Deep Learning-Based Modified Bidirectional LSTM Network for Classification of ADHD Disorder
Attention deficit hyperactivity disorder (ADHD) is a neurological disorder that affects an individual’s behavior. The rising cases of ADHD among children and adolescents worldwide have raised the concern and require techniques for its early diagnosis and identification. The symptoms of ADHD are char...
Saved in:
Published in | Arabian journal for science and engineering (2011) Vol. 49; no. 3; pp. 3009 - 3026 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Attention deficit hyperactivity disorder (ADHD) is a neurological disorder that affects an individual’s behavior. The rising cases of ADHD among children and adolescents worldwide have raised the concern and require techniques for its early diagnosis and identification. The symptoms of ADHD are characterized by patterns of hyperactivity, inattention, and impulsivity. Recent advances in neuroimaging have allowed researchers to obtain the functional and structural patterns of the brain affected by ADHD. This work considers the resting state functional magnetic imaging (rs-fMRI) data and analyzes the functional connectivity of 40 subjects (20 ADHD and 20 healthy controls) through voxel size blood-oxygen-level-dependent (BOLD) signal. These BOLD signals are functionally relevant to the corresponding resting state networks (RSN). In this paper, we have proposed a modified deep learning-based bidirectional long short-term memory (BLSTM) model that automates the classification of ADHD through the identified voxels within the active region of the RSN. Initially, we have visualized the 28 active regions of RSN and time series of behavioral data of 40 subjects with 176 time stamps. Then, the proposed modified BLSTM has been trained by using the feature vector
(
40
×
261
×
28
)
for each subject and Adam hyper-parameter for optimization. The experimental results represent that the proposed model outperforms the many other models by achieving the classification accuracy of
87.50
%
. We have also provided a detailed comparative analysis of the proposed model with the different existing state-of-the-art approaches. |
---|---|
AbstractList | Attention deficit hyperactivity disorder (ADHD) is a neurological disorder that affects an individual’s behavior. The rising cases of ADHD among children and adolescents worldwide have raised the concern and require techniques for its early diagnosis and identification. The symptoms of ADHD are characterized by patterns of hyperactivity, inattention, and impulsivity. Recent advances in neuroimaging have allowed researchers to obtain the functional and structural patterns of the brain affected by ADHD. This work considers the resting state functional magnetic imaging (rs-fMRI) data and analyzes the functional connectivity of 40 subjects (20 ADHD and 20 healthy controls) through voxel size blood-oxygen-level-dependent (BOLD) signal. These BOLD signals are functionally relevant to the corresponding resting state networks (RSN). In this paper, we have proposed a modified deep learning-based bidirectional long short-term memory (BLSTM) model that automates the classification of ADHD through the identified voxels within the active region of the RSN. Initially, we have visualized the 28 active regions of RSN and time series of behavioral data of 40 subjects with 176 time stamps. Then, the proposed modified BLSTM has been trained by using the feature vector (40×261×28) for each subject and Adam hyper-parameter for optimization. The experimental results represent that the proposed model outperforms the many other models by achieving the classification accuracy of 87.50%. We have also provided a detailed comparative analysis of the proposed model with the different existing state-of-the-art approaches. Attention deficit hyperactivity disorder (ADHD) is a neurological disorder that affects an individual’s behavior. The rising cases of ADHD among children and adolescents worldwide have raised the concern and require techniques for its early diagnosis and identification. The symptoms of ADHD are characterized by patterns of hyperactivity, inattention, and impulsivity. Recent advances in neuroimaging have allowed researchers to obtain the functional and structural patterns of the brain affected by ADHD. This work considers the resting state functional magnetic imaging (rs-fMRI) data and analyzes the functional connectivity of 40 subjects (20 ADHD and 20 healthy controls) through voxel size blood-oxygen-level-dependent (BOLD) signal. These BOLD signals are functionally relevant to the corresponding resting state networks (RSN). In this paper, we have proposed a modified deep learning-based bidirectional long short-term memory (BLSTM) model that automates the classification of ADHD through the identified voxels within the active region of the RSN. Initially, we have visualized the 28 active regions of RSN and time series of behavioral data of 40 subjects with 176 time stamps. Then, the proposed modified BLSTM has been trained by using the feature vector ( 40 × 261 × 28 ) for each subject and Adam hyper-parameter for optimization. The experimental results represent that the proposed model outperforms the many other models by achieving the classification accuracy of 87.50 % . We have also provided a detailed comparative analysis of the proposed model with the different existing state-of-the-art approaches. |
Author | Gupta, P. K. Saurabh, Sudhanshu |
Author_xml | – sequence: 1 givenname: Sudhanshu orcidid: 0000-0002-9710-4652 surname: Saurabh fullname: Saurabh, Sudhanshu email: ssmiete@gmail.com organization: Department of Computer Science and Engineering, Jaypee University of Information Technology – sequence: 2 givenname: P. K. surname: Gupta fullname: Gupta, P. K. organization: Department of Computer Science and Engineering, Jaypee University of Information Technology |
BookMark | eNp9kM1OwzAQhC1UJErpC3CyxNngnySOj20DFKmFA0VC4mA5sV0ZQlzsVBVvT9ogIXHoaecw3-7snINB4xsDwCXB1wRjfhMJY5lAmDKEOc8ztDsBQ0oEQQnNyeCgGUoz_noGxjG6Eic5EykhbAjeCmM2cGFUaFyzRlMVjYZLr511nZg67YKpWucbVcPF82oJH0278-EDWh_grFbdOusqtXdAb-GkmBewcNEHbcIFOLWqjmb8O0fg5e52NZujxdP9w2yyQBUjokU0sTYrDTXMJkwQXHahRVVpronOBGW5zWjGCdM0t5hboxXR1uZY2ypPSmzYCFz1ezfBf21NbOW734YucZRUMM5Snoqkc9HeVQUfYzBWboL7VOFbEiz3Pcq-R9n1KA89yl0H5f-gyrWHb9ugXH0cZT0auzvN2oS_VEeoH3hZihs |
CitedBy_id | crossref_primary_10_1007_s13369_023_08494_1 crossref_primary_10_1016_j_inffus_2025_102982 crossref_primary_10_1088_1741_2552_acf7f5 crossref_primary_10_3389_fncom_2024_1478193 crossref_primary_10_46810_tdfd_1388893 crossref_primary_10_1117_1_JMI_11_6_064502 crossref_primary_10_1007_s12652_024_04950_4 crossref_primary_10_1007_s13369_024_09362_2 crossref_primary_10_1186_s40537_024_00998_3 crossref_primary_10_1016_j_neucom_2025_129607 crossref_primary_10_1109_ACCESS_2025_3539706 |
Cites_doi | 10.1186/s12888-019-2031-9 10.1016/0167-9473(94)90132-5 10.5555/2627435.2670313 10.1002/mrm.1910340409 10.3389/fnsys.2011.00002 10.1016/j.neuroimage.2020.117328 10.1016/j.neuroimage.2008.05.008 10.1037/0894-4105.13.3.424 10.1109/ACCESS.2019.2915988 10.1016/j.neunet.2005.06.042 10.1109/TNNLS.2016.2582924 10.1002/hbm.460010207 10.1111/jcpp.13226 10.1038/s41598-019-54548-6 10.1016/j.ins.2019.05.043 10.1542/peds.2014-3482 10.1162/neco.1997.9.8.1735 10.1007/s12008-020-00715-3 10.1109/78.650093 10.1016/j.ijpsycho.2013.01.008 10.1016/j.neuroimage.2013.04.068 10.3389/fphys.2020.583005 10.3389/fnsys.2013.00101 10.1186/1753-4631-4-s1-s1 10.1002/jdn.10020 10.1002/hbm.1032 10.1016/S0169-7439(97)00032-4 10.1109/TC.1981.6312174 10.1109/BIGCOMP.2017.7881693 10.1007/s00787-017-1006-y 10.1016/0169-7439(95)80060-M 10.1109/iFUZZY.2012.6409719 10.1109/ISBI.2018.8363676 10.1007/s00521-018-3381-9 10.1109/IACS.2018.8355458 10.1002/hbm.21333 10.1177/15353702211018970 10.1007/978-3-319-67389-9_42 10.1016/j.ebiom.2019.08.023 10.1007/978-3-319-70772-3_17 |
ContentType | Journal Article |
Copyright | King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s13369-023-07786-w |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-4281 |
EndPage | 3026 |
ExternalDocumentID | 10_1007_s13369_023_07786_w |
GroupedDBID | -EM 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG AXYYD BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ6 GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 |
ID | FETCH-LOGICAL-c319t-24ff6be2e3f43910b2819ccd7d1d69238f626713d28f07feda1dff80dfc84b0e3 |
ISSN | 2193-567X 1319-8025 |
IngestDate | Mon Jun 30 09:04:28 EDT 2025 Tue Jul 01 01:34:30 EDT 2025 Thu Apr 24 22:57:03 EDT 2025 Fri Feb 21 02:41:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | ADHD Resting State Network Tensor Bidirectional LSTM Functional Connectivity Deep Learning |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c319t-24ff6be2e3f43910b2819ccd7d1d69238f626713d28f07feda1dff80dfc84b0e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9710-4652 |
PQID | 2937357594 |
PQPubID | 2044268 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2937357594 crossref_primary_10_1007_s13369_023_07786_w crossref_citationtrail_10_1007_s13369_023_07786_w springer_journals_10_1007_s13369_023_07786_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Arabian journal for science and engineering (2011) |
PublicationTitleAbbrev | Arab J Sci Eng |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Tenev, Markovska-Simoska, Kocarev, Pop-Jordanov, Müller (CR3) 2014; 93 Vu, Kim, Jung, Lee (CR4) 2020; 223 Greff, Srivastava, Koutník, Steunebrink, Schmidhuber (CR37) 2017; 28 Schuster, Paliwal (CR38) 1997; 45 CR18 CR17 McNorgan, Judson, Handzlik, Holden (CR9) 2020; 11 CR14 CR36 Mueller, Candrian, Kropotov, Ponomarev, Baschera (CR23) 2010; 4 CR34 CR11 CR33 Thomas, Sanders, Doust, Beller, Glasziou (CR5) 2015; 135 CR30 Goodfellow, Bengio, Courville (CR39) 2016 Sörös, Hoxhaj, Borel (CR12) 2019; 19 Liu, Chang, Duyn (CR16) 2013 Graves, Schmidhuber (CR31) 2005; 18 Jiang, Wang, Zheng, Li, Yi, Ding, Li, Dong, Zang (CR21) 2020; 80 Miao, Zhang, Guan, Meng, Zhang (CR1) 2019; 7 Biswal, Yetkin, Haughton, Hyde (CR7) 1995; 34 Oh, Chung, Kim (CR10) 2019 Guo, Pagnoni (CR35) 2008; 42 Ledberg, Fransson, Larsson, Petersson (CR26) 2001; 13 CR29 CR28 CR27 Schmidhuber, Hochreiter (CR13) 1997; 9 CR25 Friston, Holmes, Poline, Grasby, Williams, Frackowiak, Turner (CR43) 1994; 1 CR24 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR41) 2014; 15 Monastra, Lubar, Linden, VanDeusen, Green, Wing, Phillips, Fenger (CR22) 1999; 13 CR20 CR42 CR40 Zhang-James, Chen, Kuja-Halkola, Lichtenstein, Larsson, Faraone (CR2) 2020; 61 Allen, Erhardt, Damaraju, Gruner, Segall, Silva, Havlicek, Rachakonda, Fries, Kalyanam, Michael, Caprihan, Turner (CR19) 2011; 5 Yuan, Zotev, Phillips, Bodurka (CR8) 2013; 79 Siddiqui, Huang, Morales-Menendez, Hussain, Khatoon (CR15) 2020; 14 Harshman, Lundy (CR32) 1994; 18 Mao, Su, Xu, Wang, Huang, Yue, Sun, Xiong (CR6) 2019; 499 7786_CR25 7786_CR24 7786_CR27 Z Mao (7786_CR6) 2019; 499 H Yuan (7786_CR8) 2013; 79 VJ Monastra (7786_CR22) 1999; 13 7786_CR29 7786_CR28 N Srivastava (7786_CR41) 2014; 15 K Greff (7786_CR37) 2017; 28 H Vu (7786_CR4) 2020; 223 P Sörös (7786_CR12) 2019; 19 MK Siddiqui (7786_CR15) 2020; 14 C McNorgan (7786_CR9) 2020; 11 RA Harshman (7786_CR32) 1994; 18 Y Zhang-James (7786_CR2) 2020; 61 7786_CR40 K Jiang (7786_CR21) 2020; 80 7786_CR20 7786_CR42 EA Allen (7786_CR19) 2011; 5 7786_CR34 7786_CR11 A Graves (7786_CR31) 2005; 18 7786_CR33 7786_CR14 Y Guo (7786_CR35) 2008; 42 7786_CR36 M Schuster (7786_CR38) 1997; 45 7786_CR18 7786_CR17 B Biswal (7786_CR7) 1995; 34 A Mueller (7786_CR23) 2010; 4 J Schmidhuber (7786_CR13) 1997; 9 B Miao (7786_CR1) 2019; 7 A Ledberg (7786_CR26) 2001; 13 KJ Friston (7786_CR43) 1994; 1 X Liu (7786_CR16) 2013 A Tenev (7786_CR3) 2014; 93 K Oh (7786_CR10) 2019 I Goodfellow (7786_CR39) 2016 7786_CR30 R Thomas (7786_CR5) 2015; 135 |
References_xml | – volume: 19 start-page: 43 year: 2019 ident: CR12 article-title: Hyperactivity/restlessness is associated with increased functional connectivity in adults with ADHD: a dimensional analysis of resting state fMRI publication-title: BMC Psychiatry doi: 10.1186/s12888-019-2031-9 – volume: 18 start-page: 39 year: 1994 end-page: 72 ident: CR32 article-title: PARAFAC: parallel factor analysis publication-title: Comput. Stat. Data Anal. doi: 10.1016/0167-9473(94)90132-5 – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: CR41 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. doi: 10.5555/2627435.2670313 – volume: 34 start-page: 537 year: 1995 end-page: 541 ident: CR7 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Mag. Resonance Med. doi: 10.1002/mrm.1910340409 – ident: CR18 – volume: 5 start-page: 2 year: 2011 ident: CR19 article-title: A baseline for the multivariate comparison of resting-state networks publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2011.00002 – volume: 223 year: 2020 ident: CR4 article-title: fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117328 – ident: CR14 – volume: 42 start-page: 1078 year: 2008 end-page: 93 ident: CR35 article-title: A unified framework for group independent component analysis for multi-subject fMRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.05.008 – volume: 13 start-page: 424 year: 1999 end-page: 433 ident: CR22 article-title: Assessing attention deficit hyperactivity disorder via quantitative electroencephalography: An initial validation study publication-title: Neuropsychology doi: 10.1037/0894-4105.13.3.424 – year: 2016 ident: CR39 publication-title: Deep Learning – ident: CR30 – ident: CR33 – volume: 7 start-page: 62163 year: 2019 end-page: 62171 ident: CR1 article-title: Classification of ADHD individuals and neurotypicals using reliable RELIEF: a resting-state study publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2915988 – ident: CR29 – ident: CR40 – ident: CR25 – ident: CR27 – volume: 18 start-page: 602 year: 2005 end-page: 610 ident: CR31 article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures publication-title: Neural Netw. doi: 10.1016/j.neunet.2005.06.042 – ident: CR42 – volume: 28 start-page: 2222 year: 2017 end-page: 2232 ident: CR37 article-title: LSTM: A search space Odyssey publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582924 – volume: 1 start-page: 153 year: 1994 end-page: 171 ident: CR43 article-title: Analysis of functional MRI time-series publication-title: Human. Brain Mapp. doi: 10.1002/hbm.460010207 – volume: 61 start-page: 1370 year: 2020 end-page: 1379 ident: CR2 article-title: Machine-Learning prediction of comorbid substance use disorders in ADHD youth using Swedish registry data publication-title: J. Child Psychol. Psychiatry doi: 10.1111/jcpp.13226 – year: 2019 ident: CR10 article-title: Classification and visualization of Alzheimer’s disease using volumetric convolutional neural network and transfer learning publication-title: Sci. Rep. doi: 10.1038/s41598-019-54548-6 – volume: 499 start-page: 1 year: 2019 end-page: 11 ident: CR6 article-title: Spatio-temporal deep learning method for ADHD fMRI classification publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.05.043 – volume: 135 start-page: e994 year: 2015 end-page: e1001 ident: CR5 article-title: Prevalence of attention-deficit /hyperactivity disorder: a systematic review and meta-analysis publication-title: Pediatrics doi: 10.1542/peds.2014-3482 – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: CR13 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 14 start-page: 1491 year: 2020 end-page: 1509 ident: CR15 article-title: Machine learning based novel cost-sensitive seizure detection classifier for imbalanced EEG data sets publication-title: Int. J. Interact. Des. Manufa. (IJIDeM) doi: 10.1007/s12008-020-00715-3 – ident: CR17 – ident: CR11 – volume: 45 start-page: 2673 year: 1997 end-page: 2681 ident: CR38 article-title: Bidirectional recurrent neural networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.650093 – volume: 93 start-page: 162 year: 2014 end-page: 6 ident: CR3 article-title: Machine learning approach for classification of ADHD adults publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2013.01.008 – volume: 79 start-page: 81 year: 2013 end-page: 93 ident: CR8 article-title: Correlated slow fluctuations in respiration, EEG, and BOLD fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.068 – volume: 11 start-page: 1595 year: 2020 ident: CR9 article-title: Linking ADHD and behavioral assessment through identification of shared diagnostic task-based functional connections publication-title: Front. Physiol. doi: 10.3389/fphys.2020.583005 – year: 2013 ident: CR16 article-title: Deco mposition of spontaneous brain activity into distinct fMRI co-activation patterns publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2013.00101 – ident: CR34 – ident: CR36 – volume: 4 start-page: S1 year: 2010 end-page: S1 ident: CR23 article-title: Classification of ADHD patients on the basis of independent ERP components using a machine learning system publication-title: Nonlinear Biomed. Phys. doi: 10.1186/1753-4631-4-s1-s1 – volume: 80 start-page: 235 year: 2020 end-page: 245 ident: CR21 article-title: Amplitude of low-frequency fluctuation of resting-state fMRI in primary nocturnal enuresis and attention deficit hyperactivity disorder publication-title: Int. J. Dev. Neurosci. doi: 10.1002/jdn.10020 – volume: 13 start-page: 185 year: 2001 end-page: 98 ident: CR26 article-title: A 4D approach to the analysis of functional brain images: application to FMRI data publication-title: Human Brain Map. doi: 10.1002/hbm.1032 – ident: CR28 – ident: CR24 – ident: CR20 – ident: 7786_CR33 doi: 10.1016/S0169-7439(97)00032-4 – ident: 7786_CR36 doi: 10.1109/TC.1981.6312174 – ident: 7786_CR42 doi: 10.1109/BIGCOMP.2017.7881693 – volume: 223 year: 2020 ident: 7786_CR4 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117328 – ident: 7786_CR18 doi: 10.1007/s00787-017-1006-y – volume: 13 start-page: 424 year: 1999 ident: 7786_CR22 publication-title: Neuropsychology doi: 10.1037/0894-4105.13.3.424 – volume: 18 start-page: 39 year: 1994 ident: 7786_CR32 publication-title: Comput. Stat. Data Anal. doi: 10.1016/0167-9473(94)90132-5 – ident: 7786_CR34 doi: 10.1016/0169-7439(95)80060-M – ident: 7786_CR24 doi: 10.1109/iFUZZY.2012.6409719 – ident: 7786_CR40 – volume: 79 start-page: 81 year: 2013 ident: 7786_CR8 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.068 – volume: 15 start-page: 1929 year: 2014 ident: 7786_CR41 publication-title: J. Mach. Learn. Res. doi: 10.5555/2627435.2670313 – ident: 7786_CR25 doi: 10.1109/ISBI.2018.8363676 – volume: 28 start-page: 2222 year: 2017 ident: 7786_CR37 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582924 – volume: 34 start-page: 537 year: 1995 ident: 7786_CR7 publication-title: Mag. Resonance Med. doi: 10.1002/mrm.1910340409 – ident: 7786_CR14 doi: 10.1007/s00521-018-3381-9 – volume: 4 start-page: S1 year: 2010 ident: 7786_CR23 publication-title: Nonlinear Biomed. Phys. doi: 10.1186/1753-4631-4-s1-s1 – volume: 7 start-page: 62163 year: 2019 ident: 7786_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2915988 – volume: 11 start-page: 1595 year: 2020 ident: 7786_CR9 publication-title: Front. Physiol. doi: 10.3389/fphys.2020.583005 – volume: 13 start-page: 185 year: 2001 ident: 7786_CR26 publication-title: Human Brain Map. doi: 10.1002/hbm.1032 – volume: 80 start-page: 235 year: 2020 ident: 7786_CR21 publication-title: Int. J. Dev. Neurosci. doi: 10.1002/jdn.10020 – ident: 7786_CR27 doi: 10.1109/IACS.2018.8355458 – volume: 93 start-page: 162 year: 2014 ident: 7786_CR3 publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2013.01.008 – ident: 7786_CR20 doi: 10.1002/hbm.21333 – year: 2013 ident: 7786_CR16 publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2013.00101 – volume: 45 start-page: 2673 year: 1997 ident: 7786_CR38 publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.650093 – volume: 61 start-page: 1370 year: 2020 ident: 7786_CR2 publication-title: J. Child Psychol. Psychiatry doi: 10.1111/jcpp.13226 – year: 2019 ident: 7786_CR10 publication-title: Sci. Rep. doi: 10.1038/s41598-019-54548-6 – volume: 1 start-page: 153 year: 1994 ident: 7786_CR43 publication-title: Human. Brain Mapp. doi: 10.1002/hbm.460010207 – ident: 7786_CR29 doi: 10.1177/15353702211018970 – volume: 18 start-page: 602 year: 2005 ident: 7786_CR31 publication-title: Neural Netw. doi: 10.1016/j.neunet.2005.06.042 – ident: 7786_CR28 doi: 10.1007/978-3-319-67389-9_42 – volume: 14 start-page: 1491 year: 2020 ident: 7786_CR15 publication-title: Int. J. Interact. Des. Manufa. (IJIDeM) doi: 10.1007/s12008-020-00715-3 – volume: 135 start-page: e994 year: 2015 ident: 7786_CR5 publication-title: Pediatrics doi: 10.1542/peds.2014-3482 – volume: 499 start-page: 1 year: 2019 ident: 7786_CR6 publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.05.043 – volume: 9 start-page: 1735 year: 1997 ident: 7786_CR13 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: 7786_CR17 doi: 10.1016/j.ebiom.2019.08.023 – ident: 7786_CR30 doi: 10.1007/978-3-319-70772-3_17 – volume: 42 start-page: 1078 year: 2008 ident: 7786_CR35 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.05.008 – volume: 5 start-page: 2 year: 2011 ident: 7786_CR19 publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2011.00002 – volume: 19 start-page: 43 year: 2019 ident: 7786_CR12 publication-title: BMC Psychiatry doi: 10.1186/s12888-019-2031-9 – volume-title: Deep Learning year: 2016 ident: 7786_CR39 – ident: 7786_CR11 |
SSID | ssib048395113 ssj0001916267 ssj0061873 |
Score | 2.3938653 |
Snippet | Attention deficit hyperactivity disorder (ADHD) is a neurological disorder that affects an individual’s behavior. The rising cases of ADHD among children and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3009 |
SubjectTerms | Attention deficit hyperactivity disorder Classification Deep learning Engineering Humanities and Social Sciences Medical imaging multidisciplinary Neurological diseases Research Article-Computer Engineering and Computer Science Science |
Title | Deep Learning-Based Modified Bidirectional LSTM Network for Classification of ADHD Disorder |
URI | https://link.springer.com/article/10.1007/s13369-023-07786-w https://www.proquest.com/docview/2937357594 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPiE9RNiY_8AapnNj56GNLVyrUFSRSqRIPURLbbBLqqq3RJP4D_mvubOdrwAS8RJXTOIrvZ9_5fL87Ql5rqXMpksJTYhx7QoUw5yTXXqHHIvfzkpeGKHy2ihZr8WETbgaDH52opWpfjMrvv-WV_I9UoQ3kiizZf5Bs0yk0wG-QL1xBwnD9KxnPlNrVGVK_elNQSBKLm11otCunF1ZdWV_f8nN6huxejMMyoYWmGibGCTU242S2mDXZOLtGqyncfJVjdvL6-Np0Ua8L6Hvv5DUcoRPfdDo1K217pz2BkuegIs8r65OuoO_GK_2-2lmD9pPzwDqXRCDamKyeSxLjrfEUpKHMmBUWWVMJs2znkTJtsGrCRjawtVvqZdlmMnXw4501ljM27uhrzizl_hddwBw3mvNo7IFp4jHMlefdtJqvPu1ffczm6-UyS0836T1yGMCOw_DGN37rrgMz2tTqsko-8hMTvNB8jeNjWVbm7Tf2bZ52I3Pr7N2YNOkj8tCJkk4ssB6Tgdo-IQ868npKviDEaB9itIYY7UGMIsSogxgFfNA-xOilpggxWkPsGVnPT9N3C8_V4_BK-My9Fwito0IFimvka7MCD2HLUsbSlxFsFBKNQ-RzGSSaxVrJ3JdaJ0zqMhEFU_w5OdhebtULQmMZsjLMdQgKQahAFLGQPIEHYL9blCIeEr8esax0yeqxZsq3rE2zjaOcwShnZpSzmyF50zyzs6la7vz3cS2IzE3p6wxs35hjyVoxJG9r4bS3_9zby7t7OyL323lyTA72V5V6Bcbsvjghh5P5dLo6MXD7Ce7AnEw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Modified+Bidirectional+LSTM+Network+for+Classification+of+ADHD+Disorder&rft.jtitle=The+Arabian+Journal+for+Science+and+Engineering.+Section+B%2C+Engineering&rft.au=Sudhanshu%2C+Saurabh&rft.au=Gupta%2C+P+K&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=49&rft.issue=3&rft.spage=3009&rft.epage=3026&rft_id=info:doi/10.1007%2Fs13369-023-07786-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |