Enhanced light utilization in semitransparent organic solar cells based on a nonfullerene acceptor of IEICO-4F

Although high efficiencies have been demonstrated in organic solar cells (OSCs), the development of semitransparent devices is still lagging behind due to the difficulty in making a balance between the active layer absorption and device transmittance. To address this challenge, a detailed study of s...

Full description

Saved in:
Bibliographic Details
Published inApplied physics. A, Materials science & processing Vol. 127; no. 11
Main Authors Zang, Yue, Chen, Lingfeng, Zhou, Jintao, Xu, Rui, Liu, Zugang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although high efficiencies have been demonstrated in organic solar cells (OSCs), the development of semitransparent devices is still lagging behind due to the difficulty in making a balance between the active layer absorption and device transmittance. To address this challenge, a detailed study of semitransparent OSCs (ST-OSCs) based on the blends of the low bandgap polymer PTB7-Th and ultra-narrow bandgap nonfullerene acceptor IEICO-4F is carried out. Comprehensive optical modeling using the transfer matrix method (TMM) has been performed to assist the design of ST-OSCs and understand the effect of active layer composition and distributed Bragg reflectors (DBRs) on the device performance. By varying the PTB7-Th/IEICO-4F blending ratio from 1:1.5 to 1:3 and incorporating of DBRs, the average visible transmittance (AVT) of the ST-OSCs was dramatically increased by over 26% with a slight decrease in photocurrent ( J max ) less than 5%. This significant improved light utilization can be attributed to the enhanced photon harvesting of NIR range and decreased visible light absorption by increasing the IEICO-4F content, as well as the optimal optical properties in the ST-OSCs with the use of DBRs. Our results can provide a feasible way to optimize the light harvesting and transmittance of the device for achieving high-performance ST-OSCs.
AbstractList Although high efficiencies have been demonstrated in organic solar cells (OSCs), the development of semitransparent devices is still lagging behind due to the difficulty in making a balance between the active layer absorption and device transmittance. To address this challenge, a detailed study of semitransparent OSCs (ST-OSCs) based on the blends of the low bandgap polymer PTB7-Th and ultra-narrow bandgap nonfullerene acceptor IEICO-4F is carried out. Comprehensive optical modeling using the transfer matrix method (TMM) has been performed to assist the design of ST-OSCs and understand the effect of active layer composition and distributed Bragg reflectors (DBRs) on the device performance. By varying the PTB7-Th/IEICO-4F blending ratio from 1:1.5 to 1:3 and incorporating of DBRs, the average visible transmittance (AVT) of the ST-OSCs was dramatically increased by over 26% with a slight decrease in photocurrent (Jmax) less than 5%. This significant improved light utilization can be attributed to the enhanced photon harvesting of NIR range and decreased visible light absorption by increasing the IEICO-4F content, as well as the optimal optical properties in the ST-OSCs with the use of DBRs. Our results can provide a feasible way to optimize the light harvesting and transmittance of the device for achieving high-performance ST-OSCs.
Although high efficiencies have been demonstrated in organic solar cells (OSCs), the development of semitransparent devices is still lagging behind due to the difficulty in making a balance between the active layer absorption and device transmittance. To address this challenge, a detailed study of semitransparent OSCs (ST-OSCs) based on the blends of the low bandgap polymer PTB7-Th and ultra-narrow bandgap nonfullerene acceptor IEICO-4F is carried out. Comprehensive optical modeling using the transfer matrix method (TMM) has been performed to assist the design of ST-OSCs and understand the effect of active layer composition and distributed Bragg reflectors (DBRs) on the device performance. By varying the PTB7-Th/IEICO-4F blending ratio from 1:1.5 to 1:3 and incorporating of DBRs, the average visible transmittance (AVT) of the ST-OSCs was dramatically increased by over 26% with a slight decrease in photocurrent ( J max ) less than 5%. This significant improved light utilization can be attributed to the enhanced photon harvesting of NIR range and decreased visible light absorption by increasing the IEICO-4F content, as well as the optimal optical properties in the ST-OSCs with the use of DBRs. Our results can provide a feasible way to optimize the light harvesting and transmittance of the device for achieving high-performance ST-OSCs.
ArticleNumber 889
Author Zang, Yue
Liu, Zugang
Xu, Rui
Zhou, Jintao
Chen, Lingfeng
Author_xml – sequence: 1
  givenname: Yue
  orcidid: 0000-0003-1053-5263
  surname: Zang
  fullname: Zang, Yue
  email: zangyue@hdu.edu.cn
  organization: College of Electronics and Information, Hangzhou Dianzi University
– sequence: 2
  givenname: Lingfeng
  surname: Chen
  fullname: Chen, Lingfeng
  organization: College of Electronics and Information, Hangzhou Dianzi University
– sequence: 3
  givenname: Jintao
  surname: Zhou
  fullname: Zhou, Jintao
  organization: College of Electronics and Information, Hangzhou Dianzi University
– sequence: 4
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
  organization: College of Optical and Electronic Technology, China Jiliang University
– sequence: 5
  givenname: Zugang
  surname: Liu
  fullname: Liu, Zugang
  organization: College of Optical and Electronic Technology, China Jiliang University
BookMark eNp9kE1PAyEURYnRxPrxB1yRuEYfX8PM0jRVm5i40TWhDFMxCBXoQn-9aE1MXPRt2JzDe_eeoMOYokPogsIVBVDXBYDzgQCjBCQwSfgBmlHBGYGOwyGawSAU6fnQHaOTUl6hjWBshuIivpho3YiDX79UvK0--E9TfYrYR1zcm6_ZxLIx2cWKU16b6C0uKZiMrQuh4JUpTW-8we2qaRuCa6zDxlq3qSnjNOHlYjl_JOL2DB1NJhR3_vueoufbxdP8njw83i3nNw_EcjpUwsTUrUYpBjZ1fBiZUEqMdJgmTlWvlKQ97UAINyoGq5455SyjspOOtoiwovwUXe7-3eT0vnWl6te0zbGt1EwOnEIvlWxUv6NsTqVkN2nr60_2ltkHTUF_t6t37erWrv5pV_Omsn_qJvs3kz_2S3wnlQbHtct_V-2xvgABJY2P
CitedBy_id crossref_primary_10_3390_en16166076
Cites_doi 10.1038/nmat3238
10.1002/aenm.201901728
10.1002/adma.201900904
10.1021/acsami.7b16730
10.1039/C8TA08891H
10.1021/acsenergylett.0c01554
10.1002/adma.201902210
10.1002/adma.201502110
10.1002/adma.201806616
10.1021/acsami.5b02039
10.1016/j.solmat.2009.10.005
10.1016/j.nanoen.2018.11.010
10.1002/aenm.201803438
10.1002/adma.201705969
10.1016/j.scib.2019.03.024
10.1038/nphoton.2012.11
10.1016/j.joule.2019.06.016
10.1002/aenm.201200679
10.1002/adma.202003891
10.1002/adfm.201505411
10.1002/adma.202001621
10.1002/adma.201701308
10.1038/nphoton.2013.276
10.1021/acsami.0c10906
10.1021/acsnano.0c01517
10.1063/1.1534621
10.1002/solr.202000328
10.1002/adma.201703080
10.1002/adfm.201605908
10.1002/adma.201700192
10.1039/C9TA00907H
10.1039/C9TA06929A
10.1039/C9EE03710A
10.1002/adma.201901683
10.1002/adma.201902302
10.1002/adma.201903173
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s00339-021-05025-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1432-0630
ExternalDocumentID 10_1007_s00339_021_05025_3
GrantInformation_xml – fundername: natural science foundation of zhejiang province
  grantid: LY21F050004
  funderid: http://dx.doi.org/10.13039/501100004731
– fundername: national natural science foundation of china
  grantid: 61904168; 61705054; 52072355
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -54
-5F
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WIP
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZE2
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-24f6bd5492f639d24774d19ff31787751816044ed720b82e7ec21565e18390b13
