Designing Secure Quantum Key Agreement Protocols Against Dishonest Participants
Quantum key agreement (QKA) aims to negotiate a secure and consistent key among several participants. In this paper, we find that a type of QKA protocol is not secure when a participant is dishonest. He can make the honest participants obtain wrong final keys, which may lead to serious consequences....
Saved in:
Published in | International journal of theoretical physics Vol. 58; no. 12; pp. 4093 - 4104 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantum key agreement (QKA) aims to negotiate a secure and consistent key among several participants. In this paper, we find that a type of QKA protocol is not secure when a participant is dishonest. He can make the honest participants obtain wrong final keys, which may lead to serious consequences. To resist such attacks, we design a defense strategy by introducing a trusted third party. The theoretical analysis results show that our defense strategy not only can detect the dishonest participant’s attacks, but also can identify who is dishonest. Finally we design an optical platform for participants, and show that both our attack and defense strategies are feasible with current technologies. |
---|---|
AbstractList | Quantum key agreement (QKA) aims to negotiate a secure and consistent key among several participants. In this paper, we find that a type of QKA protocol is not secure when a participant is dishonest. He can make the honest participants obtain wrong final keys, which may lead to serious consequences. To resist such attacks, we design a defense strategy by introducing a trusted third party. The theoretical analysis results show that our defense strategy not only can detect the dishonest participant’s attacks, but also can identify who is dishonest. Finally we design an optical platform for participants, and show that both our attack and defense strategies are feasible with current technologies. |
Author | Huang, Wei-cong Yang, Yong-kai Chen, Li-jun Jiang, Dong Gao, Chao-hui |
Author_xml | – sequence: 1 givenname: Wei-cong orcidid: 0000-0003-0971-8791 surname: Huang fullname: Huang, Wei-cong organization: State Key Laboratory for Novel Software Technology, Nanjing University – sequence: 2 givenname: Yong-kai surname: Yang fullname: Yang, Yong-kai organization: State Key Laboratory for Novel Software Technology, Nanjing University – sequence: 3 givenname: Dong surname: Jiang fullname: Jiang, Dong email: jiangd@nju.edu.cn organization: State Key Laboratory for Novel Software Technology, Nanjing University – sequence: 4 givenname: Chao-hui surname: Gao fullname: Gao, Chao-hui organization: State Key Laboratory for Novel Software Technology, Nanjing University – sequence: 5 givenname: Li-jun surname: Chen fullname: Chen, Li-jun organization: State Key Laboratory for Novel Software Technology, Nanjing University |
BookMark | eNp9UDtPwzAQtlCRaIE_wBSJ2XDnxHEyVi0vUalFwGw5jhNStXaxk6H_HkOQ2JjudPe99M3IxDprCLlCuEEAcRsQhEgpYEkhY4JTfkKmyAWjJRd8QqYADKgQWXFGZiFsAaCErJiS9dKErrWdbZNXowdvkpdB2X7YJ8_mmMxbb8ze2D7ZeNc77XYh3lRnQ58su_ARQ8Rto3zf6e4QeeGCnDZqF8zl7zwn7_d3b4tHulo_PC3mK6pTLHvKRJMDT3POSkyzvIa6rJRgquZ5zXUliiz-MtR1TA-I3ORFhTxHVYmmQmXSc3I96h68-xxiCrl1g7fRUrLoIHjBuIgoNqK0dyF408iD7_bKHyWC_C5OjsXJWJz8KU7ySEpHUohg2xr_J_0P6wvs1XHe |
CitedBy_id | crossref_primary_10_32604_cmc_2022_025727 crossref_primary_10_1007_s10773_020_04692_x crossref_primary_10_1007_s11128_021_03357_w crossref_primary_10_1007_s10773_021_04915_9 crossref_primary_10_1038_s41598_021_88837_w |
Cites_doi | 10.1016/S0375-9601(03)00074-4 10.1007/s11128-013-0608-7 10.1016/j.optcom.2010.01.022 10.1038/ncomms4732 10.1088/1612-202X/aac9dd 10.1007/s10773-018-3884-2 10.1007/s11128-018-2091-7 10.1007/s11128-014-0784-0 10.1049/el:20045183 10.1038/s41598-017-15227-6 10.1038/srep45046 10.1364/OL.37.001008 10.1142/S0219749917500186 10.1016/j.optcom.2009.11.007 10.1007/s10773-018-3944-7 10.1103/PhysRevLett.85.441 10.1103/PhysRevLett.88.127902 10.1103/PhysRevA.93.062343 10.1142/S0219749905001328 10.1007/s11128-018-1871-4 10.1007/s10773-018-3960-7 10.1007/s11128-012-0443-2 10.1016/j.optcom.2009.02.054 10.1038/ncomms1631 10.1103/PhysRevA.72.044302 10.1016/j.physleta.2005.09.071 10.1038/srep44934 10.1007/s10773-018-3706-6 10.1007/s11128-018-1993-8 10.1364/OPEX.13.003015 10.1103/PhysRevLett.98.010504 10.1103/PhysRevA.82.036301 10.1016/j.optcom.2009.02.062 10.1103/PhysRevA.69.052319 10.1007/s10773-017-3478-4 10.1007/s11128-012-0492-6 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10773-019-04275-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1572-9575 |
EndPage | 4104 |
ExternalDocumentID | 10_1007_s10773_019_04275_5 |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: NO. 2017YFA0303700 – fundername: National Natural Science Foundation of China (CN) grantid: No. 11690030; 11690032; 61771236 |
GroupedDBID | -54 -5F -5G -BR -DZ -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABEFU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADJSZ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYGD AFEXP AFFNX AFGCZ AFGFF AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UPT UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XJT YLTOR Z45 Z7R Z7U Z7X Z7Z Z83 Z88 Z8R Z8W Z92 ZMTXR ~8M ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c319t-27f605365291346d0d9ba72ad56d5cb78436541cd5750115e68b1561ab7fb1ae3 |
IEDL.DBID | AGYKE |
ISSN | 0020-7748 |
IngestDate | Thu Oct 10 19:56:44 EDT 2024 Thu Sep 12 16:52:25 EDT 2024 Sat Dec 16 12:02:32 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Trusted third party Quantum key agreement Participant’s attacks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-27f605365291346d0d9ba72ad56d5cb78436541cd5750115e68b1561ab7fb1ae3 |
ORCID | 0000-0003-0971-8791 |
PQID | 2319758257 |
PQPubID | 2043554 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2319758257 crossref_primary_10_1007_s10773_019_04275_5 springer_journals_10_1007_s10773_019_04275_5 |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of theoretical physics |
PublicationTitleAbbrev | Int J Theor Phys |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | YinXRMaWPMultiparty quantum key agreement based on three-photon entanglement with unidirectional qubit transmissionInt. J. Theor. Phys.201958263163810.1007/s10773-018-3960-7 CaoHMaWMultiparty quantum key agreement based on quantum search algorithmSci. Rep.20177450462017NatSR...745046C10.1038/srep45046 ZhuZCHuAQFuAMImproving the security of protocols of quantum key agreement solely using bell states and bell measurementQuantum Inf. Process20174241102017npjQI...3....1Z1327.81181 Yu, K.F., Yang, C.W., Hwang, T., Li, C.M., Gu, J.: Design of quantum key agreement protocols with strong fairness property. arXiv:quant-ph/1510.02353v2 (2017) NguyenBAQuantum examPhys. Lett. A200635031741782006PhLA..350..174N10.1016/j.physleta.2005.09.071 QinSJGaoFGuoFZWenQYComment on “two-way protocols for quantum cryptography with a nonmaximally entangled qubit pair”Phys. Rev. A201082820363012010PhRvA..82c6301Q277200810.1103/PhysRevA.82.036301 ShorPWPreskillJSimple proof of security of the bb84 quantum key distribution protocolPhys. Rev. Lett.20008524414442000PhRvL..85..441S10.1103/PhysRevLett.85.441 DengFGLiXHZhouHYZhangZjImproving the security of multiparty quantum secret sharing against trojan horse attackPhys. Rev. A20057240443022005PhRvA..72d4302D10.1103/PhysRevA.72.044302 CaiTJiangMCaoGMulti-party quantum key agreement with five-qubit brown states [J]Quantum Inf. Process20181751032018QuIP...17..103C377743210.1007/s11128-018-1871-4 CerfNJBourennaneMKarlssonAGisinNSecurity of quantum key distribution using d-level systemsPhys. Rev. Lett.200288121279022002PhRvL..88l7902C10.1103/PhysRevLett.88.127902 GaoGTwo quantum dialogue protocols without information leakageOpt. Commun.201028310228822932010OptCo.283.2288G10.1016/j.optcom.2010.01.022 DengFGLongGLSecure direct communication with a quantum one-time padPhys. Rev. A20046950523192004PhRvA..69e2319D10.1103/PhysRevA.69.052319 LoHKMaXChenKDecoy state quantum key distributionInt. J. Quant. Inf.20083supp0114314310.1142/S0219749905001328 GuoGPGuoGCQuantum secret sharing without entanglementPhys. Lett. A200331042472512003PhLA..310..247G196923910.1016/S0375-9601(03)00074-4 Zhao, X.Q., Zhou, N.R., Chen, H.Y., Gong, L.H.: Multiparty quantum key agreement protocol with entanglement swapping. Int. J. Theor. Phys., 1–15 (2018) HuangWSuQLiuBHeYHFanFXuBJEfficient multiparty quantum key agreement with collective detectionSci. Rep.201771152642017NatSR...715264H10.1038/s41598-017-15227-6 CaoHMaWEfficient multi-party quantum key agreement protocol based on nonorthogonal quantum entangled pairsLaser Phys. Lett.20181590952012018LaPhL..15i5201C10.1088/1612-202X/aac9dd AbulkasimHFaroukAAlsuqaihHHamdanWHamadSGhoseSImproving the security of quantum key agreement protocols with single photon in both polarization and spatial-mode degrees of freedomQuant. Inf. Process201817113162018QuIP...17..316A386308010.1007/s11128-018-2091-7 WangSSXuGBLiangXQWuYLMultiparty quantum key agreement with four-qubit symmetric W stateInt. J. Theor. Phys.2018571237163726386766410.1007/s10773-018-3884-2 TomamichelMLimCCWGisinNRennerRTight finite-key analysis for quantum cryptographyNat. Commun.201236342012NatCo...3..634T10.1038/ncomms1631 GordonKJFernandezVBullerGSRechICovaSDTownsendPDQuantum key distribution system clocked at 2 GHzOpt. Express2005138301530202005OExpr..13.3015G10.1364/OPEX.13.003015 ZhouNZengGXiongJQuantum key agreement protocolElectron. Lett.200440181149115010.1049/el:20045183 GuJHwangTImprovement of “Novel Multiparty Quantum Key Agreement Protocol with GHZ States”Int. J. Theor. Phys.2017561019369641110.1007/s10773-017-3478-4 ShiRHZhongHMulti-party quantum key agreement with bell states and bell measurementsQuant. Inf. Process20131229219322013QuIP...12..921S302827710.1007/s11128-012-0443-2 MinSQChenHYGongLHNovel multi-party quantum key agreement protocol with G-like States and Bell StatesInt. J. Theor. Phys.201857618111822379808810.1007/s10773-018-3706-6 LinSGuoGDXuYZSunYLiuXFCryptanalysis of quantum secret sharing with d-level single particlesPhys. Rev. A20169360623432016PhRvA..93f2343L10.1103/PhysRevA.93.062343 WangSChenWGuoJFYinZQLiHWZhouZGuoGCHanZF2 GHz clock quantum key distribution over 260 km of standard telecom fiberOpt. Lett.2012376100810102012OptL...37.1008W10.1364/OL.37.001008 ChongSKHwangTQuantum key agreement protocol based on BB84Opt. Commun.20102836119211952010OptCo.283.1192C10.1016/j.optcom.2009.11.007 ShuklaCAlamNPathakAProtocols of quantum key agreement solely using Bell states and Bell measurementQuant. Inf. Process.20141311239124052014QuIP...13.2391S327022910.1007/s11128-014-0784-0 ShiGFXiXQTianXLYueRHBidirectional quantum secure communication based on a shared private bell stateOpt. Commun.200928212246024632009OptCo.282.2460S10.1016/j.optcom.2009.02.062 LiuBGaoFHuangWWenQYMultiparty quantum key agreement with single particlesQuantum Inf. Process2013124179718052013QuIP...12.1797L302823810.1007/s11128-012-0492-6 Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal processing, pp 175–179, Bangalore (1984) JiangDChenYGuXXieLChenLDeterministic secure quantum communication using a single d-level systemSci. Rep.20177449342017NatSR...744934J10.1038/srep44934 SunZZhangCWangBLiQLongDImprovements on “multiparty quantum key agreement with single particles”Quant. Inf. Process20131211341134202013QuIP...12.3411S311766710.1007/s11128-013-0608-7 Schmitt-ManderbachTWeierHFürstMUrsinRTiefenbacherFScheidlTExperimental demonstration of free-space decoy-state quantum key distribution over 144 kmPhys. Rev. Lett.20079810105042007PhRvL..98a0504S10.1103/PhysRevLett.98.010504 XiuXMDongHKDongLGaoYJChiFDeterministic secure quantum communication using four-particle genuine entangled state and entanglement swappingOpt. Commun.200928212245724592009OptCo.282.2457X10.1016/j.optcom.2009.02.054 CurtyMXuFCuiWLimCCWTamakiKLoHKFinite-key analysis for measurement-device-independent quantum key distributionNat. Commun.2014537322014NatCo...5.3732C10.1038/ncomms4732 ZhuZCHuAQFuAMImproving the security of protocols of quantum key agreement solely using bell states and bell measurementQuant.Inf. Process20174241101327.81181 HeYFMaWPTwo-party quantum key agreement with five-particle entangled statesInt. J,. Quant. Inf.20171531750018364815210.1142/S0219749917500186 CaoHMaWMulti-party traveling-mode quantum key agreement protocols immune to collusive attackQuantum Inf. Process20181792192018QuIP...17..219C383134210.1007/s11128-018-1993-8 BA Nguyen (4275_CR39) 2006; 350 Z Sun (4275_CR32) 2013; 12 G Gao (4275_CR36) 2010; 283 J Gu (4275_CR17) 2017; 56 D Jiang (4275_CR4) 2017; 7 ZC Zhu (4275_CR16) 2017; 42 W Huang (4275_CR30) 2017; 7 H Cao (4275_CR20) 2017; 7 T Cai (4275_CR25) 2018; 17 FG Deng (4275_CR33) 2005; 72 4275_CR22 PW Shor (4275_CR35) 2000; 85 H Cao (4275_CR19) 2018; 15 SJ Qin (4275_CR40) 2010; 82 T Schmitt-Manderbach (4275_CR10) 2007; 98 SQ Min (4275_CR26) 2018; 57 GF Shi (4275_CR37) 2009; 282 4275_CR1 SS Wang (4275_CR27) 2018; 57 4275_CR29 XM Xiu (4275_CR38) 2009; 282 N Zhou (4275_CR12) 2004; 40 SK Chong (4275_CR13) 2010; 283 FG Deng (4275_CR2) 2004; 69 C Shukla (4275_CR15) 2014; 13 S Lin (4275_CR34) 2016; 93 YF He (4275_CR24) 2017; 15 ZC Zhu (4275_CR23) 2017; 42 NJ Cerf (4275_CR6) 2002; 88 GP Guo (4275_CR3) 2003; 310 HK Lo (4275_CR5) 2008; 3 XR Yin (4275_CR28) 2019; 58 S Wang (4275_CR11) 2012; 37 B Liu (4275_CR21) 2013; 12 H Cao (4275_CR18) 2018; 17 KJ Gordon (4275_CR9) 2005; 13 RH Shi (4275_CR14) 2013; 12 H Abulkasim (4275_CR31) 2018; 17 M Curty (4275_CR7) 2014; 5 M Tomamichel (4275_CR8) 2012; 3 |
References_xml | – volume: 310 start-page: 247 issue: 4 year: 2003 ident: 4275_CR3 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(03)00074-4 contributor: fullname: GP Guo – ident: 4275_CR1 – volume: 12 start-page: 3411 issue: 11 year: 2013 ident: 4275_CR32 publication-title: Quant. Inf. Process doi: 10.1007/s11128-013-0608-7 contributor: fullname: Z Sun – volume: 283 start-page: 2288 issue: 10 year: 2010 ident: 4275_CR36 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2010.01.022 contributor: fullname: G Gao – volume: 5 start-page: 3732 year: 2014 ident: 4275_CR7 publication-title: Nat. Commun. doi: 10.1038/ncomms4732 contributor: fullname: M Curty – volume: 15 start-page: 095201 issue: 9 year: 2018 ident: 4275_CR19 publication-title: Laser Phys. Lett. doi: 10.1088/1612-202X/aac9dd contributor: fullname: H Cao – ident: 4275_CR22 – volume: 57 start-page: 3716 issue: 12 year: 2018 ident: 4275_CR27 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-018-3884-2 contributor: fullname: SS Wang – volume: 17 start-page: 316 issue: 11 year: 2018 ident: 4275_CR31 publication-title: Quant. Inf. Process doi: 10.1007/s11128-018-2091-7 contributor: fullname: H Abulkasim – volume: 13 start-page: 2391 issue: 11 year: 2014 ident: 4275_CR15 publication-title: Quant. Inf. Process. doi: 10.1007/s11128-014-0784-0 contributor: fullname: C Shukla – volume: 40 start-page: 1149 issue: 18 year: 2004 ident: 4275_CR12 publication-title: Electron. Lett. doi: 10.1049/el:20045183 contributor: fullname: N Zhou – volume: 7 start-page: 15264 issue: 1 year: 2017 ident: 4275_CR30 publication-title: Sci. Rep. doi: 10.1038/s41598-017-15227-6 contributor: fullname: W Huang – volume: 7 start-page: 45046 year: 2017 ident: 4275_CR20 publication-title: Sci. Rep. doi: 10.1038/srep45046 contributor: fullname: H Cao – volume: 37 start-page: 1008 issue: 6 year: 2012 ident: 4275_CR11 publication-title: Opt. Lett. doi: 10.1364/OL.37.001008 contributor: fullname: S Wang – volume: 15 start-page: 1750018 issue: 3 year: 2017 ident: 4275_CR24 publication-title: Int. J,. Quant. Inf. doi: 10.1142/S0219749917500186 contributor: fullname: YF He – volume: 283 start-page: 1192 issue: 6 year: 2010 ident: 4275_CR13 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2009.11.007 contributor: fullname: SK Chong – ident: 4275_CR29 doi: 10.1007/s10773-018-3944-7 – volume: 85 start-page: 441 issue: 2 year: 2000 ident: 4275_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.441 contributor: fullname: PW Shor – volume: 88 start-page: 127902 issue: 12 year: 2002 ident: 4275_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.127902 contributor: fullname: NJ Cerf – volume: 93 start-page: 062343 issue: 6 year: 2016 ident: 4275_CR34 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.93.062343 contributor: fullname: S Lin – volume: 3 start-page: 143 issue: supp01 year: 2008 ident: 4275_CR5 publication-title: Int. J. Quant. Inf. doi: 10.1142/S0219749905001328 contributor: fullname: HK Lo – volume: 17 start-page: 103 issue: 5 year: 2018 ident: 4275_CR25 publication-title: Quantum Inf. Process doi: 10.1007/s11128-018-1871-4 contributor: fullname: T Cai – volume: 58 start-page: 631 issue: 2 year: 2019 ident: 4275_CR28 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-018-3960-7 contributor: fullname: XR Yin – volume: 12 start-page: 921 issue: 2 year: 2013 ident: 4275_CR14 publication-title: Quant. Inf. Process doi: 10.1007/s11128-012-0443-2 contributor: fullname: RH Shi – volume: 42 start-page: 1 issue: 4 year: 2017 ident: 4275_CR16 publication-title: Quant.Inf. Process contributor: fullname: ZC Zhu – volume: 282 start-page: 2457 issue: 12 year: 2009 ident: 4275_CR38 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2009.02.054 contributor: fullname: XM Xiu – volume: 42 start-page: 1 issue: 4 year: 2017 ident: 4275_CR23 publication-title: Quantum Inf. Process contributor: fullname: ZC Zhu – volume: 3 start-page: 634 year: 2012 ident: 4275_CR8 publication-title: Nat. Commun. doi: 10.1038/ncomms1631 contributor: fullname: M Tomamichel – volume: 72 start-page: 044302 issue: 4 year: 2005 ident: 4275_CR33 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.72.044302 contributor: fullname: FG Deng – volume: 350 start-page: 174 issue: 3 year: 2006 ident: 4275_CR39 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2005.09.071 contributor: fullname: BA Nguyen – volume: 7 start-page: 44934 year: 2017 ident: 4275_CR4 publication-title: Sci. Rep. doi: 10.1038/srep44934 contributor: fullname: D Jiang – volume: 57 start-page: 1811 issue: 6 year: 2018 ident: 4275_CR26 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-018-3706-6 contributor: fullname: SQ Min – volume: 17 start-page: 219 issue: 9 year: 2018 ident: 4275_CR18 publication-title: Quantum Inf. Process doi: 10.1007/s11128-018-1993-8 contributor: fullname: H Cao – volume: 13 start-page: 3015 issue: 8 year: 2005 ident: 4275_CR9 publication-title: Opt. Express doi: 10.1364/OPEX.13.003015 contributor: fullname: KJ Gordon – volume: 98 start-page: 010504 issue: 1 year: 2007 ident: 4275_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.010504 contributor: fullname: T Schmitt-Manderbach – volume: 82 start-page: 036301 issue: 82 year: 2010 ident: 4275_CR40 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.036301 contributor: fullname: SJ Qin – volume: 282 start-page: 2460 issue: 12 year: 2009 ident: 4275_CR37 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2009.02.062 contributor: fullname: GF Shi – volume: 69 start-page: 052319 issue: 5 year: 2004 ident: 4275_CR2 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.69.052319 contributor: fullname: FG Deng – volume: 56 start-page: 1 issue: 10 year: 2017 ident: 4275_CR17 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-017-3478-4 contributor: fullname: J Gu – volume: 12 start-page: 1797 issue: 4 year: 2013 ident: 4275_CR21 publication-title: Quantum Inf. Process doi: 10.1007/s11128-012-0492-6 contributor: fullname: B Liu |
SSID | ssj0009048 |
Score | 2.2830348 |
Snippet | Quantum key agreement (QKA) aims to negotiate a secure and consistent key among several participants. In this paper, we find that a type of QKA protocol is not... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 4093 |
SubjectTerms | Dishonesty Elementary Particles Mathematical and Computational Physics Physics Physics and Astronomy Quantum cryptography Quantum Field Theory Quantum Physics Theoretical Trusted third parties |
Title | Designing Secure Quantum Key Agreement Protocols Against Dishonest Participants |
URI | https://link.springer.com/article/10.1007/s10773-019-04275-5 https://www.proquest.com/docview/2319758257 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RiIkXv40okh286Qjr1nU7DgGJJH4kkOBpWdcSiREM2w761_vabZmfB67t0mavr-3v1_7eK8CF5BHjtj8zPTcSpsM6wvQIl6b0qbSY53I_1gLZO3c4cW6ndFrFcWuxe3kjqRfqL7FujCnpjzrLJ4yadBPqReBpPbh5GvWrXLsdJ1-AkRkhuvGKWJm_W_m-H1Ug88e9qN5uBrswLoN2cpXJSztLeTv--J3DcZ0_2YOdAn4aQe4v-7AhFwewpWWgcXII9z0t6MDWDH0QL43HDE2fvRoj-W4EyM31aaLxsFqmS3ShBMuiOSJMozdPnlXaf6yLCqX2Ik2OYDLoj6-HZvHkghnjXExNwmbIb2yXEnUj74qO8HEwSSSoK2jMmefY6uHwWCDKU2BSuh5HBmhFnM24FUn7GGoL7O0EjFkkFRvxiSW54yEN5b6QMcVSIRzsrQGXpeHDtzyzRljlUFYmCtFEoTZRSBvQLMcmLGZZEiI29ZHv4KrTgKvS1lX1_62drvf5GWwTNVxaxdKEWrrK5DlikZS30Pe6ve6gVfhgCzYnJPgEqarV8w |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL2CIgQL4ikKBTywgaXm4TgZK0pVaCkgtRKbZceO6ECLmnTg77l2EwUQDKx2YkvHr3Ps42uAS6MkV0GS0TiSmoa8rWnsK0NNwozH40glqTPIjqL-JLx_YS_lpbC8crtXR5Jupv5y2Y1z6_2xm_k-Z5Stw4aNr24j5k_8Th1qtx2u5l8URkhu4vKqzO9lfF-Oao7541jUrTa9XdgpaSLprNp1D9bMbB82nV0zzQ_gseuMF_grcRvmhjwvEaLlGxmYD9JBDe12_cjTYl7MsalzTJNTZIKkO81fbXh-zJOlo3pW5Icw6d2Ob_q0fBqBpjhmCurzDHVIEDHfnpxHuq0TBN2XmkWapYrHYWAf-E41sjFL-kwUK1RqnlQ8U540wRE0ZljbMZBMGqsaEt8zKoxRLqpEm5RhqtYh1taEqwoh8b6KgCHqWMcWT4F4CoenYE1oVSCKcjTkAjlkgroEZ4cmXFfA1tl_l3byv88vYKs_fhiK4d1ocArbvm1n5zxpQaNYLM0Z8odCnbvu8glhGbpx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgFCY6o_Fi_BmnUzl4U-JGS2mPi3OZzsyZuGQ3AoXGHeyWtTv43_ugbTqNHrxCC8n3-PE9-N4DoWujJFdelJAwkJr4vK1JSJUhJmKmw8NARbETyI6CwcR_mrLpWhS_U7tXV5JFTIPN0pTmdwud3K0FvnFudUD2YJ9yRtgm2oKtyLOivgnt1ml3236xFoOTBEQnLMNmfm_j-9ZU880fV6Ru5-nvo72SMuJuYeMDtGHSQ7TtpJtxdoReek6EAb9id3hu8OsK4Fp94KH5xF3wp90JIB4v5_kczJ5BmZwBK8S9WfZuU_VDnSzV1WmeHaNJ_-HtfkDKZxJIDPMnJ5Qn4JN4AaP2Fj3QbR2BAajULNAsVjz0PfvYd6yBmVkCaIJQgdfWkYonqiONd4IaKfR2inAijfUgItoxyg_BdVSRNjGDUq196K2JbiqExKLIhiHqvMcWTwF4CoenYE3UqkAU5czIBPDJCHwUWCma6LYCtq7-u7Wz_31-hXbGvb54fhwNz9EutWZ2IpQWauTLlbkAKpGrSzdavgCkxb62 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+Secure+Quantum+Key+Agreement+Protocols+Against+Dishonest+Participants&rft.jtitle=International+journal+of+theoretical+physics&rft.au=Huang%2C+Wei-cong&rft.au=Yang%2C+Yong-kai&rft.au=Jiang%2C+Dong&rft.au=Gao%2C+Chao-hui&rft.date=2019-12-01&rft.issn=0020-7748&rft.eissn=1572-9575&rft.volume=58&rft.issue=12&rft.spage=4093&rft.epage=4104&rft_id=info:doi/10.1007%2Fs10773-019-04275-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10773_019_04275_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7748&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7748&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7748&client=summon |