A stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs

We propose a stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs. Our approach is based on a bi-objective viewpoint of chance-constrained programs that seeks solutions on the efficient frontier of optimal objective value versus risk of co...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming computation Vol. 13; no. 4; pp. 705 - 751
Main Authors Kannan, Rohit, Luedtke, James R.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs. Our approach is based on a bi-objective viewpoint of chance-constrained programs that seeks solutions on the efficient frontier of optimal objective value versus risk of constraints violation. To this end, we construct a reformulated problem whose objective is to minimize the probability of constraints violation subject to deterministic convex constraints (which includes a bound on the objective function value). We adapt existing smoothing-based approaches for chance-constrained problems to derive a convergent sequence of smooth approximations of our reformulated problem, and apply a projected stochastic subgradient algorithm to solve it. In contrast with exterior sampling-based approaches (such as sample average approximation) that approximate the original chance-constrained program with one having finite support, our proposal converges to stationary solutions of a smooth approximation of the original problem, thereby avoiding poor local solutions that may be an artefact of a fixed sample. Our proposal also includes a tailored implementation of the smoothing-based approach that chooses key algorithmic parameters based on problem data. Computational results on four test problems from the literature indicate that our proposed approach can efficiently determine good approximations of the efficient frontier.
AbstractList We propose a stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs. Our approach is based on a bi-objective viewpoint of chance-constrained programs that seeks solutions on the efficient frontier of optimal objective value versus risk of constraints violation. To this end, we construct a reformulated problem whose objective is to minimize the probability of constraints violation subject to deterministic convex constraints (which includes a bound on the objective function value). We adapt existing smoothing-based approaches for chance-constrained problems to derive a convergent sequence of smooth approximations of our reformulated problem, and apply a projected stochastic subgradient algorithm to solve it. In contrast with exterior sampling-based approaches (such as sample average approximation) that approximate the original chance-constrained program with one having finite support, our proposal converges to stationary solutions of a smooth approximation of the original problem, thereby avoiding poor local solutions that may be an artefact of a fixed sample. Our proposal also includes a tailored implementation of the smoothing-based approach that chooses key algorithmic parameters based on problem data. Computational results on four test problems from the literature indicate that our proposed approach can efficiently determine good approximations of the efficient frontier.
Author Luedtke, James R.
Kannan, Rohit
Author_xml – sequence: 1
  givenname: Rohit
  surname: Kannan
  fullname: Kannan, Rohit
  email: rohitk@alum.mit.edu
  organization: Wisconsin Institute for Discovery, University of Wisconsin-Madison
– sequence: 2
  givenname: James R.
  surname: Luedtke
  fullname: Luedtke, James R.
  organization: Department of Industrial and Systems Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison
BookMark eNp9kEtPAyEUhYmpibX2D7gicT3KYxiGZdP4Skzc6JowDLQ0LVSgif330o5R46JsuMm93zn3nksw8sEbAK4xusUI8buECaOkQgRVCGEhqv0ZGOO24RURjI9-6lpcgGlKK1QeJbylYgzSDKYc9FKl7DRU220Mn26jsgsebkxehh7aEP82_ALmpYHGWqed8RnaGHx2JsJgYRHy2lQ6-JSjct70sCy7LoWKsEgsotqkK3Bu1TqZ6fc_Ae8P92_zp-rl9fF5PnupNMUiV6Sxoq2ZIh1hvWCd0Npi3BPLRUOQ7rhGRlPNMWfC2rrT1PaWNrVoGibqtqMTcDPoFuOPnUlZrsIu-mIpCWsbhlrEWZkiw5SOIaVorNzGcmjcS4zkIV855CtLvvKYr9wXqP0HaZePqR3OXp9G6YCm4uMXJv5udYL6AlDPlOU
CitedBy_id crossref_primary_10_1007_s11228_021_00598_w
crossref_primary_10_1007_s10589_024_00573_9
crossref_primary_10_1016_j_strusafe_2022_102232
crossref_primary_10_1016_j_compchemeng_2024_108632
crossref_primary_10_1007_s00186_024_00859_y
crossref_primary_10_1007_s10589_024_00602_7
crossref_primary_10_1016_j_compchemeng_2023_108170
crossref_primary_10_1007_s11228_022_00639_y
crossref_primary_10_1145_3585516
crossref_primary_10_3103_S1066530722030024
crossref_primary_10_1007_s10957_024_02532_0
Cites_doi 10.1109/TPWRS.2011.2154367
10.1007/978-3-642-61370-8_6
10.1007/s10957-016-0943-9
10.1016/j.automatica.2011.02.029
10.1007/s10107-014-0846-1
10.1007/s10957-010-9754-6
10.1007/s10957-013-0513-3
10.1016/j.cor.2016.08.002
10.1137/050622328
10.1007/s10479-018-3091-9
10.1137/070702928
10.1007/978-94-017-3087-7
10.1137/15M1049750
10.1007/BF01386316
10.1007/s10107-015-0929-7
10.1515/9781400869930-009
10.1137/16M109003X
10.1016/S0377-2217(96)00395-5
10.1007/BF01068677
10.1007/s10208-018-09409-5
10.1007/s10107-004-0559-y
10.1137/1.9781611971309
10.1007/s10107-013-0684-6