IEDL.DBID U2A
ISSN 0947-8396
IngestDate Fri Jul 25 11:14:14 EDT 2025
Tue Jul 01 00:39:29 EDT 2025
Thu Apr 24 22:54:50 EDT 2025
Fri Feb 21 02:47:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Semitransparent organic solar cell
Nonfullerene acceptor
Distributed Bragg reflectors
Active layer composition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-24f6bd5492f639d24774d19ff31787751816044ed720b82e7ec21565e18390b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1053-5263
PQID 2593108575
PQPubID 2043608
ParticipantIDs proquest_journals_2593108575
crossref_citationtrail_10_1007_s00339_021_05025_3
crossref_primary_10_1007_s00339_021_05025_3
springer_journals_10_1007_s00339_021_05025_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Materials Science & Processing
PublicationTitle Applied physics. A, Materials science & processing
PublicationTitleAbbrev Appl. Phys. A
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Li, Zhu, Yang (CR1) 2012; 6
Shin, Jang, Lee, Seo, Choi (CR14) 2018; 10
Li, Wu, Tang, Pan, Ma, Fu, Zhan, Yao (CR4) 2019; 9
Li, Ji, Qu, Huang, Hou, Li, Liao, Cuo, Forrest (CR16) 2019; 31
Xiong, Hu, Hu, Sun, Qin, Liu, Fahlman, Zhou (CR27) 2019; 31
Betancur, Romero-Gomez, Martinez-Otero, Elias, Maymó, Martorell (CR35) 2013; 7
Brus, Lee, Luginbuhl, Ko, Bazan, Nguyen (CR11) 2019; 31
Betancur, Romero-Gomez, Martinez-Otero, Elias, Maymo, Martorell (CR34) 2013; 7
Peumans, Yakimov, Forrest (CR32) 2003; 93
Xia, Brabec, Yip, Cao (CR29) 2019; 3
Li, Xia, Yan, Ren, Yip, Li, Chen (CR24) 2020; 5
Zhan, Li, Lau, Cui, Lu, Shi, Li, Li, Hou, Chen (CR8) 2020; 13
Xiong, Booth, Kim, Ye, Liu, Dong, Zhang, So, Zhu, Amassian, O'Connor, Ade (CR13) 2020; 4
Chueh, Chien, Yip, Salinas, Li, Chen, Chen, Chen, Jen (CR19) 2013; 3
Pan, Lau, Tang, Wu, Liu, Li, Chen, Lu, Ma, Zhan (CR5) 2019; 7
Zuo, Shi, Fu, Jen (CR17) 2019; 31
Wang, Qin, Zhou, Li, Xia, Li, Zhan, Zhu, Lu, Yip, Chen, Li (CR26) 2020; 32
Yan, Song, Huang, Peng, Huang, Ge (CR6) 2019; 31
Wang, Chen, Li, Zuo, Qu, Ren, Li, Jen, Tang (CR25) 2020; 14
Shi, Xia, Zhang, Yip, Cao (CR31) 2019; 9
Hu, Wang, Zhang (CR28) 2019; 7
Cheng, Wang, Zhu, Zheng, Li, Chen, Huang, Zhao, Wang, Meng, Li, Zhu, Wei, Zhan, Yang (CR10) 2020; 32
Tai, Yan (CR33) 2017; 29
Zhang, Guo, Ma, Ade, Hou (CR20) 2015; 27
Cai, Gong, Cao (CR2) 2010; 94
An, Ma, Gao, Zhang (CR3) 2019; 64
Garnett, Cai, Cha, Mahmood, Connor, Christoforo, Cui, McGehee, Brongersma (CR18) 2012; 11
Wang, Yan, Lau, Wang, Liu, Fan, Lu, Zhan (CR22) 2017; 29
Guiying, Liang, Shanpeng, Chen, Chen (CR36) 2017; 27
Yu, Jia, Long, Shen, Liu, Guo, Ruan (CR37) 2015; 7
Yu, Yao, Cui, Hong, He, Hou (CR7) 2019; 31
Jiang, Lee, Lu, Tsai, Shieh, Jeng, Chen (CR12) 2020; 12
Ma, Xiao, An, Zhang, Hu, Wang, Ding, Zhang (CR30) 2018; 6
Hu, Wang, Wang, Gao, An, Zhang, Ma, Wang, Miao, Yang, Zhang (CR15) 2019; 55
Cui, Yang, Yao, Zhu, Wang, Jia, Gao, Hou (CR9) 2017; 29
Min, Bronnbauer, Zhang, Cui, Luponosov, Ata, Schweizer, Przybilla, Guo, Ameri, Forberich, Spiecker, Baeuerle, Ponomarenko, Li, Brabec (CR21) 2016; 26
Li, Dai, Ke, Yang, Wang, Yan, Ma, Zhan (CR23) 2018; 30
T Li (5025_CR23) 2018; 30
P Cheng (5025_CR10) 2020; 32
R Betancur (5025_CR35) 2013; 7
H Shi (5025_CR31) 2019; 9
G Li (5025_CR1) 2012; 6
VV Brus (5025_CR11) 2019; 31
W Cai (5025_CR2) 2010; 94
M-A Pan (5025_CR5) 2019; 7
J Min (5025_CR21) 2016; 26
Y Li (5025_CR16) 2019; 31
Q An (5025_CR3) 2019; 64
M Zhang (5025_CR20) 2015; 27
S Xiong (5025_CR27) 2019; 31
P Peumans (5025_CR32) 2003; 93
R Betancur (5025_CR34) 2013; 7
DH Shin (5025_CR14) 2018; 10
L Zhan (5025_CR8) 2020; 13
L Zuo (5025_CR17) 2019; 31
Z Hu (5025_CR15) 2019; 55
W Wang (5025_CR22) 2017; 29
D Wang (5025_CR26) 2020; 32
R Xia (5025_CR29) 2019; 3
Z Hu (5025_CR28) 2019; 7
K Li (5025_CR4) 2019; 9
R Yu (5025_CR7) 2019; 31
Y Xiong (5025_CR13) 2020; 4
S Wang (5025_CR25) 2020; 14
B-H Jiang (5025_CR12) 2020; 12
C-C Chueh (5025_CR19) 2013; 3
Y Cui (5025_CR9) 2017; 29
WJ Yu (5025_CR37) 2015; 7
S Guiying (5025_CR36) 2017; 27
X Ma (5025_CR30) 2018; 6
T Yan (5025_CR6) 2019; 31
EC Garnett (5025_CR18) 2012; 11
Q Tai (5025_CR33) 2017; 29
X Li (5025_CR24) 2020; 5
References_xml – volume: 11
  start-page: 241
  year: 2012
  end-page: 249
  ident: CR18
  article-title: Self-limited plasmonic welding of silver nanowire junctions
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3238
– volume: 9
  start-page: 1901728
  year: 2019
  ident: CR4
  article-title: Ternary blended fullerene-free polymer solar cells with 16.5% efficiency enabled with a higher-LUMO-level acceptor to improve film morphology
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901728
– volume: 31
  start-page: 1900904
  year: 2019
  ident: CR11
  article-title: Solution-processed semitransparent organic photovoltaics: from molecular design to device performance
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900904
– volume: 10
  start-page: 3596
  year: 2018
  end-page: 3601
  ident: CR14
  article-title: Semitransparent flexible organic solar cells employing doped-graphene layers as anode and cathode electrodes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16730
– volume: 6
  start-page: 21485
  year: 2018
  end-page: 21492
  ident: CR30
  article-title: Simultaneously improved efficiency and average visible transmittance of semitransparent polymer solar cells with two ultra-narrow bandgap nonfullerene acceptors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08891H
– volume: 5
  start-page: 3115
  year: 2020
  end-page: 3123
  ident: CR24
  article-title: Semitransparent organic solar cells with vivid colors
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01554
– volume: 31
  start-page: 1902210
  year: 2019
  ident: CR6
  article-title: 16.67% Rigid and 14.06% Flexible organic solar cells enabled by ternary heterojunction strategy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902210
– volume: 27
  start-page: 4655
  year: 2015
  end-page: 4660
  ident: CR20
  article-title: A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502110
– volume: 31
  start-page: 1806616
  year: 2019
  ident: CR27
  article-title: 125% flexible nonfullerene solar cells by passivating the chemical interaction between the active layer and polymer interfacial layer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806616
– volume: 7
  start-page: 9920
  year: 2015
  end-page: 9928
  ident: CR37
  article-title: Highly efficient semitransparent polymer solar cells with color rendering index approaching 100 using one-dimensional photonic crystal
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b02039
– volume: 94
  start-page: 114
  year: 2010
  end-page: 127
  ident: CR2
  article-title: Polymer solar cells: recent development and possible routes for improvement in the performance
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2009.10.005
– volume: 55
  start-page: 424
  year: 2019
  end-page: 4324
  ident: CR15
  article-title: Semitransparent ternary nonfullerene polymer solar cells exhibiting 9.40% efficiency and 24.6% average visible transmittance
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.010
– volume: 9
  start-page: 1803438
  year: 2019
  ident: CR31
  article-title: Spectral engineering of semitransparent polymer solar cells for greenhouse applications
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803438
– volume: 30
  start-page: 1705969
  year: 2018
  ident: CR23
  article-title: Fused tris(thienothiophene)-based electron acceptor with strong near-infrared absorption for high-performance as-cast solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705969
– volume: 64
  start-page: 504
  year: 2019
  end-page: 506
  ident: CR3
  article-title: Solvent additive-free ternary polymer solar cells with 16.27% efficiency
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.03.024
– volume: 6
  start-page: 153
  year: 2012
  end-page: 161
  ident: CR1
  article-title: Polymer solar cells
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.11
– volume: 3
  start-page: 2241
  year: 2019
  end-page: 2254
  ident: CR29
  article-title: High-throughput optical screening for efficient semitransparent organic solar cells
  publication-title: Joule
  doi: 10.1016/j.joule.2019.06.016
– volume: 3
  start-page: 417
  year: 2013
  end-page: 423
  ident: CR19
  article-title: Toward high-performance semi-transparent polymer solar cells: optimization of ultra-thin light absorbing layer and transparent cathode architecture
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200679
– volume: 32
  start-page: 2003891
  year: 2020
  ident: CR10
  article-title: Transparent hole-transporting frameworks: a unique strategy to design high-performance semitransparent organic photovoltaics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003891
– volume: 26
  start-page: 4543
  year: 2016
  end-page: 4550
  ident: CR21
  article-title: Fully solution-processed small molecule semitransparent solar cells: optimization of transparent cathode architecture and four absorbing layers
  publication-title: Adv. Func. Mater.
  doi: 10.1002/adfm.201505411
– volume: 32
  start-page: 2001621
  year: 2020
  ident: CR26
  article-title: High-performance semitransparent organic solar cells with excellent infrared reflection and see-through functions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001621
– volume: 29
  start-page: 1701308
  year: 2017
  ident: CR22
  article-title: Fused hexacyclic nonfullerene acceptor with strong near-infrared absorption for semitransparent organic solar cells with 9.77% efficiency
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701308
– volume: 7
  start-page: 995
  year: 2013
  end-page: 1000
  ident: CR35
  article-title: Transparent polymer solar cells employing a layered light-trapping architecture
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.276
– volume: 12
  start-page: 39496
  year: 2020
  end-page: 39504
  ident: CR12
  article-title: High-performance semitransparent organic photovoltaics featuring a surface phase-matched transmission-enhancing Ag/ITO electrode
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c10906
– volume: 14
  start-page: 5998
  year: 2020
  end-page: 6006
  ident: CR25
  article-title: Narrow bandpass and efficient semitransparent organic solar cells based on bioinspired spectrally selective electrodes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c01517
– volume: 93
  start-page: 3693
  year: 2003
  end-page: 3723
  ident: CR32
  article-title: Small molecular weight organic thin-film photodetectors and solar cells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1534621
– volume: 4
  start-page: 2000328
  year: 2020
  ident: CR13
  article-title: Novel bimodal silver nanowire network as top electrodes for reproducible and high-efficiency semitransparent organic photovoltaics
  publication-title: Solar Rrl
  doi: 10.1002/solr.202000328
– volume: 29
  start-page: 1703080
  year: 2017
  ident: CR9
  article-title: Efficient Semitransparent organic solar cells with tunable color enabled by an ultralow-bandgap nonfullerene acceptor
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703080
– volume: 27
  start-page: 1605908
  year: 2017
  ident: CR36
  article-title: High-performance colorful semitransparent polymer solar cells with ultrathin hybrid-metal electrodes and fine-tuned dielectric mirrors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605908
– volume: 29
  start-page: 1700192
  year: 2017
  ident: CR33
  article-title: Emerging semitransparent solar cells: materials and device design
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700192
– volume: 7
  start-page: 7025
  year: 2019
  end-page: 7032
  ident: CR28
  article-title: Semitransparent polymer solar cells with 9.06% efficiency and 27.1% average visible transmittance obtained by employing a smart strategy
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00907H
– volume: 7
  start-page: 20713
  year: 2019
  end-page: 207224
  ident: CR5
  article-title: 16.7%-efficiency ternary blended organic photovoltaic cells with PCBM as the acceptor additive to increase the open-circuit voltage and phase purity
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06929A
– volume: 13
  start-page: 635
  year: 2020
  end-page: 645
  ident: CR8
  article-title: Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03710A
– volume: 31
  start-page: 1901683
  year: 2019
  ident: CR17
  article-title: Highly efficient semitransparent solar cells with selective absorption and tandem architecture
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901683
– volume: 31
  start-page: 1902302
  year: 2019
  ident: CR7
  article-title: Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902302
– volume: 31
  start-page: 1903173
  year: 2019
  ident: CR16
  article-title: Enhanced light utilization in semitransparent organic photovoltaics using an optical outcoupling architecture
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903173
– volume: 7
  start-page: 995
  year: 2013
  end-page: 1000
  ident: CR34
  article-title: Transparent polymer solar cells employing a layered light-trapping architecture
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.276
– volume: 6
  start-page: 153
  year: 2012
  ident: 5025_CR1
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.11
– volume: 3
  start-page: 417
  year: 2013
  ident: 5025_CR19
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200679
– volume: 31
  start-page: 1806616
  year: 2019
  ident: 5025_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806616
– volume: 31
  start-page: 1903173
  year: 2019
  ident: 5025_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903173
– volume: 13
  start-page: 635
  year: 2020
  ident: 5025_CR8
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03710A
– volume: 29
  start-page: 1703080
  year: 2017
  ident: 5025_CR9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703080
– volume: 7
  start-page: 995
  year: 2013
  ident: 5025_CR35
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.276
– volume: 55
  start-page: 424
  year: 2019
  ident: 5025_CR15
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.010
– volume: 94
  start-page: 114
  year: 2010
  ident: 5025_CR2
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2009.10.005
– volume: 7
  start-page: 995
  year: 2013
  ident: 5025_CR34
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.276
– volume: 4
  start-page: 2000328
  year: 2020
  ident: 5025_CR13
  publication-title: Solar Rrl
  doi: 10.1002/solr.202000328
– volume: 7
  start-page: 7025
  year: 2019
  ident: 5025_CR28
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00907H
– volume: 7
  start-page: 9920
  year: 2015
  ident: 5025_CR37
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b02039
– volume: 9
  start-page: 1901728
  year: 2019
  ident: 5025_CR4
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901728
– volume: 7
  start-page: 20713
  year: 2019
  ident: 5025_CR5
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06929A
– volume: 31
  start-page: 1900904
  year: 2019
  ident: 5025_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900904
– volume: 11
  start-page: 241
  year: 2012
  ident: 5025_CR18
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3238
– volume: 29
  start-page: 1701308
  year: 2017
  ident: 5025_CR22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701308
– volume: 64
  start-page: 504
  year: 2019
  ident: 5025_CR3
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.03.024
– volume: 27
  start-page: 4655
  year: 2015
  ident: 5025_CR20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502110
– volume: 9
  start-page: 1803438
  year: 2019
  ident: 5025_CR31
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803438
– volume: 5
  start-page: 3115
  year: 2020
  ident: 5025_CR24
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01554
– volume: 32
  start-page: 2001621
  year: 2020
  ident: 5025_CR26
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001621
– volume: 12
  start-page: 39496
  year: 2020
  ident: 5025_CR12
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c10906
– volume: 29
  start-page: 1700192
  year: 2017
  ident: 5025_CR33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700192
– volume: 3
  start-page: 2241
  year: 2019
  ident: 5025_CR29
  publication-title: Joule
  doi: 10.1016/j.joule.2019.06.016
– volume: 31
  start-page: 1902302
  year: 2019
  ident: 5025_CR7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902302
– volume: 93
  start-page: 3693
  year: 2003
  ident: 5025_CR32
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1534621
– volume: 31
  start-page: 1901683
  year: 2019
  ident: 5025_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901683
– volume: 26
  start-page: 4543
  year: 2016
  ident: 5025_CR21
  publication-title: Adv. Func. Mater.
  doi: 10.1002/adfm.201505411
– volume: 31
  start-page: 1902210
  year: 2019
  ident: 5025_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902210
– volume: 32
  start-page: 2003891
  year: 2020
  ident: 5025_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003891
– volume: 10
  start-page: 3596
  year: 2018
  ident: 5025_CR14
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16730
– volume: 6
  start-page: 21485
  year: 2018
  ident: 5025_CR30
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08891H
– volume: 14
  start-page: 5998
  year: 2020
  ident: 5025_CR25
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c01517
– volume: 30
  start-page: 1705969
  year: 2018
  ident: 5025_CR23
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705969
– volume: 27
  start-page: 1605908
  year: 2017
  ident: 5025_CR36
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605908
SSID ssj0000422
Score 2.3642073
Snippet Although high efficiencies have been demonstrated in organic solar cells (OSCs), the development of semitransparent devices is still lagging behind due to the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Bragg reflectors
Characterization and Evaluation of Materials
Composition effects
Condensed Matter Physics
Electromagnetic absorption
Energy gap
Machines
Manufacturing
Materials science
Matrix methods
Nanotechnology
Optical and Electronic Materials
Optical properties
Optimization
Photoelectric effect
Photovoltaic cells
Physics
Physics and Astronomy
Polymer blends
Processes
Solar cells
Surfaces and Interfaces
Thin Films
Transfer matrices
Transmittance
Title Enhanced light utilization in semitransparent organic solar cells based on a nonfullerene acceptor of IEICO-4F
URI https://link.springer.com/article/10.1007/s00339-021-05025-3
https://www.proquest.com/docview/2593108575
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT4MwFH7RLSZ6MDo1TufSgzclAVoKHLcJbproxSXzRCiUuGQyM_D_21dgU6MmnjhQSsJrX7_H-977AC5plthCMmYwzjODpWrPCVc6hqAcfWYi4lizLR74eMruZs6sLgorGrZ7k5LUnnpd7IayY76BlALTQRFWug1tR8XuSOSa2oON_2VV7sBnyv9Sn9elMj_P8fU42mDMb2lRfdqEB7Bfw0QyqOx6CFsy78Dep-aBHdjR5M2kOII8yF90Ip8sMNQmai0t6vJKMs9JIV_npe5hjoVfJamEnBJSYFRL8M99QfAwS4kaH5N8meM_ea2aQuIEaS_LFVlmZBJMRo8GC49hGgZPo7FR6ygYidpgpWGzjIsUW7FlCo-kNlOQL7X8LFPYwXMx72JxkzGZurYpPFu6MlFAgDsS0ZMpLHoCLfVueQrEl7GdxkidST3mUeHFCj8qUCa47wkq3C5YzeeMkrrJOGpdLKJ1e2RtgkiZINImiGgXrtbPvFUtNv4c3WusFNXbrYhUDEctLTbahevGcpvbv8929r_h57Br4-LRtYg9aJWrd3mhQEkp-tAeDG-GIV5vn--Dvl6TH53C194
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60IupBfGK16h70pIFms90kBw-iLa3PiwVvMZtssFBTaSLi__GHOrNNWhUVPPSczSbsvL5lHh_AgZNEXGkhLCFlYokYbU65umEpR5LPjFQYmmqLG9nuiov7xv0MvJe9MKbavUxJGk89bnYj2jHfopKCeoNIWEvK6kv99ooXteykc45SPeS81bw7a1sFl4AVoZLlFheJVDGNI0swJsdcIOyJbT9JMH56LuUebFkXQscuryuPa1dHGAxlQxOCqCvbwX1nYQ7Bh0e20-WnE38vRrkKX6C_d3xZtOb8_M9fw98E035Lw5ro1lqB5QKWstORHq3CjE7XYOnTsMI1mDfFolG2DmkzfTSFA6xPV3uGutsv2jlZL2WZfurlZmY6NZrlbEQcFbGMbtGMMgUZo-AZM1wfsnSQUg7AsLSwMKIym8GQDRLWaXbObi3R2oDuVM56Eyr4bb0FzNchj0Mq1Yk94TnKCxGvIghU0veUo9wq2OVxBlEx1Jy4NfrBeByzEUGAIgiMCAKnCkfjd55HIz3-XF0rpRQU5p0FeGd0bENuWoXjUnKTx7_vtv2_5fuw0L67vgquOjeXO7DISZFMH2QNKvnwRe8iIMrVntFHBg_TNoAPOCkO3g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT-MwEB1BEQgOiK8VhbL4sJwgonFcJzlwQNCKworlQCVuIY4dUambIhKE-Ff8RGacpF0QrMSBcxwn8sx4ZjTz5gH88tKEKyOEI6RMHaHR5pRvOo7yJN2ZiYpj221xKc8G4vymczMDLzUWxna71yXJEtNAU5qy4vBep4cT4BtRkIUOtRe0O0TIWtNXX5jnJ0za8qP-KUp4j_Ne9_rkzKl4BZwEFa5wuEil0jSaLEX_rLnAEEi7YZqiLw18qkO4si2E0T5vq4Ab3yToGGXHUDTRVq6H-87CnCD0MVrQgB9P735R1i1CgXe_F8oKpvPxP791hdP49l1J1nq63gosVyEqOy51ahVmTLYGS_8MLlyDeds4muTrkHWzO9tEwEaU5jPU41EF7WTDjOXm77Cw89MJdFawkkQqYTll1IyqBjkjR6oZro9ZNs6oHmAZW1icUMvN-IGNU9bv9k_-OKK3AYNvOesf0MBvm01goYm5jqltRwci8FQQY-yKAaGSYaA85TfBrY8zSqoB58SzMYomo5mtCCIUQWRFEHlN2J-8c1-O9_jv6lYtpagy9TzC_NFzLdFpEw5qyU0ff77b1teW78LC1Wkv-t2_vNiGRU56ZCGRLWgUD49mB2OjQv206sjg9rv1_xV4rhMR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+light+utilization+in+semitransparent+organic+solar+cells+based+on+a+nonfullerene+acceptor+of+IEICO-4F&rft.jtitle=Applied+physics.+A%2C+Materials+science+%26+processing&rft.au=Zang+Yue&rft.au=Chen%2C+Lingfeng&rft.au=Zhou+Jintao&rft.au=Xu%2C+Rui&rft.date=2021-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0947-8396&rft.eissn=1432-0630&rft.volume=127&rft.issue=11&rft_id=info:doi/10.1007%2Fs00339-021-05025-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-8396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-8396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-8396&client=summon