Stability and error estimates of the SAV Fourier-spectral method for the phase field crystal equation
We consider fully discrete schemes based on the scalar auxiliary variable (SAV) approach and stabilized SAV approach in time and the Fourier-spectral method in space for the phase field crystal (PFC) equation. Unconditionally, energy stability is established for both first- and second-order fully di...
Saved in:
Published in | Advances in computational mathematics Vol. 46; no. 3 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider fully discrete schemes based on the scalar auxiliary variable (SAV) approach and stabilized SAV approach in time and the Fourier-spectral method in space for the phase field crystal (PFC) equation. Unconditionally, energy stability is established for both first- and second-order fully discrete schemes. In addition to the stability, we also provide a rigorous error estimate which shows that our second-order in time with Fourier-spectral method in space converges with order
O
(Δ
t
2
+
N
−
m
), where Δ
t
,
N
, and
m
are time step size, number of Fourier modes in each direction, and regularity index in space, respectively. We also present numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy of the schemes. |
---|---|
AbstractList | We consider fully discrete schemes based on the scalar auxiliary variable (SAV) approach and stabilized SAV approach in time and the Fourier-spectral method in space for the phase field crystal (PFC) equation. Unconditionally, energy stability is established for both first- and second-order fully discrete schemes. In addition to the stability, we also provide a rigorous error estimate which shows that our second-order in time with Fourier-spectral method in space converges with order
O
(Δ
t
2
+
N
−
m
), where Δ
t
,
N
, and
m
are time step size, number of Fourier modes in each direction, and regularity index in space, respectively. We also present numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy of the schemes. We consider fully discrete schemes based on the scalar auxiliary variable (SAV) approach and stabilized SAV approach in time and the Fourier-spectral method in space for the phase field crystal (PFC) equation. Unconditionally, energy stability is established for both first- and second-order fully discrete schemes. In addition to the stability, we also provide a rigorous error estimate which shows that our second-order in time with Fourier-spectral method in space converges with order O(Δt2 + N−m), where Δt, N, and m are time step size, number of Fourier modes in each direction, and regularity index in space, respectively. We also present numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy of the schemes. |
ArticleNumber | 48 |
Author | Shen, Jie Li, Xiaoli |
Author_xml | – sequence: 1 givenname: Xiaoli surname: Li fullname: Li, Xiaoli organization: School of Mathematical Sciences, Xiamen University, Fujian Provincial Key Laboratory on Mathematical Modeling and High Performance Scientific Computing, Xiamen University – sequence: 2 givenname: Jie surname: Shen fullname: Shen, Jie email: shen7@purdue.edu organization: Department of Mathematics, Purdue University |
BookMark | eNp9kE9rAjEQxUOxULX9Aj0Fek6b2f85itS2IPSg9Bqy2UmNrLuaxIPfvtEtFHowlwnM-83MexMy6voOCXkE_gycly8eeJZljCeccVFWgokbMoa8TJiIjVH8cxCshKK6IxPvt5xzUZT5mOAqqNq2Npyo6hqKzvWOog92pwJ62hsaNkhXsy-66I_OomN-jzo41dIdhk3fUBOBs2a_UR6psdg2VLuTD1GCh6MKtu_uya1RrceH3zol68Xrev7Olp9vH_PZkukURGCJquq0NLyu8rxKDManawFKVYUpm1xjDnlSgdaFASVUgQ0CNCCgEEUtmnRKnoaxe9cfjtGF3Maju7hRJhmPoqxMIaqSQaVd771DI_cu2nUnCVye05RDmjKmKS9pShGh6h-kbbh4i1nY9jqaDqiPe7pvdH9XXaF-AB0BjRA |
CitedBy_id | crossref_primary_10_1007_s11075_024_01782_3 crossref_primary_10_1007_s10915_020_01386_8 crossref_primary_10_1016_j_camwa_2023_02_004 crossref_primary_10_1007_s10915_022_01862_3 crossref_primary_10_1016_j_apnum_2022_04_007 crossref_primary_10_1016_j_camwa_2021_03_009 crossref_primary_10_3390_math10040548 crossref_primary_10_1016_j_camwa_2023_12_017 crossref_primary_10_1016_j_cnsns_2025_108730 crossref_primary_10_1002_num_22829 crossref_primary_10_1063_5_0231079 crossref_primary_10_1016_j_rinam_2024_100534 crossref_primary_10_1016_j_jcp_2023_112236 crossref_primary_10_1007_s11425_020_1867_8 crossref_primary_10_1016_j_matcom_2021_01_021 crossref_primary_10_1007_s10444_023_10043_1 crossref_primary_10_1016_j_camwa_2023_01_037 crossref_primary_10_1002_num_23041 crossref_primary_10_1016_j_apnum_2024_09_010 crossref_primary_10_1007_s11075_021_01106_9 crossref_primary_10_1016_j_amc_2024_129089 crossref_primary_10_3390_math8111865 crossref_primary_10_1016_j_cam_2023_115148 crossref_primary_10_1016_j_amc_2024_128592 crossref_primary_10_1007_s10915_021_01534_8 crossref_primary_10_1016_j_jcp_2021_110703 crossref_primary_10_1002_mma_7952 crossref_primary_10_1007_s10915_024_02677_0 crossref_primary_10_1016_j_matcom_2023_05_001 crossref_primary_10_1016_j_enganabound_2024_105918 crossref_primary_10_1016_j_camwa_2023_10_029 crossref_primary_10_1016_j_jcp_2022_111372 crossref_primary_10_1007_s10915_023_02129_1 crossref_primary_10_1007_s10444_021_09897_0 crossref_primary_10_1016_j_cam_2024_115996 crossref_primary_10_1007_s10915_024_02543_z crossref_primary_10_1016_j_cam_2024_116203 crossref_primary_10_1016_j_cnsns_2023_107530 crossref_primary_10_1142_S1793962321500422 crossref_primary_10_3934_era_2020059 crossref_primary_10_1016_j_matcom_2021_07_003 crossref_primary_10_1137_24M1654245 crossref_primary_10_1016_j_camwa_2024_03_030 crossref_primary_10_1016_j_camwa_2023_07_011 crossref_primary_10_1137_24M1637623 crossref_primary_10_1007_s11425_024_2337_3 crossref_primary_10_1016_j_aml_2024_109145 crossref_primary_10_3390_e24111512 crossref_primary_10_1016_j_cnsns_2024_108239 crossref_primary_10_1016_j_cnsns_2025_108766 crossref_primary_10_1016_j_cma_2022_114718 crossref_primary_10_1016_j_compfluid_2021_105174 crossref_primary_10_1016_j_jcp_2022_111311 crossref_primary_10_3934_era_2020089 crossref_primary_10_1007_s11075_023_01635_5 crossref_primary_10_1137_23M1552164 |
Cites_doi | 10.1137/17M1159968 10.1137/15M1038803 10.1016/j.jcp.2016.10.020 10.1103/PhysRevE.70.051605 10.1137/16M1075302 10.1090/mcom/3428 10.1016/j.cma.2012.03.002 10.1016/j.cma.2017.02.022 10.3934/dcds.2010.28.1669 10.1103/PhysRevA.15.319 10.4208/jms.v50n2.17.01 10.1016/j.jcp.2017.10.021 10.1103/PhysRevLett.88.245701 10.4208/jms.v52n3.19.03 10.1016/j.cma.2019.03.030 10.1137/080738143 10.1007/s10444-019-09678-w 10.1007/978-3-540-71041-7 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10444-020-09789-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1572-9044 |
ExternalDocumentID | 10_1007_s10444_020_09789_9 |
GrantInformation_xml | – fundername: National Science Foundation grantid: DMS-1620262; DMS-1720442 funderid: https://doi.org/10.13039/100000001 – fundername: Postdoctoral Research Foundation of China grantid: BX20190187; 2019M650152 funderid: https://doi.org/10.13039/501100010031 |
GroupedDBID | -52 -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z83 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-2a8b37f0b85582feeeecb91aa86f7d5ce515281cc6f1a9a6ede11d191696b9d3 |
IEDL.DBID | U2A |
ISSN | 1019-7168 |
IngestDate | Fri Jul 25 10:58:53 EDT 2025 Tue Jul 01 02:55:34 EDT 2025 Thu Apr 24 23:03:20 EDT 2025 Fri Feb 21 02:38:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | 65M15 Phase field crystal Error estimates Scalar auxiliary variable (SAV) 65M70 Energy stability Fourier-spectral method 65M12 35G25 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-2a8b37f0b85582feeeecb91aa86f7d5ce515281cc6f1a9a6ede11d191696b9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2406964731 |
PQPubID | 2043875 |
ParticipantIDs | proquest_journals_2406964731 crossref_primary_10_1007_s10444_020_09789_9 crossref_citationtrail_10_1007_s10444_020_09789_9 springer_journals_10_1007_s10444_020_09789_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200600 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 6 year: 2020 text: 20200600 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Advances in computational mathematics |
PublicationTitleAbbrev | Adv Comput Math |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Swift, Hohenberg (CR15) 1977; 15 Li, Shen, Rui (CR8) 2019; 88 Shen, Yang (CR14) 2010; 28 Zhou, Azaïez, Chuanju (CR20) 2019; 52 Ramos (CR10) 1991 Yang, Han (CR19) 2017; 330 Shen, Xu (CR12) 2018; 56 CR7 Wang (CR16) 2017; 50 CR18 Elder, Katakowski, Haataja, Grant (CR4) 2002; 88 Chen, Yang (CR2) 2019; 351 CR11 Elder, Grant (CR3) 2004; 70 Li, Kim (CR9) 2017; 319 Wise, Wang, Lowengrub (CR17) 2009; 47 Gomez, Nogueira (CR5) 2012; 249 Guo, Xu (CR6) 2016; 38 Shen, Xu, Yang (CR13) 2018; 353 Ainsworth, Mao (CR1) 2017; 55 J Shen (9789_CR14) 2010; 28 L Wang (9789_CR16) 2017; 50 M Ainsworth (9789_CR1) 2017; 55 K Elder (9789_CR4) 2002; 88 SM Wise (9789_CR17) 2009; 47 X Li (9789_CR8) 2019; 88 X Yang (9789_CR19) 2017; 330 X Zhou (9789_CR20) 2019; 52 J Ramos (9789_CR10) 1991 J Shen (9789_CR13) 2018; 353 J Swift (9789_CR15) 1977; 15 J Shen (9789_CR12) 2018; 56 K Elder (9789_CR3) 2004; 70 9789_CR18 9789_CR7 H Gomez (9789_CR5) 2012; 249 9789_CR11 C Chen (9789_CR2) 2019; 351 Y Li (9789_CR9) 2017; 319 R Guo (9789_CR6) 2016; 38 |
References_xml | – volume: 56 start-page: 2895 issue: 5 year: 2018 end-page: 2912 ident: CR12 article-title: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows publication-title: SIAM J. Numer. Anal. doi: 10.1137/17M1159968 – volume: 38 start-page: A105 issue: 1 year: 2016 end-page: A127 ident: CR6 article-title: Local discontinuous Galerkin method and high order semi-implicit scheme for the phase field crystal equation publication-title: SIAM J. Sci. Comput. doi: 10.1137/15M1038803 – ident: CR18 – volume: 330 start-page: 1116 year: 2017 end-page: 1134 ident: CR19 article-title: Linearly first-and second-order, unconditionally energy stable schemes for the phase field crystal model publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.10.020 – volume: 70 start-page: 051605 issue: 5 year: 2004 ident: CR3 article-title: Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.051605 – volume: 55 start-page: 1689 issue: 4 year: 2017 end-page: 1718 ident: CR1 article-title: Analysis and approximation of a fractional Cahn-Hilliard equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1075302 – volume: 88 start-page: 2047 issue: 319 year: 2019 end-page: 2068 ident: CR8 article-title: Energy stability and convergence of SAV block-centered finite difference method for gradient flows publication-title: Math. Comput. doi: 10.1090/mcom/3428 – ident: CR11 – volume: 249 start-page: 52 year: 2012 end-page: 61 ident: CR5 article-title: An unconditionally energy-stable method for the phase field crystal equation publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2012.03.002 – volume: 319 start-page: 194 year: 2017 end-page: 216 ident: CR9 article-title: An efficient and stable compact fourth-order finite difference scheme for the phase field crystal equation publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.02.022 – volume: 28 start-page: 1669 issue: 4 year: 2010 end-page: 1691 ident: CR14 article-title: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations publication-title: Discrete Contin. Dyn. Syst doi: 10.3934/dcds.2010.28.1669 – volume: 15 start-page: 319 issue: 1 year: 1977 ident: CR15 article-title: Hydrodynamic fluctuations at the convective instability publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.15.319 – year: 1991 ident: CR10 publication-title: C. canuto, my hussaini, a. quarteroni, ta zang, Spectral Methods in Fluid Dynamics – volume: 50 start-page: 101 issue: 2 year: 2017 end-page: 143 ident: CR16 article-title: A review of prolate spheroidal wave functions from the perspective of spectral methods publication-title: J. Math. Study doi: 10.4208/jms.v50n2.17.01 – ident: CR7 – volume: 353 start-page: 407 year: 2018 end-page: 416 ident: CR13 article-title: The scalar auxiliary variable (SAV) approach for gradient flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.10.021 – volume: 88 start-page: 245701 issue: 24 year: 2002 ident: CR4 article-title: Modeling elasticity in crystal growth publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.245701 – volume: 52 start-page: 258 issue: 3 year: 2019 end-page: 276 ident: CR20 article-title: Reduced-order modelling for the Allen-Cahn equation based on scalar auxiliary variable approaches publication-title: J. Math. Study doi: 10.4208/jms.v52n3.19.03 – volume: 351 start-page: 35 year: 2019 end-page: 59 ident: CR2 article-title: Fast, provably unconditionally energy stable, and second-order accurate algorithms for the anisotropic Cahn-Hilliard model publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.03.030 – volume: 47 start-page: 2269 issue: 3 year: 2009 end-page: 2288 ident: CR17 article-title: An energy-stable and convergent finite-difference scheme for the phase field crystal equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/080738143 – volume: 88 start-page: 245701 issue: 24 year: 2002 ident: 9789_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.245701 – volume: 249 start-page: 52 year: 2012 ident: 9789_CR5 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2012.03.002 – volume: 353 start-page: 407 year: 2018 ident: 9789_CR13 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.10.021 – volume: 351 start-page: 35 year: 2019 ident: 9789_CR2 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.03.030 – ident: 9789_CR7 doi: 10.1007/s10444-019-09678-w – volume: 319 start-page: 194 year: 2017 ident: 9789_CR9 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.02.022 – ident: 9789_CR11 doi: 10.1007/978-3-540-71041-7 – volume: 52 start-page: 258 issue: 3 year: 2019 ident: 9789_CR20 publication-title: J. Math. Study doi: 10.4208/jms.v52n3.19.03 – volume: 70 start-page: 051605 issue: 5 year: 2004 ident: 9789_CR3 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.051605 – volume: 28 start-page: 1669 issue: 4 year: 2010 ident: 9789_CR14 publication-title: Discrete Contin. Dyn. Syst doi: 10.3934/dcds.2010.28.1669 – volume: 50 start-page: 101 issue: 2 year: 2017 ident: 9789_CR16 publication-title: J. Math. Study doi: 10.4208/jms.v50n2.17.01 – volume: 56 start-page: 2895 issue: 5 year: 2018 ident: 9789_CR12 publication-title: SIAM J. Numer. Anal. doi: 10.1137/17M1159968 – ident: 9789_CR18 – volume: 38 start-page: A105 issue: 1 year: 2016 ident: 9789_CR6 publication-title: SIAM J. Sci. Comput. doi: 10.1137/15M1038803 – volume-title: C. canuto, my hussaini, a. quarteroni, ta zang, Spectral Methods in Fluid Dynamics year: 1991 ident: 9789_CR10 – volume: 88 start-page: 2047 issue: 319 year: 2019 ident: 9789_CR8 publication-title: Math. Comput. doi: 10.1090/mcom/3428 – volume: 15 start-page: 319 issue: 1 year: 1977 ident: 9789_CR15 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.15.319 – volume: 330 start-page: 1116 year: 2017 ident: 9789_CR19 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.10.020 – volume: 55 start-page: 1689 issue: 4 year: 2017 ident: 9789_CR1 publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1075302 – volume: 47 start-page: 2269 issue: 3 year: 2009 ident: 9789_CR17 publication-title: SIAM J. Numer. Anal. doi: 10.1137/080738143 |
SSID | ssj0009675 |
Score | 2.5011106 |
Snippet | We consider fully discrete schemes based on the scalar auxiliary variable (SAV) approach and stabilized SAV approach in time and the Fourier-spectral method in... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Computational mathematics Computational Mathematics and Numerical Analysis Computational Science and Engineering Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Robustness (mathematics) Spectra Spectral methods Stability Visualization |
Title | Stability and error estimates of the SAV Fourier-spectral method for the phase field crystal equation |
URI | https://link.springer.com/article/10.1007/s10444-020-09789-9 https://www.proquest.com/docview/2406964731 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUCUlzywgaU4D8ceW9SCQLDQIpgix3HEAG1JytB_z9lJKCBAIkuGnB0pnx1_Z999B3ASZCL3tRdRkWrf7lYxqnimqKeFn8fYxjCbO3xzyy9H4dVD9FAnhZVNtHtzJOn-1J-S3cIwpNbdsbkHksplWInQd7eBXCO_u5Da5U5eF8eapOgNiDpV5uc-vi5HC4757VjUrTaDTVivaSLpVrhuwZIZt2GjpoyknpBlG9ZuPmRXy20wSB1dsOucqHFGTFFMCmJlNF4soySTnKAxuevek0FVqo66RMsC31RVkiZIYZ3N9AlXN-LC24gu5kghn4l5rWTBd2A46A_PL2ldR4FqnGAz6iuRBnHupSKKEAGDl04lU0rwPM4ibZDT-IJpzXOmpOImM4xl6MhxyVOZBbvQGk_GZg9IbLyUC2a3PgJkHgxhlTrmnq-VZGkedYA1XzPRtca4LXXxnCzUkS0CCSKQOAQS2YHTjzbTSmHjT-vDBqSknm1l4tJ3eRgHrANnDXCLx7_3tv8_8wNY9d3YsZswh9CaFW_mCDnJLD2Gle6g17u194vH6_6xG5LvmE3a7w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL2CMgADjwKiPD2wgaU4D8ceK0RVoGWhoG6R4zhigBbSMvTvuXaSFhAgkTXXiZRzHR8_zrkAZ0Emcl97ERWp9u1qFaOKZ4p6Wvh5jG0Ms9rh_h3vPoQ3w2hYicIm9Wn3ekvS_ak_id3CMKR2umO1B5LKZVhBMiBsLj_47YXVLnf2uphrkuJsQFRSmZ-f8XU4WnDMb9uibrTpbMFGRRNJu8R1G5bMqAmbFWUkVYecNGG9P7ddneyAQeroDrvOiBplxBTFuCDWRuPFMkoyzgkGk_v2I-mUpeqoE1oW-KaykjRBCutiXp9wdCPueBvRxQwp5DMxb6Ut-C4MOleDyy6t6ihQjR1sSn0l0iDOvVREESJg8NKpZEoJnsdZpA1yGl8wrXnOlFTcZIaxDCdyXPJUZsEeNEbjkdkHEhsv5YLZpY8AmQdDWKWOuedrJVmaRy1g9ddMdOUxbktdPCcLd2SLQIIIJA6BRLbgfN7mtXTY-DP6qAYpqXrbJHHyXR7GAWvBRQ3c4vbvTzv4X_gprHYH_V7Su767PYQ13-WRXZA5gsa0eDfHyE-m6YlLxw9X6NrS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xSAgOLAVEWX3gBhZxFsc-VkDFWiHRIm6R4zjiUNKSlgN_z9hJKSBAIteMHSlvLD8v7w3AYZCJ3NdeREWqfbtbxajimaKeFn4eYxvDrHb4tsMveuHVY_T4ScXvbrtPjiQrTYN1aSrGJ8MsP_kkfAvDkNqlj9UhSCpnYT60amDM6J7fmtrucme1i3knKa4MRC2b-bmPr1PTlG9-OyJ1M097FZZrykhaFcZrMGOKBqzU9JHUg3PUgKXbDwvW0ToYpJHu4usbUUVGTFkOSmItNZ4tuySDnGAwuW89kHZVto460WWJX6qqShOksy5m-IQzHXFX3Ygu35BO9ol5qSzCN6DbPu-eXtC6pgLVONjG1FciDeLcS0UUIRoGH51KppTgeZxF2iC_8QXTmudMScVNZhjLcFHHJU9lFmzCXDEozBaQ2HgpF8xugwTIQhhCLHXMPV8rydI8agKb_M1E137jtuxFP5k6JVsEEkQgcQgksglHH22GldvGn9G7E5CSeuSNEifl5WEcsCYcT4Cbvv69t-3_hR_Awt1ZO7m57FzvwKLv0sjuzezC3Lh8NXtIVcbpvsvGdwmv3wU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+error+estimates+of+the+SAV+Fourier-spectral+method+for+the+phase+field+crystal+equation&rft.jtitle=Advances+in+computational+mathematics&rft.au=Li%2C+Xiaoli&rft.au=Shen%2C+Jie&rft.date=2020-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=46&rft.issue=3&rft_id=info:doi/10.1007%2Fs10444-020-09789-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon |