Stability and error estimates of the SAV Fourier-spectral method for the phase field crystal equation

We consider fully discrete schemes based on the scalar auxiliary variable (SAV) approach and stabilized SAV approach in time and the Fourier-spectral method in space for the phase field crystal (PFC) equation. Unconditionally, energy stability is established for both first- and second-order fully di...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 46; no. 3
Main Authors Li, Xiaoli, Shen, Jie
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider fully discrete schemes based on the scalar auxiliary variable (SAV) approach and stabilized SAV approach in time and the Fourier-spectral method in space for the phase field crystal (PFC) equation. Unconditionally, energy stability is established for both first- and second-order fully discrete schemes. In addition to the stability, we also provide a rigorous error estimate which shows that our second-order in time with Fourier-spectral method in space converges with order O (Δ t 2 + N − m ), where Δ t , N , and m are time step size, number of Fourier modes in each direction, and regularity index in space, respectively. We also present numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy of the schemes.
AbstractList We consider fully discrete schemes based on the scalar auxiliary variable (SAV) approach and stabilized SAV approach in time and the Fourier-spectral method in space for the phase field crystal (PFC) equation. Unconditionally, energy stability is established for both first- and second-order fully discrete schemes. In addition to the stability, we also provide a rigorous error estimate which shows that our second-order in time with Fourier-spectral method in space converges with order O (Δ t 2 + N − m ), where Δ t , N , and m are time step size, number of Fourier modes in each direction, and regularity index in space, respectively. We also present numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy of the schemes.
We consider fully discrete schemes based on the scalar auxiliary variable (SAV) approach and stabilized SAV approach in time and the Fourier-spectral method in space for the phase field crystal (PFC) equation. Unconditionally, energy stability is established for both first- and second-order fully discrete schemes. In addition to the stability, we also provide a rigorous error estimate which shows that our second-order in time with Fourier-spectral method in space converges with order O(Δt2 + N−m), where Δt, N, and m are time step size, number of Fourier modes in each direction, and regularity index in space, respectively. We also present numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy of the schemes.
ArticleNumber 48
Author Shen, Jie
Li, Xiaoli
Author_xml – sequence: 1
  givenname: Xiaoli
  surname: Li
  fullname: Li, Xiaoli
  organization: School of Mathematical Sciences, Xiamen University, Fujian Provincial Key Laboratory on Mathematical Modeling and High Performance Scientific Computing, Xiamen University
– sequence: 2
  givenname: Jie
  surname: Shen
  fullname: Shen, Jie
  email: shen7@purdue.edu
  organization: Department of Mathematics, Purdue University
BookMark eNp9kE9rAjEQxUOxULX9Aj0Fek6b2f85itS2IPSg9Bqy2UmNrLuaxIPfvtEtFHowlwnM-83MexMy6voOCXkE_gycly8eeJZljCeccVFWgokbMoa8TJiIjVH8cxCshKK6IxPvt5xzUZT5mOAqqNq2Npyo6hqKzvWOog92pwJ62hsaNkhXsy-66I_OomN-jzo41dIdhk3fUBOBs2a_UR6psdg2VLuTD1GCh6MKtu_uya1RrceH3zol68Xrev7Olp9vH_PZkukURGCJquq0NLyu8rxKDManawFKVYUpm1xjDnlSgdaFASVUgQ0CNCCgEEUtmnRKnoaxe9cfjtGF3Maju7hRJhmPoqxMIaqSQaVd771DI_cu2nUnCVye05RDmjKmKS9pShGh6h-kbbh4i1nY9jqaDqiPe7pvdH9XXaF-AB0BjRA
CitedBy_id crossref_primary_10_1007_s11075_024_01782_3
crossref_primary_10_1007_s10915_020_01386_8
crossref_primary_10_1016_j_camwa_2023_02_004
crossref_primary_10_1007_s10915_022_01862_3
crossref_primary_10_1016_j_apnum_2022_04_007
crossref_primary_10_1016_j_camwa_2021_03_009
crossref_primary_10_3390_math10040548
crossref_primary_10_1016_j_camwa_2023_12_017
crossref_primary_10_1016_j_cnsns_2025_108730
crossref_primary_10_1002_num_22829
crossref_primary_10_1063_5_0231079
crossref_primary_10_1016_j_rinam_2024_100534
crossref_primary_10_1016_j_jcp_2023_112236
crossref_primary_10_1007_s11425_020_1867_8
crossref_primary_10_1016_j_matcom_2021_01_021
crossref_primary_10_1007_s10444_023_10043_1
crossref_primary_10_1016_j_camwa_2023_01_037
crossref_primary_10_1002_num_23041
crossref_primary_10_1016_j_apnum_2024_09_010
crossref_primary_10_1007_s11075_021_01106_9
crossref_primary_10_1016_j_amc_2024_129089
crossref_primary_10_3390_math8111865
crossref_primary_10_1016_j_cam_2023_115148
crossref_primary_10_1016_j_amc_2024_128592
crossref_primary_10_1007_s10915_021_01534_8
crossref_primary_10_1016_j_jcp_2021_110703
crossref_primary_10_1002_mma_7952
crossref_primary_10_1007_s10915_024_02677_0
crossref_primary_10_1016_j_matcom_2023_05_001
crossref_primary_10_1016_j_enganabound_2024_105918
crossref_primary_10_1016_j_camwa_2023_10_029
crossref_primary_10_1016_j_jcp_2022_111372
crossref_primary_10_1007_s10915_023_02129_1
crossref_primary_10_1007_s10444_021_09897_0
crossref_primary_10_1016_j_cam_2024_115996
crossref_primary_10_1007_s10915_024_02543_z
crossref_primary_10_1016_j_cam_2024_116203
crossref_primary_10_1016_j_cnsns_2023_107530
crossref_primary_10_1142_S1793962321500422
crossref_primary_10_3934_era_2020059
crossref_primary_10_1016_j_matcom_2021_07_003
crossref_primary_10_1137_24M1654245
crossref_primary_10_1016_j_camwa_2024_03_030
crossref_primary_10_1016_j_camwa_2023_07_011
crossref_primary_10_1137_24M1637623
crossref_primary_10_1007_s11425_024_2337_3
crossref_primary_10_1016_j_aml_2024_109145
crossref_primary_10_3390_e24111512
crossref_primary_10_1016_j_cnsns_2024_108239
crossref_primary_10_1016_j_cnsns_2025_108766
crossref_primary_10_1016_j_cma_2022_114718
crossref_primary_10_1016_j_compfluid_2021_105174
crossref_primary_10_1016_j_jcp_2022_111311
crossref_primary_10_3934_era_2020089
crossref_primary_10_1007_s11075_023_01635_5
crossref_primary_10_1137_23M1552164
Cites_doi 10.1137/17M1159968
10.1137/15M1038803
10.1016/j.jcp.2016.10.020
10.1103/PhysRevE.70.051605
10.1137/16M1075302
10.1090/mcom/3428
10.1016/j.cma.2012.03.002
10.1016/j.cma.2017.02.022
10.3934/dcds.2010.28.1669
10.1103/PhysRevA.15.319
10.4208/jms.v50n2.17.01
10.1016/j.jcp.2017.10.021
10.1103/PhysRevLett.88.245701
10.4208/jms.v52n3.19.03
10.1016/j.cma.2019.03.030
10.1137/080738143
10.1007/s10444-019-09678-w
10.1007/978-3-540-71041-7
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s10444-020-09789-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9044
ExternalDocumentID 10_1007_s10444_020_09789_9
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS-1620262; DMS-1720442
  funderid: https://doi.org/10.13039/100000001
– fundername: Postdoctoral Research Foundation of China
  grantid: BX20190187; 2019M650152
  funderid: https://doi.org/10.13039/501100010031
GroupedDBID -52
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z83
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-2a8b37f0b85582feeeecb91aa86f7d5ce515281cc6f1a9a6ede11d191696b9d3
IEDL.DBID U2A
ISSN 1019-7168
IngestDate Fri Jul 25 10:58:53 EDT 2025
Tue Jul 01 02:55:34 EDT 2025
Thu Apr 24 23:03:20 EDT 2025
Fri Feb 21 02:38:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 65M15
Phase field crystal
Error estimates
Scalar auxiliary variable (SAV)
65M70
Energy stability
Fourier-spectral method
65M12
35G25
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2a8b37f0b85582feeeecb91aa86f7d5ce515281cc6f1a9a6ede11d191696b9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2406964731
PQPubID 2043875
ParticipantIDs proquest_journals_2406964731
crossref_primary_10_1007_s10444_020_09789_9
crossref_citationtrail_10_1007_s10444_020_09789_9
springer_journals_10_1007_s10444_020_09789_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200600
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 6
  year: 2020
  text: 20200600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationTitleAbbrev Adv Comput Math
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Swift, Hohenberg (CR15) 1977; 15
Li, Shen, Rui (CR8) 2019; 88
Shen, Yang (CR14) 2010; 28
Zhou, Azaïez, Chuanju (CR20) 2019; 52
Ramos (CR10) 1991
Yang, Han (CR19) 2017; 330
Shen, Xu (CR12) 2018; 56
CR7
Wang (CR16) 2017; 50
CR18
Elder, Katakowski, Haataja, Grant (CR4) 2002; 88
Chen, Yang (CR2) 2019; 351
CR11
Elder, Grant (CR3) 2004; 70
Li, Kim (CR9) 2017; 319
Wise, Wang, Lowengrub (CR17) 2009; 47
Gomez, Nogueira (CR5) 2012; 249
Guo, Xu (CR6) 2016; 38
Shen, Xu, Yang (CR13) 2018; 353
Ainsworth, Mao (CR1) 2017; 55
J Shen (9789_CR14) 2010; 28
L Wang (9789_CR16) 2017; 50
M Ainsworth (9789_CR1) 2017; 55
K Elder (9789_CR4) 2002; 88
SM Wise (9789_CR17) 2009; 47
X Li (9789_CR8) 2019; 88
X Yang (9789_CR19) 2017; 330
X Zhou (9789_CR20) 2019; 52
J Ramos (9789_CR10) 1991
J Shen (9789_CR13) 2018; 353
J Swift (9789_CR15) 1977; 15
J Shen (9789_CR12) 2018; 56
K Elder (9789_CR3) 2004; 70
9789_CR18
9789_CR7
H Gomez (9789_CR5) 2012; 249
9789_CR11
C Chen (9789_CR2) 2019; 351
Y Li (9789_CR9) 2017; 319
R Guo (9789_CR6) 2016; 38
References_xml – volume: 56
  start-page: 2895
  issue: 5
  year: 2018
  end-page: 2912
  ident: CR12
  article-title: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/17M1159968
– volume: 38
  start-page: A105
  issue: 1
  year: 2016
  end-page: A127
  ident: CR6
  article-title: Local discontinuous Galerkin method and high order semi-implicit scheme for the phase field crystal equation
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1038803
– ident: CR18
– volume: 330
  start-page: 1116
  year: 2017
  end-page: 1134
  ident: CR19
  article-title: Linearly first-and second-order, unconditionally energy stable schemes for the phase field crystal model
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.10.020
– volume: 70
  start-page: 051605
  issue: 5
  year: 2004
  ident: CR3
  article-title: Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.051605
– volume: 55
  start-page: 1689
  issue: 4
  year: 2017
  end-page: 1718
  ident: CR1
  article-title: Analysis and approximation of a fractional Cahn-Hilliard equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1075302
– volume: 88
  start-page: 2047
  issue: 319
  year: 2019
  end-page: 2068
  ident: CR8
  article-title: Energy stability and convergence of SAV block-centered finite difference method for gradient flows
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3428
– ident: CR11
– volume: 249
  start-page: 52
  year: 2012
  end-page: 61
  ident: CR5
  article-title: An unconditionally energy-stable method for the phase field crystal equation
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2012.03.002
– volume: 319
  start-page: 194
  year: 2017
  end-page: 216
  ident: CR9
  article-title: An efficient and stable compact fourth-order finite difference scheme for the phase field crystal equation
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.02.022
– volume: 28
  start-page: 1669
  issue: 4
  year: 2010
  end-page: 1691
  ident: CR14
  article-title: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations
  publication-title: Discrete Contin. Dyn. Syst
  doi: 10.3934/dcds.2010.28.1669
– volume: 15
  start-page: 319
  issue: 1
  year: 1977
  ident: CR15
  article-title: Hydrodynamic fluctuations at the convective instability
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.15.319
– year: 1991
  ident: CR10
  publication-title: C. canuto, my hussaini, a. quarteroni, ta zang, Spectral Methods in Fluid Dynamics
– volume: 50
  start-page: 101
  issue: 2
  year: 2017
  end-page: 143
  ident: CR16
  article-title: A review of prolate spheroidal wave functions from the perspective of spectral methods
  publication-title: J. Math. Study
  doi: 10.4208/jms.v50n2.17.01
– ident: CR7
– volume: 353
  start-page: 407
  year: 2018
  end-page: 416
  ident: CR13
  article-title: The scalar auxiliary variable (SAV) approach for gradient flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.10.021
– volume: 88
  start-page: 245701
  issue: 24
  year: 2002
  ident: CR4
  article-title: Modeling elasticity in crystal growth
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.245701
– volume: 52
  start-page: 258
  issue: 3
  year: 2019
  end-page: 276
  ident: CR20
  article-title: Reduced-order modelling for the Allen-Cahn equation based on scalar auxiliary variable approaches
  publication-title: J. Math. Study
  doi: 10.4208/jms.v52n3.19.03
– volume: 351
  start-page: 35
  year: 2019
  end-page: 59
  ident: CR2
  article-title: Fast, provably unconditionally energy stable, and second-order accurate algorithms for the anisotropic Cahn-Hilliard model
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.03.030
– volume: 47
  start-page: 2269
  issue: 3
  year: 2009
  end-page: 2288
  ident: CR17
  article-title: An energy-stable and convergent finite-difference scheme for the phase field crystal equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080738143
– volume: 88
  start-page: 245701
  issue: 24
  year: 2002
  ident: 9789_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.245701
– volume: 249
  start-page: 52
  year: 2012
  ident: 9789_CR5
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2012.03.002
– volume: 353
  start-page: 407
  year: 2018
  ident: 9789_CR13
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.10.021
– volume: 351
  start-page: 35
  year: 2019
  ident: 9789_CR2
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.03.030
– ident: 9789_CR7
  doi: 10.1007/s10444-019-09678-w
– volume: 319
  start-page: 194
  year: 2017
  ident: 9789_CR9
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.02.022
– ident: 9789_CR11
  doi: 10.1007/978-3-540-71041-7
– volume: 52
  start-page: 258
  issue: 3
  year: 2019
  ident: 9789_CR20
  publication-title: J. Math. Study
  doi: 10.4208/jms.v52n3.19.03
– volume: 70
  start-page: 051605
  issue: 5
  year: 2004
  ident: 9789_CR3
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.051605
– volume: 28
  start-page: 1669
  issue: 4
  year: 2010
  ident: 9789_CR14
  publication-title: Discrete Contin. Dyn. Syst
  doi: 10.3934/dcds.2010.28.1669
– volume: 50
  start-page: 101
  issue: 2
  year: 2017
  ident: 9789_CR16
  publication-title: J. Math. Study
  doi: 10.4208/jms.v50n2.17.01
– volume: 56
  start-page: 2895
  issue: 5
  year: 2018
  ident: 9789_CR12
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/17M1159968
– ident: 9789_CR18
– volume: 38
  start-page: A105
  issue: 1
  year: 2016
  ident: 9789_CR6
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1038803
– volume-title: C. canuto, my hussaini, a. quarteroni, ta zang, Spectral Methods in Fluid Dynamics
  year: 1991
  ident: 9789_CR10
– volume: 88
  start-page: 2047
  issue: 319
  year: 2019
  ident: 9789_CR8
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3428
– volume: 15
  start-page: 319
  issue: 1
  year: 1977
  ident: 9789_CR15
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.15.319
– volume: 330
  start-page: 1116
  year: 2017
  ident: 9789_CR19
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.10.020
– volume: 55
  start-page: 1689
  issue: 4
  year: 2017
  ident: 9789_CR1
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1075302
– volume: 47
  start-page: 2269
  issue: 3
  year: 2009
  ident: 9789_CR17
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080738143
SSID ssj0009675
Score 2.5011106
Snippet We consider fully discrete schemes based on the scalar auxiliary variable (SAV) approach and stabilized SAV approach in time and the Fourier-spectral method in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Computational mathematics
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Robustness (mathematics)
Spectra
Spectral methods
Stability
Visualization
Title Stability and error estimates of the SAV Fourier-spectral method for the phase field crystal equation
URI https://link.springer.com/article/10.1007/s10444-020-09789-9
https://www.proquest.com/docview/2406964731
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUCUlzywgaU4D8ceW9SCQLDQIpgix3HEAG1JytB_z9lJKCBAIkuGnB0pnx1_Z999B3ASZCL3tRdRkWrf7lYxqnimqKeFn8fYxjCbO3xzyy9H4dVD9FAnhZVNtHtzJOn-1J-S3cIwpNbdsbkHksplWInQd7eBXCO_u5Da5U5eF8eapOgNiDpV5uc-vi5HC4757VjUrTaDTVivaSLpVrhuwZIZt2GjpoyknpBlG9ZuPmRXy20wSB1dsOucqHFGTFFMCmJlNF4soySTnKAxuevek0FVqo66RMsC31RVkiZIYZ3N9AlXN-LC24gu5kghn4l5rWTBd2A46A_PL2ldR4FqnGAz6iuRBnHupSKKEAGDl04lU0rwPM4ibZDT-IJpzXOmpOImM4xl6MhxyVOZBbvQGk_GZg9IbLyUC2a3PgJkHgxhlTrmnq-VZGkedYA1XzPRtca4LXXxnCzUkS0CCSKQOAQS2YHTjzbTSmHjT-vDBqSknm1l4tJ3eRgHrANnDXCLx7_3tv8_8wNY9d3YsZswh9CaFW_mCDnJLD2Gle6g17u194vH6_6xG5LvmE3a7w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL2CMgADjwKiPD2wgaU4D8ceK0RVoGWhoG6R4zhigBbSMvTvuXaSFhAgkTXXiZRzHR8_zrkAZ0Emcl97ERWp9u1qFaOKZ4p6Wvh5jG0Ms9rh_h3vPoQ3w2hYicIm9Wn3ekvS_ak_id3CMKR2umO1B5LKZVhBMiBsLj_47YXVLnf2uphrkuJsQFRSmZ-f8XU4WnDMb9uibrTpbMFGRRNJu8R1G5bMqAmbFWUkVYecNGG9P7ddneyAQeroDrvOiBplxBTFuCDWRuPFMkoyzgkGk_v2I-mUpeqoE1oW-KaykjRBCutiXp9wdCPueBvRxQwp5DMxb6Ut-C4MOleDyy6t6ihQjR1sSn0l0iDOvVREESJg8NKpZEoJnsdZpA1yGl8wrXnOlFTcZIaxDCdyXPJUZsEeNEbjkdkHEhsv5YLZpY8AmQdDWKWOuedrJVmaRy1g9ddMdOUxbktdPCcLd2SLQIIIJA6BRLbgfN7mtXTY-DP6qAYpqXrbJHHyXR7GAWvBRQ3c4vbvTzv4X_gprHYH_V7Su767PYQ13-WRXZA5gsa0eDfHyE-m6YlLxw9X6NrS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xSAgOLAVEWX3gBhZxFsc-VkDFWiHRIm6R4zjiUNKSlgN_z9hJKSBAIteMHSlvLD8v7w3AYZCJ3NdeREWqfbtbxajimaKeFn4eYxvDrHb4tsMveuHVY_T4ScXvbrtPjiQrTYN1aSrGJ8MsP_kkfAvDkNqlj9UhSCpnYT60amDM6J7fmtrucme1i3knKa4MRC2b-bmPr1PTlG9-OyJ1M097FZZrykhaFcZrMGOKBqzU9JHUg3PUgKXbDwvW0ToYpJHu4usbUUVGTFkOSmItNZ4tuySDnGAwuW89kHZVto460WWJX6qqShOksy5m-IQzHXFX3Ygu35BO9ol5qSzCN6DbPu-eXtC6pgLVONjG1FciDeLcS0UUIRoGH51KppTgeZxF2iC_8QXTmudMScVNZhjLcFHHJU9lFmzCXDEozBaQ2HgpF8xugwTIQhhCLHXMPV8rydI8agKb_M1E137jtuxFP5k6JVsEEkQgcQgksglHH22GldvGn9G7E5CSeuSNEifl5WEcsCYcT4Cbvv69t-3_hR_Awt1ZO7m57FzvwKLv0sjuzezC3Lh8NXtIVcbpvsvGdwmv3wU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+error+estimates+of+the+SAV+Fourier-spectral+method+for+the+phase+field+crystal+equation&rft.jtitle=Advances+in+computational+mathematics&rft.au=Li%2C+Xiaoli&rft.au=Shen%2C+Jie&rft.date=2020-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=46&rft.issue=3&rft_id=info:doi/10.1007%2Fs10444-020-09789-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon