RES-CapsNet: an improved capsule network for micro-expression recognition

Micro-expression is a type of facial expression that reveals the deepest feeling held within the human heart. Despite the substantial improvement that has been achieved, micro-expression recognition remains a significant challenge considering its low intensity and short duration. In this paper, we i...

Full description

Saved in:
Bibliographic Details
Published inMultimedia systems Vol. 29; no. 3; pp. 1593 - 1601
Main Authors Shu, Xin, Li, Jia, Shi, Liang, Huang, Shucheng
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Micro-expression is a type of facial expression that reveals the deepest feeling held within the human heart. Despite the substantial improvement that has been achieved, micro-expression recognition remains a significant challenge considering its low intensity and short duration. In this paper, we investigate the recognition of micro-expression using deep learning techniques and present the RES-CapsNet, which is an improved capsule network that employs Res2Net as the backbone to extract multi-level and multi-scale characteristics. Furthermore, RES-CapsNet adds a squeeze-excitation (SE) block to the primary capsule layer (PrimaryCaps). Benefiting from a SE block, the valuable micro-expression features are highlighted and the useless ones are suppressed. In addition, between the first convolutional layer and the PrimaryCaps in RES-CapsNet, we introduce an effective channel attention (ECA) module that simply includes a few parameters while dramatically improving the performance. The proposed architecture initially obtains apex frames from the micro-expression sequence to capture the most distinct facial muscle movements and then feeds the pre-processed images into RES-CapsNet for further feature extraction and classification. The Leave-One-Subject-Out (LOSO) cross-validation strategy is implemented on three prevalent spontaneous micro-expression databases (i.e., CASME II, SMIC, and SAMM) to assess the feasibility of our RES-CapsNet. Extensive experiments demonstrate that our RES-CapsNet describes considerable details of micro-expression effectively and achieves superiorly higher performance than the baseline CapsuleNet.
AbstractList Micro-expression is a type of facial expression that reveals the deepest feeling held within the human heart. Despite the substantial improvement that has been achieved, micro-expression recognition remains a significant challenge considering its low intensity and short duration. In this paper, we investigate the recognition of micro-expression using deep learning techniques and present the RES-CapsNet, which is an improved capsule network that employs Res2Net as the backbone to extract multi-level and multi-scale characteristics. Furthermore, RES-CapsNet adds a squeeze-excitation (SE) block to the primary capsule layer (PrimaryCaps). Benefiting from a SE block, the valuable micro-expression features are highlighted and the useless ones are suppressed. In addition, between the first convolutional layer and the PrimaryCaps in RES-CapsNet, we introduce an effective channel attention (ECA) module that simply includes a few parameters while dramatically improving the performance. The proposed architecture initially obtains apex frames from the micro-expression sequence to capture the most distinct facial muscle movements and then feeds the pre-processed images into RES-CapsNet for further feature extraction and classification. The Leave-One-Subject-Out (LOSO) cross-validation strategy is implemented on three prevalent spontaneous micro-expression databases (i.e., CASME II, SMIC, and SAMM) to assess the feasibility of our RES-CapsNet. Extensive experiments demonstrate that our RES-CapsNet describes considerable details of micro-expression effectively and achieves superiorly higher performance than the baseline CapsuleNet.
Author Shi, Liang
Huang, Shucheng
Li, Jia
Shu, Xin
Author_xml – sequence: 1
  givenname: Xin
  surname: Shu
  fullname: Shu, Xin
  organization: School of Computer Science, Jiangsu University of Science and Technology
– sequence: 2
  givenname: Jia
  surname: Li
  fullname: Li, Jia
  organization: School of Computer Science, Jiangsu University of Science and Technology
– sequence: 3
  givenname: Liang
  surname: Shi
  fullname: Shi, Liang
  organization: School of Computer Science, Jiangsu University of Science and Technology, School of Computer Science and Communication Engineering, JiangSu University
– sequence: 4
  givenname: Shucheng
  surname: Huang
  fullname: Huang, Shucheng
  organization: School of Computer Science, Jiangsu University of Science and Technology
BookMark eNp9kMtKAzEUhoMo2FZfwNWA6-hJMpfEnZSqhaLgZR0ymaRMbZMxmXrp05taQXDRVQ7h_875-Ifo0HlnEDojcEEAqssIUDDAQBkGAiXHmwM0IDmjmHBOD9EARE5xLkp6jIYxLgBIVTIYoOnj5AmPVRfvTX-VKZe1qy74d9NkOn2ulyZzpv_w4TWzPmSrVgePzWcXTIytd1kw2s9d26f5BB1ZtYzm9PcdoZebyfP4Ds8ebqfj6xnWjIgeU97kDExhm7KuDSt0VZYWQBGe04LUVoOlnHAi8soWoqp0EuU1CK5EQ1VD2Qid7_Ymz7e1ib1c-HVw6aSknKY2BMuLlOK7VBKOMRgrddurrWcfVLuUBOS2OLkrTqbi5E9xcpNQ-g_tQrtS4Ws_xHZQTGE3N-HPag_1DXGbgnQ
CitedBy_id crossref_primary_10_1007_s00521_024_10262_7
crossref_primary_10_3390_brainsci14040344
crossref_primary_10_1007_s00371_024_03443_x
crossref_primary_10_1109_ACCESS_2024_3395116
crossref_primary_10_1007_s10462_025_11159_0
crossref_primary_10_1109_ACCESS_2025_3530114
crossref_primary_10_1371_journal_pone_0307446
crossref_primary_10_1007_s10489_024_05896_y
crossref_primary_10_1007_s00530_024_01352_6
Cites_doi 10.1016/j.neucom.2018.05.107
10.1117/1.JEI.28.3.033015
10.1371/journal.pone.0086041
10.1109/TPAMI.2019.2938758
10.1109/TPAMI.2007.1110
10.1117/1.JEI.31.1.013021
10.1371/journal.pone.0124674
10.1109/TPAMI.2019.2913372
10.1016/j.image.2019.02.005
10.3389/fpsyg.2017.01745
10.1016/j.image.2017.11.006
10.1109/TPAMI.2002.1017623
10.3390/s17122913
10.1109/TAFFC.2016.2573832
10.1109/LGRS.2019.2891076
10.1109/TAFFC.2018.2854166
10.1109/TIP.2018.2797479
10.1109/TAFFC.2015.2485205
10.1109/CVPR.2018.00255
10.1109/FG.2019.8756567
10.1109/FG.2018.00103
10.1109/CVPR.2017.634
10.1109/CVPR.2015.7298594
10.1109/ICACCI.2018.8554604
10.1109/CVPR.2009.5206821
10.1109/CVPR.2016.90
10.1145/2964284.2967247
10.1109/FG.2018.00105
10.1109/FG.2019.8756544
10.1007/978-3-319-16865-4_34
10.1109/FG.2019.8756579
10.1109/FG.2013.6553717
10.1109/CVPR42600.2020.01155
10.1007/978-3-642-21735-7_6
10.1109/CVPRW.2006.85
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s00530-023-01068-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-1882
EndPage 1601
ExternalDocumentID 10_1007_s00530_023_01068_z
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  grantid: 62276118; 62276118; 62276118
GroupedDBID --Z
-4Z
-59
-5G
-BR
-EM
-ET
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
85S
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YIN
YLTOR
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-28d430e5fd6bbe35c766f00a184251bfc0f28181947f5977c1768b098a9d2ad23
IEDL.DBID U2A
ISSN 0942-4962
IngestDate Fri Jul 25 07:43:15 EDT 2025
Tue Jul 01 02:28:15 EDT 2025
Thu Apr 24 23:12:15 EDT 2025
Fri Feb 21 02:43:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
SENet
Micro-expression recognition
Capsule network
Res2Net
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-28d430e5fd6bbe35c766f00a184251bfc0f28181947f5977c1768b098a9d2ad23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2821009345
PQPubID 2043725
PageCount 9
ParticipantIDs proquest_journals_2821009345
crossref_citationtrail_10_1007_s00530_023_01068_z
crossref_primary_10_1007_s00530_023_01068_z
springer_journals_10_1007_s00530_023_01068_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Multimedia systems
PublicationTitleAbbrev Multimedia Systems
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Ojala, Pietikainen, Maenpaa (CR15) 2002; 24
Wang, Li, Liu, Yan, Ou, Huang, Xu, Fu (CR23) 2018
Liu, Zhang, Yan, Wang, Zhao, Fu (CR18) 2016; 7
CR19
Borza, Danescu, Itu, Darabant (CR29) 2017; 17
CR39
CR16
Wang, See, Phan, Oh (CR17) 2015; 10
Gan, Liong, Yau, Huang, Tan (CR24) 2019; 74
Yin, Li, Zhu, Luo (CR27) 2019; 16
CR38
Wu, Fu (CR1) 2010; 18
CR37
Yan, Li, Wang, Zhao, Liu, Chen, Fu (CR33) 2014; 9
CR36
CR13
Hu, Shen, Albanie, Sun, Wu (CR12) 2020; 42
CR34
Liong, See, Wong, Phan (CR21) 2018; 62
CR10
CR32
Xie, Yu, Niu, Li (CR2) 2019; 28
CR31
Gao, Cheng, Zhao, Zhang, Yang, Torr (CR11) 2021; 43
CR30
Davison, Lansley, Costen, Tan, Yap (CR35) 2018; 9
Xie, Shi, Cheng, Fan, Zhan (CR7) 2022
Peng, Wang, Chen, Liu, Fu (CR4) 2017; 8
CR6
CR5
CR8
CR28
CR9
CR26
CR25
CR22
Liu, Li, Lai (CR20) 2021; 12
CR40
Zhao, Pietikainen (CR14) 2007; 29
Zong, Zheng, Huang, Shi, Cui, Zhao (CR3) 2018; 27
D Borza (1068_CR29) 2017; 17
1068_CR40
1068_CR22
AK Davison (1068_CR35) 2018; 9
M Peng (1068_CR4) 2017; 8
Z Xie (1068_CR2) 2019; 28
Q Wu (1068_CR1) 2010; 18
S-T Liong (1068_CR21) 2018; 62
S-J Wang (1068_CR23) 2018
Y Zong (1068_CR3) 2018; 27
1068_CR28
1068_CR26
1068_CR25
YS Gan (1068_CR24) 2019; 74
Z Xie (1068_CR7) 2022
Y-J Liu (1068_CR18) 2016; 7
1068_CR8
1068_CR31
J Yin (1068_CR27) 2019; 16
1068_CR30
1068_CR6
T Ojala (1068_CR15) 2002; 24
1068_CR5
J Hu (1068_CR12) 2020; 42
1068_CR13
Y-J Liu (1068_CR20) 2021; 12
1068_CR34
1068_CR9
1068_CR10
1068_CR32
S-H Gao (1068_CR11) 2021; 43
G Zhao (1068_CR14) 2007; 29
W-J Yan (1068_CR33) 2014; 9
1068_CR39
1068_CR16
1068_CR38
1068_CR37
1068_CR36
Y Wang (1068_CR17) 2015; 10
1068_CR19
References_xml – ident: CR22
– year: 2018
  ident: CR23
  article-title: Micro-expression recognition with small sample size by transferring long-term convolutional neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.107
– ident: CR39
– volume: 28
  start-page: 1
  year: 2019
  ident: CR2
  article-title: Facial microexpression recognition based on adaptive key frame representation
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.28.3.033015
– ident: CR16
– ident: CR37
– ident: CR30
– volume: 9
  start-page: 1
  year: 2014
  end-page: 8
  ident: CR33
  article-title: CASME II: an improved spontaneous micro-expression database and the baseline evaluation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0086041
– volume: 43
  start-page: 652
  year: 2021
  end-page: 662
  ident: CR11
  article-title: Res2Net: a new multi-scale backbone architecture
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2938758
– ident: CR10
– volume: 29
  start-page: 915
  year: 2007
  end-page: 928
  ident: CR14
  article-title: Dynamic texture recognition using local binary patterns with an application to facial expressions
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1110
– year: 2022
  ident: CR7
  article-title: Micro-expression recognition based on deep capsule adversarial domain adaptation network
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.31.1.013021
– volume: 10
  year: 2015
  ident: CR17
  article-title: Efficient spatio-temporal local binary patterns for spontaneous facial micro-expression recognition
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0124674
– volume: 42
  start-page: 2011
  year: 2020
  end-page: 2023
  ident: CR12
  article-title: Squeeze-and-excitation networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2913372
– volume: 74
  start-page: 129
  year: 2019
  end-page: 139
  ident: CR24
  article-title: OFF-ApexNet on micro-expression recognition system
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2019.02.005
– volume: 8
  start-page: 1745
  year: 2017
  ident: CR4
  article-title: Dual temporal scale convolutional neural network for micro-expression recognition
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2017.01745
– ident: CR6
– ident: CR8
– volume: 62
  start-page: 82
  year: 2018
  end-page: 92
  ident: CR21
  article-title: Less is more: micro-expression recognition from video using apex frame
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2017.11.006
– volume: 18
  start-page: 1359
  issue: 09
  year: 2010
  ident: CR1
  article-title: Micro-expression and its applications
  publication-title: Adv. Psychol. Sci.
– ident: CR40
– ident: CR25
– volume: 24
  start-page: 971
  year: 2002
  end-page: 987
  ident: CR15
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017623
– ident: CR19
– volume: 17
  start-page: 2913
  year: 2017
  ident: CR29
  article-title: High-speed video system for micro-expression detection and recognition
  publication-title: Sensors.
  doi: 10.3390/s17122913
– ident: CR38
– ident: CR31
– ident: CR13
– volume: 9
  start-page: 116
  year: 2018
  end-page: 129
  ident: CR35
  article-title: SAMM: A Spontaneous Micro-Facial Movement Dataset
  publication-title: IEEE Trans Affect Comput.
  doi: 10.1109/TAFFC.2016.2573832
– ident: CR9
– volume: 16
  start-page: 1095
  year: 2019
  end-page: 1099
  ident: CR27
  article-title: Hyperspectral image classification using CapsNet with well-initialized shallow layers
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2891076
– ident: CR32
– ident: CR34
– ident: CR36
– volume: 12
  start-page: 254
  year: 2021
  end-page: 261
  ident: CR20
  article-title: Sparse MDMO: learning a discriminative feature for micro-expression recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2854166
– ident: CR5
– volume: 27
  start-page: 2484
  year: 2018
  end-page: 2498
  ident: CR3
  article-title: Domain regeneration for cross-database micro-expression recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2797479
– volume: 7
  start-page: 299
  year: 2016
  end-page: 310
  ident: CR18
  article-title: A main directional mean optical flow feature for spontaneous micro-expression recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2015.2485205
– ident: CR28
– ident: CR26
– ident: 1068_CR32
  doi: 10.1109/CVPR.2018.00255
– volume: 62
  start-page: 82
  year: 2018
  ident: 1068_CR21
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2017.11.006
– volume: 17
  start-page: 2913
  year: 2017
  ident: 1068_CR29
  publication-title: Sensors.
  doi: 10.3390/s17122913
– year: 2018
  ident: 1068_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.107
– ident: 1068_CR39
  doi: 10.1109/FG.2019.8756567
– ident: 1068_CR5
  doi: 10.1109/FG.2018.00103
– ident: 1068_CR31
  doi: 10.1109/CVPR.2017.634
– ident: 1068_CR36
– volume: 24
  start-page: 971
  year: 2002
  ident: 1068_CR15
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017623
– volume: 9
  start-page: 1
  year: 2014
  ident: 1068_CR33
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0086041
– ident: 1068_CR38
– ident: 1068_CR9
– volume: 74
  start-page: 129
  year: 2019
  ident: 1068_CR24
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2019.02.005
– volume: 43
  start-page: 652
  year: 2021
  ident: 1068_CR11
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2938758
– ident: 1068_CR37
  doi: 10.1109/CVPR.2015.7298594
– ident: 1068_CR26
  doi: 10.1109/ICACCI.2018.8554604
– ident: 1068_CR19
  doi: 10.1109/CVPR.2009.5206821
– volume: 12
  start-page: 254
  year: 2021
  ident: 1068_CR20
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2854166
– ident: 1068_CR30
  doi: 10.1109/CVPR.2016.90
– ident: 1068_CR22
  doi: 10.1145/2964284.2967247
– ident: 1068_CR6
  doi: 10.1109/FG.2018.00105
– ident: 1068_CR10
  doi: 10.1109/FG.2019.8756544
– volume: 7
  start-page: 299
  year: 2016
  ident: 1068_CR18
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2015.2485205
– ident: 1068_CR16
  doi: 10.1007/978-3-319-16865-4_34
– volume: 9
  start-page: 116
  year: 2018
  ident: 1068_CR35
  publication-title: IEEE Trans Affect Comput.
  doi: 10.1109/TAFFC.2016.2573832
– volume: 42
  start-page: 2011
  year: 2020
  ident: 1068_CR12
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2913372
– volume: 16
  start-page: 1095
  year: 2019
  ident: 1068_CR27
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2891076
– volume: 18
  start-page: 1359
  issue: 09
  year: 2010
  ident: 1068_CR1
  publication-title: Adv. Psychol. Sci.
– ident: 1068_CR40
  doi: 10.1109/FG.2019.8756579
– volume: 29
  start-page: 915
  year: 2007
  ident: 1068_CR14
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1110
– ident: 1068_CR34
  doi: 10.1109/FG.2013.6553717
– ident: 1068_CR13
  doi: 10.1109/CVPR42600.2020.01155
– ident: 1068_CR8
– ident: 1068_CR25
  doi: 10.1007/978-3-642-21735-7_6
– ident: 1068_CR28
  doi: 10.1109/CVPRW.2006.85
– volume: 8
  start-page: 1745
  year: 2017
  ident: 1068_CR4
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2017.01745
– volume: 27
  start-page: 2484
  year: 2018
  ident: 1068_CR3
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2797479
– year: 2022
  ident: 1068_CR7
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.31.1.013021
– volume: 28
  start-page: 1
  year: 2019
  ident: 1068_CR2
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.28.3.033015
– volume: 10
  year: 2015
  ident: 1068_CR17
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0124674
SSID ssj0017630
Score 2.3826795
Snippet Micro-expression is a type of facial expression that reveals the deepest feeling held within the human heart. Despite the substantial improvement that has been...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1593
SubjectTerms Computer Communication Networks
Computer Graphics
Computer Science
Cryptology
Data Storage Representation
Feature extraction
Machine learning
Multimedia Information Systems
Operating Systems
Recognition
Regular Paper
Title RES-CapsNet: an improved capsule network for micro-expression recognition
URI https://link.springer.com/article/10.1007/s00530-023-01068-z
https://www.proquest.com/docview/2821009345
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_odvHitzidIwdvGkjSJGu9bWNzKuzkYJ5Km6QgzG64DWR_vUnWdigqeCq0aQ6_vJf3_R7AtXJdzKkkWGVKYm40xamytCxIoELh5iEpn20xksMxf5yISVEUtiiz3cuQpL-pq2I3Ry8EWxmDnR0T4vUu1IWz3S0Vj1mnih1YjvGelYgzzCPJilKZn_f4Ko62Oua3sKiXNoND2C_URNTZnOsR7Jj8GA7KEQyo4MgTeLAA4l4yX4zM8g4lOXr1TgKjkbIvV1OD8k2eN7LKKXpz2XfYfBTJrzmq0odm-SmMB_3n3hAX0xGwsmyzxCzUPCBGZFqmqQmEakuZEZJQF1ijaaZI5jo90Yi3M9dkTllgwpREYRJplmgWnEEtn-XmHBDVScQUjbIskTwVJBVUaRevCxJrOweyAbQEKVZF63A3wWIaV02PPbCxBTb2wMbrBtxU_8w3jTP-XN0ssY8LJlrE1hqkzuPCRQNuy_PYfv59t4v_Lb-EPeZJwvlWmlBbvq_MlVU1lmkL6p1Btztyz_uXp37LU9oneozLpg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UD3rxbURRe_CmTdput-x6I0QCipwg4dbs9pGY4EIEEsOvty3dJRo18brb7eHrzM505psZAG6l62JOOEbSSI6YVgTl0spyjCOZxG4ekvRsiwHvjtjTOB6HorB5yXYvU5L-T10Vuzl5wcjaGOTuMQlabYMd6wwkjsg1oq0qd2A1xkdWUkYRSzkNpTI_7_HVHG18zG9pUW9tOodgP7iJsLU-1yOwpYtjcFCOYIBBI09AzwKI2tlsPtCLB5gV8NUHCbSC0j5cTjQs1jxvaJ1T-ObYd0h_BPJrASv60LQ4BaPO47DdRWE6ApJWbRaIJopFWMdG8TzXUSybnBuMM-ISayQ3EhvX6YmkrGlckzlpgUlynCZZqmimaHQGasW00OcAEpWlVJLUmIyzPMZ5TKRy-boos3fniNcBKUESMrQOdxMsJqJqeuyBFRZY4YEVqzq4q76ZrRtn_Lm6UWIvghLNhb0NEhdxYXEd3JfnsXn9-24X_1t-A3a7w5e-6PcGz5dgj3rxcHGWBqgt3pf6yrodi_zaS9kndbbLiQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86Qbz4LU6n5uBNw5K0zVpvYzo2leHBwW6l-QJhZsN1IPvrTbK2U1HBa5sE-st7zcv7-D0ALoVjMScMI6EFQ6GSBHFhZTnCgYgj1w9J-GyLAesNw_tRNPpUxe-z3cuQ5LKmwbE0mbw5lbpZFb452cHInjfI3WlitFgHG_Z3TJxcD2m7iiNY7fFeliSkKEwYLcpmfl7j69G0sje_hUj9ydPdBduFyQjbyz3eA2vK7IOdsh0DLLTzAPQtmKiTTWcDld_AzMAX7zBQEgr7cD5W0CxzvqE1VOGry8RD6r1IhDWwSiWamEMw7N49d3qo6JSAhP3mHNFYhgFWkZaMcxVEosWYxjgjLshGuBZYO9YnkoQt7QjnhAUm5jiJs0TSTNLgCNTMxKhjAInMEipIonXGQh5hHhEhXewuyOw9OmB1QEqQUlHQiLtuFuO0IkD2wKYW2NQDmy7q4KqaM12SaPw5ulFinxYKNUvtzZA470sY1cF1uR-r17-vdvK_4Rdg8-m2mz72Bw-nYIt66XAulwao5W9zdWYtkJyfeyH7AIaCz8U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RES-CapsNet%3A+an+improved+capsule+network+for+micro-expression+recognition&rft.jtitle=Multimedia+systems&rft.au=Shu+Xin&rft.au=Li%2C+Jia&rft.au=Shi%2C+Liang&rft.au=Huang+Shucheng&rft.date=2023-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0942-4962&rft.eissn=1432-1882&rft.volume=29&rft.issue=3&rft.spage=1593&rft.epage=1601&rft_id=info:doi/10.1007%2Fs00530-023-01068-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-4962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-4962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-4962&client=summon