Deep Learning-Based Modified Bidirectional LSTM Network for Classification of ADHD Disorder

Attention deficit hyperactivity disorder (ADHD) is a neurological disorder that affects an individual’s behavior. The rising cases of ADHD among children and adolescents worldwide have raised the concern and require techniques for its early diagnosis and identification. The symptoms of ADHD are char...

Full description

Saved in:
Bibliographic Details
Published inArabian journal for science and engineering (2011) Vol. 49; no. 3; pp. 3009 - 3026
Main Authors Saurabh, Sudhanshu, Gupta, P. K.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Attention deficit hyperactivity disorder (ADHD) is a neurological disorder that affects an individual’s behavior. The rising cases of ADHD among children and adolescents worldwide have raised the concern and require techniques for its early diagnosis and identification. The symptoms of ADHD are characterized by patterns of hyperactivity, inattention, and impulsivity. Recent advances in neuroimaging have allowed researchers to obtain the functional and structural patterns of the brain affected by ADHD. This work considers the resting state functional magnetic imaging (rs-fMRI) data and analyzes the functional connectivity of 40 subjects (20 ADHD and 20 healthy controls) through voxel size blood-oxygen-level-dependent (BOLD) signal. These BOLD signals are functionally relevant to the corresponding resting state networks (RSN). In this paper, we have proposed a modified deep learning-based bidirectional long short-term memory (BLSTM) model that automates the classification of ADHD through the identified voxels within the active region of the RSN. Initially, we have visualized the 28 active regions of RSN and time series of behavioral data of 40 subjects with 176 time stamps. Then, the proposed modified BLSTM has been trained by using the feature vector ( 40 × 261 × 28 ) for each subject and Adam hyper-parameter for optimization. The experimental results represent that the proposed model outperforms the many other models by achieving the classification accuracy of 87.50 % . We have also provided a detailed comparative analysis of the proposed model with the different existing state-of-the-art approaches.
AbstractList Attention deficit hyperactivity disorder (ADHD) is a neurological disorder that affects an individual’s behavior. The rising cases of ADHD among children and adolescents worldwide have raised the concern and require techniques for its early diagnosis and identification. The symptoms of ADHD are characterized by patterns of hyperactivity, inattention, and impulsivity. Recent advances in neuroimaging have allowed researchers to obtain the functional and structural patterns of the brain affected by ADHD. This work considers the resting state functional magnetic imaging (rs-fMRI) data and analyzes the functional connectivity of 40 subjects (20 ADHD and 20 healthy controls) through voxel size blood-oxygen-level-dependent (BOLD) signal. These BOLD signals are functionally relevant to the corresponding resting state networks (RSN). In this paper, we have proposed a modified deep learning-based bidirectional long short-term memory (BLSTM) model that automates the classification of ADHD through the identified voxels within the active region of the RSN. Initially, we have visualized the 28 active regions of RSN and time series of behavioral data of 40 subjects with 176 time stamps. Then, the proposed modified BLSTM has been trained by using the feature vector (40×261×28) for each subject and Adam hyper-parameter for optimization. The experimental results represent that the proposed model outperforms the many other models by achieving the classification accuracy of 87.50%. We have also provided a detailed comparative analysis of the proposed model with the different existing state-of-the-art approaches.
Attention deficit hyperactivity disorder (ADHD) is a neurological disorder that affects an individual’s behavior. The rising cases of ADHD among children and adolescents worldwide have raised the concern and require techniques for its early diagnosis and identification. The symptoms of ADHD are characterized by patterns of hyperactivity, inattention, and impulsivity. Recent advances in neuroimaging have allowed researchers to obtain the functional and structural patterns of the brain affected by ADHD. This work considers the resting state functional magnetic imaging (rs-fMRI) data and analyzes the functional connectivity of 40 subjects (20 ADHD and 20 healthy controls) through voxel size blood-oxygen-level-dependent (BOLD) signal. These BOLD signals are functionally relevant to the corresponding resting state networks (RSN). In this paper, we have proposed a modified deep learning-based bidirectional long short-term memory (BLSTM) model that automates the classification of ADHD through the identified voxels within the active region of the RSN. Initially, we have visualized the 28 active regions of RSN and time series of behavioral data of 40 subjects with 176 time stamps. Then, the proposed modified BLSTM has been trained by using the feature vector ( 40 × 261 × 28 ) for each subject and Adam hyper-parameter for optimization. The experimental results represent that the proposed model outperforms the many other models by achieving the classification accuracy of 87.50 % . We have also provided a detailed comparative analysis of the proposed model with the different existing state-of-the-art approaches.
Author Gupta, P. K.
Saurabh, Sudhanshu
Author_xml – sequence: 1
  givenname: Sudhanshu
  orcidid: 0000-0002-9710-4652
  surname: Saurabh
  fullname: Saurabh, Sudhanshu
  email: ssmiete@gmail.com
  organization: Department of Computer Science and Engineering, Jaypee University of Information Technology
– sequence: 2
  givenname: P. K.
  surname: Gupta
  fullname: Gupta, P. K.
  organization: Department of Computer Science and Engineering, Jaypee University of Information Technology
BookMark eNp9kM1OwzAQhC1UJErpC3CyxNngnySOj20DFKmFA0VC4mA5sV0ZQlzsVBVvT9ogIXHoaecw3-7snINB4xsDwCXB1wRjfhMJY5lAmDKEOc8ztDsBQ0oEQQnNyeCgGUoz_noGxjG6Eic5EykhbAjeCmM2cGFUaFyzRlMVjYZLr511nZg67YKpWucbVcPF82oJH0278-EDWh_grFbdOusqtXdAb-GkmBewcNEHbcIFOLWqjmb8O0fg5e52NZujxdP9w2yyQBUjokU0sTYrDTXMJkwQXHahRVVpronOBGW5zWjGCdM0t5hboxXR1uZY2ypPSmzYCFz1ezfBf21NbOW734YucZRUMM5Snoqkc9HeVQUfYzBWboL7VOFbEiz3Pcq-R9n1KA89yl0H5f-gyrWHb9ugXH0cZT0auzvN2oS_VEeoH3hZihs
CitedBy_id crossref_primary_10_1007_s13369_023_08494_1
crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_1088_1741_2552_acf7f5
crossref_primary_10_3389_fncom_2024_1478193
crossref_primary_10_46810_tdfd_1388893
crossref_primary_10_1117_1_JMI_11_6_064502
crossref_primary_10_1007_s12652_024_04950_4
crossref_primary_10_1007_s13369_024_09362_2
crossref_primary_10_1186_s40537_024_00998_3
crossref_primary_10_1016_j_neucom_2025_129607
crossref_primary_10_1109_ACCESS_2025_3539706
Cites_doi 10.1186/s12888-019-2031-9
10.1016/0167-9473(94)90132-5
10.5555/2627435.2670313
10.1002/mrm.1910340409
10.3389/fnsys.2011.00002
10.1016/j.neuroimage.2020.117328
10.1016/j.neuroimage.2008.05.008
10.1037/0894-4105.13.3.424
10.1109/ACCESS.2019.2915988
10.1016/j.neunet.2005.06.042
10.1109/TNNLS.2016.2582924
10.1002/hbm.460010207
10.1111/jcpp.13226
10.1038/s41598-019-54548-6
10.1016/j.ins.2019.05.043
10.1542/peds.2014-3482
10.1162/neco.1997.9.8.1735
10.1007/s12008-020-00715-3
10.1109/78.650093
10.1016/j.ijpsycho.2013.01.008
10.1016/j.neuroimage.2013.04.068
10.3389/fphys.2020.583005
10.3389/fnsys.2013.00101
10.1186/1753-4631-4-s1-s1
10.1002/jdn.10020
10.1002/hbm.1032
10.1016/S0169-7439(97)00032-4
10.1109/TC.1981.6312174
10.1109/BIGCOMP.2017.7881693
10.1007/s00787-017-1006-y
10.1016/0169-7439(95)80060-M
10.1109/iFUZZY.2012.6409719
10.1109/ISBI.2018.8363676
10.1007/s00521-018-3381-9
10.1109/IACS.2018.8355458
10.1002/hbm.21333
10.1177/15353702211018970
10.1007/978-3-319-67389-9_42
10.1016/j.ebiom.2019.08.023
10.1007/978-3-319-70772-3_17
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s13369-023-07786-w
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 3026
ExternalDocumentID 10_1007_s13369_023_07786_w
GroupedDBID -EM
0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ID FETCH-LOGICAL-c319t-24ff6be2e3f43910b2819ccd7d1d69238f626713d28f07feda1dff80dfc84b0e3
ISSN 2193-567X
1319-8025
IngestDate Mon Jun 30 09:04:28 EDT 2025
Tue Jul 01 01:34:30 EDT 2025
Thu Apr 24 22:57:03 EDT 2025
Fri Feb 21 02:41:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords ADHD
Resting State Network
Tensor
Bidirectional LSTM
Functional Connectivity
Deep Learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-24ff6be2e3f43910b2819ccd7d1d69238f626713d28f07feda1dff80dfc84b0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9710-4652
PQID 2937357594
PQPubID 2044268
PageCount 18
ParticipantIDs proquest_journals_2937357594
crossref_primary_10_1007_s13369_023_07786_w
crossref_citationtrail_10_1007_s13369_023_07786_w
springer_journals_10_1007_s13369_023_07786_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Tenev, Markovska-Simoska, Kocarev, Pop-Jordanov, Müller (CR3) 2014; 93
Vu, Kim, Jung, Lee (CR4) 2020; 223
Greff, Srivastava, Koutník, Steunebrink, Schmidhuber (CR37) 2017; 28
Schuster, Paliwal (CR38) 1997; 45
CR18
CR17
McNorgan, Judson, Handzlik, Holden (CR9) 2020; 11
CR14
CR36
Mueller, Candrian, Kropotov, Ponomarev, Baschera (CR23) 2010; 4
CR34
CR11
CR33
Thomas, Sanders, Doust, Beller, Glasziou (CR5) 2015; 135
CR30
Goodfellow, Bengio, Courville (CR39) 2016
Sörös, Hoxhaj, Borel (CR12) 2019; 19
Liu, Chang, Duyn (CR16) 2013
Graves, Schmidhuber (CR31) 2005; 18
Jiang, Wang, Zheng, Li, Yi, Ding, Li, Dong, Zang (CR21) 2020; 80
Miao, Zhang, Guan, Meng, Zhang (CR1) 2019; 7
Biswal, Yetkin, Haughton, Hyde (CR7) 1995; 34
Oh, Chung, Kim (CR10) 2019
Guo, Pagnoni (CR35) 2008; 42
Ledberg, Fransson, Larsson, Petersson (CR26) 2001; 13
CR29
CR28
CR27
Schmidhuber, Hochreiter (CR13) 1997; 9
CR25
Friston, Holmes, Poline, Grasby, Williams, Frackowiak, Turner (CR43) 1994; 1
CR24
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR41) 2014; 15
Monastra, Lubar, Linden, VanDeusen, Green, Wing, Phillips, Fenger (CR22) 1999; 13
CR20
CR42
CR40
Zhang-James, Chen, Kuja-Halkola, Lichtenstein, Larsson, Faraone (CR2) 2020; 61
Allen, Erhardt, Damaraju, Gruner, Segall, Silva, Havlicek, Rachakonda, Fries, Kalyanam, Michael, Caprihan, Turner (CR19) 2011; 5
Yuan, Zotev, Phillips, Bodurka (CR8) 2013; 79
Siddiqui, Huang, Morales-Menendez, Hussain, Khatoon (CR15) 2020; 14
Harshman, Lundy (CR32) 1994; 18
Mao, Su, Xu, Wang, Huang, Yue, Sun, Xiong (CR6) 2019; 499
7786_CR25
7786_CR24
7786_CR27
Z Mao (7786_CR6) 2019; 499
H Yuan (7786_CR8) 2013; 79
VJ Monastra (7786_CR22) 1999; 13
7786_CR29
7786_CR28
N Srivastava (7786_CR41) 2014; 15
K Greff (7786_CR37) 2017; 28
H Vu (7786_CR4) 2020; 223
P Sörös (7786_CR12) 2019; 19
MK Siddiqui (7786_CR15) 2020; 14
C McNorgan (7786_CR9) 2020; 11
RA Harshman (7786_CR32) 1994; 18
Y Zhang-James (7786_CR2) 2020; 61
7786_CR40
K Jiang (7786_CR21) 2020; 80
7786_CR20
7786_CR42
EA Allen (7786_CR19) 2011; 5
7786_CR34
7786_CR11
A Graves (7786_CR31) 2005; 18
7786_CR33
7786_CR14
Y Guo (7786_CR35) 2008; 42
7786_CR36
M Schuster (7786_CR38) 1997; 45
7786_CR18
7786_CR17
B Biswal (7786_CR7) 1995; 34
A Mueller (7786_CR23) 2010; 4
J Schmidhuber (7786_CR13) 1997; 9
B Miao (7786_CR1) 2019; 7
A Ledberg (7786_CR26) 2001; 13
KJ Friston (7786_CR43) 1994; 1
X Liu (7786_CR16) 2013
A Tenev (7786_CR3) 2014; 93
K Oh (7786_CR10) 2019
I Goodfellow (7786_CR39) 2016
7786_CR30
R Thomas (7786_CR5) 2015; 135
References_xml – volume: 19
  start-page: 43
  year: 2019
  ident: CR12
  article-title: Hyperactivity/restlessness is associated with increased functional connectivity in adults with ADHD: a dimensional analysis of resting state fMRI
  publication-title: BMC Psychiatry
  doi: 10.1186/s12888-019-2031-9
– volume: 18
  start-page: 39
  year: 1994
  end-page: 72
  ident: CR32
  article-title: PARAFAC: parallel factor analysis
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/0167-9473(94)90132-5
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: CR41
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
  doi: 10.5555/2627435.2670313
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  ident: CR7
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Mag. Resonance Med.
  doi: 10.1002/mrm.1910340409
– ident: CR18
– volume: 5
  start-page: 2
  year: 2011
  ident: CR19
  article-title: A baseline for the multivariate comparison of resting-state networks
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2011.00002
– volume: 223
  year: 2020
  ident: CR4
  article-title: fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117328
– ident: CR14
– volume: 42
  start-page: 1078
  year: 2008
  end-page: 93
  ident: CR35
  article-title: A unified framework for group independent component analysis for multi-subject fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.05.008
– volume: 13
  start-page: 424
  year: 1999
  end-page: 433
  ident: CR22
  article-title: Assessing attention deficit hyperactivity disorder via quantitative electroencephalography: An initial validation study
  publication-title: Neuropsychology
  doi: 10.1037/0894-4105.13.3.424
– year: 2016
  ident: CR39
  publication-title: Deep Learning
– ident: CR30
– ident: CR33
– volume: 7
  start-page: 62163
  year: 2019
  end-page: 62171
  ident: CR1
  article-title: Classification of ADHD individuals and neurotypicals using reliable RELIEF: a resting-state study
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2915988
– ident: CR29
– ident: CR40
– ident: CR25
– ident: CR27
– volume: 18
  start-page: 602
  year: 2005
  end-page: 610
  ident: CR31
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2005.06.042
– ident: CR42
– volume: 28
  start-page: 2222
  year: 2017
  end-page: 2232
  ident: CR37
  article-title: LSTM: A search space Odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582924
– volume: 1
  start-page: 153
  year: 1994
  end-page: 171
  ident: CR43
  article-title: Analysis of functional MRI time-series
  publication-title: Human. Brain Mapp.
  doi: 10.1002/hbm.460010207
– volume: 61
  start-page: 1370
  year: 2020
  end-page: 1379
  ident: CR2
  article-title: Machine-Learning prediction of comorbid substance use disorders in ADHD youth using Swedish registry data
  publication-title: J. Child Psychol. Psychiatry
  doi: 10.1111/jcpp.13226
– year: 2019
  ident: CR10
  article-title: Classification and visualization of Alzheimer’s disease using volumetric convolutional neural network and transfer learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54548-6
– volume: 499
  start-page: 1
  year: 2019
  end-page: 11
  ident: CR6
  article-title: Spatio-temporal deep learning method for ADHD fMRI classification
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.05.043
– volume: 135
  start-page: e994
  year: 2015
  end-page: e1001
  ident: CR5
  article-title: Prevalence of attention-deficit /hyperactivity disorder: a systematic review and meta-analysis
  publication-title: Pediatrics
  doi: 10.1542/peds.2014-3482
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: CR13
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 14
  start-page: 1491
  year: 2020
  end-page: 1509
  ident: CR15
  article-title: Machine learning based novel cost-sensitive seizure detection classifier for imbalanced EEG data sets
  publication-title: Int. J. Interact. Des. Manufa. (IJIDeM)
  doi: 10.1007/s12008-020-00715-3
– ident: CR17
– ident: CR11
– volume: 45
  start-page: 2673
  year: 1997
  end-page: 2681
  ident: CR38
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– volume: 93
  start-page: 162
  year: 2014
  end-page: 6
  ident: CR3
  article-title: Machine learning approach for classification of ADHD adults
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2013.01.008
– volume: 79
  start-page: 81
  year: 2013
  end-page: 93
  ident: CR8
  article-title: Correlated slow fluctuations in respiration, EEG, and BOLD fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.068
– volume: 11
  start-page: 1595
  year: 2020
  ident: CR9
  article-title: Linking ADHD and behavioral assessment through identification of shared diagnostic task-based functional connections
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.583005
– year: 2013
  ident: CR16
  article-title: Deco mposition of spontaneous brain activity into distinct fMRI co-activation patterns
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2013.00101
– ident: CR34
– ident: CR36
– volume: 4
  start-page: S1
  year: 2010
  end-page: S1
  ident: CR23
  article-title: Classification of ADHD patients on the basis of independent ERP components using a machine learning system
  publication-title: Nonlinear Biomed. Phys.
  doi: 10.1186/1753-4631-4-s1-s1
– volume: 80
  start-page: 235
  year: 2020
  end-page: 245
  ident: CR21
  article-title: Amplitude of low-frequency fluctuation of resting-state fMRI in primary nocturnal enuresis and attention deficit hyperactivity disorder
  publication-title: Int. J. Dev. Neurosci.
  doi: 10.1002/jdn.10020
– volume: 13
  start-page: 185
  year: 2001
  end-page: 98
  ident: CR26
  article-title: A 4D approach to the analysis of functional brain images: application to FMRI data
  publication-title: Human Brain Map.
  doi: 10.1002/hbm.1032
– ident: CR28
– ident: CR24
– ident: CR20
– ident: 7786_CR33
  doi: 10.1016/S0169-7439(97)00032-4
– ident: 7786_CR36
  doi: 10.1109/TC.1981.6312174
– ident: 7786_CR42
  doi: 10.1109/BIGCOMP.2017.7881693
– volume: 223
  year: 2020
  ident: 7786_CR4
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117328
– ident: 7786_CR18
  doi: 10.1007/s00787-017-1006-y
– volume: 13
  start-page: 424
  year: 1999
  ident: 7786_CR22
  publication-title: Neuropsychology
  doi: 10.1037/0894-4105.13.3.424
– volume: 18
  start-page: 39
  year: 1994
  ident: 7786_CR32
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/0167-9473(94)90132-5
– ident: 7786_CR34
  doi: 10.1016/0169-7439(95)80060-M
– ident: 7786_CR24
  doi: 10.1109/iFUZZY.2012.6409719
– ident: 7786_CR40
– volume: 79
  start-page: 81
  year: 2013
  ident: 7786_CR8
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.068
– volume: 15
  start-page: 1929
  year: 2014
  ident: 7786_CR41
  publication-title: J. Mach. Learn. Res.
  doi: 10.5555/2627435.2670313
– ident: 7786_CR25
  doi: 10.1109/ISBI.2018.8363676
– volume: 28
  start-page: 2222
  year: 2017
  ident: 7786_CR37
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582924
– volume: 34
  start-page: 537
  year: 1995
  ident: 7786_CR7
  publication-title: Mag. Resonance Med.
  doi: 10.1002/mrm.1910340409
– ident: 7786_CR14
  doi: 10.1007/s00521-018-3381-9
– volume: 4
  start-page: S1
  year: 2010
  ident: 7786_CR23
  publication-title: Nonlinear Biomed. Phys.
  doi: 10.1186/1753-4631-4-s1-s1
– volume: 7
  start-page: 62163
  year: 2019
  ident: 7786_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2915988
– volume: 11
  start-page: 1595
  year: 2020
  ident: 7786_CR9
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.583005
– volume: 13
  start-page: 185
  year: 2001
  ident: 7786_CR26
  publication-title: Human Brain Map.
  doi: 10.1002/hbm.1032
– volume: 80
  start-page: 235
  year: 2020
  ident: 7786_CR21
  publication-title: Int. J. Dev. Neurosci.
  doi: 10.1002/jdn.10020
– ident: 7786_CR27
  doi: 10.1109/IACS.2018.8355458
– volume: 93
  start-page: 162
  year: 2014
  ident: 7786_CR3
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2013.01.008
– ident: 7786_CR20
  doi: 10.1002/hbm.21333
– year: 2013
  ident: 7786_CR16
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2013.00101
– volume: 45
  start-page: 2673
  year: 1997
  ident: 7786_CR38
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– volume: 61
  start-page: 1370
  year: 2020
  ident: 7786_CR2
  publication-title: J. Child Psychol. Psychiatry
  doi: 10.1111/jcpp.13226
– year: 2019
  ident: 7786_CR10
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54548-6
– volume: 1
  start-page: 153
  year: 1994
  ident: 7786_CR43
  publication-title: Human. Brain Mapp.
  doi: 10.1002/hbm.460010207
– ident: 7786_CR29
  doi: 10.1177/15353702211018970
– volume: 18
  start-page: 602
  year: 2005
  ident: 7786_CR31
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2005.06.042
– ident: 7786_CR28
  doi: 10.1007/978-3-319-67389-9_42
– volume: 14
  start-page: 1491
  year: 2020
  ident: 7786_CR15
  publication-title: Int. J. Interact. Des. Manufa. (IJIDeM)
  doi: 10.1007/s12008-020-00715-3
– volume: 135
  start-page: e994
  year: 2015
  ident: 7786_CR5
  publication-title: Pediatrics
  doi: 10.1542/peds.2014-3482
– volume: 499
  start-page: 1
  year: 2019
  ident: 7786_CR6
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.05.043
– volume: 9
  start-page: 1735
  year: 1997
  ident: 7786_CR13
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 7786_CR17
  doi: 10.1016/j.ebiom.2019.08.023
– ident: 7786_CR30
  doi: 10.1007/978-3-319-70772-3_17
– volume: 42
  start-page: 1078
  year: 2008
  ident: 7786_CR35
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.05.008
– volume: 5
  start-page: 2
  year: 2011
  ident: 7786_CR19
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2011.00002
– volume: 19
  start-page: 43
  year: 2019
  ident: 7786_CR12
  publication-title: BMC Psychiatry
  doi: 10.1186/s12888-019-2031-9
– volume-title: Deep Learning
  year: 2016
  ident: 7786_CR39
– ident: 7786_CR11
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.3938653
Snippet Attention deficit hyperactivity disorder (ADHD) is a neurological disorder that affects an individual’s behavior. The rising cases of ADHD among children and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3009
SubjectTerms Attention deficit hyperactivity disorder
Classification
Deep learning
Engineering
Humanities and Social Sciences
Medical imaging
multidisciplinary
Neurological diseases
Research Article-Computer Engineering and Computer Science
Science
Title Deep Learning-Based Modified Bidirectional LSTM Network for Classification of ADHD Disorder
URI https://link.springer.com/article/10.1007/s13369-023-07786-w
https://www.proquest.com/docview/2937357594
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPiE9RNiY_8AapnNj56GNLVyrUFSRSqRIPURLbbBLqqq3RJP4D_mvubOdrwAS8RJXTOIrvZ9_5fL87Ql5rqXMpksJTYhx7QoUw5yTXXqHHIvfzkpeGKHy2ihZr8WETbgaDH52opWpfjMrvv-WV_I9UoQ3kiizZf5Bs0yk0wG-QL1xBwnD9KxnPlNrVGVK_elNQSBKLm11otCunF1ZdWV_f8nN6huxejMMyoYWmGibGCTU242S2mDXZOLtGqyncfJVjdvL6-Np0Ua8L6Hvv5DUcoRPfdDo1K217pz2BkuegIs8r65OuoO_GK_2-2lmD9pPzwDqXRCDamKyeSxLjrfEUpKHMmBUWWVMJs2znkTJtsGrCRjawtVvqZdlmMnXw4501ljM27uhrzizl_hddwBw3mvNo7IFp4jHMlefdtJqvPu1ffczm6-UyS0836T1yGMCOw_DGN37rrgMz2tTqsko-8hMTvNB8jeNjWVbm7Tf2bZ52I3Pr7N2YNOkj8tCJkk4ssB6Tgdo-IQ868npKviDEaB9itIYY7UGMIsSogxgFfNA-xOilpggxWkPsGVnPT9N3C8_V4_BK-My9Fwito0IFimvka7MCD2HLUsbSlxFsFBKNQ-RzGSSaxVrJ3JdaJ0zqMhEFU_w5OdhebtULQmMZsjLMdQgKQahAFLGQPIEHYL9blCIeEr8esax0yeqxZsq3rE2zjaOcwShnZpSzmyF50zyzs6la7vz3cS2IzE3p6wxs35hjyVoxJG9r4bS3_9zby7t7OyL323lyTA72V5V6Bcbsvjghh5P5dLo6MXD7Ce7AnEw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Modified+Bidirectional+LSTM+Network+for+Classification+of+ADHD+Disorder&rft.jtitle=The+Arabian+Journal+for+Science+and+Engineering.+Section+B%2C+Engineering&rft.au=Sudhanshu%2C+Saurabh&rft.au=Gupta%2C+P+K&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=49&rft.issue=3&rft.spage=3009&rft.epage=3026&rft_id=info:doi/10.1007%2Fs13369-023-07786-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon