Automatic human posture estimation for sport activity recognition with robust body parts detection and entropy markov model
Automated human posture estimation (A-HPE) systems need delicate methods for detecting body parts and selecting cues based on marker-less sensors to effectively recognize complex activity motions. Recognition of human activities using vision sensors is a challenging issue due to variations in illumi...
Saved in:
Published in | Multimedia tools and applications Vol. 80; no. 14; pp. 21465 - 21498 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automated human posture estimation (A-HPE) systems need delicate methods for detecting body parts and selecting cues based on marker-less sensors to effectively recognize complex activity motions. Recognition of human activities using vision sensors is a challenging issue due to variations in illumination conditions and complex movements during the monitoring of sports and fitness exercises. In this paper, we propose a novel A-HPE method that intelligently identifies human behaviours by utilizing saliency silhouette detection, robust body parts model and multidimensional cues from full-body silhouettes followed by an entropy Markov model. Initially, images are pre-processed and noise is removed to obtain a robust silhouette. Body parts models are then used to extract twelve key body parts. These key body parts are further optimized to assist the generation of multidimensional cues. These cues include energy, optical flow and distinctive values that are fed into quadratic discriminant analysis to discriminate cues which help in the recognition of actions. Finally, these optimized patterns are further processed by a maximum entropy Markov model as a recognizer engine based on transition and emission probability values for activity recognition. For evaluation, we used a leave-one-out cross validation scheme and the results outperformed existing well-known statistical state-of-the-art methods by achieving better body parts detection and higher recognition accuracy over four benchmark datasets. The proposed method will be useful for man-machine interactions such as 3D interactive games, virtual reality, service robots, e-health fitness, and security surveillance.
Graphical Abstract
Design model of automatic posture estimation and action recognition. |
---|---|
AbstractList | Automated human posture estimation (A-HPE) systems need delicate methods for detecting body parts and selecting cues based on marker-less sensors to effectively recognize complex activity motions. Recognition of human activities using vision sensors is a challenging issue due to variations in illumination conditions and complex movements during the monitoring of sports and fitness exercises. In this paper, we propose a novel A-HPE method that intelligently identifies human behaviours by utilizing saliency silhouette detection, robust body parts model and multidimensional cues from full-body silhouettes followed by an entropy Markov model. Initially, images are pre-processed and noise is removed to obtain a robust silhouette. Body parts models are then used to extract twelve key body parts. These key body parts are further optimized to assist the generation of multidimensional cues. These cues include energy, optical flow and distinctive values that are fed into quadratic discriminant analysis to discriminate cues which help in the recognition of actions. Finally, these optimized patterns are further processed by a maximum entropy Markov model as a recognizer engine based on transition and emission probability values for activity recognition. For evaluation, we used a leave-one-out cross validation scheme and the results outperformed existing well-known statistical state-of-the-art methods by achieving better body parts detection and higher recognition accuracy over four benchmark datasets. The proposed method will be useful for man-machine interactions such as 3D interactive games, virtual reality, service robots, e-health fitness, and security surveillance. Automated human posture estimation (A-HPE) systems need delicate methods for detecting body parts and selecting cues based on marker-less sensors to effectively recognize complex activity motions. Recognition of human activities using vision sensors is a challenging issue due to variations in illumination conditions and complex movements during the monitoring of sports and fitness exercises. In this paper, we propose a novel A-HPE method that intelligently identifies human behaviours by utilizing saliency silhouette detection, robust body parts model and multidimensional cues from full-body silhouettes followed by an entropy Markov model. Initially, images are pre-processed and noise is removed to obtain a robust silhouette. Body parts models are then used to extract twelve key body parts. These key body parts are further optimized to assist the generation of multidimensional cues. These cues include energy, optical flow and distinctive values that are fed into quadratic discriminant analysis to discriminate cues which help in the recognition of actions. Finally, these optimized patterns are further processed by a maximum entropy Markov model as a recognizer engine based on transition and emission probability values for activity recognition. For evaluation, we used a leave-one-out cross validation scheme and the results outperformed existing well-known statistical state-of-the-art methods by achieving better body parts detection and higher recognition accuracy over four benchmark datasets. The proposed method will be useful for man-machine interactions such as 3D interactive games, virtual reality, service robots, e-health fitness, and security surveillance. Graphical Abstract Design model of automatic posture estimation and action recognition. |
