 234_CR14
  publication-title: Geomech Geophys Geo-Energy Geo-Resour
  doi: 10.1007/s40948-018-0098-2
– volume: 164
  start-page: 243
  year: 2013
  ident: 234_CR38
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2013.07.013
– volume: 53
  start-page: 3779
  issue: 8
  year: 2020
  ident: 234_CR9
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-020-02136-w
– year: 2020
  ident: 234_CR28
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-020-01729-7
– volume: 6
  start-page: 36
  year: 2020
  ident: 234_CR34
  publication-title: Geomech Geophys Geo-Energy Geo-Resour
  doi: 10.1007/s40948-020-00159-9
– volume: 425
  start-page: 356
  year: 2018
  ident: 234_CR21
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2018.09.005
– volume: 55
  start-page: 1437
  issue: 7
  year: 2007
  ident: 234_CR29
  publication-title: Environ Geol
  doi: 10.1007/s00254-007-1094-y
– volume: 51
  start-page: 1431
  year: 2018
  ident: 234_CR17
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-018-1405-5
– volume: 54
  start-page: 1
  issue: 3
  year: 2021
  ident: 234_CR19
  publication-title: Rock Mech Rock Eng
– year: 2020
  ident: 234_CR1
  publication-title: Geomech Geophys Geo-Energy Geo-Resour
  doi: 10.1007/s40948-019-00131-2
– volume: 190–191
  start-page: 482
  year: 2012
  ident: 234_CR24
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.190-191.482
– volume: 48
  start-page: 161
  issue: 3–4
  year: 1997
  ident: 234_CR7
  publication-title: Eng Geol
  doi: 10.1016/S0013-7952(97)00038-0
– volume: 70
  start-page: 252
  year: 2014
  ident: 234_CR15
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.05.005
– volume: 48
  start-page: 7865
  issue: 17
  year: 2009
  ident: 234_CR26
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie801569r
– volume: 171
  start-page: 243
  year: 2016
  ident: 234_CR36
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.03.061
– volume: 51
  start-page: 5425
  issue: 7
  year: 2015
  ident: 234_CR43
  publication-title: Water Resour Res
  doi: 10.1002/2014WR016427
– year: 2020
  ident: 234_CR50
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-020-02186-0
– volume: 79
  start-page: 1239
  year: 2020
  ident: 234_CR48
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-019-01628-6
SSID ssib057620049
ssib031263412
ssj0002147068
ssib053829962
ssib054421723
Score 2.506388
Snippet Characterizing the temperature-dependent shear mechanical responses of rock masses under constant normal stiffness (CNS) boundary conditions is of crucial...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Asperity
Boundary conditions
Defects
Deformation
Dilatancy
Dilation
Dimensions
Displacement
Ductility
Energy
Engineering
Environmental Science and Engineering
Failure
Foundations
Fractal geometry
Fracture surfaces
Geoengineering
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
High temperature
Hydraulics
Identification
Internal friction
Mechanical properties
Normal stress
Original Article
P waves
Porosity
Rock masses
Rocks
Sandstone
Sediment samples
Sedimentary rocks
Shear properties
Shear stiffness
Shear strength
Shear stress
Spalling
Stability
Stability analysis
Temperature
Temperature dependence
Wave velocity
Title Shear mechanical responses of sandstone exposed to high temperature under constant normal stiffness boundary conditions
URI https://link.springer.com/article/10.1007/s40948-021-00234-9
https://www.proquest.com/docview/2511284677
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKJiReEJ-iMJAfeCuZasf5eqzQRlWNAaIVfYsSx54qQYPaRGj8HfzB3NmOk8GYgJeodVIn8f16vrPvfkfIy5jpUFSJCGCuLwLkLwE9qJOgEGUYskLHqcRE4bfn8XwlFutoPRr9GEQttU15LL9fm1fyP1KFNpArZsn-g2R9p9AAn0G-cAQJw_GvZGzKUU--KMzeNYO9sxGvlkh2j1m8yLWNNP71HixLsDORnniCfFSOTNnUwd1h8Dmaic1kizYsppBstDZasDR1l3aXeEm16Zf3nEH7RtXd_S3b84Wq7WqJIXrAr4Gy-YXubLBzOwb7Y69yNtvJhwFOP7UGXNBycdn2S9utjQ9o_XVzLJy0hbvXw8ULzvpQwSuLlxiZja_sk2tQ_3HcYk6F06hq2GbpBDoFngxwyq-dFmwkyB592TQwjwGmigiyfhLsNv7P3-Wnq7OzfHmyXt4ihzxJcPP_cDZbfFx0eipkPA5FbxbCnAGTek-7GAmBZb-83gOXDlGb-bU_rA01NVma_h1dPpfJ6vztMa_aTL0j9MvevTGJlvfIXefL0JkF5n0yUtsH5PZ7K_2H5JuBJ-3hST08aa2phyd18KRNTRGedABPauBJO3hSC0_q4Uk7eNIeno_I6vRk-XoeuDofgYQJoAl4UYCXnyhZgrtRRakEs1OlahqGsZRY8IGHUvGSMybLREahzCopdcHSVOswjorwMTnYwuM-IbRg06yIRTmtIiWygmVlxdMo1oxrWeqsGBPWjWQuHQk-1mL5nHv6bjP6OYx-bkY_z8Zk4n_z1VLA3Hj1USeg3KmKfY5-PEdLPxmTV53Q-tN_7u3pzb09I3f6f9UROWh2rXoORnJTvnCY_Qk7prq7
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDCbWBEPXQ7GmK5Y123TobTMQPfzQMShaZFnayxIgN0OSpVOaFLGHtf9-ovxIO2wDerZsGCZFfrT4fQS4SKjjokhF5HO9ilC_xMdBl0ZKaM6pcklmkCh8c5tMl2K2ilcNKaxsu93bI8kQqTuyG1YiWYQtBZhoRCQPoJ95NCJ60J9MZj9mrR9xyhIu9mnb72kfdPeyeLEQOJap80sPudFXZPdvBmf3jAOLjuExZyaobPg2f3-R5zltD1T_OFsNKev6LRw3WJNMauc4gVd2M4CjJwqEA3gdOkBNeQq_wmxrcmeRCoyWI7u6fdaWZOtIiZRgFO4m9uF-W9qCVFuCWscExa0aZWaCjLQdMTXmrMgGAfGa-CjiHIZUosMQp90jLinqZrF3sLy-WlxOo2YqQ2T8dq0ippSvyVJrtAeHRZwZDxJsZsecJ8agPD_jxjLtC0ujUxNzIwtjnKJZ5hxPYsXPoLfxr_seiKJjqRKhx0VshVRU6oJ5izrKnNFOqiHQ9rvmppEsx8kZ67wTWw62yL0t8mCLXA7hS3fPfS3Y8d_Vo9ZcebN5yxyrLoa4LB3C19aE-8v_ftqHly3_DIfTxc08n3-7_X4Ob1jwKGylHEGv2v20Hz3cqfSnxrt_A-kz76c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB21rFq1B1Roq26B1ofe2oj1RxL7uAJWsC2oEiBxi2zHPsHuapMK-Pd4nI9dqhaJc5woyoxn3sTz3gB8y6jnosxFEnK9TlC_JMRBnydaGM6p9pm0SBQ-PcuOL8X0Kr1aY_HHbvfuSLLhNKBK06zeX5R-vye-YVUiE2wvwKQjEvUSBjJg8VB-Dcbj6fm08ylOWcbFKoWH_R0C8EoiLxUCRzT1PhrgN_qN6v_T4ByfUWTUMTzylIKqlnvz7xd5nN9WoPWvc9aYvibvYLPFnWTcOMoWvHCzbXi7pka4Da9iN6it3sNtnHNNbhzSgtGKZNm00rqKzD2pkB6MIt7E3S3mlStJPSeoe0xQ6KpVaSbITlsS2-DPmswQHF-TEFG8x_BKTBzotLzHJWXTOPYBLidHFwfHSTuhIbFh69YJ0zrUZ7mzJgDFMpU2AAYn3YjzzFqU6mfcOmZCkWlNblNuVWmt11RK73mWav4RNmbhdT8B0XSkdCbMqEydUJoqUzKZZp4yb41Xegi0-66FbeXLcYrGddELL0dbFMEWRbRFoYbwvb9n0Yh3PLl6tzNX0W7kqsAKjCFGy4fwozPh6vL_n_b5ecu_wuvfh5Pi18nZzx14w6JDYVflLmzUyz9uLyCf2nxpnfsBFUXz6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shear+mechanical+responses+of+sandstone+exposed+to+high+temperature+under+constant+normal+stiffness+boundary+conditions&rft.jtitle=Geomechanics+and+geophysics+for+geo-energy+and+geo-resources.&rft.au=Yin+Qian&rft.au=Wu%2C+Jiangyu&rft.au=Zhu%2C+Chun&rft.au=He+Manchao&rft.date=2021-05-01&rft.pub=Springer+Nature+B.V&rft.issn=2363-8419&rft.eissn=2363-8427&rft.volume=7&rft.issue=2&rft_id=info:doi/10.1007%2Fs40948-021-00234-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2363-8419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2363-8419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2363-8419&client=summon