Enhanced light utilization in semitransparent organic solar cells based on a nonfullerene acceptor of IEICO-4F
Although high efficiencies have been demonstrated in organic solar cells (OSCs), the development of semitransparent devices is still lagging behind due to the difficulty in making a balance between the active layer absorption and device transmittance. To address this challenge, a detailed study of s...
Saved in:
Published in | Applied physics. A, Materials science & processing Vol. 127; no. 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although high efficiencies have been demonstrated in organic solar cells (OSCs), the development of semitransparent devices is still lagging behind due to the difficulty in making a balance between the active layer absorption and device transmittance. To address this challenge, a detailed study of semitransparent OSCs (ST-OSCs) based on the blends of the low bandgap polymer PTB7-Th and ultra-narrow bandgap nonfullerene acceptor IEICO-4F is carried out. Comprehensive optical modeling using the transfer matrix method (TMM) has been performed to assist the design of ST-OSCs and understand the effect of active layer composition and distributed Bragg reflectors (DBRs) on the device performance. By varying the PTB7-Th/IEICO-4F blending ratio from 1:1.5 to 1:3 and incorporating of DBRs, the average visible transmittance (AVT) of the ST-OSCs was dramatically increased by over 26% with a slight decrease in photocurrent (
J
max
) less than 5%. This significant improved light utilization can be attributed to the enhanced photon harvesting of NIR range and decreased visible light absorption by increasing the IEICO-4F content, as well as the optimal optical properties in the ST-OSCs with the use of DBRs. Our results can provide a feasible way to optimize the light harvesting and transmittance of the device for achieving high-performance ST-OSCs. |
---|---|
AbstractList | Although high efficiencies have been demonstrated in organic solar cells (OSCs), the development of semitransparent devices is still lagging behind due to the difficulty in making a balance between the active layer absorption and device transmittance. To address this challenge, a detailed study of semitransparent OSCs (ST-OSCs) based on the blends of the low bandgap polymer PTB7-Th and ultra-narrow bandgap nonfullerene acceptor IEICO-4F is carried out. Comprehensive optical modeling using the transfer matrix method (TMM) has been performed to assist the design of ST-OSCs and understand the effect of active layer composition and distributed Bragg reflectors (DBRs) on the device performance. By varying the PTB7-Th/IEICO-4F blending ratio from 1:1.5 to 1:3 and incorporating of DBRs, the average visible transmittance (AVT) of the ST-OSCs was dramatically increased by over 26% with a slight decrease in photocurrent (Jmax) less than 5%. This significant improved light utilization can be attributed to the enhanced photon harvesting of NIR range and decreased visible light absorption by increasing the IEICO-4F content, as well as the optimal optical properties in the ST-OSCs with the use of DBRs. Our results can provide a feasible way to optimize the light harvesting and transmittance of the device for achieving high-performance ST-OSCs. Although high efficiencies have been demonstrated in organic solar cells (OSCs), the development of semitransparent devices is still lagging behind due to the difficulty in making a balance between the active layer absorption and device transmittance. To address this challenge, a detailed study of semitransparent OSCs (ST-OSCs) based on the blends of the low bandgap polymer PTB7-Th and ultra-narrow bandgap nonfullerene acceptor IEICO-4F is carried out. Comprehensive optical modeling using the transfer matrix method (TMM) has been performed to assist the design of ST-OSCs and understand the effect of active layer composition and distributed Bragg reflectors (DBRs) on the device performance. By varying the PTB7-Th/IEICO-4F blending ratio from 1:1.5 to 1:3 and incorporating of DBRs, the average visible transmittance (AVT) of the ST-OSCs was dramatically increased by over 26% with a slight decrease in photocurrent ( J max ) less than 5%. This significant improved light utilization can be attributed to the enhanced photon harvesting of NIR range and decreased visible light absorption by increasing the IEICO-4F content, as well as the optimal optical properties in the ST-OSCs with the use of DBRs. Our results can provide a feasible way to optimize the light harvesting and transmittance of the device for achieving high-performance ST-OSCs. |
ArticleNumber | 889 |
Author | Zang, Yue Liu, Zugang Xu, Rui Zhou, Jintao Chen, Lingfeng |
Author_xml | – sequence: 1 givenname: Yue orcidid: 0000-0003-1053-5263 surname: Zang fullname: Zang, Yue email: zangyue@hdu.edu.cn organization: College of Electronics and Information, Hangzhou Dianzi University – sequence: 2 givenname: Lingfeng surname: Chen fullname: Chen, Lingfeng organization: College of Electronics and Information, Hangzhou Dianzi University – sequence: 3 givenname: Jintao surname: Zhou fullname: Zhou, Jintao organization: College of Electronics and Information, Hangzhou Dianzi University – sequence: 4 givenname: Rui surname: Xu fullname: Xu, Rui organization: College of Optical and Electronic Technology, China Jiliang University – sequence: 5 givenname: Zugang surname: Liu fullname: Liu, Zugang organization: College of Optical and Electronic Technology, China Jiliang University |
BookMark | eNp9kE1PAyEURYnRxPrxB1yRuEYfX8PM0jRVm5i40TWhDFMxCBXoQn-9aE1MXPRt2JzDe_eeoMOYokPogsIVBVDXBYDzgQCjBCQwSfgBmlHBGYGOwyGawSAU6fnQHaOTUl6hjWBshuIivpho3YiDX79UvK0--E9TfYrYR1zcm6_ZxLIx2cWKU16b6C0uKZiMrQuh4JUpTW-8we2qaRuCa6zDxlq3qSnjNOHlYjl_JOL2DB1NJhR3_vueoufbxdP8njw83i3nNw_EcjpUwsTUrUYpBjZ1fBiZUEqMdJgmTlWvlKQ97UAINyoGq5455SyjspOOtoiwovwUXe7-3eT0vnWl6te0zbGt1EwOnEIvlWxUv6NsTqVkN2nr60_2ltkHTUF_t6t37erWrv5pV_Omsn_qJvs3kz_2S3wnlQbHtct_V-2xvgABJY2P |
CitedBy_id | crossref_primary_10_3390_en16166076 |
Cites_doi | 10.1038/nmat3238 10.1002/aenm.201901728 10.1002/adma.201900904 10.1021/acsami.7b16730 10.1039/C8TA08891H 10.1021/acsenergylett.0c01554 10.1002/adma.201902210 10.1002/adma.201502110 10.1002/adma.201806616 10.1021/acsami.5b02039 10.1016/j.solmat.2009.10.005 10.1016/j.nanoen.2018.11.010 10.1002/aenm.201803438 10.1002/adma.201705969 10.1016/j.scib.2019.03.024 10.1038/nphoton.2012.11 10.1016/j.joule.2019.06.016 10.1002/aenm.201200679 10.1002/adma.202003891 10.1002/adfm.201505411 10.1002/adma.202001621 10.1002/adma.201701308 10.1038/nphoton.2013.276 10.1021/acsami.0c10906 10.1021/acsnano.0c01517 10.1063/1.1534621 10.1002/solr.202000328 10.1002/adma.201703080 10.1002/adfm.201605908 10.1002/adma.201700192 10.1039/C9TA00907H 10.1039/C9TA06929A 10.1039/C9EE03710A 10.1002/adma.201901683 10.1002/adma.201902302 10.1002/adma.201903173 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00339-021-05025-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1432-0630 |
ExternalDocumentID | 10_1007_s00339_021_05025_3 |
GrantInformation_xml | – fundername: natural science foundation of zhejiang province grantid: LY21F050004 funderid: http://dx.doi.org/10.13039/501100004731 – fundername: national natural science foundation of china grantid: 61904168; 61705054; 52072355 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -54 -5F -5G -BR -EM -XW -XX -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9T PF0 PT4 PT5 QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WIP WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZE2 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AGQPQ AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-24f6bd5492f639d24774d19ff31787751816044ed720b82e7ec21565e18390b13 |
IEDL.DBID | U2A |
ISSN | 0947-8396 |
IngestDate | Fri Jul 25 11:14:14 EDT 2025 Tue Jul 01 00:39:29 EDT 2025 Thu Apr 24 22:54:50 EDT 2025 Fri Feb 21 02:47:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Semitransparent organic solar cell Nonfullerene acceptor Distributed Bragg reflectors Active layer composition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-24f6bd5492f639d24774d19ff31787751816044ed720b82e7ec21565e18390b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1053-5263 |
PQID | 2593108575 |
PQPubID | 2043608 |
ParticipantIDs | proquest_journals_2593108575 crossref_citationtrail_10_1007_s00339_021_05025_3 crossref_primary_10_1007_s00339_021_05025_3 springer_journals_10_1007_s00339_021_05025_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Materials Science & Processing |
PublicationTitle | Applied physics. A, Materials science & processing |
PublicationTitleAbbrev | Appl. Phys. A |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Li, Zhu, Yang (CR1) 2012; 6 Shin, Jang, Lee, Seo, Choi (CR14) 2018; 10 Li, Wu, Tang, Pan, Ma, Fu, Zhan, Yao (CR4) 2019; 9 Li, Ji, Qu, Huang, Hou, Li, Liao, Cuo, Forrest (CR16) 2019; 31 Xiong, Hu, Hu, Sun, Qin, Liu, Fahlman, Zhou (CR27) 2019; 31 Betancur, Romero-Gomez, Martinez-Otero, Elias, Maymó, Martorell (CR35) 2013; 7 Brus, Lee, Luginbuhl, Ko, Bazan, Nguyen (CR11) 2019; 31 Betancur, Romero-Gomez, Martinez-Otero, Elias, Maymo, Martorell (CR34) 2013; 7 Peumans, Yakimov, Forrest (CR32) 2003; 93 Xia, Brabec, Yip, Cao (CR29) 2019; 3 Li, Xia, Yan, Ren, Yip, Li, Chen (CR24) 2020; 5 Zhan, Li, Lau, Cui, Lu, Shi, Li, Li, Hou, Chen (CR8) 2020; 13 Xiong, Booth, Kim, Ye, Liu, Dong, Zhang, So, Zhu, Amassian, O'Connor, Ade (CR13) 2020; 4 Chueh, Chien, Yip, Salinas, Li, Chen, Chen, Chen, Jen (CR19) 2013; 3 Pan, Lau, Tang, Wu, Liu, Li, Chen, Lu, Ma, Zhan (CR5) 2019; 7 Zuo, Shi, Fu, Jen (CR17) 2019; 31 Wang, Qin, Zhou, Li, Xia, Li, Zhan, Zhu, Lu, Yip, Chen, Li (CR26) 2020; 32 Yan, Song, Huang, Peng, Huang, Ge (CR6) 2019; 31 Wang, Chen, Li, Zuo, Qu, Ren, Li, Jen, Tang (CR25) 2020; 14 Shi, Xia, Zhang, Yip, Cao (CR31) 2019; 9 Hu, Wang, Zhang (CR28) 2019; 7 Cheng, Wang, Zhu, Zheng, Li, Chen, Huang, Zhao, Wang, Meng, Li, Zhu, Wei, Zhan, Yang (CR10) 2020; 32 Tai, Yan (CR33) 2017; 29 Zhang, Guo, Ma, Ade, Hou (CR20) 2015; 27 Cai, Gong, Cao (CR2) 2010; 94 An, Ma, Gao, Zhang (CR3) 2019; 64 Garnett, Cai, Cha, Mahmood, Connor, Christoforo, Cui, McGehee, Brongersma (CR18) 2012; 11 Wang, Yan, Lau, Wang, Liu, Fan, Lu, Zhan (CR22) 2017; 29 Guiying, Liang, Shanpeng, Chen, Chen (CR36) 2017; 27 Yu, Jia, Long, Shen, Liu, Guo, Ruan (CR37) 2015; 7 Yu, Yao, Cui, Hong, He, Hou (CR7) 2019; 31 Jiang, Lee, Lu, Tsai, Shieh, Jeng, Chen (CR12) 2020; 12 Ma, Xiao, An, Zhang, Hu, Wang, Ding, Zhang (CR30) 2018; 6 Hu, Wang, Wang, Gao, An, Zhang, Ma, Wang, Miao, Yang, Zhang (CR15) 2019; 55 Cui, Yang, Yao, Zhu, Wang, Jia, Gao, Hou (CR9) 2017; 29 Min, Bronnbauer, Zhang, Cui, Luponosov, Ata, Schweizer, Przybilla, Guo, Ameri, Forberich, Spiecker, Baeuerle, Ponomarenko, Li, Brabec (CR21) 2016; 26 Li, Dai, Ke, Yang, Wang, Yan, Ma, Zhan (CR23) 2018; 30 T Li (5025_CR23) 2018; 30 P Cheng (5025_CR10) 2020; 32 R Betancur (5025_CR35) 2013; 7 H Shi (5025_CR31) 2019; 9 G Li (5025_CR1) 2012; 6 VV Brus (5025_CR11) 2019; 31 W Cai (5025_CR2) 2010; 94 M-A Pan (5025_CR5) 2019; 7 J Min (5025_CR21) 2016; 26 Y Li (5025_CR16) 2019; 31 Q An (5025_CR3) 2019; 64 M Zhang (5025_CR20) 2015; 27 S Xiong (5025_CR27) 2019; 31 P Peumans (5025_CR32) 2003; 93 R Betancur (5025_CR34) 2013; 7 DH Shin (5025_CR14) 2018; 10 L Zhan (5025_CR8) 2020; 13 L Zuo (5025_CR17) 2019; 31 Z Hu (5025_CR15) 2019; 55 W Wang (5025_CR22) 2017; 29 D Wang (5025_CR26) 2020; 32 R Xia (5025_CR29) 2019; 3 Z Hu (5025_CR28) 2019; 7 K Li (5025_CR4) 2019; 9 R Yu (5025_CR7) 2019; 31 Y Xiong (5025_CR13) 2020; 4 S Wang (5025_CR25) 2020; 14 B-H Jiang (5025_CR12) 2020; 12 C-C Chueh (5025_CR19) 2013; 3 Y Cui (5025_CR9) 2017; 29 WJ Yu (5025_CR37) 2015; 7 S Guiying (5025_CR36) 2017; 27 X Ma (5025_CR30) 2018; 6 T Yan (5025_CR6) 2019; 31 EC Garnett (5025_CR18) 2012; 11 Q Tai (5025_CR33) 2017; 29 X Li (5025_CR24) 2020; 5 |
References_xml | – volume: 11 start-page: 241 year: 2012 end-page: 249 ident: CR18 article-title: Self-limited plasmonic welding of silver nanowire junctions publication-title: Nat. Mater. doi: 10.1038/nmat3238 – volume: 9 start-page: 1901728 year: 2019 ident: CR4 article-title: Ternary blended fullerene-free polymer solar cells with 16.5% efficiency enabled with a higher-LUMO-level acceptor to improve film morphology publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901728 – volume: 31 start-page: 1900904 year: 2019 ident: CR11 article-title: Solution-processed semitransparent organic photovoltaics: from molecular design to device performance publication-title: Adv. Mater. doi: 10.1002/adma.201900904 – volume: 10 start-page: 3596 year: 2018 end-page: 3601 ident: CR14 article-title: Semitransparent flexible organic solar cells employing doped-graphene layers as anode and cathode electrodes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16730 – volume: 6 start-page: 21485 year: 2018 end-page: 21492 ident: CR30 article-title: Simultaneously improved efficiency and average visible transmittance of semitransparent polymer solar cells with two ultra-narrow bandgap nonfullerene acceptors publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08891H – volume: 5 start-page: 3115 year: 2020 end-page: 3123 ident: CR24 article-title: Semitransparent organic solar cells with vivid colors publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01554 – volume: 31 start-page: 1902210 year: 2019 ident: CR6 article-title: 16.67% Rigid and 14.06% Flexible organic solar cells enabled by ternary heterojunction strategy publication-title: Adv. Mater. doi: 10.1002/adma.201902210 – volume: 27 start-page: 4655 year: 2015 end-page: 4660 ident: CR20 article-title: A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance publication-title: Adv. Mater. doi: 10.1002/adma.201502110 – volume: 31 start-page: 1806616 year: 2019 ident: CR27 article-title: 125% flexible nonfullerene solar cells by passivating the chemical interaction between the active layer and polymer interfacial layer publication-title: Adv. Mater. doi: 10.1002/adma.201806616 – volume: 7 start-page: 9920 year: 2015 end-page: 9928 ident: CR37 article-title: Highly efficient semitransparent polymer solar cells with color rendering index approaching 100 using one-dimensional photonic crystal publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b02039 – volume: 94 start-page: 114 year: 2010 end-page: 127 ident: CR2 article-title: Polymer solar cells: recent development and possible routes for improvement in the performance publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2009.10.005 – volume: 55 start-page: 424 year: 2019 end-page: 4324 ident: CR15 article-title: Semitransparent ternary nonfullerene polymer solar cells exhibiting 9.40% efficiency and 24.6% average visible transmittance publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.010 – volume: 9 start-page: 1803438 year: 2019 ident: CR31 article-title: Spectral engineering of semitransparent polymer solar cells for greenhouse applications publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803438 – volume: 30 start-page: 1705969 year: 2018 ident: CR23 article-title: Fused tris(thienothiophene)-based electron acceptor with strong near-infrared absorption for high-performance as-cast solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201705969 – volume: 64 start-page: 504 year: 2019 end-page: 506 ident: CR3 article-title: Solvent additive-free ternary polymer solar cells with 16.27% efficiency publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.03.024 – volume: 6 start-page: 153 year: 2012 end-page: 161 ident: CR1 article-title: Polymer solar cells publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.11 – volume: 3 start-page: 2241 year: 2019 end-page: 2254 ident: CR29 article-title: High-throughput optical screening for efficient semitransparent organic solar cells publication-title: Joule doi: 10.1016/j.joule.2019.06.016 – volume: 3 start-page: 417 year: 2013 end-page: 423 ident: CR19 article-title: Toward high-performance semi-transparent polymer solar cells: optimization of ultra-thin light absorbing layer and transparent cathode architecture publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200679 – volume: 32 start-page: 2003891 year: 2020 ident: CR10 article-title: Transparent hole-transporting frameworks: a unique strategy to design high-performance semitransparent organic photovoltaics publication-title: Adv. Mater. doi: 10.1002/adma.202003891 – volume: 26 start-page: 4543 year: 2016 end-page: 4550 ident: CR21 article-title: Fully solution-processed small molecule semitransparent solar cells: optimization of transparent cathode architecture and four absorbing layers publication-title: Adv. Func. Mater. doi: 10.1002/adfm.201505411 – volume: 32 start-page: 2001621 year: 2020 ident: CR26 article-title: High-performance semitransparent organic solar cells with excellent infrared reflection and see-through functions publication-title: Adv. Mater. doi: 10.1002/adma.202001621 – volume: 29 start-page: 1701308 year: 2017 ident: CR22 article-title: Fused hexacyclic nonfullerene acceptor with strong near-infrared absorption for semitransparent organic solar cells with 9.77% efficiency publication-title: Adv. Mater. doi: 10.1002/adma.201701308 – volume: 7 start-page: 995 year: 2013 end-page: 1000 ident: CR35 article-title: Transparent polymer solar cells employing a layered light-trapping architecture publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.276 – volume: 12 start-page: 39496 year: 2020 end-page: 39504 ident: CR12 article-title: High-performance semitransparent organic photovoltaics featuring a surface phase-matched transmission-enhancing Ag/ITO electrode publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c10906 – volume: 14 start-page: 5998 year: 2020 end-page: 6006 ident: CR25 article-title: Narrow bandpass and efficient semitransparent organic solar cells based on bioinspired spectrally