Author | Nadeem, Amir Kim, Kibum Jalal, Ahmad |
Author_xml | – sequence: 1 givenname: Amir surname: Nadeem fullname: Nadeem, Amir organization: Air University – sequence: 2 givenname: Ahmad surname: Jalal fullname: Jalal, Ahmad organization: Air University – sequence: 3 givenname: Kibum surname: Kim fullname: Kim, Kibum email: kibum@hanyang.ac.kr organization: Department of Human-Computer Interaction, Hanyang University |
BookMark | eNp9kM9PwyAUx4nRxG36D3gi8Vzl0VK647L4K1niRc-EFtg6N6hAZxr_ebvWxMTDThDe98N77zNF59ZZjdANkDsghN8HAJLRhFBIgOQFT9gZmgDjacI5hfP-nhYk4YzAJZqGsCUEckazCfpetNHtZawrvGn30uLGhdh6jXWI9fHdWWycx6FxPmJZxfpQxw57Xbm1rYfyVx032LuyDRGXTnW4kT4GrHTU1RCQVmFto3dNh_fSf7gD3juld1fowshd0Ne_5wy9Pz68LZ-T1evTy3KxSqoU5jGhkhlCTV5lqeZKFaXJuOGGEpJpraiiRM2LTAGokmYGcuC5KZmZcyMNLTlJZ-h2_Lfx7rPtFxNb13rbtxSUpVBkLJ_TPkXHVOVdCF4b0fjegO8EEHGULEbJopcsBsmC9VDxD6rqOFiLXta702g6oqHvY9fa_011gvoBae-WqQ |
CitedBy_id | crossref_primary_10_1155_2022_6447471 crossref_primary_10_1007_s00138_023_01431_0 crossref_primary_10_3390_s22030906 crossref_primary_10_3390_s23104716 crossref_primary_10_32604_cmc_2023_032245 crossref_primary_10_1155_2022_7835241 crossref_primary_10_1038_s41598_024_57912_3 crossref_primary_10_32604_cmc_2022_023841 crossref_primary_10_3390_su152014780 crossref_primary_10_1134_S0361768823080066 crossref_primary_10_3390_e23050628 crossref_primary_10_1155_2021_5183088 crossref_primary_10_1007_s13369_022_07092_x crossref_primary_10_32604_cmc_2023_029629 crossref_primary_10_3390_s23156839 crossref_primary_10_61927_igmin123 crossref_primary_10_1109_ACCESS_2023_3293537 crossref_primary_10_3390_app12105196 crossref_primary_10_3390_s25020389 crossref_primary_10_1109_ACCESS_2025_3526710 crossref_primary_10_1080_0954898X_2024_2438967 crossref_primary_10_1155_2022_7133491 crossref_primary_10_1109_ACCESS_2024_3473828 crossref_primary_10_1109_ACCESS_2025_3526476 crossref_primary_10_1080_08839514_2024_2321551 crossref_primary_10_1155_2022_4727375 crossref_primary_10_1109_ACCESS_2024_3524431 crossref_primary_10_1016_j_engappai_2023_105855 crossref_primary_10_32604_iasc_2023_027205 crossref_primary_10_1016_j_aej_2023_04_062 crossref_primary_10_32604_csse_2023_034431 crossref_primary_10_32604_iasc_2022_025421 crossref_primary_10_1155_2022_6761857 crossref_primary_10_3390_app11094153 crossref_primary_10_1016_j_heliyon_2024_e25465 crossref_primary_10_1109_JSTARS_2024_3389072 crossref_primary_10_1007_s11042_023_17407_1 crossref_primary_10_1109_ACCESS_2023_3314341 crossref_primary_10_1007_s42979_024_03345_8 crossref_primary_10_1109_ACCESS_2023_3317893 crossref_primary_10_3390_electronics13071286 crossref_primary_10_1109_ACCESS_2022_3154775 crossref_primary_10_1155_2022_2372160 crossref_primary_10_1016_j_knosys_2025_113272 crossref_primary_10_2478_amns_2025_0294 crossref_primary_10_1016_j_cviu_2024_104258 crossref_primary_10_32604_iasc_2022_025013 crossref_primary_10_1155_2022_7581079 crossref_primary_10_3390_mi14122204 crossref_primary_10_1109_JSEN_2023_3314728 crossref_primary_10_3233_JIFS_230505 crossref_primary_10_3390_app12136481 crossref_primary_10_3390_s23177363 crossref_primary_10_3390_s24103032 crossref_primary_10_1155_2022_5794914 crossref_primary_10_12677_aps_2024_125120 crossref_primary_10_3390_s23187925 crossref_primary_10_1155_2021_3772358 crossref_primary_10_1016_j_entcom_2024_100793 crossref_primary_10_1515_jisys_2022_0096 crossref_primary_10_1155_2022_2474047 |
Cites_doi | 10.1109/ICMLC.2013.6890422 10.1109/IJCNN.2018.8489386 10.1109/TIP.2017.2718189 10.1109/ICOSP.2006.345837 10.1109/ICDSP.2016.7868599 10.1109/TIP.2015.2512107 10.1109/CVPRW.2012.6239233 10.1109/TCE.2012.6311329 10.1016/j.patrec.2017.02.001 10.1109/CVPR.2012.6247806 10.1109/WACV.2019.00015 10.1109/JSEN.2017.2720725 10.1109/TIP.2018.2836323 10.1007/s11042-019-08527-8 10.3390/s140711735 10.1016/j.asoc.2017.09.027 10.3390/e22080817 10.1016/j.aej.2020.01.015 10.1016/j.patcog.2008.03.018 10.1007/978-3-319-11430-9 10.1007/s13369-016-2158-7 10.1109/TCSVT.2011.2130270 10.3390/s20143871 10.3390/e22050579 10.1109/ICCCNT.2014.6963015 10.1007/11744023 10.1504/IJHM.2019.098949 10.1109/AVSS.2014.6918695 10.1109/CVPR.2014.471 10.1016/j.jksuci.2019.09.004 10.1109/JSYST.2016.2610188 10.1109/ICACCS.2019.8728328 10.1109/C-CODE.2019.8680993 10.1007/978--3--642--33786--4 10.1007/s10586-017-1435-x 10.1007/s11042-018-6068-4 10.1016/j.cviu.2006.07.013 10.1016/j.trit.2016.03.001 10.1109/ITNG.2012.132 10.1007/s00371-015-1066-2 10.1504/IJHM.2019.104386 10.1049/trit.2019.0002 10.1049/trit.2019.0017 10.5244/C.24.12 10.1016/j.engappai.2018.04.002 10.1109/CVPR.2015.7298894 10.1504/IJHM.2019.098951 10.1016/j.patcog.2017.02.030 10.1007/s11042-019-08463-7 10.1177/1420326X12469714 10.1109/JSEN.2018.2833745 10.1109/FIT.2018.00045 10.5244/C.23.28 10.1109/TRO.2014.2378451 10.1007/s11042-016-3723-5 10.1109/JSEN.2018.2869807 10.1049/trit.2019.0036 10.1109/VS.1999.780265 10.1109/TIP.2019.2912357 10.1109/ICACS47775.2020.9055951 10.1109/JSEN.2018.2837674 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-021-10687-5 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Databases Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 21498 |
ExternalDocumentID | 10_1007_s11042_021_10687_5 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-2a5f02f6c43e7dd8bf47f7f2004eed2d20d984d11db24f16176fb5f97faf2b703 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Sat Jul 26 00:01:38 EDT 2025 Tue Jul 01 04:13:09 EDT 2025 Thu Apr 24 22:54:54 EDT 2025 Fri Feb 21 02:48:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Entropy Markov model Multidimensional cues Body parts detection Sports activity recognition Posture estimation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-2a5f02f6c43e7dd8bf47f7f2004eed2d20d984d11db24f16176fb5f97faf2b703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2531845692 |
PQPubID | 54626 |
PageCount | 34 |
ParticipantIDs | proquest_journals_2531845692 crossref_primary_10_1007_s11042_021_10687_5 crossref_citationtrail_10_1007_s11042_021_10687_5 springer_journals_10_1007_s11042_021_10687_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210600 2021-06-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 6 year: 2021 text: 20210600 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Shebiah RN, Sangari AA (2019) Classification of human body parts using histogram of oriented gradients. Proceedings of ICACCS. https://doi.org/10.1109/ICACCS.2019.8728328 Andriluka M, Pishchulin L, Gehler P, Schiele (2014) 2D Human Pose Estimation: New Benchmark and State of the Art Analysis. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2014.471 Chen H, Mcgurr M (2014) Improved color and intensity patch segmentation for human full–body and body–parts detection and tracking. IEEE: Proceedings of AVSS. https://doi.org/10.1109/AVSS.2014.6918695 Tingting Y, Junqian W, Lintai W et al (2019) Three–stage network for age estimation, CAAI Transactions on Intelligence Technology 4(2) Johnson E (2010) Clustered Pose and Non–linear Appearance Models for Human Pose Estimation. Proceedings of the British Machine Vision Conference. https://doi.org/10.5244/C.24.12 Jalal A, Nadeem A, Bobasu S (2019) Human body parts estimation and detection for physical sports movements. IEEE International Conference on Communication, Computing and Digital Systems Han Y, Chung S, Ambikapathi A, Chan J, Lin W, Su S (2018) Robust human action recognition using global spatial–temporal attention for human skeleton data. Proceedings of IJCNN. DOI: https://doi.org/10.1109/IJCNN.2018.8489386 San-Segundo R, Blunck H, Moreno-Pimentel J, Stisen A, Gil-Martín M (2018) Robust Human Activity Recognition using smartwatches and smartphones. Eng Appl Artif Intell 72:190–202 Jalal A, Kim Y, Kim D (2014) Ridge body parts features for human pose estimation and recognition from RGB–D video data. Proceedings of the IEEE International Conference on computing, communication and networking technologies, pp. 1–6 Sun Y et al (2020) Intelligent human computer interaction based on non redundant EMG signal. Alexandria Engineering Journal https://doi.org/10.1016/j.aej.2020.01.015 Fei M, Ju Z, Zhen X, Li J (2017) Real-time Visual Tracking based on Improved Perceptual Hashing [J]. Multimed Tools Appl 76(3):4617–4634 Mahmood M, Jalal A, Kim K (2020) WHITE STAG Model: Wise Human Interaction Tracking and Estimation (WHITE) using Spatio–temporal and Angular–geometric (STAG) Descriptors, Multimedia Tools and Applications Al-Ghannam R, Al–Dossari H (2016) Prayer Activity Monitoring and Recognition Using Acceleration Features with Mobile Phone. Arabian J Sci Eng 41:4967–4979 Daniel W, Remi R, Edmond B (2006) Free Viewpoint Action Recognition using Motion History Volumes. Comput Vis Image Underst (CVIU) 104:249–257 Liu F, Xu X, Qiu S, Qing C, Tao D (2016) Simple to complex transfer learning for action recognition. IEEE Trans Image Process 25:949–960 Ignatov A (2018) Real–time human activity recognition from accelerometer data using Convolutional Neural Networks. Appl Soft Comput 62:915–922 Jalal A, Mahmood M, Sidduqi M (2018) Robust spatio–temporal features for human interaction recognition via artificial neural network, IEEE conference on International Conference on Frontiers of information technology Liu C, Yuen PC (2011) A Boosted Co–Training Algorithm for Human Action Recognition. IEEE Trans Circ Syst Video Technol 21:1203–1213 Osterland S, Weber J (2019) Analytical analysis of single–stage pressure relief valves. Int J Hydromechatron 2(1):32–53 Madabhushi A, Aggarwal J (1999) A bayesian approach to human activity recognition, IEEE Visual Surveillance. https://doi.org/10.1109/VS.1999.780265 Jalal A, Kamal S, Kim D (2014) A depth video sensor–based life–logging human activity recognition system for elderly care in smart indoor environments. Sensors 14(7):11735–11759 Jalal A, Zia-Uddin M, Kim T (2012) Depth Video–based Human Activity Recognition System Using Translation and Scaling Invariant Features for Life Logging at Smart Home, IEEE Transaction on Consumer Electronics, ISSN: 0098–3063 58(3):863–871 Mojarrad M, Dezfouli M, Rahmani A (2008) Feature’s Extraction of Human Body Composition in Images by Segmentation Method. Pwaset 35:267–270 Nadeem A, Jalal A, Kim K (2020) Human actions tracking and recognition based on body parts detection via Artificial neural network. IEEE International Conference on Advancements in computational sciences Luvizon DC, Hedi T, David P (2017) Learning features combination for human action recognition from skeleton sequences. Pattern Recogn Lett 99:13–20 Riemenschneider H, Donoser M, Bischof H (2009) Bag of Optical Flow Volumes for Image Sequence Recognition. British Machine Vision Conference. https://doi.org/10.5244/C.23.28 Zhang B, Yang Y, Chen et al (2017) Action Recognition Using 3D Histograms of Texture and A Multi–Class Boosting Classifier. IEEE transactions on image processing 26(10). https://doi.org/10.1109/TIP.2017.2718189 Liu M, Liu H, Chen C (2017) Enhanced skeleton visualization for view invariant human action recognition. Pattern Recogn 68:346–362 Dawn DD, Shaikh SH (2016) A comprehensive survey of human action recognition with spatio–temporal interest point (STIP) detector. The Vis Comput 32:289–306 Guo Y, Yue X, Yan G (2013) Salient region detection based on multi–resolution. IEEE: International Conference on Machine learning and Cybernetics. https://doi.org/10.1109/ICMLC.2013.6890422 Ahmed A, Jalal A, Kim K (2020) A novel statistical method for scene classification based on multi–object categorization and logistic regression. Sensors Li C, Zhang B, Chen C et al (2019) Deep Manifold Structure Transfer for Action Recognition. IEEE transactions on image processing 28(9) https://doi.org/10.1109/TIP.2019.2912357 Jalal A, Khalid N, Kim K (2020) Automatic Recognition of Human Interaction via Hybrid Descriptors and Maximum Entropy Markov Model Using Depth Sensors. Entropy Li N, Wen L, Dong X (2015) Visual recognition by learning from web data: A weakly supervised domain generalization approach. IEEE Conf. Comput. Vis. Pattern Recognit (CVPR) https://doi.org/10.1109/CVPR.2015.7298894 Quaid M, Jalal A (2019) Wearable Sensors based Human Behavioral Pattern Recognition using Statistical Features and Reweighted Genetic Algorithm. Multimedia Tools and Applications Badar S, Jalal A, Kim K (2020) Wearable Inertial Sensors for Daily Activity Analysis Based on Adam Optimization and the Maximum Entropy Markov Model. Entropy 22(5):1–19 Zhu C, Miao D (2019) Influence of kernel clustering on an RBFN, CAAI Transactions on Intelligence Technology 4(4) Dargazany A, Nicolescu M (2012) Human body parts tracking using torso tracking: applications to activity recognition. Proceedings of ITNG. arXiv:1907.05281 Shokri M, Tavakoli K (2019) A review on the artificial neural network approach to analysis and prediction of seismic damage in infrastructure. Int J Hydromechatron 2(4):178–196 Susan S, Agrawal P, Mittal M et al (2019) New shape descriptor in the context of edge continuity, CAAI Transactions on Intelligence Technology 4(2) Li G, Tang H, Sun Y et al (2019) Hand gesture recognition based on convolution neural network. Cluster Comput 22(Supplement 2): 2719–2729. https://doi.org/10.1007/s10586-017-1435-x Bay H, Tuytelaars T, Gool LV (2006) SURF: Speeded up robust features.European Conference of Computer Vision. https://doi.org/10.1007/11744023 Jaouedi N, Boujnah N, Bouhlel MS (2019) A new hybrid deep learning model for human action recognition. Journal of King Saud University – Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2019.09.004 Zhang J, Shum H, Han J et al (2018) Action Recognition From Arbitrary Views Using Transferable Dictionary Learning. IEEE transactions on image processing 27(10). https://doi.org/10.1109/TIP.2018.2836323 Jalal A, Sharif N, Kim J et al (2013) Human activity recognition via recognized body parts of human depth silhouettes for residents monitoring services at smart homes. Indoor Built Environ 22:271–279 Milanova M, Ali S, Al-Rizzo H, Fox VL (2015) Human action Recognition: Contour–based and silhouette–based Approaches. Springer Cham. https://doi.org/10.1007/978-3-319-11430-9 Wiens T (2019) Engine speed reduction for hydraulic machinery using predictive algorithms. Int J Hydromechatron 2(1):16–31 Kim Y, Kim D Real-time dance evaluation by markerless human pose estimation. Multimed Tools Appl. https://doi.org/10.1007/s11042-018-6068-4 Manzi A, Moschetti A, Limosani R, Fiorini L, Cavallo F (2018) Enhancing Activity Recognition of Self–Localized Robot Through Depth Camera and Wearable Sensors. IEEE Sens J 18:9324–9331 Yue H, Chen W (2015) Comments on Automatic Visual Bag–of–Words for Online Robot Navigation and Mapping. IEEE Transactions on Robotics 31:223–224 Beigi H (2010) Voice: technologies and algorithms for biometrics applications Homayoon Beigi. IEEE Courses: Bioengineering Xie C, Li C, Zhang B et al Memory Attention Networks for Skeleton-based Action Recognition. arXiv:https://arxiv.org/abs/1804.08254v2 Nguyen ND, Bui DT, Truong PH, Jeong GM (2018) Classification of Five Ambulatory Activities Regarding Stair and Incline Walking Using Smart Shoes. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2018.2837674 Li J, Li X, Tao D (2008) KPCA for Semantic Object Extraction in Images [J] Pattern Recognition 41(10):3244–3250 Xia L, Chen CC, Aggarwal JK (2012) View invariant human action recognition using histograms of 3D joints. Proceedings of CVPRW. https://doi.org/10.1109/CVPRW.2012.6239233 Wang Y, Cang S, Yu H (2018) A Data Fusion–Based Hybrid Sensory System for Older People’s Daily Activity and Daily Routine Recognition. IEEE Sens J 18:6874–6888 DAS S, Chuadhary A, Bremond F, Thonnat M (2019) Where to focus on for human action recognition?. IEEE Winter Conference on Applications of computer vision. https://doi.org/10.1109/WACV.2019.00015 Khan MUS, Abbas A, Ali M (2018) On the Correlation of Sensor Location and Human Activity Recognition in Body Area Networks (BANs). IEEE Syst J 12:82–91 Vig E, Dorr M, Cox D (2012) Space–variant descriptor sampling for action recognition based on saliency and eye movements. European Conference of Computer Vision. https://doi.org/10.1007/978--3--642--33786--4 Sadanand S, Corso JJ (2012) 10687_CR30 10687_CR31 10687_CR32 10687_CR8 10687_CR9 10687_CR37 10687_CR38 10687_CR39 10687_CR33 10687_CR34 10687_CR35 10687_CR36 10687_CR62 10687_CR63 10687_CR20 10687_CR64 10687_CR21 10687_CR65 10687_CR60 10687_CR61 10687_CR26 10687_CR27 10687_CR28 10687_CR29 10687_CR22 10687_CR23 10687_CR24 10687_CR25 10687_CR19 10687_CR4 10687_CR5 10687_CR6 10687_CR7 10687_CR1 10687_CR2 10687_CR3 10687_CR51 10687_CR52 10687_CR53 10687_CR10 10687_CR54 10687_CR50 10687_CR15 10687_CR59 10687_CR16 10687_CR17 10687_CR18 10687_CR11 10687_CR55 10687_CR12 10687_CR56 10687_CR13 10687_CR57 10687_CR14 10687_CR58 10687_CR40 10687_CR41 10687_CR42 10687_CR43 10687_CR48 10687_CR49 10687_CR44 10687_CR45 10687_CR46 10687_CR47 |
References_xml | – reference: DAS S, Chuadhary A, Bremond F, Thonnat M (2019) Where to focus on for human action recognition?. IEEE Winter Conference on Applications of computer vision. https://doi.org/10.1109/WACV.2019.00015 – reference: Kim Y, Kim D Real-time dance evaluation by markerless human pose estimation. Multimed Tools Appl. https://doi.org/10.1007/s11042-018-6068-4 – reference: Mojarrad M, Dezfouli M, Rahmani A (2008) Feature’s Extraction of Human Body Composition in Images by Segmentation Method. Pwaset 35:267–270 – reference: Bay H, Tuytelaars T, Gool LV (2006) SURF: Speeded up robust features.European Conference of Computer Vision. https://doi.org/10.1007/11744023 – reference: Khan MUS, Abbas A, Ali M (2018) On the Correlation of Sensor Location and Human Activity Recognition in Body Area Networks (BANs). IEEE Syst J 12:82–91 – reference: Xia L, Chen CC, Aggarwal JK (2012) View invariant human action recognition using histograms of 3D joints. Proceedings of CVPRW. https://doi.org/10.1109/CVPRW.2012.6239233 – reference: Fei M, Ju Z, Zhen X, Li J (2017) Real-time Visual Tracking based on Improved Perceptual Hashing [J]. Multimed Tools Appl 76(3):4617–4634 – reference: Yue H, Chen W (2015) Comments on Automatic Visual Bag–of–Words for Online Robot Navigation and Mapping. IEEE Transactions on Robotics 31:223–224 – reference: Liu M, Liu H, Chen C (2017) Enhanced skeleton visualization for view invariant human action recognition. Pattern Recogn 68:346–362 – reference: Liu F, Xu X, Qiu S, Qing C, Tao D (2016) Simple to complex transfer learning for action recognition. IEEE Trans Image Process 25:949–960 – reference: Jalal A, Khalid N, Kim K (2020) Automatic Recognition of Human Interaction via Hybrid Descriptors and Maximum Entropy Markov Model Using Depth Sensors. Entropy – reference: Zhu C, Miao D (2019) Influence of kernel clustering on an RBFN, CAAI Transactions on Intelligence Technology 4(4) – reference: Liu T, Stathaki T (2016) Fast head–shoulder proposal for deformable part model based pedestrian detection. IEEE International Conference on Digital Signal Processing (DSP). https://doi.org/10.1109/ICDSP.2016.7868599 – reference: Beigi H (2010) Voice: technologies and algorithms for biometrics applications Homayoon Beigi. IEEE Courses: Bioengineering – reference: Ahmed A, Jalal A, Kim K (2020) A novel statistical method for scene classification based on multi–object categorization and logistic regression. Sensors – reference: Dawn DD, Shaikh SH (2016) A comprehensive survey of human action recognition with spatio–temporal interest point (STIP) detector. The Vis Comput 32:289–306 – reference: Ignatov A (2018) Real–time human activity recognition from accelerometer data using Convolutional Neural Networks. Appl Soft Comput 62:915–922 – reference: Riemenschneider H, Donoser M, Bischof H (2009) Bag of Optical Flow Volumes for Image Sequence Recognition. British Machine Vision Conference. https://doi.org/10.5244/C.23.28 – reference: Mahmood M, Jalal A, Kim K (2020) WHITE STAG Model: Wise Human Interaction Tracking and Estimation (WHITE) using Spatio–temporal and Angular–geometric (STAG) Descriptors, Multimedia Tools and Applications – reference: Chen H, Mcgurr M (2014) Improved color and intensity patch segmentation for human full–body and body–parts detection and tracking. IEEE: Proceedings of AVSS. https://doi.org/10.1109/AVSS.2014.6918695 – reference: Hu Z, Lin X, Yan H (2006) Torso Detection in Static Images. IEEE: International Conference on Signal. https://doi.org/10.1109/ICOSP.2006.345837. Processing – reference: Li N, Wen L, Dong X (2015) Visual recognition by learning from web data: A weakly supervised domain generalization approach. IEEE Conf. Comput. Vis. Pattern Recognit (CVPR) https://doi.org/10.1109/CVPR.2015.7298894 – reference: Susan S, Agrawal P, Mittal M et al (2019) New shape descriptor in the context of edge continuity, CAAI Transactions on Intelligence Technology 4(2) – reference: Andriluka M, Pishchulin L, Gehler P, Schiele (2014) 2D Human Pose Estimation: New Benchmark and State of the Art Analysis. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2014.471 – reference: Liu M, Liu H, Sun Q, Zhang T, Ding R (2016) Salient pairwise spatio–temporal interest points for real–time activity recognition. CAAI Trans Intell Technol 1:14–29 – reference: Daniel W, Remi R, Edmond B (2006) Free Viewpoint Action Recognition using Motion History Volumes. Comput Vis Image Underst (CVIU) 104:249–257 – reference: Vig E, Dorr M, Cox D (2012) Space–variant descriptor sampling for action recognition based on saliency and eye movements. European Conference of Computer Vision. https://doi.org/10.1007/978--3--642--33786--4 – reference: Li G, Tang H, Sun Y et al (2019) Hand gesture recognition based on convolution neural network. Cluster Comput 22(Supplement 2): 2719–2729. https://doi.org/10.1007/s10586-017-1435-x – reference: Zhang B, Yang Y, Chen et al (2017) Action Recognition Using 3D Histograms of Texture and A Multi–Class Boosting Classifier. IEEE transactions on image processing 26(10). https://doi.org/10.1109/TIP.2017.2718189 – reference: Milanova M, Ali S, Al-Rizzo H, Fox VL (2015) Human action Recognition: Contour–based and silhouette–based Approaches. Springer Cham. https://doi.org/10.1007/978-3-319-11430-9 – reference: Luvizon DC, Hedi T, David P (2017) Learning features combination for human action recognition from skeleton sequences. Pattern Recogn Lett 99:13–20 – reference: Zhang J, Shum H, Han J et al (2018) Action Recognition From Arbitrary Views Using Transferable Dictionary Learning. IEEE transactions on image processing 27(10). https://doi.org/10.1109/TIP.2018.2836323 – reference: Shokri M, Tavakoli K (2019) A review on the artificial neural network approach to analysis and prediction of seismic damage in infrastructure. Int J Hydromechatron 2(4):178–196 – reference: Xie C, Li C, Zhang B et al Memory Attention Networks for Skeleton-based Action Recognition. arXiv:https://arxiv.org/abs/1804.08254v2 – reference: Jalal A, Zia-Uddin M, Kim T (2012) Depth Video–based Human Activity Recognition System Using Translation and Scaling Invariant Features for Life Logging at Smart Home, IEEE Transaction on Consumer Electronics, ISSN: 0098–3063 58(3):863–871 – reference: Al-Ghannam R, Al–Dossari H (2016) Prayer Activity Monitoring and Recognition Using Acceleration Features with Mobile Phone. Arabian J Sci Eng 41:4967–4979 – reference: Manzi A, Moschetti A, Limosani R, Fiorini L, Cavallo F (2018) Enhancing Activity Recognition of Self–Localized Robot Through Depth Camera and Wearable Sensors. IEEE Sens J 18:9324–9331 – reference: Jalal A, Nadeem A, Bobasu S (2019) Human body parts estimation and detection for physical sports movements. IEEE International Conference on Communication, Computing and Digital Systems – reference: Jalal A, Kim Y, Kim D (2014) Ridge body parts features for human pose estimation and recognition from RGB–D video data. Proceedings of the IEEE International Conference on computing, communication and networking technologies, pp. 1–6 – reference: Li J, Li X, Tao D (2008) KPCA for Semantic Object Extraction in Images [J] Pattern Recognition 41(10):3244–3250 – reference: Madabhushi A, Aggarwal J (1999) A bayesian approach to human activity recognition, IEEE Visual Surveillance. https://doi.org/10.1109/VS.1999.780265 – reference: Jalal A, Sharif N, Kim J et al (2013) Human activity recognition via recognized body parts of human depth silhouettes for residents monitoring services at smart homes. Indoor Built Environ 22:271–279 – reference: Sadanand S, Corso JJ (2012) Action bank: A high–level representation of activity invideo. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit, https://doi.org/10.1109/CVPR.2012.6247806 – reference: Hussain I (2019) AAMAZ Human Action Recognition Dataset, Kaggle – reference: Dargazany A, Nicolescu M (2012) Human body parts tracking using torso tracking: applications to activity recognition. Proceedings of ITNG. arXiv:1907.05281 – reference: Jalal A, Kamal S, Kim D (2014) A depth video sensor–based life–logging human activity recognition system for elderly care in smart indoor environments. Sensors 14(7):11735–11759 – reference: Tingting Y, Junqian W, Lintai W et al (2019) Three–stage network for age estimation, CAAI Transactions on Intelligence Technology 4(2) – reference: Li C, Zhang B, Chen C et al (2019) Deep Manifold Structure Transfer for Action Recognition. IEEE transactions on image processing 28(9) https://doi.org/10.1109/TIP.2019.2912357 – reference: Nadeem A, Jalal A, Kim K (2020) Human actions tracking and recognition based on body parts detection via Artificial neural network. IEEE International Conference on Advancements in computational sciences – reference: Jalal A, Mahmood M, Sidduqi M (2018) Robust spatio–temporal features for human interaction recognition via artificial neural network, IEEE conference on International Conference on Frontiers of information technology – reference: Jaouedi N, Boujnah N, Bouhlel MS (2019) A new hybrid deep learning model for human action recognition. Journal of King Saud University – Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2019.09.004 – reference: Nguyen ND, Bui DT, Truong PH, Jeong GM (2018) Classification of Five Ambulatory Activities Regarding Stair and Incline Walking Using Smart Shoes. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2018.2837674 – reference: Wang Y, Cang S, Yu H (2018) A Data Fusion–Based Hybrid Sensory System for Older People’s Daily Activity and Daily Routine Recognition. IEEE Sens J 18:6874–6888 – reference: Johnson E (2010) Clustered Pose and Non–linear Appearance Models for Human Pose Estimation. Proceedings of the British Machine Vision Conference. https://doi.org/10.5244/C.24.12 – reference: Han Y, Chung S, Ambikapathi A, Chan J, Lin W, Su S (2018) Robust human action recognition using global spatial–temporal attention for human skeleton data. Proceedings of IJCNN. DOI: https://doi.org/10.1109/IJCNN.2018.8489386 – reference: Osterland S, Weber J (2019) Analytical analysis of single–stage pressure relief valves. Int J Hydromechatron 2(1):32–53 – reference: Rezaie H, Ghassemian M (2017) An Adaptive Algorithm to Improve Energy Efficiency in Wearable Activity Recognition Systems. IEEE Sens J 17:5315–5323 – reference: Quaid M, Jalal A (2019) Wearable Sensors based Human Behavioral Pattern Recognition using Statistical Features and Reweighted Genetic Algorithm. Multimedia Tools and Applications – reference: Badar S, Jalal A, Kim K (2020) Wearable Inertial Sensors for Daily Activity Analysis Based on Adam Optimization and the Maximum Entropy Markov Model. Entropy 22(5):1–19 – reference: San-Segundo R, Blunck H, Moreno-Pimentel J, Stisen A, Gil-Martín M (2018) Robust Human Activity Recognition using smartwatches and smartphones. Eng Appl Artif Intell 72:190–202 – reference: Shebiah RN, Sangari AA (2019) Classification of human body parts using histogram of oriented gradients. Proceedings of ICACCS. https://doi.org/10.1109/ICACCS.2019.8728328 – reference: Liu C, Yuen PC (2011) A Boosted Co–Training Algorithm for Human Action Recognition. IEEE Trans Circ Syst Video Technol 21:1203–1213 – reference: Wiens T (2019) Engine speed reduction for hydraulic machinery using predictive algorithms. Int J Hydromechatron 2(1):16–31 – reference: Sun Y et al (2020) Intelligent human computer interaction based on non redundant EMG signal. Alexandria Engineering Journal https://doi.org/10.1016/j.aej.2020.01.015 – reference: Guo Y, Yue X, Yan G (2013) Salient region detection based on multi–resolution. IEEE: International Conference on Machine learning and Cybernetics. https://doi.org/10.1109/ICMLC.2013.6890422 – ident: 10687_CR43 – ident: 10687_CR13 doi: 10.1109/ICMLC.2013.6890422 – ident: 10687_CR6 – ident: 10687_CR14 doi: 10.1109/IJCNN.2018.8489386 – ident: 10687_CR63 doi: 10.1109/TIP.2017.2718189 – ident: 10687_CR15 doi: 10.1109/ICOSP.2006.345837 – ident: 10687_CR36 doi: 10.1109/ICDSP.2016.7868599 – ident: 10687_CR37 doi: 10.1109/TIP.2015.2512107 – ident: 10687_CR60 doi: 10.1109/CVPRW.2012.6239233 – ident: 10687_CR18 doi: 10.1109/TCE.2012.6311329 – ident: 10687_CR38 doi: 10.1016/j.patrec.2017.02.001 – ident: 10687_CR50 doi: 10.1109/CVPR.2012.6247806 – ident: 10687_CR8 doi: 10.1109/WACV.2019.00015 – ident: 10687_CR48 doi: 10.1109/JSEN.2017.2720725 – ident: 10687_CR64 doi: 10.1109/TIP.2018.2836323 – ident: 10687_CR40 doi: 10.1007/s11042-019-08527-8 – ident: 10687_CR20 doi: 10.3390/s140711735 – ident: 10687_CR17 doi: 10.1016/j.asoc.2017.09.027 – ident: 10687_CR24 doi: 10.3390/e22080817 – ident: 10687_CR54 doi: 10.1016/j.aej.2020.01.015 – ident: 10687_CR29 doi: 10.1016/j.patcog.2008.03.018 – ident: 10687_CR42 doi: 10.1007/978-3-319-11430-9 – ident: 10687_CR2 doi: 10.1007/s13369-016-2158-7 – ident: 10687_CR34 doi: 10.1109/TCSVT.2011.2130270 – ident: 10687_CR61 – ident: 10687_CR1 doi: 10.3390/s20143871 – ident: 10687_CR4 doi: 10.3390/e22050579 – ident: 10687_CR21 doi: 10.1109/ICCCNT.2014.6963015 – ident: 10687_CR5 doi: 10.1007/11744023 – ident: 10687_CR59 doi: 10.1504/IJHM.2019.098949 – ident: 10687_CR7 doi: 10.1109/AVSS.2014.6918695 – ident: 10687_CR3 doi: 10.1109/CVPR.2014.471 – ident: 10687_CR25 doi: 10.1016/j.jksuci.2019.09.004 – ident: 10687_CR28 doi: 10.1109/JSYST.2016.2610188 – ident: 10687_CR52 doi: 10.1109/ICACCS.2019.8728328 – ident: 10687_CR23 doi: 10.1109/C-CODE.2019.8680993 – ident: 10687_CR57 doi: 10.1007/978--3--642--33786--4 – ident: 10687_CR31 doi: 10.1007/s10586-017-1435-x – ident: 10687_CR27 doi: 10.1007/s11042-018-6068-4 – ident: 10687_CR9 doi: 10.1016/j.cviu.2006.07.013 – ident: 10687_CR35 doi: 10.1016/j.trit.2016.03.001 – ident: 10687_CR10 doi: 10.1109/ITNG.2012.132 – ident: 10687_CR11 doi: 10.1007/s00371-015-1066-2 – ident: 10687_CR53 doi: 10.1504/IJHM.2019.104386 – ident: 10687_CR55 doi: 10.1049/trit.2019.0002 – ident: 10687_CR56 doi: 10.1049/trit.2019.0017 – ident: 10687_CR26 doi: 10.5244/C.24.12 – ident: 10687_CR51 doi: 10.1016/j.engappai.2018.04.002 – ident: 10687_CR30 doi: 10.1109/CVPR.2015.7298894 – ident: 10687_CR46 doi: 10.1504/IJHM.2019.098951 – ident: 10687_CR16 – ident: 10687_CR33 doi: 10.1016/j.patcog.2017.02.030 – ident: 10687_CR47 doi: 10.1007/s11042-019-08463-7 – ident: 10687_CR19 doi: 10.1177/1420326X12469714 – ident: 10687_CR58 doi: 10.1109/JSEN.2018.2833745 – ident: 10687_CR22 doi: 10.1109/FIT.2018.00045 – ident: 10687_CR49 doi: 10.5244/C.23.28 – ident: 10687_CR62 doi: 10.1109/TRO.2014.2378451 – ident: 10687_CR12 doi: 10.1007/s11042-016-3723-5 – ident: 10687_CR41 doi: 10.1109/JSEN.2018.2869807 – ident: 10687_CR65 doi: 10.1049/trit.2019.0036 – ident: 10687_CR39 doi: 10.1109/VS.1999.780265 – ident: 10687_CR32 doi: 10.1109/TIP.2019.2912357 – ident: 10687_CR44 doi: 10.1109/ICACS47775.2020.9055951 – ident: 10687_CR45 doi: 10.1109/JSEN.2018.2837674 |
SSID | ssj0016524 |
Score | 2.5314066 |
Snippet | Automated human posture estimation (A-HPE) systems need delicate methods for detecting body parts and selecting cues based on marker-less sensors to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 21465 |
SubjectTerms | Activity recognition Body parts Computer Communication Networks Computer Science Data Structures and Information Theory Discriminant analysis Emission analysis Entropy Fitness Markov chains Maximum entropy Multimedia Information Systems Optical flow (image analysis) Robustness Sensors Service robots Special Purpose and Application-Based Systems Statistical analysis Statistical methods Virtual reality |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDDwKCDKSzewQaTEtfMYK0RVIcFEpW6RHccLkERNilTx5zm7TgMIkJjteMj5Xr677yPkSolQ-YnMPR4q6jF0kJ4cRrmHno-FsfZZlpuK7sNjOJmy-xmfuaGwuu12b0uS1lJ3w26BGSUxLQWYxqBq8E2yxTF3N41cUzpa1w5C7qhsY99Dfxi4UZmfz_jqjroY81tZ1Hqb8T7ZdWEijFZyPSAbedEney0FAziN7JOdT3iCh-R9tGhKi8EKlnsPqrI2FQIwUBqrGUXAIBVsKgtmpMEwR8C6iQiXzbsszEu5qBuQpVpChXerBpU3tmerAFEoMC_CZbWEVzF_Lt_Asukcken47ul24jl2BS9DtWs8Krj2qQ4zNswjpWKpWaQjbbQG_SZV1FdJzFQQKEmZNmlQqCXXSaSFphINxTHpFWWRnxCIEik4CwyaO2fUl0JkwyRkksYxxxggGpCg_clp5qDHDQPGS9qBJhvBpCiY1Aom5QNyvf6mWgFv_Ln7vJVd6pSwTinalxgDxIQOyE0rz27599NO_7f9jGxTc6Xs28w56TXzRX6BoUojL-3N_ADSleBk priority: 102 providerName: Springer Nature |
Title | Automatic human posture estimation for sport activity recognition with robust body parts detection and entropy markov model |
URI | https://link.springer.com/article/10.1007/s11042-021-10687-5 https://www.proquest.com/docview/2531845692 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB6x7QUOPBYQXZZqDtzAInHtPE6oRe2uQFQIUWk5RXEcX4AkNOlKK_48M6nTAhJ7ymESHzJPz-sDeGnzyAapKYWOrBSKHKQws7gU5PlUlLhAFSVXdD-uo8uNen-lr3zCrfVtlYNN7A21rQvOkb-RJCwJeftUvm1-CkaN4uqqh9A4gTGZ4CQZwXixXH_6fKgjRNrD2iaBIN8Y-rGZ_fBcyKMp3KJA1yJSNf23azrGm_-USHvPs3oI933IiPM9jx_BnbI6hQcDHAN67TyFe3_sFnwMv-a7ru73sWKPw4dN3XK1AHmtxn5eESlgxf5aizzewCgSeGgoIjLnaHFbm13boantDTYkZy3asuv7tyrMK4ucHa6bG_yRb7_V19gj6zyBzWr55d2l8EgLoiAV7ITMtQukiwo1K2NrE-NU7GLHGkQ-VFoZ2DRRNgytkcrxlShyRrs0drmThozGUxhVdVU-A4xTk2sV8mZ3rWRg8ryYpZEyxB1N8UA8gXD4yVnh15AzGsb37LhAmRmTEWOynjGZnsCrwzfNfgnHrW-fD7zLvEK22VF8JvB64OeR_P_Tzm4_7TnclSxCfV7mHEbddle-oDClM1M4SVYXUxjPV4vFmp8XXz8sp15CibqR899gxunS |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeeBRQFwrMAU5gkXjtPA4IVcCypY9TK_UW4ji-AEnYZEEr_hO_kRkn2QUkeus5iQ-Zb_yNZzzzATyzeWSD1JRCR1YKRQQpzDQuBTGfihIXqKLkiu7JaTQ_Vx8v9MUW_Bp7Yfha5bgn-o3a1gXnyF9JAktCbJ_KN803wapRXF0dJTR6WByVqx90ZGtfH74j-z6Xcvb-7O1cDKoCoiC4dULm2gXSRYWalrG1iXEqdrFjtBBfSCsDmybKhqE1UjkO_yNntEtjlztpyEFo3WtwXU2JybkzffZhXbWI9CCimwSCmDgcmnT6Vr2QG2H4QgQdwsix9d9EuIlu_ynIep6b3YFbQ4CKBz2i7sJWWe3C7VH8AYe9YBd2_phkeA9-Hiy72k9_Ra_6h03dcm0CeYhH3x2JFB6jP0QjN1OwZgWury_RY84I46I2y7ZDU9sVNoTqFm3Z-dtiFeaVRc5F180Kv-aLz_V39Do-9-H8SizwALaruir3AOPU5FqFPEdeKxmYPC-maaSMTBJN0Uc8gXD8yVkxDD1n7Y0v2WZcMxsmI8Nk3jCZnsCL9TdNP_Lj0rf3R9tlg_u32QasE3g52nPz-P-rPbx8tadwY352cpwdH54ePYKbkuHkM0L7sN0tluVjCpA688SjEuHTVbvBb5vQIWo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJw4FFADRSYA5xgVXuz68ehQoU2ailEFaJSb8br9V4otokdUMQ_49d1xo8EkOitZ9t78Hzz2nl8AC9sGlgvNrnQgZVCkYMUZhLmgjyfCiLnqSzniu7HWXB0pt6f6_MN-D3MwnBb5WATW0Nty4zvyHclgSUibx_LXde3RZweTN9U3wUzSHGldaDT6CByki9_UvpW7x0fkKxfSjk9_PzuSPQMAyIj6DVCptp50gWZmuShtZFxKnShY-SQ75BWejaOlPV9a6RynAoEzmgXhy510pCy0Lk3YDPkrGgEm28PZ6efVjWMQPeUupEnyC_7_chON7jn81gMt0dQSkZqrv92i-tY95_ybOv1pvfgTh-u4n6Hr_uwkRdbcHeggsDeMmzB7T_2Gj6AX_uLpmx3wWLLAYhVWXOlAnmlRzcriRQsY5tSI49WMIMFrpqZ6DHfD-O8NIu6QVPaJVaE8Rpt3rS9YwWmhUW-mS6rJX5L51_LH9iy-jyEs2uRwSMYFWWRbwOGsUm18nmrvFbSM2maTeJAGRlFmmKRcAz-8JOTrF-BzkwcF8l6eTMLJiHBJK1gEj2GV6tvqm4ByJVv7wyyS3pjUCdr6I7h9SDP9eP_n_b46tOew01SgeTD8ezkCdySjKb2emgHRs18kT-laKkxz3pYIny5bk24BOTBJvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+human+posture+estimation+for+sport+activity+recognition+with+robust+body+parts+detection+and+entropy+markov+model&rft.jtitle=Multimedia+tools+and+applications&rft.au=Nadeem+Amir&rft.au=Ahmad%2C+Jalal&rft.au=Kim+Kibum&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=14&rft.spage=21465&rft.epage=21498&rft_id=info:doi/10.1007%2Fs11042-021-10687-5&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |