Shear mechanical responses of sandstone exposed to high temperature under constant normal stiffness boundary conditions
Characterizing the temperature-dependent shear mechanical responses of rock masses under constant normal stiffness (CNS) boundary conditions is of crucial importance for evaluating the stability and performance of deep underground projects. This paper experimentally analysed the shear mechanical pro...
Saved in:
Published in | Geomechanics and geophysics for geo-energy and geo-resources. Vol. 7; no. 2 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.05.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2363-8419 2363-8427 |
DOI | 10.1007/s40948-021-00234-9 |
Cover
Abstract | Characterizing the temperature-dependent shear mechanical responses of rock masses under constant normal stiffness (CNS) boundary conditions is of crucial importance for evaluating the stability and performance of deep underground projects. This paper experimentally analysed the shear mechanical properties and dilatancy deformation of sandstone exposed to high temperature with respect to various initial normal stresses under a constant normal stiffness. The results indicate that the developed thermally induced defects cause the porosity of sandstone to increase by 42.48% in a temperature range of 25–800 °C, while the P-wave velocity, unit weight and fractal dimension of pores are reduced. A typical shear failure process including a fracture surface generation process and a shear slipping process of surface asperities is identified. Due to the formation of fracture surfaces, both the normal displacement and normal stress curves show notable sudden drops. The peak shear strength, residual shear strength and terminal normal stress all display an exponential variation with temperature, i.e., initial fluctuations or a slight increase, then a dramatic decrease, achieving a threshold temperature of 400 °C. The secant peak shear stiffness declines by 43.79–70.48% in a temperature range of 400–800 °C due to enhanced ductility and decreasing peak shear strength. With increasing initial normal stress, both shear strength and terminal normal stress increase, but the terminal normal displacement decreases by 52.68–57.37% due to weakened dilation effects. The normal stress–shear stress variation paths are plotted, and the apparent internal friction angle decreases with temperature. Two representative failure patterns, including shear off of surface asperities and edge spalling of the rock matrix, are identified. Both the shear area and mass loss ratios of the sheared rock samples increase with both temperature and initial normal stress due to weakened shear strength and strong shear dilation inhibition effects.
Article Highlights
Temperature-dependent shear properties of sandstone under CNS conditions.
Identifying a typical shear failure process of intact sandstone samples.
Evaluating the dilatancy deformation with various initial normal stresses. |
---|---|
AbstractList | Characterizing the temperature-dependent shear mechanical responses of rock masses under constant normal stiffness (CNS) boundary conditions is of crucial importance for evaluating the stability and performance of deep underground projects. This paper experimentally analysed the shear mechanical properties and dilatancy deformation of sandstone exposed to high temperature with respect to various initial normal stresses under a constant normal stiffness. The results indicate that the developed thermally induced defects cause the porosity of sandstone to increase by 42.48% in a temperature range of 25–800 °C, while the P-wave velocity, unit weight and fractal dimension of pores are reduced. A typical shear failure process including a fracture surface generation process and a shear slipping process of surface asperities is identified. Due to the formation of fracture surfaces, both the normal displacement and normal stress curves show notable sudden drops. The peak shear strength, residual shear strength and terminal normal stress all display an exponential variation with temperature, i.e., initial fluctuations or a slight increase, then a dramatic decrease, achieving a threshold temperature of 400 °C. The secant peak shear stiffness declines by 43.79–70.48% in a temperature range of 400–800 °C due to enhanced ductility and decreasing peak shear strength. With increasing initial normal stress, both shear strength and terminal normal stress increase, but the terminal normal displacement decreases by 52.68–57.37% due to weakened dilation effects. The normal stress–shear stress variation paths are plotted, and the apparent internal friction angle decreases with temperature. Two representative failure patterns, including shear off of surface asperities and edge spalling of the rock matrix, are identified. Both the shear area and mass loss ratios of the sheared rock samples increase with both temperature and initial normal stress due to weakened shear strength and strong shear dilation inhibition effects.
Article Highlights
Temperature-dependent shear properties of sandstone under CNS conditions.
Identifying a typical shear failure process of intact sandstone samples.
