A stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs
We propose a stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs. Our approach is based on a bi-objective viewpoint of chance-constrained programs that seeks solutions on the efficient frontier of optimal objective value versus risk of co...
Saved in:
Published in | Mathematical programming computation Vol. 13; no. 4; pp. 705 - 751 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs. Our approach is based on a bi-objective viewpoint of chance-constrained programs that seeks solutions on the efficient frontier of optimal objective value versus risk of constraints violation. To this end, we construct a reformulated problem whose objective is to minimize the probability of constraints violation subject to deterministic convex constraints (which includes a bound on the objective function value). We adapt existing smoothing-based approaches for chance-constrained problems to derive a convergent sequence of smooth approximations of our reformulated problem, and apply a projected stochastic subgradient algorithm to solve it. In contrast with exterior sampling-based approaches (such as sample average approximation) that approximate the original chance-constrained program with one having finite support, our proposal converges to stationary solutions of a smooth approximation of the original problem, thereby avoiding poor local solutions that may be an artefact of a fixed sample. Our proposal also includes a tailored implementation of the smoothing-based approach that chooses key algorithmic parameters based on problem data. Computational results on four test problems from the literature indicate that our proposed approach can efficiently determine good approximations of the efficient frontier. |
---|---|
AbstractList | We propose a stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs. Our approach is based on a bi-objective viewpoint of chance-constrained programs that seeks solutions on the efficient frontier of optimal objective value versus risk of constraints violation. To this end, we construct a reformulated problem whose objective is to minimize the probability of constraints violation subject to deterministic convex constraints (which includes a bound on the objective function value). We adapt existing smoothing-based approaches for chance-constrained problems to derive a convergent sequence of smooth approximations of our reformulated problem, and apply a projected stochastic subgradient algorithm to solve it. In contrast with exterior sampling-based approaches (such as sample average approximation) that approximate the original chance-constrained program with one having finite support, our proposal converges to stationary solutions of a smooth approximation of the original problem, thereby avoiding poor local solutions that may be an artefact of a fixed sample. Our proposal also includes a tailored implementation of the smoothing-based approach that chooses key algorithmic parameters based on problem data. Computational results on four test problems from the literature indicate that our proposed approach can efficiently determine good approximations of the efficient frontier. |
Author | Luedtke, James R. Kannan, Rohit |
Author_xml | – sequence: 1 givenname: Rohit surname: Kannan fullname: Kannan, Rohit email: rohitk@alum.mit.edu organization: Wisconsin Institute for Discovery, University of Wisconsin-Madison – sequence: 2 givenname: James R. surname: Luedtke fullname: Luedtke, James R. organization: Department of Industrial and Systems Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison |
BookMark | eNp9kEtPAyEUhYmpibX2D7gicT3KYxiGZdP4Skzc6JowDLQ0LVSgif330o5R46JsuMm93zn3nksw8sEbAK4xusUI8buECaOkQgRVCGEhqv0ZGOO24RURjI9-6lpcgGlKK1QeJbylYgzSDKYc9FKl7DRU220Mn26jsgsebkxehh7aEP82_ALmpYHGWqed8RnaGHx2JsJgYRHy2lQ6-JSjct70sCy7LoWKsEgsotqkK3Bu1TqZ6fc_Ae8P92_zp-rl9fF5PnupNMUiV6Sxoq2ZIh1hvWCd0Npi3BPLRUOQ7rhGRlPNMWfC2rrT1PaWNrVoGibqtqMTcDPoFuOPnUlZrsIu-mIpCWsbhlrEWZkiw5SOIaVorNzGcmjcS4zkIV855CtLvvKYr9wXqP0HaZePqR3OXp9G6YCm4uMXJv5udYL6AlDPlOU |
CitedBy_id | crossref_primary_10_1007_s11228_021_00598_w crossref_primary_10_1007_s10589_024_00573_9 crossref_primary_10_1016_j_strusafe_2022_102232 crossref_primary_10_1016_j_compchemeng_2024_108632 crossref_primary_10_1007_s00186_024_00859_y crossref_primary_10_1007_s10589_024_00602_7 crossref_primary_10_1016_j_compchemeng_2023_108170 crossref_primary_10_1007_s11228_022_00639_y crossref_primary_10_1145_3585516 crossref_primary_10_3103_S1066530722030024 crossref_primary_10_1007_s10957_024_02532_0 |
Cites_doi | 10.1109/TPWRS.2011.2154367 10.1007/978-3-642-61370-8_6 10.1007/s10957-016-0943-9 10.1016/j.automatica.2011.02.029 10.1007/s10107-014-0846-1 10.1007/s10957-010-9754-6 10.1007/s10957-013-0513-3 10.1016/j.cor.2016.08.002 10.1137/050622328 10.1007/s10479-018-3091-9 10.1137/070702928 10.1007/978-94-017-3087-7 10.1137/15M1049750 10.1007/BF01386316 10.1007/s10107-015-0929-7 10.1515/9781400869930-009 10.1137/16M109003X 10.1016/S0377-2217(96)00395-5 10.1007/BF01068677 10.1007/s10208-018-09409-5 10.1007/s10107-004-0559-y 10.1137/1.9781611971309 10.1007/s10107-013-0684-6 10.1007/978-0-387-74759-0_170 10.1515/9781400831050 10.1007/BF02742069 10.1007/s10107-015-0946-6 10.1137/1.9780898718751 10.1007/s10589-011-9401-7 10.1016/j.compchemeng.2007.05.009 10.1080/0740817X.2012.745205 10.1137/130922689 10.1137/070704277 10.1007/s00186-016-0564-y 10.1287/mnsc.4.3.235 10.1007/s10107-003-0499-y 10.21314/JOR.2000.038 10.1007/s10589-016-9851-z 10.1137/141000671 10.1137/130910312 10.1287/opre.1100.0910 10.1007/3-540-70734-4_16 10.1137/S0363012992238369 10.1109/WSC.2009.5429360 10.1137/19M1261985 10.1287/opre.13.6.930 10.1137/16M1061308 10.1007/s10107-012-0539-6 10.1287/opre.1090.0712 10.1137/S1052623403430099 10.1137/15M1020575 10.1080/02331934.2016.1233551 10.1007/s10107-018-1311-3 10.1214/aoms/1177704580 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021 – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s12532-020-00199-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1867-2957 |
EndPage | 751 |
ExternalDocumentID | 10_1007_s12532_020_00199_y |
GroupedDBID | -5D -5G -BR -EM -~C 06D 0R~ 0VY 1N0 203 29M 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 40E 6NX 8UJ 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AUKKA AVWKF AXYYD AYJHY AZFZN BA0 BAPOH BGNMA CAG COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z J9A JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J OAM OK1 P9R PT4 QOS R89 RIG RLLFE ROL RSV S1Z S27 S3B SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z83 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-26f9845a2b25d95b9ccf11d2f79620cb7c0ec3c71759ff4bc3fdf3649665948b3 |
IEDL.DBID | U2A |
ISSN | 1867-2949 |
IngestDate | Fri Jul 25 10:58:26 EDT 2025 Tue Jul 01 04:10:32 EDT 2025 Thu Apr 24 22:51:21 EDT 2025 Fri Feb 21 02:47:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Efficient frontier Stochastic approximation Chance constraints 90C29 90C15 Stochastic subgradient |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-26f9845a2b25d95b9ccf11d2f79620cb7c0ec3c71759ff4bc3fdf3649665948b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2586508075 |
PQPubID | 2044128 |
PageCount | 47 |
ParticipantIDs | proquest_journals_2586508075 crossref_primary_10_1007_s12532_020_00199_y crossref_citationtrail_10_1007_s12532_020_00199_y springer_journals_10_1007_s12532_020_00199_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | A Publication of the Mathematical Optimization Society |
PublicationTitle | Mathematical programming computation |
PublicationTitleAbbrev | Math. Prog. Comp |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | ErmolievYMNorkinVIWetsRJThe minimization of semicontinuous functions: mollifier subgradientsSIAM J. Control Optim.199533114916713116640822.4901610.1137/S0363012992238369 HuZHongLJZhangLA smooth Monte Carlo approach to joint chance-constrained programsIIE Trans.201345771673510.1080/0740817X.2012.745205 ErmolievYMNorkinVStochastic generalized gradient method for nonconvex nonsmooth stochastic optimizationCybern. Syst. Anal.199834219621517006770930.9007410.1007/BF02742069 ShanFXiaoXZhangLConvergence analysis on a smoothing approach to joint chance constrained programsOptimization201665122171219335649111383.9002210.1080/02331934.2016.1233551 CalafioreGCampiMCUncertain convex programs: randomized solutions and confidence levelsMath. Program.20051021254621154791177.9031710.1007/s10107-003-0499-y Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009) ChenWSimMSunJTeoCPFrom CVaR to uncertainty set: implications in joint chance-constrained optimizationOper. Res.201058247048526748101226.9005110.1287/opre.1090.0712 Drusvyatskiy, D., Paquette, C.: Efficiency of minimizing compositions of convex functions and smooth maps. Math. Program. (2018). https://doi.org/10.1007/s10107-018-1311-3 RubenHProbability content of regions under spherical normal distributions, IV: the distribution of homogeneous and non-homogeneous quadratic functions of normal variablesAnn. Math. Stat.19623325425701371890117.3720110.1214/aoms/1177704580 CharnesACooperWWSymondsGHCost horizons and certainty equivalents: an approach to stochastic programming of heating oilManag. Sci.19584323526310.1287/mnsc.4.3.235 WächterABieglerLTOn the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programmingMath. Program.20061061255721956161134.9054210.1007/s10107-004-0559-y Cao, Y., Zavala, V.: A sigmoidal approximation for chance-constrained nonlinear programs (2017). http://www.optimization-online.org/DB_FILE/2017/10/6236.pdf. Last accessed: April 1, 2019 Adam, L., Branda, M., Heitsch, H., Henrion, R.: Solving joint chance constrained problems using regularization and Benders’ decomposition. Ann. Oper. Res., pp. 1–27 (2018), https://doi.org/10.1007/s10479-018-3091-9 Ben-TalAEl GhaouiLNemirovskiARobust Optimization2009PrincetonPrinceton University Press1221.9000110.1515/9781400831050 LagoaCMLiXSznaierMProbabilistically constrained linear programs and risk-adjusted controller designSIAM J. Optim.200515393895121428681077.9004410.1137/S1052623403430099 Rengarajan, T., Morton, D.P.: Estimating the efficient frontier of a probabilistic bicriteria model. In: Winter Simulation Conference, pp. 494–504 (2009) Peña-Ordieres, A., Luedtke, J.R., Wächter, A.: Solving chance-constrained problems via a smooth sample-based nonlinear approximation (2019) Prékopa, A.: Stochastic Programming, vol. 324. Springer, Berlin (1995) JiangRGuanYData-driven chance constrained stochastic programMath. Program.20161581–229132735113851346.9064010.1007/s10107-015-0929-7 LuedtkeJAhmedSA sample approximation approach for optimization with probabilistic constraintsSIAM J. Optim.200819267469924250351177.9030110.1137/070702928 AdamLBrandaMNonlinear chance constrained problems: optimality conditions, regularization and solversJ. Optim. Theory Appl.2016170241943635277031346.9063410.1007/s10957-016-0943-9 ShanFZhangLXiaoXA smoothing function approach to joint chance-constrained programsJ. Optim. Theory Appl.2014163118119932609811333.9008510.1007/s10957-013-0513-3 BienstockDChertkovMHarnettSChance-constrained optimal power flow: risk-aware network control under uncertaintySIAM Rev.201456346149532458601301.9309510.1137/130910312 ZhangHLiPChance constrained programming for optimal power flow under uncertaintyIEEE Trans. Power Syst.20112642417242410.1109/TPWRS.2011.2154367 NemirovskiAShapiroAConvex approximations of chance constrained programsSIAM J. Optim.200617496999622745001126.9005610.1137/050622328 Clarke, F.H.: Optimization and Nonsmooth Analysis, vol 5. SIAM, Philadelphia (1990) van AckooijWFrangioniAde OliveiraWInexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite supportComputational Optimization and Applications201665363766935696131357.9010410.1007/s10589-016-9851-z Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R.L., Hendel, G., Hojny, C., Koch, T., Lübbecke, M.E., Maher, S.J., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Schubert, C., Serrano, F., Shinano, Y., Viernickel, J.M., Walter, M., Wegscheider, F., Witt, J.T., Witzig, J.: The SCIP Optimization Suite 6.0. Technical report (2018) Optimization. http://www.optimization-online.org/DB_HTML/2018/07/6692.html CensorYChenWCombettesPLDavidiRHermanGTOn the effectiveness of projection methods for convex feasibility problems with linear inequality constraintsComput. Optim. Appl.20125131065108828919281244.9015510.1007/s10589-011-9401-7 CurtisFEWachterAZavalaVMA sequential algorithm for solving nonlinear optimization problems with chance constraintsSIAM J. Optim.201828193095837807541396.9005210.1137/16M109003X van AckooijWHenrionRGradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributionsSIAM J. Optim.20142441864188932733431319.9308010.1137/130922689 GeletuAHoffmannAKloppelMLiPAn inner–outer approximation approach to chance constrained optimizationSIAM J. Optim.20172731834185736878551387.9017010.1137/15M1049750 RockafellarRTWetsRJBVariational Analysis2009BerlinSpringer0888.49001 GhadimiSLanGZhangHMini-batch stochastic approximation methods for nonconvex stochastic composite optimizationMath. Program.20161551–226730534398031332.9019610.1007/s10107-014-0846-1 van AckooijWHenrionR(Sub-)Gradient formulae for probability functions of random inequality systems under Gaussian distributionSIAM/ASA J. Uncertain. Quantif.201751638735943311434.9011110.1137/16M1061308 NurminskiiEThe quasigradient method for the solving of the nonlinear programming problemsCybernetics19739114515032452310.1007/BF01068677 BendersJFPartitioning procedures for solving mixed-variables programming problemsNumer. Math.1962412382521473030109.3830210.1007/BF01386316 CampiMCGarattiSA sampling-and-discarding approach to chance-constrained optimization: feasibility and optimalityJ. Optim. Theory Appl.2011148225728027805631211.9014610.1007/s10957-010-9754-6 HongLJYangYZhangLSequential convex approximations to joint chance constrained programs: a Monte Carlo approachOper. Res.201159361763028485421231.9030310.1287/opre.1100.0910 GotzesCHeitschHHenrionRSchultzROn the quantification of nomination feasibility in stationary gas networks with random loadMath. Methods Oper. Res.201684242745735669331354.9003110.1007/s00186-016-0564-y Zhang, S., He, N.: On the convergence rate of stochastic mirror descent for nonsmooth nonconvex optimization (2018). arXiv preprint arXiv:1806.04781 Davis, D., Drusvyatskiy, D.: Stochastic subgradient method converges at the rate Ok-1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\left(k^{-1/4}\right)$$\end{document} on weakly convex functions (2018). arXiv preprint arXiv:1802.02988 ErmolievYMNorkinVIOn nonsmooth and discontinuous problems of stochastic systems optimizationEur. J. Oper. Res.199710122302440929.9006010.1016/S0377-2217(96)00395-5 NemirovskyASYudinDBProblem complexity and method efficiency in optimization1983LondonWiley Gurobi Optimization LLC: Gurobi Optimizer Reference Manual (2018). http://www.gurobi.com LiPArellano-GarciaHWoznyGChance constrained programming approach to process optimization under uncertaintyComput. Chem. Eng.2008321–2254510.1016/j.compchemeng.2007.05.009 LuedtkeJA branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite supportMath. Program.20141461–221924432326141297.9009210.1007/s10107-013-0684-6 Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Koster, J.: MUMPS: a general purpose distributed memory sparse solver. In: International Workshop on Applied Parallel Computing. Springer, pp. 121–130 (2000) BezansonJEdelmanAKarpinskiSShahVBJulia: A fresh approach to numerical computingSIAM Rev.2017591659836058261356.6803010.1137/141000671 CalafioreGCDabbeneFTempoRResearch on probabilistic methods for control system designAutomatica20114771279129328892251219.9303810.1016/j.automatica.2011.02.029 Norkin, V.I.: The analysis and optimization of probability functions. Tech. rep., IIASA Working Paper, WP-93-6 (1993) Davis, D., Drusvyatskiy, D., Kakade, S., Lee, J.D.: Stochastic subgradient method converges on tame functions (2018). arXiv preprint arXiv:1804.07795 CondatLFast projection onto the simplex and the ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document} ballMath. Program.20161581–257558535113941347.4905010.1007/s10107-015-0946-6 Ermoliev, Y.M.: Stochastic quasigradient methods. In: Ermoliev, Y.M., Wets, R.J. (eds). Numerical Techniques for Stochastic Optimization. Springer, Berlin, pp. 141–185 (1988) MillerBLWagnerHMChance constrained programming with joint constraintsOper. Res.19651369309450132.4010210.1287/opre.13.6.930 Prékopa, A.: On probabilistic constrained programming. In: Proceedings of the Princeton Symposium on Mathematical Programming. Princeton, pp. 113–138 (1970) Andrieu, L., Cohen, G., Vázquez-Abad, F.: Stochastic programming with probability constraints (2007). arXiv preprint arXiv:0708.0281 RockafellarRTUryasevSOptimization of conditional value-at-riskJ. Risk20002214210.21314/JOR.2000.038 Adam, L., Branda, M.: Machine learning approach to chance-constrained problems: An algorithm b 199_CR31 A Wächter (199_CR63) 2006; 106 RT Rockafellar (199_CR53) 2000; 2 H Zhang (199_CR65) 2011; 26 AS Nemirovsky (199_CR45) 1983 A Nemirovski (199_CR44) 2009; 19 199_CR33 D Dentcheva (199_CR22) 2013; 138 JF Benders (199_CR6) 1962; 4 BL Miller (199_CR42) 1965; 13 W van Ackooij (199_CR59) 2014; 24 R Jiang (199_CR36) 2016; 158 A Charnes (199_CR15) 1958; 4 199_CR25 G Calafiore (199_CR10) 2005; 102 199_CR20 199_CR64 C Gotzes (199_CR32) 2016; 84 E Nurminskii (199_CR47) 1973; 9 H Ruben (199_CR55) 1962; 33 199_CR23 RT Rockafellar (199_CR54) 2009 199_CR21 YM Ermoliev (199_CR28) 1995; 33 F Shan (199_CR56) 2014; 163 A Ben-Tal (199_CR7) 2009 D Bienstock (199_CR9) 2014; 56 A Geletu (199_CR29) 2017; 27 W van Ackooij (199_CR62) 2017; 77 199_CR17 LJ Hong (199_CR34) 2011; 59 199_CR58 MC Campi (199_CR12) 2011; 148 Y Censor (199_CR14) 2012; 51 199_CR52 J Luedtke (199_CR40) 2014; 146 199_CR51 199_CR50 199_CR13 A Nemirovski (199_CR43) 2006; 17 199_CR2 199_CR1 199_CR4 L Condat (199_CR18) 2016; 158 YM Ermoliev (199_CR27) 1998; 34 YM Ermoliev (199_CR26) 1997; 101 199_CR49 F Shan (199_CR57) 2016; 65 199_CR48 W van Ackooij (199_CR60) 2017; 5 199_CR5 CM Lagoa (199_CR37) 2005; 15 W van Ackooij (199_CR61) 2016; 65 199_CR46 FE Curtis (199_CR19) 2018; 28 GC Calafiore (199_CR11) 2011; 47 S Ghadimi (199_CR30) 2016; 155 I Dunning (199_CR24) 2017; 59 L Adam (199_CR3) 2016; 170 J Luedtke (199_CR41) 2008; 19 Z Hu (199_CR35) 2013; 45 J Bezanson (199_CR8) 2017; 59 W Chen (199_CR16) 2010; 58 199_CR38 P Li (199_CR39) 2008; 32 |
References_xml | – reference: Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009) – reference: Andrieu, L., Cohen, G., Vázquez-Abad, F.: Stochastic programming with probability constraints (2007). arXiv preprint arXiv:0708.0281 – reference: MillerBLWagnerHMChance constrained programming with joint constraintsOper. Res.19651369309450132.4010210.1287/opre.13.6.930 – reference: DunningIHuchetteJLubinMJuMP: a modeling language for mathematical optimizationSIAM Rev.201759229532036464931368.9000210.1137/15M1020575 – reference: CensorYChenWCombettesPLDavidiRHermanGTOn the effectiveness of projection methods for convex feasibility problems with linear inequality constraintsComput. Optim. Appl.20125131065108828919281244.9015510.1007/s10589-011-9401-7 – reference: HuZHongLJZhangLA smooth Monte Carlo approach to joint chance-constrained programsIIE Trans.201345771673510.1080/0740817X.2012.745205 – reference: van AckooijWHenrionRGradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributionsSIAM J. Optim.20142441864188932733431319.9308010.1137/130922689 – reference: AdamLBrandaMNonlinear chance constrained problems: optimality conditions, regularization and solversJ. Optim. Theory Appl.2016170241943635277031346.9063410.1007/s10957-016-0943-9 – reference: ZhangHLiPChance constrained programming for optimal power flow under uncertaintyIEEE Trans. Power Syst.20112642417242410.1109/TPWRS.2011.2154367 – reference: Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R.L., Hendel, G., Hojny, C., Koch, T., Lübbecke, M.E., Maher, S.J., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Schubert, C., Serrano, F., Shinano, Y., Viernickel, J.M., Walter, M., Wegscheider, F., Witt, J.T., Witzig, J.: The SCIP Optimization Suite 6.0. Technical report (2018) Optimization. http://www.optimization-online.org/DB_HTML/2018/07/6692.html – reference: WächterABieglerLTOn the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programmingMath. Program.20061061255721956161134.9054210.1007/s10107-004-0559-y – reference: Drusvyatskiy, D., Paquette, C.: Efficiency of minimizing compositions of convex functions and smooth maps. Math. Program. (2018). https://doi.org/10.1007/s10107-018-1311-3 – reference: DentchevaDMartinezGRegularization methods for optimization problems with probabilistic constraintsMath. Program.20131381–222325130348061276.9004310.1007/s10107-012-0539-6 – reference: Davis, D., Drusvyatskiy, D.: Stochastic subgradient method converges at the rate Ok-1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\left(k^{-1/4}\right)$$\end{document} on weakly convex functions (2018). arXiv preprint arXiv:1802.02988 – reference: Cao, Y., Zavala, V.: A sigmoidal approximation for chance-constrained nonlinear programs (2017). http://www.optimization-online.org/DB_FILE/2017/10/6236.pdf. Last accessed: April 1, 2019 – reference: ChenWSimMSunJTeoCPFrom CVaR to uncertainty set: implications in joint chance-constrained optimizationOper. Res.201058247048526748101226.9005110.1287/opre.1090.0712 – reference: BendersJFPartitioning procedures for solving mixed-variables programming problemsNumer. Math.1962412382521473030109.3830210.1007/BF01386316 – reference: LagoaCMLiXSznaierMProbabilistically constrained linear programs and risk-adjusted controller designSIAM J. Optim.200515393895121428681077.9004410.1137/S1052623403430099 – reference: NemirovskiAShapiroAConvex approximations of chance constrained programsSIAM J. Optim.200617496999622745001126.9005610.1137/050622328 – reference: Adam, L., Branda, M.: Machine learning approach to chance-constrained problems: An algorithm based on the stochastic gradient descent (2018). http://www.optimization-online.org/DB_HTML/2018/12/6983.html (Last accessed April 1, 2019) – reference: Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Koster, J.: MUMPS: a general purpose distributed memory sparse solver. In: International Workshop on Applied Parallel Computing. Springer, pp. 121–130 (2000) – reference: ErmolievYMNorkinVIWetsRJThe minimization of semicontinuous functions: mollifier subgradientsSIAM J. Control Optim.199533114916713116640822.4901610.1137/S0363012992238369 – reference: van AckooijWBergeVde OliveiraWSagastizábalCProbabilistic optimization via approximate p-efficient points and bundle methodsComput. Oper. Res.20177717719335483421391.9045010.1016/j.cor.2016.08.002 – reference: RockafellarRTWetsRJBVariational Analysis2009BerlinSpringer0888.49001 – reference: CalafioreGCDabbeneFTempoRResearch on probabilistic methods for control system designAutomatica20114771279129328892251219.9303810.1016/j.automatica.2011.02.029 – reference: LuedtkeJA branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite supportMath. Program.20141461–221924432326141297.9009210.1007/s10107-013-0684-6 – reference: Clarke, F.H.: Optimization and Nonsmooth Analysis, vol 5. SIAM, Philadelphia (1990) – reference: CurtisFEWachterAZavalaVMA sequential algorithm for solving nonlinear optimization problems with chance constraintsSIAM J. Optim.201828193095837807541396.9005210.1137/16M109003X – reference: Adam, L., Branda, M., Heitsch, H., Henrion, R.: Solving joint chance constrained problems using regularization and Benders’ decomposition. Ann. Oper. Res., pp. 1–27 (2018), https://doi.org/10.1007/s10479-018-3091-9 – reference: van AckooijWHenrionR(Sub-)Gradient formulae for probability functions of random inequality systems under Gaussian distributionSIAM/ASA J. Uncertain. Quantif.201751638735943311434.9011110.1137/16M1061308 – reference: CalafioreGCampiMCUncertain convex programs: randomized solutions and confidence levelsMath. Program.20051021254621154791177.9031710.1007/s10107-003-0499-y – reference: GeletuAHoffmannAKloppelMLiPAn inner–outer approximation approach to chance constrained optimizationSIAM J. Optim.20172731834185736878551387.9017010.1137/15M1049750 – reference: GotzesCHeitschHHenrionRSchultzROn the quantification of nomination feasibility in stationary gas networks with random loadMath. Methods Oper. Res.201684242745735669331354.9003110.1007/s00186-016-0564-y – reference: Ermoliev, Y.M.: Stochastic quasigradient methods. In: Ermoliev, Y.M., Wets, R.J. (eds). Numerical Techniques for Stochastic Optimization. Springer, Berlin, pp. 141–185 (1988) – reference: Norkin, V.I.: The analysis and optimization of probability functions. Tech. rep., IIASA Working Paper, WP-93-6 (1993) – reference: LuedtkeJAhmedSA sample approximation approach for optimization with probabilistic constraintsSIAM J. Optim.200819267469924250351177.9030110.1137/070702928 – reference: GhadimiSLanGZhangHMini-batch stochastic approximation methods for nonconvex stochastic composite optimizationMath. Program.20161551–226730534398031332.9019610.1007/s10107-014-0846-1 – reference: JiangRGuanYData-driven chance constrained stochastic programMath. Program.20161581–229132735113851346.9064010.1007/s10107-015-0929-7 – reference: BienstockDChertkovMHarnettSChance-constrained optimal power flow: risk-aware network control under uncertaintySIAM Rev.201456346149532458601301.9309510.1137/130910312 – reference: Gurobi Optimization LLC: Gurobi Optimizer Reference Manual (2018). http://www.gurobi.com – reference: Lepp, R.: Extremum problems with probability functions: Kernel type solution methods. In: Floudas CA, Pardalos PM (eds) Encyclopedia of Optimization. Springer, Berlin, pp. 969–973 (2009). https://doi.org/10.1007/978-0-387-74759-0_170 – reference: ErmolievYMNorkinVIOn nonsmooth and discontinuous problems of stochastic systems optimizationEur. J. Oper. Res.199710122302440929.9006010.1016/S0377-2217(96)00395-5 – reference: HongLJYangYZhangLSequential convex approximations to joint chance constrained programs: a Monte Carlo approachOper. Res.201159361763028485421231.9030310.1287/opre.1100.0910 – reference: RockafellarRTUryasevSOptimization of conditional value-at-riskJ. Risk20002214210.21314/JOR.2000.038 – reference: ShanFZhangLXiaoXA smoothing function approach to joint chance-constrained programsJ. Optim. Theory Appl.2014163118119932609811333.9008510.1007/s10957-013-0513-3 – reference: Davis, D., Drusvyatskiy, D., Kakade, S., Lee, J.D.: Stochastic subgradient method converges on tame functions (2018). arXiv preprint arXiv:1804.07795 – reference: LiPArellano-GarciaHWoznyGChance constrained programming approach to process optimization under uncertaintyComput. Chem. Eng.2008321–2254510.1016/j.compchemeng.2007.05.009 – reference: Rengarajan, T., Morton, D.P.: Estimating the efficient frontier of a probabilistic bicriteria model. In: Winter Simulation Conference, pp. 494–504 (2009) – reference: Prékopa, A.: On probabilistic constrained programming. In: Proceedings of the Princeton Symposium on Mathematical Programming. Princeton, pp. 113–138 (1970) – reference: NemirovskyASYudinDBProblem complexity and method efficiency in optimization1983LondonWiley – reference: Zhang, S., He, N.: On the convergence rate of stochastic mirror descent for nonsmooth nonconvex optimization (2018). arXiv preprint arXiv:1806.04781 – reference: RubenHProbability content of regions under spherical normal distributions, IV: the distribution of homogeneous and non-homogeneous quadratic functions of normal variablesAnn. Math. Stat.19623325425701371890117.3720110.1214/aoms/1177704580 – reference: CondatLFast projection onto the simplex and the ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document} ballMath. Program.20161581–257558535113941347.4905010.1007/s10107-015-0946-6 – reference: ErmolievYMNorkinVStochastic generalized gradient method for nonconvex nonsmooth stochastic optimizationCybern. Syst. Anal.199834219621517006770930.9007410.1007/BF02742069 – reference: Peña-Ordieres, A., Luedtke, J.R., Wächter, A.: Solving chance-constrained problems via a smooth sample-based nonlinear approximation (2019) – reference: ShanFXiaoXZhangLConvergence analysis on a smoothing approach to joint chance constrained programsOptimization201665122171219335649111383.9002210.1080/02331934.2016.1233551 – reference: van AckooijWFrangioniAde OliveiraWInexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite supportComputational Optimization and Applications201665363766935696131357.9010410.1007/s10589-016-9851-z – reference: NemirovskiAJuditskyALanGShapiroARobust stochastic approximation approach to stochastic programmingSIAM J. Optim.20091941574160924860411189.9010910.1137/070704277 – reference: Ben-TalAEl GhaouiLNemirovskiARobust Optimization2009PrincetonPrinceton University Press1221.9000110.1515/9781400831050 – reference: CampiMCGarattiSA sampling-and-discarding approach to chance-constrained optimization: feasibility and optimalityJ. Optim. Theory Appl.2011148225728027805631211.9014610.1007/s10957-010-9754-6 – reference: Rafique, H., Liu, M., Lin, Q., Yang, T.: Non-convex min–max optimization: provable algorithms and applications in machine learning (2018). arXiv preprint arXiv:1810.02060 – reference: Prékopa, A.: Stochastic Programming, vol. 324. Springer, Berlin (1995) – reference: BezansonJEdelmanAKarpinskiSShahVBJulia: A fresh approach to numerical computingSIAM Rev.2017591659836058261356.6803010.1137/141000671 – reference: CharnesACooperWWSymondsGHCost horizons and certainty equivalents: an approach to stochastic programming of heating oilManag. Sci.19584323526310.1287/mnsc.4.3.235 – reference: NurminskiiEThe quasigradient method for the solving of the nonlinear programming problemsCybernetics19739114515032452310.1007/BF01068677 – volume: 26 start-page: 2417 issue: 4 year: 2011 ident: 199_CR65 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2011.2154367 – ident: 199_CR25 doi: 10.1007/978-3-642-61370-8_6 – ident: 199_CR64 – volume-title: Variational Analysis year: 2009 ident: 199_CR54 – volume: 170 start-page: 419 issue: 2 year: 2016 ident: 199_CR3 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-016-0943-9 – volume: 47 start-page: 1279 issue: 7 year: 2011 ident: 199_CR11 publication-title: Automatica doi: 10.1016/j.automatica.2011.02.029 – volume: 155 start-page: 267 issue: 1–2 year: 2016 ident: 199_CR30 publication-title: Math. Program. doi: 10.1007/s10107-014-0846-1 – volume: 148 start-page: 257 issue: 2 year: 2011 ident: 199_CR12 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-010-9754-6 – volume: 163 start-page: 181 issue: 1 year: 2014 ident: 199_CR56 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-013-0513-3 – volume: 77 start-page: 177 year: 2017 ident: 199_CR62 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2016.08.002 – volume: 17 start-page: 969 issue: 4 year: 2006 ident: 199_CR43 publication-title: SIAM J. Optim. doi: 10.1137/050622328 – ident: 199_CR1 doi: 10.1007/s10479-018-3091-9 – volume: 19 start-page: 674 issue: 2 year: 2008 ident: 199_CR41 publication-title: SIAM J. Optim. doi: 10.1137/070702928 – ident: 199_CR31 – ident: 199_CR50 doi: 10.1007/978-94-017-3087-7 – volume: 27 start-page: 1834 issue: 3 year: 2017 ident: 199_CR29 publication-title: SIAM J. Optim. doi: 10.1137/15M1049750 – volume: 4 start-page: 238 issue: 1 year: 1962 ident: 199_CR6 publication-title: Numer. Math. doi: 10.1007/BF01386316 – volume: 158 start-page: 291 issue: 1–2 year: 2016 ident: 199_CR36 publication-title: Math. Program. doi: 10.1007/s10107-015-0929-7 – ident: 199_CR49 doi: 10.1515/9781400869930-009 – volume: 28 start-page: 930 issue: 1 year: 2018 ident: 199_CR19 publication-title: SIAM J. Optim. doi: 10.1137/16M109003X – volume: 101 start-page: 230 issue: 2 year: 1997 ident: 199_CR26 publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(96)00395-5 – volume: 9 start-page: 145 issue: 1 year: 1973 ident: 199_CR47 publication-title: Cybernetics doi: 10.1007/BF01068677 – ident: 199_CR20 doi: 10.1007/s10208-018-09409-5 – ident: 199_CR51 – volume: 106 start-page: 25 issue: 1 year: 2006 ident: 199_CR63 publication-title: Math. Program. doi: 10.1007/s10107-004-0559-y – ident: 199_CR17 doi: 10.1137/1.9781611971309 – volume: 146 start-page: 219 issue: 1–2 year: 2014 ident: 199_CR40 publication-title: Math. Program. doi: 10.1007/s10107-013-0684-6 – ident: 199_CR13 – ident: 199_CR38 doi: 10.1007/978-0-387-74759-0_170 – volume-title: Robust Optimization year: 2009 ident: 199_CR7 doi: 10.1515/9781400831050 – volume: 34 start-page: 196 issue: 2 year: 1998 ident: 199_CR27 publication-title: Cybern. Syst. Anal. doi: 10.1007/BF02742069 – ident: 199_CR5 – volume: 158 start-page: 575 issue: 1–2 year: 2016 ident: 199_CR18 publication-title: Math. Program. doi: 10.1007/s10107-015-0946-6 – ident: 199_CR58 doi: 10.1137/1.9780898718751 – volume: 51 start-page: 1065 issue: 3 year: 2012 ident: 199_CR14 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-011-9401-7 – volume: 32 start-page: 25 issue: 1–2 year: 2008 ident: 199_CR39 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2007.05.009 – volume: 45 start-page: 716 issue: 7 year: 2013 ident: 199_CR35 publication-title: IIE Trans. doi: 10.1080/0740817X.2012.745205 – volume: 24 start-page: 1864 issue: 4 year: 2014 ident: 199_CR59 publication-title: SIAM J. Optim. doi: 10.1137/130922689 – volume: 19 start-page: 1574 issue: 4 year: 2009 ident: 199_CR44 publication-title: SIAM J. Optim. doi: 10.1137/070704277 – ident: 199_CR2 – volume: 84 start-page: 427 issue: 2 year: 2016 ident: 199_CR32 publication-title: Math. Methods Oper. Res. doi: 10.1007/s00186-016-0564-y – volume: 4 start-page: 235 issue: 3 year: 1958 ident: 199_CR15 publication-title: Manag. Sci. doi: 10.1287/mnsc.4.3.235 – volume: 102 start-page: 25 issue: 1 year: 2005 ident: 199_CR10 publication-title: Math. Program. doi: 10.1007/s10107-003-0499-y – volume: 2 start-page: 21 year: 2000 ident: 199_CR53 publication-title: J. Risk doi: 10.21314/JOR.2000.038 – volume: 65 start-page: 637 issue: 3 year: 2016 ident: 199_CR61 publication-title: Computational Optimization and Applications doi: 10.1007/s10589-016-9851-z – volume: 59 start-page: 65 issue: 1 year: 2017 ident: 199_CR8 publication-title: SIAM Rev. doi: 10.1137/141000671 – volume: 56 start-page: 461 issue: 3 year: 2014 ident: 199_CR9 publication-title: SIAM Rev. doi: 10.1137/130910312 – ident: 199_CR33 – volume-title: Problem complexity and method efficiency in optimization year: 1983 ident: 199_CR45 – volume: 59 start-page: 617 issue: 3 year: 2011 ident: 199_CR34 publication-title: Oper. Res. doi: 10.1287/opre.1100.0910 – ident: 199_CR4 doi: 10.1007/3-540-70734-4_16 – volume: 33 start-page: 149 issue: 1 year: 1995 ident: 199_CR28 publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012992238369 – ident: 199_CR52 doi: 10.1109/WSC.2009.5429360 – ident: 199_CR48 doi: 10.1137/19M1261985 – volume: 13 start-page: 930 issue: 6 year: 1965 ident: 199_CR42 publication-title: Oper. Res. doi: 10.1287/opre.13.6.930 – volume: 5 start-page: 63 issue: 1 year: 2017 ident: 199_CR60 publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/16M1061308 – volume: 138 start-page: 223 issue: 1–2 year: 2013 ident: 199_CR22 publication-title: Math. Program. doi: 10.1007/s10107-012-0539-6 – volume: 58 start-page: 470 issue: 2 year: 2010 ident: 199_CR16 publication-title: Oper. Res. doi: 10.1287/opre.1090.0712 – volume: 15 start-page: 938 issue: 3 year: 2005 ident: 199_CR37 publication-title: SIAM J. Optim. doi: 10.1137/S1052623403430099 – ident: 199_CR46 – ident: 199_CR21 doi: 10.1007/s10208-018-09409-5 – volume: 59 start-page: 295 issue: 2 year: 2017 ident: 199_CR24 publication-title: SIAM Rev. doi: 10.1137/15M1020575 – volume: 65 start-page: 2171 issue: 12 year: 2016 ident: 199_CR57 publication-title: Optimization doi: 10.1080/02331934.2016.1233551 – ident: 199_CR23 doi: 10.1007/s10107-018-1311-3 – volume: 33 start-page: 542 issue: 2 year: 1962 ident: 199_CR55 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177704580 |
SSID | ssj0000327839 |
Score | 2.3173788 |
Snippet | We propose a stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs. Our approach is based on a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 705 |
SubjectTerms | Algorithms Approximation Constraints Convergence Full Length Paper Mathematics Mathematics and Statistics Mathematics of Computing Operations Research/Decision Theory Optimization Smoothing Theory of Computation |
Title | A stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs |
URI | https://link.springer.com/article/10.1007/s12532-020-00199-y https://www.proquest.com/docview/2586508075 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66XvQgPnF9kYM3DaRp0t0cF_GBsp5c0FNpJokKsopdQf-9M33sqqjgseTR0i_T-dLMfMPYQS8LHlm0FuB0T-gsi6LQKgiDzt8oWbjUUzby8Co7H-mLG3PTJIWVbbR7eyRZfalnyW7KpErQdod4iRXv82zB0N4dV_FIDaZ_VmRK1SOI95JYm1BW2yZb5udpvnqkGc38djJaOZzTFbbcMEU-qKFdZXNhvMaWPukH4tVwKrparrNywJHJwX1B0su8Egt_e6gzE3ldKJojQ_3cML7jOJ6HSkYCvQ-PJGeAjpI_RU4pwRAEEIGkOhLB83Gtq1G88Casq9xgo9OT6-Nz0dRUEIDGNhEqi7avTaGcMt4aZwFikngVezZTElwPZIAUcJNnbIzaQRp9TDONeJKwi0s3WQdvFrYYT4LMok9kv_BSg5MW0Pi9kWAlFEhUuixp32sOjeA4Pe9jPpNKJixyxCKvsMjfu-xwOua5ltv4s_duC1femF6ZK9Mn1olUqMuOWghnzb_Ptv2_7jtsUVF8SxXasss6k5fXsIcEZeL22cLg7PbyZL9alx-_lt_H |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxELUgPUAPFaUgQkPxgRu15PXam_gYoUahJDklErfVemzTSiit2CCVf8_MfiSAChLHlT92tW9n59meecPYWT8LHlm0FuB0X-gsi6LQKgiDzt8oWbjUUzbydJaNF_rntbluksLKNtq9PZKs_tSbZDdlUiVouUO8xIqHbfYBycCAArkWarjeWZEpVY8g3ktibUJZbZtsmf9P89wjbWjmi5PRyuGM9tinhinyYQ3tZ7YVlvvs4xP9QLyarkVXyy-sHHJkcvCrIOllXomF__tdZybyulA0R4b6tGF5w3E8D5WMBHofHknOAB0l_xM5pQRDEEAEkupIBM-Xta5GccebsK7ygC1GP-YXY9HUVBCAxrYSKot2oE2hnDLeGmcBYpJ4Ffs2UxJcH2SAFHCRZ2yM2kEafUwzjXiSsItLD1kHbxaOGE-CzKJP5KDwUoOTFtD4vZFgJRRIVLosad9rDo3gOD3vbb6RSiYscsQir7DIH7rsfD3mby238WbvXgtX3phemSszINaJVKjLvrcQbppfn-34fd1P2c54Pp3kk8vZ1Ve2qyjWpQpz6bHO6u4-nCBZWblv1bf5CGry4SY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxELVokKpyQECLCITiQ2_Uitdrb-JjBEQUCuJApNxW67FdkNASkSDBv2dmd_PRqkXqceWPXXm8nmd73hvGvvWy4BFFawFO94TOsigKrYIw6PyNkoVLPbGRr66z85G-GJvxCou_inafX0nWnAZSaSpn3YmP3SXxTZlUCdr6EEax4vUDW8flOKF5PVKDxSmLTCmTBGFgEm4TymrbMGf-3s3v3mkJOf-4Ja2cz3CLbTaokQ9qM2-ztVDusI0VLUF8uloIsE4_s-mAI6qDu4JkmHklHP5yX7MUeZ00miNaXS0of3Fsz0MlKYEjwSNJG6DT5I-REz0YggACk5RTInhe1hobxRNvQrymX9hoeHZ7ci6a_AoCcKRmQmXR9rUplFPGW-MsQEwSr2LPZkqC64EMkAJu-IyNUTtIo49pptG2JPLi0l3WwpeFPcaTILPoE9kvvNTgpAVcCLyRYCUUCFraLJmPaw6N-Dh970O-lE0mW-Roi7yyRf7aZseLNpNaeuPd2p25ufLmN5zmyvQJgSIsarPvcxMui__d2_7_VT9iH29Oh_nPH9eXB-yTorCXKuKlw1qzp-dwiLhl5r5WU_MNYP_lYg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stochastic+approximation+method+for+approximating+the+efficient+frontier+of+chance-constrained+nonlinear+programs&rft.jtitle=Mathematical+programming+computation&rft.au=Kannan+Rohit&rft.au=Luedtke%2C+James+R&rft.date=2021-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1867-2949&rft.eissn=1867-2957&rft.volume=13&rft.issue=4&rft.spage=705&rft.epage=751&rft_id=info:doi/10.1007%2Fs12532-020-00199-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-2949&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-2949&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-2949&client=summon |