selective electrodes publication-title: ACS Nano doi: 10.1021/acsnano.0c01517 – volume: 93 start-page: 3693 year: 2003 end-page: 3723 ident: CR32 article-title: Small molecular weight organic thin-film photodetectors and solar cells publication-title: J. Appl. Phys. doi: 10.1063/1.1534621 – volume: 4 start-page: 2000328 year: 2020 ident: CR13 article-title: Novel bimodal silver nanowire network as top electrodes for reproducible and high-efficiency semitransparent organic photovoltaics publication-title: Solar Rrl doi: 10.1002/solr.202000328 – volume: 29 start-page: 1703080 year: 2017 ident: CR9 article-title: Efficient Semitransparent organic solar cells with tunable color enabled by an ultralow-bandgap nonfullerene acceptor publication-title: Adv. Mater. doi: 10.1002/adma.201703080 – volume: 27 start-page: 1605908 year: 2017 ident: CR36 article-title: High-performance colorful semitransparent polymer solar cells with ultrathin hybrid-metal electrodes and fine-tuned dielectric mirrors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605908 – volume: 29 start-page: 1700192 year: 2017 ident: CR33 article-title: Emerging semitransparent solar cells: materials and device design publication-title: Adv. Mater. doi: 10.1002/adma.201700192 – volume: 7 start-page: 7025 year: 2019 end-page: 7032 ident: CR28 article-title: Semitransparent polymer solar cells with 9.06% efficiency and 27.1% average visible transmittance obtained by employing a smart strategy publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00907H – volume: 7 start-page: 20713 year: 2019 end-page: 207224 ident: CR5 article-title: 16.7%-efficiency ternary blended organic photovoltaic cells with PCBM as the acceptor additive to increase the open-circuit voltage and phase purity publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06929A – volume: 13 start-page: 635 year: 2020 end-page: 645 ident: CR8 article-title: Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03710A – volume: 31 start-page: 1901683 year: 2019 ident: CR17 article-title: Highly efficient semitransparent solar cells with selective absorption and tandem architecture publication-title: Adv. Mater. doi: 10.1002/adma.201901683 – volume: 31 start-page: 1902302 year: 2019 ident: CR7 article-title: Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201902302 – volume: 31 start-page: 1903173 year: 2019 ident: CR16 article-title: Enhanced light utilization in semitransparent organic photovoltaics using an optical outcoupling architecture publication-title: Adv. Mater. doi: 10.1002/adma.201903173 – volume: 7 start-page: 995 year: 2013 end-page: 1000 ident: CR34 article-title: Transparent polymer solar cells employing a layered light-trapping architecture publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.276 – volume: 6 start-page: 153 year: 2012 ident: 5025_CR1 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.11 – volume: 3 start-page: 417 year: 2013 ident: 5025_CR19 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200679 – volume: 31 start-page: 1806616 year: 2019 ident: 5025_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201806616 – volume: 31 start-page: 1903173 year: 2019 ident: 5025_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.201903173 – volume: 13 start-page: 635 year: 2020 ident: 5025_CR8 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03710A – volume: 29 start-page: 1703080 year: 2017 ident: 5025_CR9 publication-title: Adv. Mater. doi: 10.1002/adma.201703080 – volume: 7 start-page: 995 year: 2013 ident: 5025_CR35 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.276 – volume: 55 start-page: 424 year: 2019 ident: 5025_CR15 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.010 – volume: 94 start-page: 114 year: 2010 ident: 5025_CR2 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2009.10.005 – volume: 7 start-page: 995 year: 2013 ident: 5025_CR34 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.276 – volume: 4 start-page: 2000328 year: 2020 ident: 5025_CR13 publication-title: Solar Rrl doi: 10.1002/solr.202000328 – volume: 7 start-page: 7025 year: 2019 ident: 5025_CR28 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00907H – volume: 7 start-page: 9920 year: 2015 ident: 5025_CR37 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b02039 – volume: 9 start-page: 1901728 year: 2019 ident: 5025_CR4 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901728 – volume: 7 start-page: 20713 year: 2019 ident: 5025_CR5 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06929A – volume: 31 start-page: 1900904 year: 2019 ident: 5025_CR11 publication-title: Adv. Mater. doi: 10.1002/adma.201900904 – volume: 11 start-page: 241 year: 2012 ident: 5025_CR18 publication-title: Nat. Mater. doi: 10.1038/nmat3238 – volume: 29 start-page: 1701308 year: 2017 ident: 5025_CR22 publication-title: Adv. Mater. doi: 10.1002/adma.201701308 – volume: 64 start-page: 504 year: 2019 ident: 5025_CR3 publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.03.024 – volume: 27 start-page: 4655 year: 2015 ident: 5025_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.201502110 – volume: 9 start-page: 1803438 year: 2019 ident: 5025_CR31 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803438 – volume: 5 start-page: 3115 year: 2020 ident: 5025_CR24 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01554 – volume: 32 start-page: 2001621 year: 2020 ident: 5025_CR26 publication-title: Adv. Mater. doi: 10.1002/adma.202001621 – volume: 12 start-page: 39496 year: 2020 ident: 5025_CR12 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c10906 – volume: 29 start-page: 1700192 year: 2017 ident: 5025_CR33 publication-title: Adv. Mater. doi: 10.1002/adma.201700192 – volume: 3 start-page: 2241 year: 2019 ident: 5025_CR29 publication-title: Joule doi: 10.1016/j.joule.2019.06.016 – volume: 31 start-page: 1902302 year: 2019 ident: 5025_CR7 publication-title: Adv. Mater. doi: 10.1002/adma.201902302 – volume: 93 start-page: 3693 year: 2003 ident: 5025_CR32 publication-title: J. Appl. Phys. doi: 10.1063/1.1534621 – volume: 31 start-page: 1901683 year: 2019 ident: 5025_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.201901683 – volume: 26 start-page: 4543 year: 2016 ident: 5025_CR21 publication-title: Adv. Func. Mater. doi: 10.1002/adfm.201505411 – volume: 31 start-page: 1902210 year: 2019 ident: 5025_CR6 publication-title: Adv. Mater. doi: 10.1002/adma.201902210 – volume: 32 start-page: 2003891 year: 2020 ident: 5025_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.202003891 – volume: 10 start-page: 3596 year: 2018 ident: 5025_CR14 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16730 – volume: 6 start-page: 21485 year: 2018 ident: 5025_CR30 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08891H – volume: 14 start-page: 5998 year: 2020 ident: 5025_CR25 publication-title: ACS Nano doi: 10.1021/acsnano.0c01517 – volume: 30 start-page: 1705969 year: 2018 ident: 5025_CR23 publication-title: Adv. Mater. doi: 10.1002/adma.201705969 – volume: 27 start-page: 1605908 year: 2017 ident: 5025_CR36 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605908 |
SSID | ssj0000422 |
Score | 2.3642073 |
Snippet | Although high efficiencies have been demonstrated in organic solar cells (OSCs), the development of semitransparent devices is still lagging behind due to the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Bragg reflectors Characterization and Evaluation of Materials Composition effects Condensed Matter Physics Electromagnetic absorption Energy gap Machines Manufacturing Materials science Matrix methods Nanotechnology Optical and Electronic Materials Optical properties Optimization Photoelectric effect Photovoltaic cells Physics Physics and Astronomy Polymer blends Processes Solar cells Surfaces and Interfaces Thin Films Transfer matrices Transmittance |
Title | Enhanced light utilization in semitransparent organic solar cells based on a nonfullerene acceptor of IEICO-4F |
URI | https://link.springer.com/article/10.1007/s00339-021-05025-3 https://www.proquest.com/docview/2593108575 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT4MwFH7RLSZ6MDo1TufSgzclAVoKHLcJbproxSXzRCiUuGQyM_D_21dgU6MmnjhQSsJrX7_H-977AC5plthCMmYwzjODpWrPCVc6hqAcfWYi4lizLR74eMruZs6sLgorGrZ7k5LUnnpd7IayY76BlALTQRFWug1tR8XuSOSa2oON_2VV7sBnyv9Sn9elMj_P8fU42mDMb2lRfdqEB7Bfw0QyqOx6CFsy78Dep-aBHdjR5M2kOII8yF90Ip8sMNQmai0t6vJKMs9JIV_npe5hjoVfJamEnBJSYFRL8M99QfAwS4kaH5N8meM_ea2aQuIEaS_LFVlmZBJMRo8GC49hGgZPo7FR6ygYidpgpWGzjIsUW7FlCo-kNlOQL7X8LFPYwXMx72JxkzGZurYpPFu6MlFAgDsS0ZMpLHoCLfVueQrEl7GdxkidST3mUeHFCj8qUCa47wkq3C5YzeeMkrrJOGpdLKJ1e2RtgkiZINImiGgXrtbPvFUtNv4c3WusFNXbrYhUDEctLTbahevGcpvbv8929r_h57Br4-LRtYg9aJWrd3mhQEkp-tAeDG-GIV5vn--Dvl6TH53C194 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60IupBfGK16h70pIFms90kBw-iLa3PiwVvMZtssFBTaSLi__GHOrNNWhUVPPSczSbsvL5lHh_AgZNEXGkhLCFlYokYbU65umEpR5LPjFQYmmqLG9nuiov7xv0MvJe9MKbavUxJGk89bnYj2jHfopKCeoNIWEvK6kv99ooXteykc45SPeS81bw7a1sFl4AVoZLlFheJVDGNI0swJsdcIOyJbT9JMH56LuUebFkXQscuryuPa1dHGAxlQxOCqCvbwX1nYQ7Bh0e20-WnE38vRrkKX6C_d3xZtOb8_M9fw98E035Lw5ro1lqB5QKWstORHq3CjE7XYOnTsMI1mDfFolG2DmkzfTSFA6xPV3uGutsv2jlZL2WZfurlZmY6NZrlbEQcFbGMbtGMMgUZo-AZM1wfsnSQUg7AsLSwMKIym8GQDRLWaXbObi3R2oDuVM56Eyr4bb0FzNchj0Mq1Yk94TnKCxGvIghU0veUo9wq2OVxBlEx1Jy4NfrBeByzEUGAIgiMCAKnCkfjd55HIz3-XF0rpRQU5p0FeGd0bENuWoXjUnKTx7_vtv2_5fuw0L67vgquOjeXO7DISZFMH2QNKvnwRe8iIMrVntFHBg_TNoAPOCkO3g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT-MwEB1BEQgOiK8VhbL4sJwgonFcJzlwQNCKworlQCVuIY4dUambIhKE-Ff8RGacpF0QrMSBcxwn8sx4ZjTz5gH88tKEKyOEI6RMHaHR5pRvOo7yJN2ZiYpj221xKc8G4vymczMDLzUWxna71yXJEtNAU5qy4vBep4cT4BtRkIUOtRe0O0TIWtNXX5jnJ0za8qP-KUp4j_Ne9_rkzKl4BZwEFa5wuEil0jSaLEX_rLnAEEi7YZqiLw18qkO4si2E0T5vq4Ab3yToGGXHUDTRVq6H-87CnCD0MVrQgB9P735R1i1CgXe_F8oKpvPxP791hdP49l1J1nq63gosVyEqOy51ahVmTLYGS_8MLlyDeds4muTrkHWzO9tEwEaU5jPU41EF7WTDjOXm77Cw89MJdFawkkQqYTll1IyqBjkjR6oZro9ZNs6oHmAZW1icUMvN-IGNU9bv9k_-OKK3AYNvOesf0MBvm01goYm5jqltRwci8FQQY-yKAaGSYaA85TfBrY8zSqoB58SzMYomo5mtCCIUQWRFEHlN2J-8c1-O9_jv6lYtpagy9TzC_NFzLdFpEw5qyU0ff77b1teW78LC1Wkv-t2_vNiGRU56ZCGRLWgUD49mB2OjQv206sjg9rv1_xV4rhMR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+light+utilization+in+semitransparent+organic+solar+cells+based+on+a+nonfullerene+acceptor+of+IEICO-4F&rft.jtitle=Applied+physics.+A%2C+Materials+science+%26+processing&rft.au=Zang+Yue&rft.au=Chen%2C+Lingfeng&rft.au=Zhou+Jintao&rft.au=Xu%2C+Rui&rft.date=2021-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0947-8396&rft.eissn=1432-0630&rft.volume=127&rft.issue=11&rft_id=info:doi/10.1007%2Fs00339-021-05025-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-8396&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-8396&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-8396&client=summon |