Evaluating the dilatancy deformation with various initial normal stresses. Characterizing the temperature-dependent shear mechanical responses of rock masses under constant normal stiffness (CNS) boundary conditions is of crucial importance for evaluating the stability and performance of deep underground projects. This paper experimentally analysed the shear mechanical properties and dilatancy deformation of sandstone exposed to high temperature with respect to various initial normal stresses under a constant normal stiffness. The results indicate that the developed thermally induced defects cause the porosity of sandstone to increase by 42.48% in a temperature range of 25–800 °C, while the P-wave velocity, unit weight and fractal dimension of pores are reduced. A typical shear failure process including a fracture surface generation process and a shear slipping process of surface asperities is identified. Due to the formation of fracture surfaces, both the normal displacement and normal stress curves show notable sudden drops. The peak shear strength, residual shear strength and terminal normal stress all display an exponential variation with temperature, i.e., initial fluctuations or a slight increase, then a dramatic decrease, achieving a threshold temperature of 400 °C. The secant peak shear stiffness declines by 43.79–70.48% in a temperature range of 400–800 °C due to enhanced ductility and decreasing peak shear strength. With increasing initial normal stress, both shear strength and terminal normal stress increase, but the terminal normal displacement decreases by 52.68–57.37% due to weakened dilation effects. The normal stress–shear stress variation paths are plotted, and the apparent internal friction angle decreases with temperature. Two representative failure patterns, including shear off of surface asperities and edge spalling of the rock matrix, are identified. Both the shear area and mass loss ratios of the sheared rock samples increase with both temperature and initial normal stress due to weakened shear strength and strong shear dilation inhibition effects.Article HighlightsTemperature-dependent shear properties of sandstone under CNS conditions.Identifying a typical shear failure process of intact sandstone samples.Evaluating the dilatancy deformation with various initial normal stresses. |
ArticleNumber | 35 |
Author | Meng, Qingxiang Wu, Jiangyu Zhu, Chun He, Manchao Jing, Hongwen Yin, Qian |
Author_xml | – sequence: 1 givenname: Qian surname: Yin fullname: Yin, Qian organization: State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology – sequence: 2 givenname: Jiangyu surname: Wu fullname: Wu, Jiangyu organization: State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology – sequence: 3 givenname: Chun orcidid: 0000-0003-2867-6478 surname: Zhu fullname: Zhu, Chun email: zhuchuncumtb@163.com organization: State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing), School of Earth Sciences and Engineering, Hohai University – sequence: 4 givenname: Manchao surname: He fullname: He, Manchao organization: State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing) – sequence: 5 givenname: Qingxiang surname: Meng fullname: Meng, Qingxiang organization: School of Earth Sciences and Engineering, Hohai University – sequence: 6 givenname: Hongwen surname: Jing fullname: Jing, Hongwen organization: State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology |
BookMark | eNp9kMtKAzEUhoMoWGtfwFXA9Wguc8kspXiDggt1HTKZM22kTcacFPXtTa0ouHCVLL7v_Of8J-TQBw-EnHF2wRlrLrFkbakKJnjBmJBl0R6QiZC1LFQpmsOfP2-PyQzRdaxqasFY2U7I2-MKTKQbsCvjnTVrGgHH4BGQhoGi8T2mHEfhfQwIPU2BrtxyRRNsRogmbSPQre8hUputZHyiPsRNHoTJDYMHRNqFTJj4sUN6l1wGT8nRYNYIs-93Sp5vrp_md8Xi4fZ-frUorORtKoQxJeMN2I63oq-UFVyBAiZlbS1j-T5pQXSCc9s1tpK27a0dDFdqGGRdGTkl5_u5YwyvW8CkX8I2-hypRcW5UGXdNJkSe8rGgBhh0GN0m7yx5kzvOtb7jnXuWH91rNssqT-SdcnsrkvRuPX_qtyrmHP8EuLvVv9Yn9VCldA |
CitedBy_id | crossref_primary_10_1155_2021_8684596 crossref_primary_10_1016_j_cscm_2023_e02012 crossref_primary_10_3389_feart_2022_905642 crossref_primary_10_3390_app132413343 crossref_primary_10_2113_2022_9775460 crossref_primary_10_1155_2021_8490864 crossref_primary_10_3390_app14051687 crossref_primary_10_1007_s11771_024_5638_z crossref_primary_10_1155_2021_9098250 crossref_primary_10_1155_2021_9946628 crossref_primary_10_1177_01445987221095116 crossref_primary_10_3389_feart_2023_1289662 crossref_primary_10_1007_s40948_022_00447_6 crossref_primary_10_1155_2021_6713581 crossref_primary_10_1371_journal_pone_0312460 crossref_primary_10_1155_2021_8651467 crossref_primary_10_1007_s12613_024_2893_9 crossref_primary_10_1007_s40948_023_00635_y crossref_primary_10_1155_2021_7624166 crossref_primary_10_1007_s00603_024_04255_0 crossref_primary_10_1155_2021_8575108 crossref_primary_10_3389_feart_2024_1407084 crossref_primary_10_1016_j_jmrt_2022_11_183 crossref_primary_10_1016_j_engfracmech_2025_110939 crossref_primary_10_1155_2021_1016412 crossref_primary_10_1155_2021_8248443 crossref_primary_10_1155_2021_9670151 crossref_primary_10_3390_app131911010 crossref_primary_10_3390_app132111809 crossref_primary_10_1007_s11771_023_5497_z crossref_primary_10_3389_feart_2023_1274369 crossref_primary_10_1016_j_compgeo_2024_106792 crossref_primary_10_1016_j_enggeo_2023_107272 crossref_primary_10_1007_s40948_024_00855_w crossref_primary_10_1007_s11629_023_8048_z crossref_primary_10_1155_2022_8260169 crossref_primary_10_1016_j_jrmge_2022_04_006 crossref_primary_10_1007_s40948_022_00516_w crossref_primary_10_3390_en14175221 crossref_primary_10_1155_2021_8052827 crossref_primary_10_3389_feart_2024_1392320 crossref_primary_10_3390_app132111646 crossref_primary_10_1016_j_enggeo_2023_107358 crossref_primary_10_1155_2021_2060311 crossref_primary_10_1155_2021_8549094 crossref_primary_10_3389_feart_2023_1276461 crossref_primary_10_1016_j_geoen_2024_213104 crossref_primary_10_1016_j_tafmec_2024_104327 crossref_primary_10_3389_feart_2023_1233485 crossref_primary_10_1155_2021_6071957 crossref_primary_10_1007_s10064_023_03315_z crossref_primary_10_1016_j_jrmge_2024_03_042 crossref_primary_10_1155_2021_9352208 crossref_primary_10_1016_j_sesci_2024_100180 crossref_primary_10_1007_s12613_024_2916_6 crossref_primary_10_1016_j_geothermics_2024_102974 crossref_primary_10_3389_feart_2024_1360647 crossref_primary_10_1007_s11043_023_09652_6 crossref_primary_10_3389_fenrg_2023_1249985 crossref_primary_10_3389_feart_2023_1238055 crossref_primary_10_3390_lubricants11040181 crossref_primary_10_1155_2021_4355977 crossref_primary_10_2113_2021_5810181 crossref_primary_10_1155_2021_1939505 crossref_primary_10_1155_2021_8644288 crossref_primary_10_3389_fphy_2021_759513 crossref_primary_10_1016_j_jmrt_2023_05_271 crossref_primary_10_1016_j_jrmge_2024_10_026 crossref_primary_10_1016_j_petsci_2024_03_005 crossref_primary_10_1139_cgj_2023_0318 crossref_primary_10_1155_2021_8282493 crossref_primary_10_1155_2021_6388687 crossref_primary_10_3389_feart_2023_1292945 crossref_primary_10_3389_feart_2024_1307275 crossref_primary_10_1155_2021_1719553 crossref_primary_10_1155_2021_4846977 crossref_primary_10_2113_2021_4029886 crossref_primary_10_1007_s11771_024_5722_4 crossref_primary_10_1155_2021_3158504 crossref_primary_10_1155_2021_7824527 crossref_primary_10_1007_s00603_024_04121_z crossref_primary_10_1007_s40948_022_00388_0 crossref_primary_10_1038_s41598_023_33841_5 crossref_primary_10_1155_2021_7491887 crossref_primary_10_3390_en14133762 crossref_primary_10_1016_j_jrmge_2023_11_035 crossref_primary_10_1155_2022_3834188 crossref_primary_10_3389_feart_2023_1278308 crossref_primary_10_1155_2021_5177777 crossref_primary_10_3389_feart_2024_1338670 crossref_primary_10_3390_su151813608 crossref_primary_10_3389_fenrg_2023_1267228 |
Cites_doi | 10.1007/s40948-019-00131-2 10.1007/s10064-020-01729-7 10.1007/s00603-020-02149-5 10.1007/s00603-020-02186-0 10.2118/199282-PA 10.1016/j.apenergy.2011.11.009 10.1007/s00603-018-1493-2 10.1007/s10064-019-01620-0 10.1016/j.ijrmms.2020.104575 10.1680/geolett.14.00121 10.1016/j.tust.2021.103903 10.1007/s10706-018-0674-9 10.1007/s00603-019-1741-0 10.1007/s40948-020-00203-8 10.1016/j.compgeo.2018.11.005 10.1007/s00231-018-2376-5 10.1016/j.ijrmms.2003.08.004 10.1061/(ASCE)GM.1943-5622.0001713 10.1007/s00603-016-1088-8 10.1016/j.enggeo.2016.01.018 10.1016/j.applthermaleng.2016.11.061 10.1016/j.geothermics.2016.09.008 10.1016/j.jrmge.2017.09.009 10.1016/j.enggeo.2014.11.013 10.2138/rmg.2015.80.04 10.1007/s00603-017-1328-6 10.1016/j.tust.2018.12.013 10.1007/s00603-019-01866-w 10.1016/j.jrmge.2015.10.006 10.1023/A:1008880112926 10.1016/j.ijrmms.2005.09.007 10.1016/j.ijrmms.2009.09.014 10.1016/j.applthermaleng.2016.09.075 10.1007/s00603-013-0452-1 10.1007/s40948-018-0098-2 10.1016/j.enggeo.2013.07.013 10.1007/s00603-020-02136-w 10.1007/s40948-020-00159-9 10.1016/j.enggeo.2018.09.005 10.1007/s00254-007-1094-y 10.1007/s00603-018-1405-5 10.4028/www.scientific.net/AMM.190-191.482 10.1016/S0013-7952(97)00038-0 10.1016/j.ijrmms.2014.05.005 10.1021/ie801569r 10.1016/j.apenergy.2016.03.061 10.1002/2014WR016427 10.1007/s10064-019-01628-6 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
DBID | AAYXX CITATION 7TN F1W H96 L.G |
DOI | 10.1007/s40948-021-00234-9 |
DatabaseName | CrossRef Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2363-8427 |
ExternalDocumentID | 10_1007_s40948_021_00234_9 |
GrantInformation_xml | – fundername: Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection grantid: SKLGP2020K021 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20180663 funderid: http://dx.doi.org/10.13039/501100004608 – fundername: National Natural Science Foundation of China grantid: 51904290; 51734009 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -EM 0R~ 203 AAHNG AAIAL AAJSJ AAKKN AANZL AARHV AARTL AASML AATVU AAUYE AAYQN AAYZJ ABDZT ABECU ABEEZ ABFTV ABJOX ABKCH ABMQK ABQBU ABTMW ABXPI ACACY ACGFS ACIWK ACMLO ACOKC ACULB ACZOJ ADHHG ADINQ ADKNI ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEOHA AEPYU AEXYK AFBBN AFGXO AFPKN AFQWF AGAYW AGDGC AGMZJ AGQMX AHBYD AHKAY AHSBF AIAKS AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ASPBG AUKKA AVWKF AVXWI AXYYD BGNMA C24 C6C DNIVK EBLON EBS EIOEI EJD FERAY FINBP FNLPD FSGXE GGCAI GJIRD GROUPED_DOAJ IKXTQ IWAJR J-C JZLTJ KOV M4Y NQJWS NU0 O9J RLLFE RSV SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW Z5O ZMTXR AAFWJ AAYXX ABDBE ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP AYFIA CITATION 7TN F1W H96 L.G |
ID | FETCH-LOGICAL-c319t-2aa4017ecb192d58c218e8e0336cc008423ce2b211cb7c53c9dccfa188ff365a3 |
ISSN | 2363-8419 |
IngestDate | Thu Aug 28 12:40:46 EDT 2025 Thu Apr 24 22:56:46 EDT 2025 Tue Jul 01 03:44:32 EDT 2025 Fri Feb 21 02:48:23 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | Dilation Peak shear strength Fracture surface High temperature Normal stress CNS boundary conditions |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c319t-2aa4017ecb192d58c218e8e0336cc008423ce2b211cb7c53c9dccfa188ff365a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2867-6478 |
PQID | 2511284677 |
PQPubID | 2044450 |
ParticipantIDs | proquest_journals_2511284677 crossref_primary_10_1007_s40948_021_00234_9 crossref_citationtrail_10_1007_s40948_021_00234_9 springer_journals_10_1007_s40948_021_00234_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Geomechanics and geophysics for geo-energy and geo-resources. |
PublicationTitleAbbrev | Geomech. Geophys. Geo-energ. Geo-resour |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Han, Jing, Jiang, Liu, Wu (CR8) 2020; 53 Xie, Gao, Ju, Ge, Wang, Zhang, Gao, Wu, Liu (CR41) 2017; 42 Jiang, Xiao, Tanabashi, Mizokami (CR12) 2004; 41 Su, Jing, Yin, Yu, Wang, Wu (CR30) 2017; 33 Indraratna, Haque, Aziz (CR11) 1998; 16 Huang, Guo, Cen, Zhong, Song (CR9) 2020; 53 Gautam, Verma, Sharma, Singh (CR6) 2018; 51 Mirzaghorbanali, Nemcik, Aziz (CR23) 2014; 47 Li, Bao, Wang, Liu, Zhao (CR19) 2021; 54 Thirukumaran, Indraratna (CR35) 2016; 8 Chen, Yang, Wang (CR5) 2017; 110 Qin, Wu, Tian, Wu, Yao (CR24) 2012; 190–191 Zhang, Jiang, Asahina, Wang (CR50) 2020 Tao, Zhu, He, Liu (CR34) 2020; 6 Yin, Jing, Ma (CR45) 2015; 5 Yin, Liu, Jing, Su, Yu, He (CR46) 2019; 52 Giménez, Perfect, Rawls, Pachepsky (CR7) 1997; 48 Anovitz, Cole (CR2) 2015; 88 Siegesmund, Mosch, Scheffzük, Nikolayev (CR29) 2007; 55 Kumari, Beaumont, Ranjith, Perera, Isaka, Khandelwal (CR14) 2019; 5 Zhu, He, Yin, Zhang (CR53) 2021; 7 Usefzadeh, Yousefzadeh, Salari-Rad, Sharifzadeh (CR38) 2013; 164 Li, Oh, Mitra, Canbulat (CR16) 2017; 50 Wang, Kang, Gao (CR39) 2019; 106 Koca, Ozden, Yavuz, Kincal, Onargan, Kucuk (CR13) 2006; 43 Shi, Jing, Yin, Zhao, Gao (CR28) 2020 Bahaaddini, Hagan, Mitra, Khosravi (CR4) 2016; 204 Wang, Gao, Jiang, Li, He, Qin (CR40) 2021; 138 Shafirovich, Varma (CR26) 2009; 48 Yasuhara, Kinoshita, Ohfuji, Takahashi, Ito, Kishida (CR43) 2015; 51 Tang (CR33) 2020 Yin, Jing, Meng, Liu, Wu (CR47) 2020; 39 Tremel, Haselsteiner, Kunze, Spliethoff (CR37) 2012; 92 Lee, Park, Song (CR15) 2014; 70 Tiskatine, Eddemani, Gourdo, Abnay, Ihlal, Aharoune, Bouirden (CR36) 2016; 171 Yin, Jing, Liu, Su, Yu, Han (CR48) 2020; 79 Yavuz, Demirdag, Caran (CR44) 2010; 47 Li, Dai, Liu, Du, Jiang (CR18) 2021; 112 Meng, Wong, Zhou, Wang (CR21) 2018; 425 Zhang, Sun, He, Cao, Zhang, Wang (CR49) 2017; 113 Su, Guo, Jing, Yu, Gao (CR31) 2020; 20 Yang, Ranjith, Jing, Tian, Ju (CR42) 2017; 65 Rong, Yao, Peng, Sha, Tan (CR25) 2018; 214 Shen, Yang, Yang, Hou, Ye, You, Xi (CR27) 2018; 54 Huang, Babadagli, Chen, Li (CR10) 2020; 23 Asadizadeh, Moosavi, Hossaini, Masoumi (CR3) 2018; 51 Zhu, Li, Wang, Sun, Liu (CR52) 2019; 37 Li, Wu, Li (CR17) 2018; 51 Meng, Wang, Liu, Zhang, Lu, Wu (CR22) 2020; 79 Liu, Xu (CR20) 2015; 185 Abdulagatova, Kallaev, Omarov, Bakmaev, Abdulagatov (CR1) 2020 Talukdar, Roy, Singh (CR32) 2018; 10 Zhao, Chen, Shi, Chen, Zhao (CR51) 2019; 85 Q Yin (234_CR46) 2019; 52 Y Li (234_CR16) 2017; 50 A Tremel (234_CR37) 2012; 92 PK Gautam (234_CR6) 2018; 51 X Zhao (234_CR51) 2019; 85 Q Yin (234_CR45) 2015; 5 M Talukdar (234_CR32) 2018; 10 Y Shen (234_CR27) 2018; 54 YK Lee (234_CR15) 2014; 70 MY Koca (234_CR13) 2006; 43 E Shafirovich (234_CR26) 2009; 48 A Usefzadeh (234_CR38) 2013; 164 Q Yin (234_CR47) 2020; 39 Q Yin (234_CR48) 2020; 79 H Huang (234_CR10) 2020; 23 G Rong (234_CR25) 2018; 214 Y Zhang (234_CR49) 2017; 113 Q Wang (234_CR40) 2021; 138 LM Anovitz (234_CR2) 2015; 88 ZG Tao (234_CR34) 2020; 6 WGP Kumari (234_CR14) 2019; 5 C Zhu (234_CR53) 2021; 7 HP Xie (234_CR41) 2017; 42 M Asadizadeh (234_CR3) 2018; 51 Q Meng (234_CR22) 2020; 79 A Mirzaghorbanali (234_CR23) 2014; 47 SG Qin (234_CR24) 2012; 190–191 S Liu (234_CR20) 2015; 185 D Giménez (234_CR7) 1997; 48 S Chen (234_CR5) 2017; 110 B Indraratna (234_CR11) 1998; 16 ZZ Abdulagatova (234_CR1) 2020 M Bahaaddini (234_CR4) 2016; 204 S Siegesmund (234_CR29) 2007; 55 F Meng (234_CR21) 2018; 425 H Yasuhara (234_CR43) 2015; 51 H Su (234_CR30) 2017; 33 D Huang (234_CR9) 2020; 53 ZC Tang (234_CR33) 2020 Y Zhang (234_CR50) 2020 X Shi (234_CR28) 2020 SQ Yang (234_CR42) 2017; 65 A Li (234_CR18) 2021; 112 H Su (234_CR31) 2020; 20 H Yavuz (234_CR44) 2010; 47 Y Jiang (234_CR12) 2004; 41 B Li (234_CR19) 2021; 54 X Wang (234_CR39) 2019; 106 X Zhu (234_CR52) 2019; 37 Y Li (234_CR17) 2018; 51 S Thirukumaran (234_CR35) 2016; 8 G Han (234_CR8) 2020; 53 R Tiskatine (234_CR36) 2016; 171 |
References_xml | – year: 2020 ident: CR1 article-title: Temperature effect on thermal-diffusivity and heat-capacity and derived values of thermal-conductivity of reservoir rock materials publication-title: Geomech Geophys Geo-Energy Geo-Resour doi: 10.1007/s40948-019-00131-2 – volume: 5 start-page: 47 issue: 1 year: 2019 end-page: 64 ident: CR14 article-title: An experimental study on tensile characteristics of granite rocks exposed to different high-temperature treatments publication-title: Geomech Geophys Geo-Energy Geo-Resour – volume: 16 start-page: 17 year: 1998 end-page: 44 ident: CR11 article-title: Laboratory modelling of shear behaviour of soft joints under constant normal stiffness conditions publication-title: Geotech Geol Eng – year: 2020 ident: CR28 article-title: Investigation on physical and mechanical properties of bedded sandstone after high-temperature exposure publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-020-01729-7 – volume: 53 start-page: 3779 issue: 8 year: 2020 end-page: 3792 ident: CR9 article-title: Experimental investigation on shear mechanical behavior of sandstone containing a pre-existing flaw under unloading normal stress with constant shear stress publication-title: Rock Mech Rock Eng – volume: 41 start-page: 275 year: 2004 end-page: 286 ident: CR12 article-title: Development of an automated servo-controlled direct shear apparatus applying a constant normal stiffness condition publication-title: Int J Rock Mech Min Sci – volume: 92 start-page: 279 year: 2012 end-page: 285 ident: CR37 article-title: Experimental investigation of high temperature and high pressure coal gasification publication-title: Appl Energy – volume: 65 start-page: 180 year: 2017 end-page: 197 ident: CR42 article-title: An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments publication-title: Geothermics – volume: 88 start-page: 61 year: 2015 end-page: 164 ident: CR2 article-title: Characterization and analysis of porosity and pore structures publication-title: Rev Mineral Geochem – volume: 50 start-page: 67 issue: 1 year: 2017 end-page: 79 ident: CR16 article-title: A fractal model for the shear behaviour of large-scale opened rock joints publication-title: Rock Mech Rock Eng – volume: 10 start-page: 91 issue: 1 year: 2018 end-page: 101 ident: CR32 article-title: Correlating mode-i fracture toughness and mechanical properties of heat-treated crystalline rocks publication-title: J Rock Mech Geotech Eng – volume: 54 start-page: 1 issue: 3 year: 2021 end-page: 20 ident: CR19 article-title: Permeability evolution of two-dimensional fracture networks during shear under constant normal stiffness boundary conditions publication-title: Rock Mech Rock Eng – year: 2020 ident: CR33 article-title: Experimental investigation on temperature-dependent shear behaviors of granite discontinuity publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-020-02149-5 – volume: 37 start-page: 1147 issue: 3 year: 2019 end-page: 1154 ident: CR52 article-title: Deformation failure characteristics and loading rate effect of sandstone under uniaxial cyclic loading and unloading publication-title: Geotech Geol Eng – volume: 52 start-page: 2963 year: 2019 end-page: 2983 ident: CR46 article-title: Experimental study of nonlinear flow behaviors through fractured rock samples after high-temperature exposure publication-title: Rock Mech Rock Eng – volume: 425 start-page: 356 year: 2018 end-page: 369 ident: CR21 article-title: Comparative study on dynamic shear behavior and failure mechanism of two types of granite joint publication-title: Eng Geol – volume: 138 start-page: 104575 year: 2021 ident: CR40 article-title: In-situ test and bolt-grouting design evaluation method of underground engineering based on digital drilling publication-title: Int J Rock Mech Min Sci – volume: 190–191 start-page: 482 year: 2012 end-page: 486 ident: CR24 article-title: Fractal characteristics of the pore structure of low permeability sandstone publication-title: Appl Mech Mater – volume: 185 start-page: 63 year: 2015 end-page: 70 ident: CR20 article-title: An experimental study on the physico-mechanical properties of two post-high-temperature rocks publication-title: Eng Geol – volume: 204 start-page: 41 year: 2016 end-page: 52 ident: CR4 article-title: Experimental and numerical study of asperity degradation in the direct shear test publication-title: Eng Geol – volume: 112 start-page: 103903 year: 2021 ident: CR18 article-title: Dynamic stability evaluation of underground cavern sidewalls against flexural toppling considering excavation-induced damage publication-title: Tunn Undergr Space Technol – volume: 55 start-page: 1437 issue: 7 year: 2007 end-page: 1448 ident: CR29 article-title: The bowing potential of granitic rocks: rock fabric, thermal properties and residual strain publication-title: Environ Geol – volume: 164 start-page: 243 year: 2013 end-page: 252 ident: CR38 article-title: Empirical and mathematical formulation of the shear behavior of rock joints publication-title: Eng Geol – volume: 47 start-page: 1373 issue: 4 year: 2014 end-page: 1391 ident: CR23 article-title: Effects of cyclic loading on the shear behaviour of infilled rock joints under constant normal stiffness conditions publication-title: Rock Mech Rock Eng – volume: 42 start-page: 547 issue: 3 year: 2017 end-page: 556 ident: CR41 article-title: Theoretical and technological conception of the fluidization mining for deep coal resources publication-title: J China Coal Soc – year: 2020 ident: CR50 article-title: Experimental and numerical investigation on shear failure behavior of rock-like samples containing multiple non-persistent joints publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-020-02186-0 – volume: 214 start-page: 1886 year: 2018 end-page: 1900 ident: CR25 article-title: Influence of initial thermal cracking on physical and mechanical behaviour of a coarse marble: insights from uniaxial compression tests with acoustic emission monitoring publication-title: Geophys J Int – volume: 33 start-page: 1 issue: 5 year: 2017 end-page: 13 ident: CR30 article-title: Strength and deformation behaviors of veined marble specimens after vacuum heat treatment under conventional triaxial compression publication-title: Acta Mech Sin – volume: 53 start-page: 31 year: 2020 end-page: 57 ident: CR8 article-title: Effect of cyclic loading on the shear behaviours of both unfilled and infilled rough rock joints under constant normal stiffness conditions publication-title: Rock Mech Rock Eng – volume: 7 start-page: 11 year: 2021 ident: CR53 article-title: Numerical simulation of rockfalls colliding with a gravel cushion with varying thicknesses and particle sizes publication-title: Geomech Geophys Geo-Energy Geo-Resour – volume: 39 start-page: 2213 issue: 11 year: 2020 end-page: 2225 ident: CR47 article-title: Shear mechanical properties of 3D rough-walled rock surfaces under constant normal stiffness conditions publication-title: Chin J Rock Mechan Eng – volume: 23 start-page: 1150 issue: 4 year: 2020 end-page: 1158 ident: CR10 article-title: Zhang YM (2020) Performance comparison of novel chemical agents for mitigating water-blocking problem in tight gas sandstones publication-title: SPE Reserv Evaluat Eng – volume: 113 start-page: 537 year: 2017 end-page: 543 ident: CR49 article-title: Pore characteristics and mechanical properties of sandstone under the influence of temperature publication-title: Appl Therm Eng – volume: 20 start-page: 06020011 issue: 7 year: 2020 ident: CR31 article-title: Mechanical performances and pore features of coal subjected to heat treatment in approximately vacuum environment publication-title: Int J Geomech – volume: 51 start-page: 2949 year: 2018 end-page: 2956 ident: CR6 article-title: Evolution of thermal damage threshold of jalore granite publication-title: Rock Mech Rock Eng – volume: 79 start-page: 1259 year: 2020 end-page: 1274 ident: CR22 article-title: Physical and micro-structural characteristics of limestone after high temperature exposure publication-title: Bull Eng Geol Environ – volume: 171 start-page: 243 year: 2016 end-page: 255 ident: CR36 article-title: Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage publication-title: Appl Energy – volume: 51 start-page: 415 year: 2018 end-page: 428 ident: CR3 article-title: Shear strength and cracking process of non-persistent jointed rocks: an extensive experimental investigation publication-title: Rock Mech Rock Eng – volume: 106 start-page: 274 year: 2019 end-page: 285 ident: CR39 article-title: Numerical investigation on the shear behavior of jointed coal mass publication-title: Comput Geotech – volume: 51 start-page: 5425 issue: 7 year: 2015 end-page: 5449 ident: CR43 article-title: Long-term observation of permeability in sedimentary rocks under high-temperature and stress conditions and its interpretation mediated by microstructural investigations publication-title: Water Resour Res – volume: 51 start-page: 1431 year: 2018 end-page: 1445 ident: CR17 article-title: An analytical model for two-order asperity degradation of rock joints under constant normal stiffness conditions publication-title: Rock Mech Rock Eng – volume: 70 start-page: 252 year: 2014 end-page: 263 ident: CR15 article-title: Model for the shear behavior of rock joints under CNL and CNS conditions publication-title: Int J Rock Mech Min Sci – volume: 110 start-page: 1533 year: 2017 end-page: 1542 ident: CR5 article-title: Evolution of thermal damage and permeability of Beishan granite publication-title: Appl Therm Eng – volume: 6 start-page: 36 year: 2020 ident: CR34 article-title: Research on the safe mining depth of anti-dip bedding slope in Changshanhao Mine publication-title: Geomech Geophys Geo-Energy Geo-Resour – volume: 47 start-page: 94 issue: 1 year: 2010 end-page: 103 ident: CR44 article-title: Thermal effect on the physical properties of carbonate rocks publication-title: Int J Rock Mech Min Sci – volume: 54 start-page: 3389 issue: 11 year: 2018 end-page: 3407 ident: CR27 article-title: Damage characteristics and thermo-physical properties changes of limestone and sandstone during thermal treatment from – 30 °C to 1000 °C publication-title: Heat Mass Transf – volume: 85 start-page: 252 year: 2019 end-page: 258 ident: CR51 article-title: An extended model for predicting the temperature distribution of large area fire ascribed to multiple fuel source in tunnel publication-title: Tunn Undergr Space Technol – volume: 48 start-page: 7865 issue: 17 year: 2009 end-page: 7875 ident: CR26 article-title: Underground coal gasification: a brief review of current status publication-title: Ind Eng Chem Res – volume: 79 start-page: 1239 year: 2020 end-page: 1257 ident: CR48 article-title: Pore characteristics and nonlinear flow behaviors of granite exposed to high temperature publication-title: Bull Eng Geol Env – volume: 8 start-page: 405 year: 2016 end-page: 414 ident: CR35 article-title: A review of shear strength models for rock joints subjected to constant normal stiffness publication-title: J Rock Mech Geotech Eng – volume: 48 start-page: 161 issue: 3–4 year: 1997 end-page: 183 ident: CR7 article-title: Fractal models for predicting soil hydraulic properties: a review publication-title: Eng Geol – volume: 43 start-page: 520 year: 2006 end-page: 530 ident: CR13 article-title: Changes in the engineering properties of marble in fire-exposed columns publication-title: Int J Rock Mech Min Sci – volume: 5 start-page: 43 year: 2015 end-page: 48 ident: CR45 article-title: Experimental study on mechanical properties of sandstone specimens containing a single hole after high-temperature exposure publication-title: Geotechnique Lett – volume: 23 start-page: 1150 issue: 4 year: 2020 ident: 234_CR10 publication-title: SPE Reserv Evaluat Eng doi: 10.2118/199282-PA – volume: 92 start-page: 279 year: 2012 ident: 234_CR37 publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.11.009 – volume: 51 start-page: 2949 year: 2018 ident: 234_CR6 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-018-1493-2 – volume: 79 start-page: 1259 year: 2020 ident: 234_CR22 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-019-01620-0 – volume: 138 start-page: 104575 year: 2021 ident: 234_CR40 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2020.104575 – volume: 5 start-page: 43 year: 2015 ident: 234_CR45 publication-title: Geotechnique Lett doi: 10.1680/geolett.14.00121 – volume: 112 start-page: 103903 year: 2021 ident: 234_CR18 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2021.103903 – volume: 37 start-page: 1147 issue: 3 year: 2019 ident: 234_CR52 publication-title: Geotech Geol Eng doi: 10.1007/s10706-018-0674-9 – volume: 52 start-page: 2963 year: 2019 ident: 234_CR46 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-019-1741-0 – volume: 7 start-page: 11 year: 2021 ident: 234_CR53 publication-title: Geomech Geophys Geo-Energy Geo-Resour doi: 10.1007/s40948-020-00203-8 – volume: 106 start-page: 274 year: 2019 ident: 234_CR39 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2018.11.005 – volume: 54 start-page: 3389 issue: 11 year: 2018 ident: 234_CR27 publication-title: Heat Mass Transf doi: 10.1007/s00231-018-2376-5 – volume: 41 start-page: 275 year: 2004 ident: 234_CR12 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2003.08.004 – volume: 20 start-page: 06020011 issue: 7 year: 2020 ident: 234_CR31 publication-title: Int J Geomech doi: 10.1061/(ASCE)GM.1943-5622.0001713 – volume: 50 start-page: 67 issue: 1 year: 2017 ident: 234_CR16 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-1088-8 – volume: 214 start-page: 1886 year: 2018 ident: 234_CR25 publication-title: Geophys J Int – volume: 204 start-page: 41 year: 2016 ident: 234_CR4 publication-title: Eng Geol doi: 10.1016/j.enggeo.2016.01.018 – volume: 39 start-page: 2213 issue: 11 year: 2020 ident: 234_CR47 publication-title: Chin J Rock Mechan Eng – volume: 113 start-page: 537 year: 2017 ident: 234_CR49 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.11.061 – volume: 42 start-page: 547 issue: 3 year: 2017 ident: 234_CR41 publication-title: J China Coal Soc – volume: 65 start-page: 180 year: 2017 ident: 234_CR42 publication-title: Geothermics doi: 10.1016/j.geothermics.2016.09.008 – volume: 10 start-page: 91 issue: 1 year: 2018 ident: 234_CR32 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2017.09.009 – volume: 185 start-page: 63 year: 2015 ident: 234_CR20 publication-title: Eng Geol doi: 10.1016/j.enggeo.2014.11.013 – volume: 88 start-page: 61 year: 2015 ident: 234_CR2 publication-title: Rev Mineral Geochem doi: 10.2138/rmg.2015.80.04 – volume: 51 start-page: 415 year: 2018 ident: 234_CR3 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-017-1328-6 – volume: 85 start-page: 252 year: 2019 ident: 234_CR51 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2018.12.013 – volume: 53 start-page: 31 year: 2020 ident: 234_CR8 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-019-01866-w – volume: 8 start-page: 405 year: 2016 ident: 234_CR35 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2015.10.006 – volume: 16 start-page: 17 year: 1998 ident: 234_CR11 publication-title: Geotech Geol Eng doi: 10.1023/A:1008880112926 – year: 2020 ident: 234_CR33 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-020-02149-5 – volume: 43 start-page: 520 year: 2006 ident: 234_CR13 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2005.09.007 – volume: 33 start-page: 1 issue: 5 year: 2017 ident: 234_CR30 publication-title: Acta Mech Sin – volume: 47 start-page: 94 issue: 1 year: 2010 ident: 234_CR44 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2009.09.014 – volume: 110 start-page: 1533 year: 2017 ident: 234_CR5 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.09.075 – volume: 47 start-page: 1373 issue: 4 year: 2014 ident: 234_CR23 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-013-0452-1 – volume: 5 start-page: 47 issue: 1 year: 2019 ident: 234_CR14 publication-title: Geomech Geophys Geo-Energy Geo-Resour doi: 10.1007/s40948-018-0098-2 – volume: 164 start-page: 243 year: 2013 ident: 234_CR38 publication-title: Eng Geol doi: 10.1016/j.enggeo.2013.07.013 – volume: 53 start-page: 3779 issue: 8 year: 2020 ident: 234_CR9 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-020-02136-w – year: 2020 ident: 234_CR28 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-020-01729-7 – volume: 6 start-page: 36 year: 2020 ident: 234_CR34 publication-title: Geomech Geophys Geo-Energy Geo-Resour doi: 10.1007/s40948-020-00159-9 – volume: 425 start-page: 356 year: 2018 ident: 234_CR21 publication-title: Eng Geol doi: 10.1016/j.enggeo.2018.09.005 – volume: 55 start-page: 1437 issue: 7 year: 2007 ident: 234_CR29 publication-title: Environ Geol doi: 10.1007/s00254-007-1094-y – volume: 51 start-page: 1431 year: 2018 ident: 234_CR17 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-018-1405-5 – volume: 54 start-page: 1 issue: 3 year: 2021 ident: 234_CR19 publication-title: Rock Mech Rock Eng – year: 2020 ident: 234_CR1 publication-title: Geomech Geophys Geo-Energy Geo-Resour doi: 10.1007/s40948-019-00131-2 – volume: 190–191 start-page: 482 year: 2012 ident: 234_CR24 publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.190-191.482 – volume: 48 start-page: 161 issue: 3–4 year: 1997 ident: 234_CR7 publication-title: Eng Geol doi: 10.1016/S0013-7952(97)00038-0 – volume: 70 start-page: 252 year: 2014 ident: 234_CR15 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.05.005 – volume: 48 start-page: 7865 issue: 17 year: 2009 ident: 234_CR26 publication-title: Ind Eng Chem Res doi: 10.1021/ie801569r – volume: 171 start-page: 243 year: 2016 ident: 234_CR36 publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.061 – volume: 51 start-page: 5425 issue: 7 year: 2015 ident: 234_CR43 publication-title: Water Resour Res doi: 10.1002/2014WR016427 – year: 2020 ident: 234_CR50 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-020-02186-0 – volume: 79 start-page: 1239 year: 2020 ident: 234_CR48 publication-title: Bull Eng Geol Env doi: 10.1007/s10064-019-01628-6 |
SSID | ssib057620049 ssib031263412 ssj0002147068 ssib053829962 ssib054421723 |
Score | 2.506388 |
Snippet | Characterizing the temperature-dependent shear mechanical responses of rock masses under constant normal stiffness (CNS) boundary conditions is of crucial... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Asperity Boundary conditions Defects Deformation Dilatancy Dilation Dimensions Displacement Ductility Energy Engineering Environmental Science and Engineering Failure Foundations Fractal geometry Fracture surfaces Geoengineering Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences High temperature Hydraulics Identification Internal friction Mechanical properties Normal stress Original Article P waves Porosity Rock masses Rocks Sandstone Sediment samples Sedimentary rocks Shear properties Shear stiffness Shear strength Shear stress Spalling Stability Stability analysis Temperature Temperature dependence Wave velocity |
Title | Shear mechanical responses of sandstone exposed to high temperature under constant normal stiffness boundary conditions |
URI | https://link.springer.com/article/10.1007/s40948-021-00234-9 https://www.proquest.com/docview/2511284677 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKJiReEJ-iMJAfeCuZasf5eqzQRlWNAaIVfYsSx54qQYPaRGj8HfzB3NmOk8GYgJeodVIn8f16vrPvfkfIy5jpUFSJCGCuLwLkLwE9qJOgEGUYskLHqcRE4bfn8XwlFutoPRr9GEQttU15LL9fm1fyP1KFNpArZsn-g2R9p9AAn0G-cAQJw_GvZGzKUU--KMzeNYO9sxGvlkh2j1m8yLWNNP71HixLsDORnniCfFSOTNnUwd1h8Dmaic1kizYsppBstDZasDR1l3aXeEm16Zf3nEH7RtXd_S3b84Wq7WqJIXrAr4Gy-YXubLBzOwb7Y69yNtvJhwFOP7UGXNBycdn2S9utjQ9o_XVzLJy0hbvXw8ULzvpQwSuLlxiZja_sk2tQ_3HcYk6F06hq2GbpBDoFngxwyq-dFmwkyB592TQwjwGmigiyfhLsNv7P3-Wnq7OzfHmyXt4ihzxJcPP_cDZbfFx0eipkPA5FbxbCnAGTek-7GAmBZb-83gOXDlGb-bU_rA01NVma_h1dPpfJ6vztMa_aTL0j9MvevTGJlvfIXefL0JkF5n0yUtsH5PZ7K_2H5JuBJ-3hST08aa2phyd18KRNTRGedABPauBJO3hSC0_q4Uk7eNIeno_I6vRk-XoeuDofgYQJoAl4UYCXnyhZgrtRRakEs1OlahqGsZRY8IGHUvGSMybLREahzCopdcHSVOswjorwMTnYwuM-IbRg06yIRTmtIiWygmVlxdMo1oxrWeqsGBPWjWQuHQk-1mL5nHv6bjP6OYx-bkY_z8Zk4n_z1VLA3Hj1USeg3KmKfY5-PEdLPxmTV53Q-tN_7u3pzb09I3f6f9UROWh2rXoORnJTvnCY_Qk7prq7 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDCbWBEPXQ7GmK5Y123TobTMQPfzQMShaZFnayxIgN0OSpVOaFLGHtf9-ovxIO2wDerZsGCZFfrT4fQS4SKjjokhF5HO9ilC_xMdBl0ZKaM6pcklmkCh8c5tMl2K2ilcNKaxsu93bI8kQqTuyG1YiWYQtBZhoRCQPoJ95NCJ60J9MZj9mrR9xyhIu9mnb72kfdPeyeLEQOJap80sPudFXZPdvBmf3jAOLjuExZyaobPg2f3-R5zltD1T_OFsNKev6LRw3WJNMauc4gVd2M4CjJwqEA3gdOkBNeQq_wmxrcmeRCoyWI7u6fdaWZOtIiZRgFO4m9uF-W9qCVFuCWscExa0aZWaCjLQdMTXmrMgGAfGa-CjiHIZUosMQp90jLinqZrF3sLy-WlxOo2YqQ2T8dq0ippSvyVJrtAeHRZwZDxJsZsecJ8agPD_jxjLtC0ujUxNzIwtjnKJZ5hxPYsXPoLfxr_seiKJjqRKhx0VshVRU6oJ5izrKnNFOqiHQ9rvmppEsx8kZ67wTWw62yL0t8mCLXA7hS3fPfS3Y8d_Vo9ZcebN5yxyrLoa4LB3C19aE-8v_ftqHly3_DIfTxc08n3-7_X4Ob1jwKGylHEGv2v20Hz3cqfSnxrt_A-kz76c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB21rFq1B1Roq26B1ofe2oj1RxL7uAJWsC2oEiBxi2zHPsHuapMK-Pd4nI9dqhaJc5woyoxn3sTz3gB8y6jnosxFEnK9TlC_JMRBnydaGM6p9pm0SBQ-PcuOL8X0Kr1aY_HHbvfuSLLhNKBK06zeX5R-vye-YVUiE2wvwKQjEvUSBjJg8VB-Dcbj6fm08ylOWcbFKoWH_R0C8EoiLxUCRzT1PhrgN_qN6v_T4ByfUWTUMTzylIKqlnvz7xd5nN9WoPWvc9aYvibvYLPFnWTcOMoWvHCzbXi7pka4Da9iN6it3sNtnHNNbhzSgtGKZNm00rqKzD2pkB6MIt7E3S3mlStJPSeoe0xQ6KpVaSbITlsS2-DPmswQHF-TEFG8x_BKTBzotLzHJWXTOPYBLidHFwfHSTuhIbFh69YJ0zrUZ7mzJgDFMpU2AAYn3YjzzFqU6mfcOmZCkWlNblNuVWmt11RK73mWav4RNmbhdT8B0XSkdCbMqEydUJoqUzKZZp4yb41Xegi0-66FbeXLcYrGddELL0dbFMEWRbRFoYbwvb9n0Yh3PLl6tzNX0W7kqsAKjCFGy4fwozPh6vL_n_b5ecu_wuvfh5Pi18nZzx14w6JDYVflLmzUyz9uLyCf2nxpnfsBFUXz6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shear+mechanical+responses+of+sandstone+exposed+to+high+temperature+under+constant+normal+stiffness+boundary+conditions&rft.jtitle=Geomechanics+and+geophysics+for+geo-energy+and+geo-resources.&rft.au=Yin+Qian&rft.au=Wu%2C+Jiangyu&rft.au=Zhu%2C+Chun&rft.au=He+Manchao&rft.date=2021-05-01&rft.pub=Springer+Nature+B.V&rft.issn=2363-8419&rft.eissn=2363-8427&rft.volume=7&rft.issue=2&rft_id=info:doi/10.1007%2Fs40948-021-00234-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2363-8419&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2363-8419&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2363-8419&client=summon |