10.1007/978-0-387-74759-0_170
10.1515/9781400831050
10.1007/BF02742069
10.1007/s10107-015-0946-6
10.1137/1.9780898718751
10.1007/s10589-011-9401-7
10.1016/j.compchemeng.2007.05.009
10.1080/0740817X.2012.745205
10.1137/130922689
10.1137/070704277
10.1007/s00186-016-0564-y
10.1287/mnsc.4.3.235
10.1007/s10107-003-0499-y
10.21314/JOR.2000.038
10.1007/s10589-016-9851-z
10.1137/141000671
10.1137/130910312
10.1287/opre.1100.0910
10.1007/3-540-70734-4_16
10.1137/S0363012992238369
10.1109/WSC.2009.5429360
10.1137/19M1261985
10.1287/opre.13.6.930
10.1137/16M1061308
10.1007/s10107-012-0539-6
10.1287/opre.1090.0712
10.1137/S1052623403430099
10.1137/15M1020575
10.1080/02331934.2016.1233551
10.1007/s10107-018-1311-3
10.1214/aoms/1177704580
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
DBID AAYXX
CITATION
DOI 10.1007/s12532-020-00199-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1867-2957
EndPage 751
ExternalDocumentID 10_1007_s12532_020_00199_y
GroupedDBID -5D
-5G
-BR
-EM
-~C
06D
0R~
0VY
1N0
203
29M
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
6NX
8UJ
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BA0
BAPOH
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OK1
P9R
PT4
QOS
R89
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z83
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-26f9845a2b25d95b9ccf11d2f79620cb7c0ec3c71759ff4bc3fdf3649665948b3
IEDL.DBID U2A
ISSN 1867-2949
IngestDate Fri Jul 25 10:58:26 EDT 2025
Tue Jul 01 04:10:32 EDT 2025
Thu Apr 24 22:51:21 EDT 2025
Fri Feb 21 02:47:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Efficient frontier
Stochastic approximation
Chance constraints
90C29
90C15
Stochastic subgradient
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-26f9845a2b25d95b9ccf11d2f79620cb7c0ec3c71759ff4bc3fdf3649665948b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2586508075
PQPubID 2044128
PageCount 47
ParticipantIDs proquest_journals_2586508075
crossref_primary_10_1007_s12532_020_00199_y
crossref_citationtrail_10_1007_s12532_020_00199_y
springer_journals_10_1007_s12532_020_00199_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming computation
PublicationTitleAbbrev Math. Prog. Comp
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ErmolievYMNorkinVIWetsRJThe minimization of semicontinuous functions: mollifier subgradientsSIAM J. Control Optim.199533114916713116640822.4901610.1137/S0363012992238369
HuZHongLJZhangLA smooth Monte Carlo approach to joint chance-constrained programsIIE Trans.201345771673510.1080/0740817X.2012.745205
ErmolievYMNorkinVStochastic generalized gradient method for nonconvex nonsmooth stochastic optimizationCybern. Syst. Anal.199834219621517006770930.9007410.1007/BF02742069
ShanFXiaoXZhangLConvergence analysis on a smoothing approach to joint chance constrained programsOptimization201665122171219335649111383.9002210.1080/02331934.2016.1233551
CalafioreGCampiMCUncertain convex programs: randomized solutions and confidence levelsMath. Program.20051021254621154791177.9031710.1007/s10107-003-0499-y
Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009)
ChenWSimMSunJTeoCPFrom CVaR to uncertainty set: implications in joint chance-constrained optimizationOper. Res.201058247048526748101226.9005110.1287/opre.1090.0712
Drusvyatskiy, D., Paquette, C.: Efficiency of minimizing compositions of convex functions and smooth maps. Math. Program. (2018). https://doi.org/10.1007/s10107-018-1311-3
RubenHProbability content of regions under spherical normal distributions, IV: the distribution of homogeneous and non-homogeneous quadratic functions of normal variablesAnn. Math. Stat.19623325425701371890117.3720110.1214/aoms/1177704580
CharnesACooperWWSymondsGHCost horizons and certainty equivalents: an approach to stochastic programming of heating oilManag. Sci.19584323526310.1287/mnsc.4.3.235
WächterABieglerLTOn the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programmingMath. Program.20061061255721956161134.9054210.1007/s10107-004-0559-y
Cao, Y., Zavala, V.: A sigmoidal approximation for chance-constrained nonlinear programs (2017). http://www.optimization-online.org/DB_FILE/2017/10/6236.pdf. Last accessed: April 1, 2019
Adam, L., Branda, M., Heitsch, H., Henrion, R.: Solving joint chance constrained problems using regularization and Benders’ decomposition. Ann. Oper. Res., pp. 1–27 (2018), https://doi.org/10.1007/s10479-018-3091-9
Ben-TalAEl GhaouiLNemirovskiARobust Optimization2009PrincetonPrinceton University Press1221.9000110.1515/9781400831050
LagoaCMLiXSznaierMProbabilistically constrained linear programs and risk-adjusted controller designSIAM J. Optim.200515393895121428681077.9004410.1137/S1052623403430099
Rengarajan, T., Morton, D.P.: Estimating the efficient frontier of a probabilistic bicriteria model. In: Winter Simulation Conference, pp. 494–504 (2009)
Peña-Ordieres, A., Luedtke, J.R., Wächter, A.: Solving chance-constrained problems via a smooth sample-based nonlinear approximation (2019)
Prékopa, A.: Stochastic Programming, vol. 324. Springer, Berlin (1995)
JiangRGuanYData-driven chance constrained stochastic programMath. Program.20161581–229132735113851346.9064010.1007/s10107-015-0929-7
LuedtkeJAhmedSA sample approximation approach for optimization with probabilistic constraintsSIAM J. Optim.200819267469924250351177.9030110.1137/070702928
AdamLBrandaMNonlinear chance constrained problems: optimality conditions, regularization and solversJ. Optim. Theory Appl.2016170241943635277031346.9063410.1007/s10957-016-0943-9
ShanFZhangLXiaoXA smoothing function approach to joint chance-constrained programsJ. Optim. Theory Appl.2014163118119932609811333.9008510.1007/s10957-013-0513-3
BienstockDChertkovMHarnettSChance-constrained optimal power flow: risk-aware network control under uncertaintySIAM Rev.201456346149532458601301.9309510.1137/130910312
ZhangHLiPChance constrained programming for optimal power flow under uncertaintyIEEE Trans. Power Syst.20112642417242410.1109/TPWRS.2011.2154367
NemirovskiAShapiroAConvex approximations of chance constrained programsSIAM J. Optim.200617496999622745001126.9005610.1137/050622328
Clarke, F.H.: Optimization and Nonsmooth Analysis, vol 5. SIAM, Philadelphia (1990)
van AckooijWFrangioniAde OliveiraWInexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite supportComputational Optimization and Applications201665363766935696131357.9010410.1007/s10589-016-9851-z
Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R.L., Hendel, G., Hojny, C., Koch, T., Lübbecke, M.E., Maher, S.J., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Schubert, C., Serrano, F., Shinano, Y., Viernickel, J.M., Walter, M., Wegscheider, F., Witt, J.T., Witzig, J.: The SCIP Optimization Suite 6.0. Technical report (2018) Optimization. http://www.optimization-online.org/DB_HTML/2018/07/6692.html
CensorYChenWCombettesPLDavidiRHermanGTOn the effectiveness of projection methods for convex feasibility problems with linear inequality constraintsComput. Optim. Appl.20125131065108828919281244.9015510.1007/s10589-011-9401-7
CurtisFEWachterAZavalaVMA sequential algorithm for solving nonlinear optimization problems with chance constraintsSIAM J. Optim.201828193095837807541396.9005210.1137/16M109003X
van AckooijWHenrionRGradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributionsSIAM J. Optim.20142441864188932733431319.9308010.1137/130922689
GeletuAHoffmannAKloppelMLiPAn inner–outer approximation approach to chance constrained optimizationSIAM J. Optim.20172731834185736878551387.9017010.1137/15M1049750
RockafellarRTWetsRJBVariational Analysis2009BerlinSpringer0888.49001
GhadimiSLanGZhangHMini-batch stochastic approximation methods for nonconvex stochastic composite optimizationMath. Program.20161551–226730534398031332.9019610.1007/s10107-014-0846-1
van AckooijWHenrionR(Sub-)Gradient formulae for probability functions of random inequality systems under Gaussian distributionSIAM/ASA J. Uncertain. Quantif.201751638735943311434.9011110.1137/16M1061308
NurminskiiEThe quasigradient method for the solving of the nonlinear programming problemsCybernetics19739114515032452310.1007/BF01068677
BendersJFPartitioning procedures for solving mixed-variables programming problemsNumer. Math.1962412382521473030109.3830210.1007/BF01386316
CampiMCGarattiSA sampling-and-discarding approach to chance-constrained optimization: feasibility and optimalityJ. Optim. Theory Appl.2011148225728027805631211.9014610.1007/s10957-010-9754-6
HongLJYangYZhangLSequential convex approximations to joint chance constrained programs: a Monte Carlo approachOper. Res.201159361763028485421231.9030310.1287/opre.1100.0910
GotzesCHeitschHHenrionRSchultzROn the quantification of nomination feasibility in stationary gas networks with random loadMath. Methods Oper. Res.201684242745735669331354.9003110.1007/s00186-016-0564-y
Zhang, S., He, N.: On the convergence rate of stochastic mirror descent for nonsmooth nonconvex optimization (2018). arXiv preprint arXiv:1806.04781
Davis, D., Drusvyatskiy, D.: Stochastic subgradient method converges at the rate Ok-1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\left(k^{-1/4}\right)$$\end{document} on weakly convex functions (2018). arXiv preprint arXiv:1802.02988
ErmolievYMNorkinVIOn nonsmooth and discontinuous problems of stochastic systems optimizationEur. J. Oper. Res.199710122302440929.9006010.1016/S0377-2217(96)00395-5
NemirovskyASYudinDBProblem complexity and method efficiency in optimization1983LondonWiley
Gurobi Optimization LLC: Gurobi Optimizer Reference Manual (2018). http://www.gurobi.com
LiPArellano-GarciaHWoznyGChance constrained programming approach to process optimization under uncertaintyComput. Chem. Eng.2008321–2254510.1016/j.compchemeng.2007.05.009
LuedtkeJA branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite supportMath. Program.20141461–221924432326141297.9009210.1007/s10107-013-0684-6
Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Koster, J.: MUMPS: a general purpose distributed memory sparse solver. In: International Workshop on Applied Parallel Computing. Springer, pp. 121–130 (2000)
BezansonJEdelmanAKarpinskiSShahVBJulia: A fresh approach to numerical computingSIAM Rev.2017591659836058261356.6803010.1137/141000671
CalafioreGCDabbeneFTempoRResearch on probabilistic methods for control system designAutomatica20114771279129328892251219.9303810.1016/j.automatica.2011.02.029
Norkin, V.I.: The analysis and optimization of probability functions. Tech. rep., IIASA Working Paper, WP-93-6 (1993)
Davis, D., Drusvyatskiy, D., Kakade, S., Lee, J.D.: Stochastic subgradient method converges on tame functions (2018). arXiv preprint arXiv:1804.07795
CondatLFast projection onto the simplex and the ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document} ballMath. Program.20161581–257558535113941347.4905010.1007/s10107-015-0946-6
Ermoliev, Y.M.: Stochastic quasigradient methods. In: Ermoliev, Y.M., Wets, R.J. (eds). Numerical Techniques for Stochastic Optimization. Springer, Berlin, pp. 141–185 (1988)
MillerBLWagnerHMChance constrained programming with joint constraintsOper. Res.19651369309450132.4010210.1287/opre.13.6.930
Prékopa, A.: On probabilistic constrained programming. In: Proceedings of the Princeton Symposium on Mathematical Programming. Princeton, pp. 113–138 (1970)
Andrieu, L., Cohen, G., Vázquez-Abad, F.: Stochastic programming with probability constraints (2007). arXiv preprint arXiv:0708.0281
RockafellarRTUryasevSOptimization of conditional value-at-riskJ. Risk20002214210.21314/JOR.2000.038
Adam, L., Branda, M.: Machine learning approach to chance-constrained problems: An algorithm b
199_CR31
A Wächter (199_CR63) 2006; 106
RT Rockafellar (199_CR53) 2000; 2
H Zhang (199_CR65) 2011; 26
AS Nemirovsky (199_CR45) 1983
A Nemirovski (199_CR44) 2009; 19
199_CR33
D Dentcheva (199_CR22) 2013; 138
JF Benders (199_CR6) 1962; 4
BL Miller (199_CR42) 1965; 13
W van Ackooij (199_CR59) 2014; 24
R Jiang (199_CR36) 2016; 158
A Charnes (199_CR15) 1958; 4
199_CR25
G Calafiore (199_CR10) 2005; 102
199_CR20
199_CR64
C Gotzes (199_CR32) 2016; 84
E Nurminskii (199_CR47) 1973; 9
H Ruben (199_CR55) 1962; 33
199_CR23
RT Rockafellar (199_CR54) 2009
199_CR21
YM Ermoliev (199_CR28) 1995; 33
F Shan (199_CR56) 2014; 163
A Ben-Tal (199_CR7) 2009
D Bienstock (199_CR9) 2014; 56
A Geletu (199_CR29) 2017; 27
W van Ackooij (199_CR62) 2017; 77
199_CR17
LJ Hong (199_CR34) 2011; 59
199_CR58
MC Campi (199_CR12) 2011; 148
Y Censor (199_CR14) 2012; 51
199_CR52
J Luedtke (199_CR40) 2014; 146
199_CR51
199_CR50
199_CR13
A Nemirovski (199_CR43) 2006; 17
199_CR2
199_CR1
199_CR4
L Condat (199_CR18) 2016; 158
YM Ermoliev (199_CR27) 1998; 34
YM Ermoliev (199_CR26) 1997; 101
199_CR49
F Shan (199_CR57) 2016; 65
199_CR48
W van Ackooij (199_CR60) 2017; 5
199_CR5
CM Lagoa (199_CR37) 2005; 15
W van Ackooij (199_CR61) 2016; 65
199_CR46
FE Curtis (199_CR19) 2018; 28
GC Calafiore (199_CR11) 2011; 47
S Ghadimi (199_CR30) 2016; 155
I Dunning (199_CR24) 2017; 59
L Adam (199_CR3) 2016; 170
J Luedtke (199_CR41) 2008; 19
Z Hu (199_CR35) 2013; 45
J Bezanson (199_CR8) 2017; 59
W Chen (199_CR16) 2010; 58
199_CR38
P Li (199_CR39) 2008; 32
References_xml – reference: Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009)
– reference: Andrieu, L., Cohen, G., Vázquez-Abad, F.: Stochastic programming with probability constraints (2007). arXiv preprint arXiv:0708.0281
– reference: MillerBLWagnerHMChance constrained programming with joint constraintsOper. Res.19651369309450132.4010210.1287/opre.13.6.930
– reference: DunningIHuchetteJLubinMJuMP: a modeling language for mathematical optimizationSIAM Rev.201759229532036464931368.9000210.1137/15M1020575
– reference: CensorYChenWCombettesPLDavidiRHermanGTOn the effectiveness of projection methods for convex feasibility problems with linear inequality constraintsComput. Optim. Appl.20125131065108828919281244.9015510.1007/s10589-011-9401-7
– reference: HuZHongLJZhangLA smooth Monte Carlo approach to joint chance-constrained programsIIE Trans.201345771673510.1080/0740817X.2012.745205
– reference: van AckooijWHenrionRGradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributionsSIAM J. Optim.20142441864188932733431319.9308010.1137/130922689
– reference: AdamLBrandaMNonlinear chance constrained problems: optimality conditions, regularization and solversJ. Optim. Theory Appl.2016170241943635277031346.9063410.1007/s10957-016-0943-9
– reference: ZhangHLiPChance constrained programming for optimal power flow under uncertaintyIEEE Trans. Power Syst.20112642417242410.1109/TPWRS.2011.2154367
– reference: Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R.L., Hendel, G., Hojny, C., Koch, T., Lübbecke, M.E., Maher, S.J., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Schubert, C., Serrano, F., Shinano, Y., Viernickel, J.M., Walter, M., Wegscheider, F., Witt, J.T., Witzig, J.: The SCIP Optimization Suite 6.0. Technical report (2018) Optimization. http://www.optimization-online.org/DB_HTML/2018/07/6692.html
– reference: WächterABieglerLTOn the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programmingMath. Program.20061061255721956161134.9054210.1007/s10107-004-0559-y
– reference: Drusvyatskiy, D., Paquette, C.: Efficiency of minimizing compositions of convex functions and smooth maps. Math. Program. (2018). https://doi.org/10.1007/s10107-018-1311-3
– reference: DentchevaDMartinezGRegularization methods for optimization problems with probabilistic constraintsMath. Program.20131381–222325130348061276.9004310.1007/s10107-012-0539-6
– reference: Davis, D., Drusvyatskiy, D.: Stochastic subgradient method converges at the rate Ok-1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\left(k^{-1/4}\right)$$\end{document} on weakly convex functions (2018). arXiv preprint arXiv:1802.02988
– reference: Cao, Y., Zavala, V.: A sigmoidal approximation for chance-constrained nonlinear programs (2017). http://www.optimization-online.org/DB_FILE/2017/10/6236.pdf. Last accessed: April 1, 2019
– reference: ChenWSimMSunJTeoCPFrom CVaR to uncertainty set: implications in joint chance-constrained optimizationOper. Res.201058247048526748101226.9005110.1287/opre.1090.0712
– reference: BendersJFPartitioning procedures for solving mixed-variables programming problemsNumer. Math.1962412382521473030109.3830210.1007/BF01386316
– reference: LagoaCMLiXSznaierMProbabilistically constrained linear programs and risk-adjusted controller designSIAM J. Optim.200515393895121428681077.9004410.1137/S1052623403430099
– reference: NemirovskiAShapiroAConvex approximations of chance constrained programsSIAM J. Optim.200617496999622745001126.9005610.1137/050622328
– reference: Adam, L., Branda, M.: Machine learning approach to chance-constrained problems: An algorithm based on the stochastic gradient descent (2018). http://www.optimization-online.org/DB_HTML/2018/12/6983.html (Last accessed April 1, 2019)
– reference: Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Koster, J.: MUMPS: a general purpose distributed memory sparse solver. In: International Workshop on Applied Parallel Computing. Springer, pp. 121–130 (2000)
– reference: ErmolievYMNorkinVIWetsRJThe minimization of semicontinuous functions: mollifier subgradientsSIAM J. Control Optim.199533114916713116640822.4901610.1137/S0363012992238369
– reference: van AckooijWBergeVde OliveiraWSagastizábalCProbabilistic optimization via approximate p-efficient points and bundle methodsComput. Oper. Res.20177717719335483421391.9045010.1016/j.cor.2016.08.002
– reference: RockafellarRTWetsRJBVariational Analysis2009BerlinSpringer0888.49001
– reference: CalafioreGCDabbeneFTempoRResearch on probabilistic methods for control system designAutomatica20114771279129328892251219.9303810.1016/j.automatica.2011.02.029
– reference: LuedtkeJA branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite supportMath. Program.20141461–221924432326141297.9009210.1007/s10107-013-0684-6
– reference: Clarke, F.H.: Optimization and Nonsmooth Analysis, vol 5. SIAM, Philadelphia (1990)
– reference: CurtisFEWachterAZavalaVMA sequential algorithm for solving nonlinear optimization problems with chance constraintsSIAM J. Optim.201828193095837807541396.9005210.1137/16M109003X
– reference: Adam, L., Branda, M., Heitsch, H., Henrion, R.: Solving joint chance constrained problems using regularization and Benders’ decomposition. Ann. Oper. Res., pp. 1–27 (2018), https://doi.org/10.1007/s10479-018-3091-9
– reference: van AckooijWHenrionR(Sub-)Gradient formulae for probability functions of random inequality systems under Gaussian distributionSIAM/ASA J. Uncertain. Quantif.201751638735943311434.9011110.1137/16M1061308
– reference: CalafioreGCampiMCUncertain convex programs: randomized solutions and confidence levelsMath. Program.20051021254621154791177.9031710.1007/s10107-003-0499-y
– reference: GeletuAHoffmannAKloppelMLiPAn inner–outer approximation approach to chance constrained optimizationSIAM J. Optim.20172731834185736878551387.9017010.1137/15M1049750
– reference: GotzesCHeitschHHenrionRSchultzROn the quantification of nomination feasibility in stationary gas networks with random loadMath. Methods Oper. Res.201684242745735669331354.9003110.1007/s00186-016-0564-y
– reference: Ermoliev, Y.M.: Stochastic quasigradient methods. In: Ermoliev, Y.M., Wets, R.J. (eds). Numerical Techniques for Stochastic Optimization. Springer, Berlin, pp. 141–185 (1988)
– reference: Norkin, V.I.: The analysis and optimization of probability functions. Tech. rep., IIASA Working Paper, WP-93-6 (1993)
– reference: LuedtkeJAhmedSA sample approximation approach for optimization with probabilistic constraintsSIAM J. Optim.200819267469924250351177.9030110.1137/070702928
– reference: GhadimiSLanGZhangHMini-batch stochastic approximation methods for nonconvex stochastic composite optimizationMath. Program.20161551–226730534398031332.9019610.1007/s10107-014-0846-1
– reference: JiangRGuanYData-driven chance constrained stochastic programMath. Program.20161581–229132735113851346.9064010.1007/s10107-015-0929-7
– reference: BienstockDChertkovMHarnettSChance-constrained optimal power flow: risk-aware network control under uncertaintySIAM Rev.201456346149532458601301.9309510.1137/130910312
– reference: Gurobi Optimization LLC: Gurobi Optimizer Reference Manual (2018). http://www.gurobi.com
– reference: Lepp, R.: Extremum problems with probability functions: Kernel type solution methods. In: Floudas CA, Pardalos PM (eds) Encyclopedia of Optimization. Springer, Berlin, pp. 969–973 (2009). https://doi.org/10.1007/978-0-387-74759-0_170
– reference: ErmolievYMNorkinVIOn nonsmooth and discontinuous problems of stochastic systems optimizationEur. J. Oper. Res.199710122302440929.9006010.1016/S0377-2217(96)00395-5
– reference: HongLJYangYZhangLSequential convex approximations to joint chance constrained programs: a Monte Carlo approachOper. Res.201159361763028485421231.9030310.1287/opre.1100.0910
– reference: RockafellarRTUryasevSOptimization of conditional value-at-riskJ. Risk20002214210.21314/JOR.2000.038
– reference: ShanFZhangLXiaoXA smoothing function approach to joint chance-constrained programsJ. Optim. Theory Appl.2014163118119932609811333.9008510.1007/s10957-013-0513-3
– reference: Davis, D., Drusvyatskiy, D., Kakade, S., Lee, J.D.: Stochastic subgradient method converges on tame functions (2018). arXiv preprint arXiv:1804.07795
– reference: LiPArellano-GarciaHWoznyGChance constrained programming approach to process optimization under uncertaintyComput. Chem. Eng.2008321–2254510.1016/j.compchemeng.2007.05.009
– reference: Rengarajan, T., Morton, D.P.: Estimating the efficient frontier of a probabilistic bicriteria model. In: Winter Simulation Conference, pp. 494–504 (2009)
– reference: Prékopa, A.: On probabilistic constrained programming. In: Proceedings of the Princeton Symposium on Mathematical Programming. Princeton, pp. 113–138 (1970)
– reference: NemirovskyASYudinDBProblem complexity and method efficiency in optimization1983LondonWiley
– reference: Zhang, S., He, N.: On the convergence rate of stochastic mirror descent for nonsmooth nonconvex optimization (2018). arXiv preprint arXiv:1806.04781
– reference: RubenHProbability content of regions under spherical normal distributions, IV: the distribution of homogeneous and non-homogeneous quadratic functions of normal variablesAnn. Math. Stat.19623325425701371890117.3720110.1214/aoms/1177704580
– reference: CondatLFast projection onto the simplex and the ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document} ballMath. Program.20161581–257558535113941347.4905010.1007/s10107-015-0946-6
– reference: ErmolievYMNorkinVStochastic generalized gradient method for nonconvex nonsmooth stochastic optimizationCybern. Syst. Anal.199834219621517006770930.9007410.1007/BF02742069
– reference: Peña-Ordieres, A., Luedtke, J.R., Wächter, A.: Solving chance-constrained problems via a smooth sample-based nonlinear approximation (2019)
– reference: ShanFXiaoXZhangLConvergence analysis on a smoothing approach to joint chance constrained programsOptimization201665122171219335649111383.9002210.1080/02331934.2016.1233551
– reference: van AckooijWFrangioniAde OliveiraWInexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite supportComputational Optimization and Applications201665363766935696131357.9010410.1007/s10589-016-9851-z
– reference: NemirovskiAJuditskyALanGShapiroARobust stochastic approximation approach to stochastic programmingSIAM J. Optim.20091941574160924860411189.9010910.1137/070704277
– reference: Ben-TalAEl GhaouiLNemirovskiARobust Optimization2009PrincetonPrinceton University Press1221.9000110.1515/9781400831050
– reference: CampiMCGarattiSA sampling-and-discarding approach to chance-constrained optimization: feasibility and optimalityJ. Optim. Theory Appl.2011148225728027805631211.9014610.1007/s10957-010-9754-6
– reference: Rafique, H., Liu, M., Lin, Q., Yang, T.: Non-convex min–max optimization: provable algorithms and applications in machine learning (2018). arXiv preprint arXiv:1810.02060
– reference: Prékopa, A.: Stochastic Programming, vol. 324. Springer, Berlin (1995)
– reference: BezansonJEdelmanAKarpinskiSShahVBJulia: A fresh approach to numerical computingSIAM Rev.2017591659836058261356.6803010.1137/141000671
– reference: CharnesACooperWWSymondsGHCost horizons and certainty equivalents: an approach to stochastic programming of heating oilManag. Sci.19584323526310.1287/mnsc.4.3.235
– reference: NurminskiiEThe quasigradient method for the solving of the nonlinear programming problemsCybernetics19739114515032452310.1007/BF01068677
– volume: 26
  start-page: 2417
  issue: 4
  year: 2011
  ident: 199_CR65
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2011.2154367
– ident: 199_CR25
  doi: 10.1007/978-3-642-61370-8_6
– ident: 199_CR64
– volume-title: Variational Analysis
  year: 2009
  ident: 199_CR54
– volume: 170
  start-page: 419
  issue: 2
  year: 2016
  ident: 199_CR3
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-016-0943-9
– volume: 47
  start-page: 1279
  issue: 7
  year: 2011
  ident: 199_CR11
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.02.029
– volume: 155
  start-page: 267
  issue: 1–2
  year: 2016
  ident: 199_CR30
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0846-1
– volume: 148
  start-page: 257
  issue: 2
  year: 2011
  ident: 199_CR12
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-010-9754-6
– volume: 163
  start-page: 181
  issue: 1
  year: 2014
  ident: 199_CR56
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-013-0513-3
– volume: 77
  start-page: 177
  year: 2017
  ident: 199_CR62
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.08.002
– volume: 17
  start-page: 969
  issue: 4
  year: 2006
  ident: 199_CR43
  publication-title: SIAM J. Optim.
  doi: 10.1137/050622328
– ident: 199_CR1
  doi: 10.1007/s10479-018-3091-9
– volume: 19
  start-page: 674
  issue: 2
  year: 2008
  ident: 199_CR41
  publication-title: SIAM J. Optim.
  doi: 10.1137/070702928
– ident: 199_CR31
– ident: 199_CR50
  doi: 10.1007/978-94-017-3087-7
– volume: 27
  start-page: 1834
  issue: 3
  year: 2017
  ident: 199_CR29
  publication-title: SIAM J. Optim.
  doi: 10.1137/15M1049750
– volume: 4
  start-page: 238
  issue: 1
  year: 1962
  ident: 199_CR6
  publication-title: Numer. Math.
  doi: 10.1007/BF01386316
– volume: 158
  start-page: 291
  issue: 1–2
  year: 2016
  ident: 199_CR36
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0929-7
– ident: 199_CR49
  doi: 10.1515/9781400869930-009
– volume: 28
  start-page: 930
  issue: 1
  year: 2018
  ident: 199_CR19
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M109003X
– volume: 101
  start-page: 230
  issue: 2
  year: 1997
  ident: 199_CR26
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(96)00395-5
– volume: 9
  start-page: 145
  issue: 1
  year: 1973
  ident: 199_CR47
  publication-title: Cybernetics
  doi: 10.1007/BF01068677
– ident: 199_CR20
  doi: 10.1007/s10208-018-09409-5
– ident: 199_CR51
– volume: 106
  start-page: 25
  issue: 1
  year: 2006
  ident: 199_CR63
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0559-y
– ident: 199_CR17
  doi: 10.1137/1.9781611971309
– volume: 146
  start-page: 219
  issue: 1–2
  year: 2014
  ident: 199_CR40
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0684-6
– ident: 199_CR13
– ident: 199_CR38
  doi: 10.1007/978-0-387-74759-0_170
– volume-title: Robust Optimization
  year: 2009
  ident: 199_CR7
  doi: 10.1515/9781400831050
– volume: 34
  start-page: 196
  issue: 2
  year: 1998
  ident: 199_CR27
  publication-title: Cybern. Syst. Anal.
  doi: 10.1007/BF02742069
– ident: 199_CR5
– volume: 158
  start-page: 575
  issue: 1–2
  year: 2016
  ident: 199_CR18
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0946-6
– ident: 199_CR58
  doi: 10.1137/1.9780898718751
– volume: 51
  start-page: 1065
  issue: 3
  year: 2012
  ident: 199_CR14
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-011-9401-7
– volume: 32
  start-page: 25
  issue: 1–2
  year: 2008
  ident: 199_CR39
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2007.05.009
– volume: 45
  start-page: 716
  issue: 7
  year: 2013
  ident: 199_CR35
  publication-title: IIE Trans.
  doi: 10.1080/0740817X.2012.745205
– volume: 24
  start-page: 1864
  issue: 4
  year: 2014
  ident: 199_CR59
  publication-title: SIAM J. Optim.
  doi: 10.1137/130922689
– volume: 19
  start-page: 1574
  issue: 4
  year: 2009
  ident: 199_CR44
  publication-title: SIAM J. Optim.
  doi: 10.1137/070704277
– ident: 199_CR2
– volume: 84
  start-page: 427
  issue: 2
  year: 2016
  ident: 199_CR32
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s00186-016-0564-y
– volume: 4
  start-page: 235
  issue: 3
  year: 1958
  ident: 199_CR15
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.4.3.235
– volume: 102
  start-page: 25
  issue: 1
  year: 2005
  ident: 199_CR10
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0499-y
– volume: 2
  start-page: 21
  year: 2000
  ident: 199_CR53
  publication-title: J. Risk
  doi: 10.21314/JOR.2000.038
– volume: 65
  start-page: 637
  issue: 3
  year: 2016
  ident: 199_CR61
  publication-title: Computational Optimization and Applications
  doi: 10.1007/s10589-016-9851-z
– volume: 59
  start-page: 65
  issue: 1
  year: 2017
  ident: 199_CR8
  publication-title: SIAM Rev.
  doi: 10.1137/141000671
– volume: 56
  start-page: 461
  issue: 3
  year: 2014
  ident: 199_CR9
  publication-title: SIAM Rev.
  doi: 10.1137/130910312
– ident: 199_CR33
– volume-title: Problem complexity and method efficiency in optimization
  year: 1983
  ident: 199_CR45
– volume: 59
  start-page: 617
  issue: 3
  year: 2011
  ident: 199_CR34
  publication-title: Oper. Res.
  doi: 10.1287/opre.1100.0910
– ident: 199_CR4
  doi: 10.1007/3-540-70734-4_16
– volume: 33
  start-page: 149
  issue: 1
  year: 1995
  ident: 199_CR28
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012992238369
– ident: 199_CR52
  doi: 10.1109/WSC.2009.5429360
– ident: 199_CR48
  doi: 10.1137/19M1261985
– volume: 13
  start-page: 930
  issue: 6
  year: 1965
  ident: 199_CR42
  publication-title: Oper. Res.
  doi: 10.1287/opre.13.6.930
– volume: 5
  start-page: 63
  issue: 1
  year: 2017
  ident: 199_CR60
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/16M1061308
– volume: 138
  start-page: 223
  issue: 1–2
  year: 2013
  ident: 199_CR22
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0539-6
– volume: 58
  start-page: 470
  issue: 2
  year: 2010
  ident: 199_CR16
  publication-title: Oper. Res.
  doi: 10.1287/opre.1090.0712
– volume: 15
  start-page: 938
  issue: 3
  year: 2005
  ident: 199_CR37
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623403430099
– ident: 199_CR46
– ident: 199_CR21
  doi: 10.1007/s10208-018-09409-5
– volume: 59
  start-page: 295
  issue: 2
  year: 2017
  ident: 199_CR24
  publication-title: SIAM Rev.
  doi: 10.1137/15M1020575
– volume: 65
  start-page: 2171
  issue: 12
  year: 2016
  ident: 199_CR57
  publication-title: Optimization
  doi: 10.1080/02331934.2016.1233551
– ident: 199_CR23
  doi: 10.1007/s10107-018-1311-3
– volume: 33
  start-page: 542
  issue: 2
  year: 1962
  ident: 199_CR55
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177704580
SSID ssj0000327839
Score 2.3173788
Snippet We propose a stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs. Our approach is based on a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 705
SubjectTerms Algorithms
Approximation
Constraints
Convergence
Full Length Paper
Mathematics
Mathematics and Statistics
Mathematics of Computing
Operations Research/Decision Theory
Optimization
Smoothing
Theory of Computation
Title A stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs
URI https://link.springer.com/article/10.1007/s12532-020-00199-y
https://www.proquest.com/docview/2586508075
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66XvQgPnF9kYM3DaRp0t0cF_GBsp5c0FNpJokKsopdQf-9M33sqqjgseTR0i_T-dLMfMPYQS8LHlm0FuB0T-gsi6LQKgiDzt8oWbjUUzby8Co7H-mLG3PTJIWVbbR7eyRZfalnyW7KpErQdod4iRXv82zB0N4dV_FIDaZ_VmRK1SOI95JYm1BW2yZb5udpvnqkGc38djJaOZzTFbbcMEU-qKFdZXNhvMaWPukH4tVwKrparrNywJHJwX1B0su8Egt_e6gzE3ldKJojQ_3cML7jOJ6HSkYCvQ-PJGeAjpI_RU4pwRAEEIGkOhLB83Gtq1G88Casq9xgo9OT6-Nz0dRUEIDGNhEqi7avTaGcMt4aZwFikngVezZTElwPZIAUcJNnbIzaQRp9TDONeJKwi0s3WQdvFrYYT4LMok9kv_BSg5MW0Pi9kWAlFEhUuixp32sOjeA4Pe9jPpNKJixyxCKvsMjfu-xwOua5ltv4s_duC1femF6ZK9Mn1olUqMuOWghnzb_Ptv2_7jtsUVF8SxXasss6k5fXsIcEZeL22cLg7PbyZL9alx-_lt_H
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxELUgPUAPFaUgQkPxgRu15PXam_gYoUahJDklErfVemzTSiit2CCVf8_MfiSAChLHlT92tW9n59meecPYWT8LHlm0FuB0X-gsi6LQKgiDzt8oWbjUUzbydJaNF_rntbluksLKNtq9PZKs_tSbZDdlUiVouUO8xIqHbfYBycCAArkWarjeWZEpVY8g3ktibUJZbZtsmf9P89wjbWjmi5PRyuGM9tinhinyYQ3tZ7YVlvvs4xP9QLyarkVXyy-sHHJkcvCrIOllXomF__tdZybyulA0R4b6tGF5w3E8D5WMBHofHknOAB0l_xM5pQRDEEAEkupIBM-Xta5GccebsK7ygC1GP-YXY9HUVBCAxrYSKot2oE2hnDLeGmcBYpJ4Ffs2UxJcH2SAFHCRZ2yM2kEafUwzjXiSsItLD1kHbxaOGE-CzKJP5KDwUoOTFtD4vZFgJRRIVLosad9rDo3gOD3vbb6RSiYscsQir7DIH7rsfD3mby238WbvXgtX3phemSszINaJVKjLvrcQbppfn-34fd1P2c54Pp3kk8vZ1Ve2qyjWpQpz6bHO6u4-nCBZWblv1bf5CGry4SY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxELVokKpyQECLCITiQ2_Uitdrb-JjBEQUCuJApNxW67FdkNASkSDBv2dmd_PRqkXqceWPXXm8nmd73hvGvvWy4BFFawFO94TOsigKrYIw6PyNkoVLPbGRr66z85G-GJvxCou_inafX0nWnAZSaSpn3YmP3SXxTZlUCdr6EEax4vUDW8flOKF5PVKDxSmLTCmTBGFgEm4TymrbMGf-3s3v3mkJOf-4Ja2cz3CLbTaokQ9qM2-ztVDusI0VLUF8uloIsE4_s-mAI6qDu4JkmHklHP5yX7MUeZ00miNaXS0of3Fsz0MlKYEjwSNJG6DT5I-REz0YggACk5RTInhe1hobxRNvQrymX9hoeHZ7ci6a_AoCcKRmQmXR9rUplFPGW-MsQEwSr2LPZkqC64EMkAJu-IyNUTtIo49pptG2JPLi0l3WwpeFPcaTILPoE9kvvNTgpAVcCLyRYCUUCFraLJmPaw6N-Dh970O-lE0mW-Roi7yyRf7aZseLNpNaeuPd2p25ufLmN5zmyvQJgSIsarPvcxMui__d2_7_VT9iH29Oh_nPH9eXB-yTorCXKuKlw1qzp-dwiLhl5r5WU_MNYP_lYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stochastic+approximation+method+for+approximating+the+efficient+frontier+of+chance-constrained+nonlinear+programs&rft.jtitle=Mathematical+programming+computation&rft.au=Kannan+Rohit&rft.au=Luedtke%2C+James+R&rft.date=2021-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1867-2949&rft.eissn=1867-2957&rft.volume=13&rft.issue=4&rft.spage=705&rft.epage=751&rft_id=info:doi/10.1007%2Fs12532-020-00199-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-2949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-2949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-2949&client=summon