Cross-dataset heterogeneous adaptation learning based facial attributes estimation

Recently, human facial attributes analysis has become an important research topic in the field of pattern recognition and computer vision. In fact, various tasks reveal related but different patterns between facial age attribute, race attribute, and gender attribute. Therefore, it is important to co...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 81; no. 25; pp. 36489 - 36504
Main Authors Tian, Qing, Chu, Yi, Zhang, Fengyuan, Wang, Chao, Liu, Mengyu
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, human facial attributes analysis has become an important research topic in the field of pattern recognition and computer vision. In fact, various tasks reveal related but different patterns between facial age attribute, race attribute, and gender attribute. Therefore, it is important to construct a facial multi-attribute estimation model to reveal the relationship between different attributes. However, on the one hand, there are some drawbacks in existing facial datasets, such as the lack of some attribute labels or incomplete attribute distribution, so it is infeasible to realize facial multi-attribute estimation on single facial dataset at the same time. On the other hand, in different datasets facial attributes features and labels tend to be heterogeneous, the distribution divergence and the dimension differences due to the changes in collection equipment and image resolution. To this end, this work first proposes the Cross-dataset heterogeneous Adaptation learning facial multiple attributeS joint Estimation (CASE) to mitigate distribution divergence among different facial attributes. Firstly, this work adopts different coding strategies for different face attributes, to maintain the inherent attributes of face attributes. Secondly, in order to explore the potential relationship between labels of different attributes, labels of different attributes are merged and the output relation regularization term for multi-label mapping projection is constructed. Finally, extensive experiments have testified the effectiveness and superiority of the proposed methods.
AbstractList Recently, human facial attributes analysis has become an important research topic in the field of pattern recognition and computer vision. In fact, various tasks reveal related but different patterns between facial age attribute, race attribute, and gender attribute. Therefore, it is important to construct a facial multi-attribute estimation model to reveal the relationship between different attributes. However, on the one hand, there are some drawbacks in existing facial datasets, such as the lack of some attribute labels or incomplete attribute distribution, so it is infeasible to realize facial multi-attribute estimation on single facial dataset at the same time. On the other hand, in different datasets facial attributes features and labels tend to be heterogeneous, the distribution divergence and the dimension differences due to the changes in collection equipment and image resolution. To this end, this work first proposes the Cross-dataset heterogeneous Adaptation learning facial multiple attributeS joint Estimation (CASE) to mitigate distribution divergence among different facial attributes. Firstly, this work adopts different coding strategies for different face attributes, to maintain the inherent attributes of face attributes. Secondly, in order to explore the potential relationship between labels of different attributes, labels of different attributes are merged and the output relation regularization term for multi-label mapping projection is constructed. Finally, extensive experiments have testified the effectiveness and superiority of the proposed methods.
Author Zhang, Fengyuan
Chu, Yi
Wang, Chao
Liu, Mengyu
Tian, Qing
Author_xml – sequence: 1
  givenname: Qing
  surname: Tian
  fullname: Tian, Qing
  email: tianqing@nuist.edu.cn
  organization: School of Computer and Software, Nanjing University of Information Science and Technology, Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology
– sequence: 2
  givenname: Yi
  surname: Chu
  fullname: Chu, Yi
  organization: School of Computer and Software, Nanjing University of Information Science and Technology
– sequence: 3
  givenname: Fengyuan
  surname: Zhang
  fullname: Zhang, Fengyuan
  organization: School of Changwang, Nanjing University of Information Science and Technology
– sequence: 4
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  organization: School of Computer and Software, Nanjing University of Information Science and Technology
– sequence: 5
  givenname: Mengyu
  surname: Liu
  fullname: Liu, Mengyu
  organization: School of Electrical and Electronic Engineering, The University of Manchester
BookMark eNp9kEtLAzEQx4NUsK1-AU8LnqOZPDa7Rym-oCCInsPsJlu3rNmapAe_vakrCB56mjn8HzO_BZn50TtCLoFdA2P6JgIwySnjnIJQUlI4IXNQWlCtOczyLipGtWJwRhYxbhmDUnE5Jy-rMMZILSaMLhXvLrkwbpx34z4WaHGXMPWjLwaHwfd-UzRZZ4sO2x6HAlMKfbNPLhYupv7jR3tOTjscorv4nUvydn_3unqk6-eHp9XtmrYC6kQ5YKm1LbvG1qJuGsZlBZVGDi0rUbdSKJDSloDc6qrRjpVOaOls0wkrLYgluZpyd2H83Od-sx33wedKwzVooZSq6qzik6o9PBpcZ3YhHxq-DDBzYGcmdiazMz_szCG6-mdq-wlECtgPx61issbc4zcu_F11xPUN3gCF_A
CitedBy_id crossref_primary_10_1016_j_engappai_2023_107515
Cites_doi 10.3906/elk-1311-58
10.1109/ICDM.2017.150
10.1109/CVPR.2016.90
10.1109/TIFS.2020.2969552
10.1109/TPAMI.2011.191
10.1109/TIP.2006.881993
10.1109/TNN.2010.2091281
10.1007/978-3-540-74976-9_23
10.1016/j.sysarc.2021.102000
10.1109/TPAMI.2014.2362759
10.1007/s13042-016-0500-8
10.1016/j.neucom.2017.01.064
10.1007/978-981-15-1097-7_15
10.1109/CVPR.2009.5206681
10.1109/TIP.2015.2481327
10.24963/ijcai.2019/492
10.1016/j.imavis.2017.10.003
10.1016/j.patcog.2016.08.031
10.1109/ICCV.2013.274
10.1016/j.future.2019.12.022
10.1609/aaai.v32i1.11792
10.1109/TPAMI.2017.2738004
10.1109/CVPR.2017.463
10.1609/aaai.v33i01.33018754
10.1007/978-3-030-58526-6_20
10.1109/TCYB.2020.2988721
10.1109/CVPR.2016.532
10.3390/s20185162
10.1109/TKDE.2009.191
10.1109/CVPR.2012.6247972
10.1007/s11063-019-09993-9
10.1109/TPAMI.2014.2321570
10.1609/aaai.v30i1.10306
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-022-13544-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 36504
ExternalDocumentID 10_1007_s11042_022_13544_1
GrantInformation_xml – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
  funderid: https://doi.org/10.13039/501100012246
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20170956
  funderid: https://doi.org/10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 62176128
  funderid: https://doi.org/10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: NJ2019010
  funderid: https://doi.org/10.13039/501100012226
– fundername: Qinglan Project of Jiangsu Province of China
  funderid: https://doi.org/10.13039/501100013088
– fundername: National Natural Science Foundation of China
  grantid: 61702273
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-21a677d6fbd939bb0248187a21c06a7c435144d61a2d78b7e06e374edbf3d4d13
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 22:55:32 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
Tue Jul 01 04:13:16 EDT 2025
Fri Feb 21 02:44:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords Heterogeneous adaptation
Joint estimation
Facial attributes estimation
Cross-dataset
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-21a677d6fbd939bb0248187a21c06a7c435144d61a2d78b7e06e374edbf3d4d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2717355589
PQPubID 54626
PageCount 16
ParticipantIDs proquest_journals_2717355589
crossref_primary_10_1007_s11042_022_13544_1
crossref_citationtrail_10_1007_s11042_022_13544_1
springer_journals_10_1007_s11042_022_13544_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221000
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Wang J, Chen Y et al (2017) Balanced distribution adaptation for transfer learning, IEEE Int Conf Data Mining, pp 1129–1134
LuXJainAKEthnicity identification from face imagesInt Soc Opt and Photonics20145404114123
MaTLiuQLGIEM: Global and local node influence based community detectionFutur Gener Comput Syst202010553354610.1016/j.future.2019.12.022
Long M, Wang J et al (2013) Transfer feature learning with joint distribution adaptation, IEEE Int Conf Comput Vis, pp 2200–2207
TianQChenSCross-heterogeneous-dataset age estimation through correlation representation learningNeurcomputing201723828629510.1016/j.neucom.2017.01.064
WeiXWireless edge caching based on content similarity in dynamic environmentsJ Syst Archit202111510200010.1016/j.sysarc.2021.102000
Han H, Jain AK et al (2014) Age, gender and race estimation from unconstrained face images, MSU Technical Report MSU-CSE-14-5
BenAbdelkader C, Griffin P et al (2005) A local regionbased approach to gender classification from face images, IEEE Comput Soc Conf Comput Vis Pattern Recognit, pp 1–6
Satpal S, Sarawagi S (2007) Domain adaptation of conditional probability models via feature subsetting, European conference on machine learning and principles and practice of knowledge discovery in datasets, pp 224–235
Zhang Z, Song y et al (2017) Age progression/regression by conditional adversarial Autoencoder, IEEE Conf Comput Vis Pattern Recognit, pp 5810–5818
Guo G, Mu G et al (2009) Human age estimation using bioinspired features, IEEE Conf Comput Vis Pattern Recognit, pp 112–119
WuBAiHet atFacial image retrieval based on demographic classificationInt Conf Pattern Recognit20043914917
HanHJainKHeterogeneous face attribute estimation: A deep multi-task learning approachIEEE Trans Pattern Anal Mach Intell201740112597260910.1109/TPAMI.2017.2738004
LiSLiuFet atOptimization of face recognition system based on azure iot edgComput Mater Contin201961313771389
GolubGHVan LoanCFMatrix computations, vol 32012Washington, D.CJHU press
Abirami B, Subashini TS (2017) Automatic race estimation from facial images using shape and color features, Data Eng Commun Technol, pp 173–181
TianYWangLImage and feature space based domain adaptation for vehicle detectionComput Mater Contin202065323972412
TianQCaoMRelationships SelfLearning based GenderAware age estimationNeural Process Lett2019502141216010.1007/s11063-019-09993-9
TianQChenSJoint gender classification and age estimation by nearly orthogonalizing their semantic spacesImage Vis Comput20186992110.1016/j.imavis.2017.10.003
Tian Q, Ma C et al (2020) A convex discriminant semantic correlation analysis for cross-view recognition, IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2020.2988721
XiaMZhangXMulti-stage feature constraints learning for age estimationIEEE Trans Inf Forensics Secur2020152417242810.1109/TIFS.2020.2969552
QiGJAggarwalCExploring context and content links in social media: A latent space methodIEEE Trans Pattern Anal Mach Intell201234585086210.1109/TPAMI.2011.191
Cao Y, Long M et al (2018) Unsupervised domain adaptation with distribution matching machines, AAAI Conf Artif Intell, pp 2795–2802
Pan SJ, Tsang et al (2011) Domain adaptation via transfer component analysis, IEEE Trans Neural Netw learn Syst, pp 199–210
Pan SJTsangTransfer learning via dimensionality reductionAAAI Conf Artif Intell20088677682
Liu J, Zhang L (2019) Optimal projection guided transfer hashing for image retrieval, AAAI Conf Artif Intell, pp 8754–8761
Zhang Y, Yeung D-Y et al (2010) A convex formulation for learning task relationships in multi-task learning, IEEE Int Conf Uncertainty Artif Intell, pp 733–742
MoeiniAMoeiniHSafaiAMRegression facial attribute classification viasimultaneous dictionary learningPattern Recogn2017629911310.1016/j.patcog.2016.08.031
Rani SNChandrajithMA deep convolutional architectural framework for radiograph image processing at bit plane level for gender & age assessmentComput Mater Contin2020622679694
He K, Zhang X et al (2016) Deep residual learning for image recognition, IEEE Conf Comput Vis Pattern Recognit, pp 770–778
Ricanek K, Tesafaye T (2006) Morph: A longitudinal image dataset of normal adult age progression, IEEE Int Conf Auto Face Gesture Recognit, pp 341–345
Lee BKLeeYSDistinction between real faces and photos by analysis of face dataIntell Autom Soft Comput2020261133139
Tan Z, Yang Y et al (2019) Deeply-learned hybrid representations for facial age estimation, Int Joint Conf Artif Intell , pp 3548–3554
Guo G, Wang X (2012) A study on human age estimation under facial expression changes, IEEE Int Conf Comput Vis Pattern Recognit, pp 2547–2553
LiewSSHaniMKGender classification: a convolutional neural network approachTurk J Elec Eng & Comp Sci2016241248126410.3906/elk-1311-58
LuJLiongVECost-Sensitive local binary feature learning for facial age estimationIEEE Trans Image Process2015241253565368340611910.1109/TIP.2015.2481327
NarayananRRamaCFace verification across age progressionIEEE Trans Image Process2006153349336110.1109/TIP.2006.881993
Gong S, Liu X, et at (2020) Jointly de-biasing face recognition and demographic attribute estimation, European Conf Comput Vis, pp 330–347
Niu Z, Zhou M et al (2016) Ordinal regression with multiple output cnn for age estimation, IEEE Conf Comput Vis Pattern Recogni, pp 4920–4928
Jiang J, Zhai CX et al (2007) Instance weighting for domain adaptation in NLP, Proceedings of the 45th annual meeting of the association of computational linguistics, pp 264–271
ZhengyZhaoWDrug side-effect prediction using heterogeneous features and bipartite local modelsComput Mater Contin2019602481496
LiuHMaZRegularized partial least squares for multi-label learningInt J Mach Learn Cybern2018933534610.1007/s13042-016-0500-8
ChowdharyCLAnalytical study of hybrid techniques for image encryption and decryptionSensors20202018516210.3390/s20185162
BerryMJALinoffGSData Mining Techniques: For Marketing, Sales, and Customer Relationship Management2011New YorkJohn Wiley & Sons
FuSHeHLearning race from face: A surveyIEEE Trans Pattern Anal Mach Intell201736122483250910.1109/TPAMI.2014.2321570
PanSJYangQA survey on transfer learningIEEE Trans Knowl Data Eng2010221345135910.1109/TKDE.2009.191
TianQSunHAge estimation via selecting discriminated features and preserving geometryKSII Trans Internet Inf Syst20201417211737
Moeini A, Moeini H et al (2017) Regression facial attribute classification via simultaneous dictionary learning, Pattern Recogn, pp 99–113
HanHOttoDemographic estimation from face images: Human vs. machine performanceIEEE Trans Pattern Anal Mach Intell20153761148116110.1109/TPAMI.2014.2362759
Sun B, Feng J et al (2016) Return of frustratingly easy domain adaptation, AAAI Conf Artif Intell, pp 2058–2065
R Narayanan (13544_CR27) 2006; 15
S Li (13544_CR17) 2019; 61
13544_CR28
GJ Qi (13544_CR32) 2012; 34
M Chandrajith (13544_CR33) 2020; 62
B Wu (13544_CR46) 2004; 3
13544_CR30
13544_CR1
13544_CR2
SS Liew (13544_CR18) 2016; 24
13544_CR35
13544_CR34
13544_CR37
13544_CR36
13544_CR8
13544_CR9
Pan SJ (13544_CR29) 2008; 8
13544_CR4
Q Tian (13544_CR39) 2017; 238
13544_CR20
13544_CR21
Y Tian (13544_CR43) 2020; 65
X Wei (13544_CR45) 2021; 115
13544_CR26
A Moeini (13544_CR25) 2017; 62
H Liu (13544_CR19) 2018; 9
Q Tian (13544_CR40) 2018; 69
y Zheng (13544_CR50) 2019; 60
SJ Pan (13544_CR31) 2010; 22
13544_CR49
J Lu (13544_CR23) 2015; 24
Q Tian (13544_CR38) 2019; 50
13544_CR11
13544_CR10
S Fu (13544_CR6) 2017; 36
13544_CR15
13544_CR14
GH Golub (13544_CR7) 2012
T Ma (13544_CR24) 2020; 105
M Xia (13544_CR47) 2020; 15
X Lu (13544_CR22) 2014; 5404
H Han (13544_CR13) 2015; 37
Q Tian (13544_CR42) 2020; 14
YS Lee (13544_CR16) 2020; 26
13544_CR41
13544_CR44
MJA Berry (13544_CR3) 2011
13544_CR48
H Han (13544_CR12) 2017; 40
CL Chowdhary (13544_CR5) 2020; 20
References_xml – reference: WuBAiHet atFacial image retrieval based on demographic classificationInt Conf Pattern Recognit20043914917
– reference: BenAbdelkader C, Griffin P et al (2005) A local regionbased approach to gender classification from face images, IEEE Comput Soc Conf Comput Vis Pattern Recognit, pp 1–6
– reference: ChowdharyCLAnalytical study of hybrid techniques for image encryption and decryptionSensors20202018516210.3390/s20185162
– reference: TianYWangLImage and feature space based domain adaptation for vehicle detectionComput Mater Contin202065323972412
– reference: Jiang J, Zhai CX et al (2007) Instance weighting for domain adaptation in NLP, Proceedings of the 45th annual meeting of the association of computational linguistics, pp 264–271
– reference: TianQCaoMRelationships SelfLearning based GenderAware age estimationNeural Process Lett2019502141216010.1007/s11063-019-09993-9
– reference: FuSHeHLearning race from face: A surveyIEEE Trans Pattern Anal Mach Intell201736122483250910.1109/TPAMI.2014.2321570
– reference: Cao Y, Long M et al (2018) Unsupervised domain adaptation with distribution matching machines, AAAI Conf Artif Intell, pp 2795–2802
– reference: Sun B, Feng J et al (2016) Return of frustratingly easy domain adaptation, AAAI Conf Artif Intell, pp 2058–2065
– reference: Liu J, Zhang L (2019) Optimal projection guided transfer hashing for image retrieval, AAAI Conf Artif Intell, pp 8754–8761
– reference: Zhang Y, Yeung D-Y et al (2010) A convex formulation for learning task relationships in multi-task learning, IEEE Int Conf Uncertainty Artif Intell, pp 733–742
– reference: TianQChenSCross-heterogeneous-dataset age estimation through correlation representation learningNeurcomputing201723828629510.1016/j.neucom.2017.01.064
– reference: Long M, Wang J et al (2013) Transfer feature learning with joint distribution adaptation, IEEE Int Conf Comput Vis, pp 2200–2207
– reference: TianQSunHAge estimation via selecting discriminated features and preserving geometryKSII Trans Internet Inf Syst20201417211737
– reference: WeiXWireless edge caching based on content similarity in dynamic environmentsJ Syst Archit202111510200010.1016/j.sysarc.2021.102000
– reference: Zhang Z, Song y et al (2017) Age progression/regression by conditional adversarial Autoencoder, IEEE Conf Comput Vis Pattern Recognit, pp 5810–5818
– reference: LiewSSHaniMKGender classification: a convolutional neural network approachTurk J Elec Eng & Comp Sci2016241248126410.3906/elk-1311-58
– reference: Satpal S, Sarawagi S (2007) Domain adaptation of conditional probability models via feature subsetting, European conference on machine learning and principles and practice of knowledge discovery in datasets, pp 224–235
– reference: BerryMJALinoffGSData Mining Techniques: For Marketing, Sales, and Customer Relationship Management2011New YorkJohn Wiley & Sons
– reference: Abirami B, Subashini TS (2017) Automatic race estimation from facial images using shape and color features, Data Eng Commun Technol, pp 173–181
– reference: HanHOttoDemographic estimation from face images: Human vs. machine performanceIEEE Trans Pattern Anal Mach Intell20153761148116110.1109/TPAMI.2014.2362759
– reference: LiuHMaZRegularized partial least squares for multi-label learningInt J Mach Learn Cybern2018933534610.1007/s13042-016-0500-8
– reference: HanHJainKHeterogeneous face attribute estimation: A deep multi-task learning approachIEEE Trans Pattern Anal Mach Intell201740112597260910.1109/TPAMI.2017.2738004
– reference: TianQChenSJoint gender classification and age estimation by nearly orthogonalizing their semantic spacesImage Vis Comput20186992110.1016/j.imavis.2017.10.003
– reference: LiSLiuFet atOptimization of face recognition system based on azure iot edgComput Mater Contin201961313771389
– reference: QiGJAggarwalCExploring context and content links in social media: A latent space methodIEEE Trans Pattern Anal Mach Intell201234585086210.1109/TPAMI.2011.191
– reference: LuJLiongVECost-Sensitive local binary feature learning for facial age estimationIEEE Trans Image Process2015241253565368340611910.1109/TIP.2015.2481327
– reference: Tan Z, Yang Y et al (2019) Deeply-learned hybrid representations for facial age estimation, Int Joint Conf Artif Intell , pp 3548–3554
– reference: Wang J, Chen Y et al (2017) Balanced distribution adaptation for transfer learning, IEEE Int Conf Data Mining, pp 1129–1134
– reference: PanSJYangQA survey on transfer learningIEEE Trans Knowl Data Eng2010221345135910.1109/TKDE.2009.191
– reference: Guo G, Mu G et al (2009) Human age estimation using bioinspired features, IEEE Conf Comput Vis Pattern Recognit, pp 112–119
– reference: Moeini A, Moeini H et al (2017) Regression facial attribute classification via simultaneous dictionary learning, Pattern Recogn, pp 99–113
– reference: Han H, Jain AK et al (2014) Age, gender and race estimation from unconstrained face images, MSU Technical Report MSU-CSE-14-5
– reference: LuXJainAKEthnicity identification from face imagesInt Soc Opt and Photonics20145404114123
– reference: Rani SNChandrajithMA deep convolutional architectural framework for radiograph image processing at bit plane level for gender & age assessmentComput Mater Contin2020622679694
– reference: Gong S, Liu X, et at (2020) Jointly de-biasing face recognition and demographic attribute estimation, European Conf Comput Vis, pp 330–347
– reference: Pan SJ, Tsang et al (2011) Domain adaptation via transfer component analysis, IEEE Trans Neural Netw learn Syst, pp 199–210
– reference: Ricanek K, Tesafaye T (2006) Morph: A longitudinal image dataset of normal adult age progression, IEEE Int Conf Auto Face Gesture Recognit, pp 341–345
– reference: Tian Q, Ma C et al (2020) A convex discriminant semantic correlation analysis for cross-view recognition, IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2020.2988721
– reference: MoeiniAMoeiniHSafaiAMRegression facial attribute classification viasimultaneous dictionary learningPattern Recogn2017629911310.1016/j.patcog.2016.08.031
– reference: Lee BKLeeYSDistinction between real faces and photos by analysis of face dataIntell Autom Soft Comput2020261133139
– reference: Niu Z, Zhou M et al (2016) Ordinal regression with multiple output cnn for age estimation, IEEE Conf Comput Vis Pattern Recogni, pp 4920–4928
– reference: NarayananRRamaCFace verification across age progressionIEEE Trans Image Process2006153349336110.1109/TIP.2006.881993
– reference: Pan SJTsangTransfer learning via dimensionality reductionAAAI Conf Artif Intell20088677682
– reference: Guo G, Wang X (2012) A study on human age estimation under facial expression changes, IEEE Int Conf Comput Vis Pattern Recognit, pp 2547–2553
– reference: ZhengyZhaoWDrug side-effect prediction using heterogeneous features and bipartite local modelsComput Mater Contin2019602481496
– reference: He K, Zhang X et al (2016) Deep residual learning for image recognition, IEEE Conf Comput Vis Pattern Recognit, pp 770–778
– reference: MaTLiuQLGIEM: Global and local node influence based community detectionFutur Gener Comput Syst202010553354610.1016/j.future.2019.12.022
– reference: GolubGHVan LoanCFMatrix computations, vol 32012Washington, D.CJHU press
– reference: XiaMZhangXMulti-stage feature constraints learning for age estimationIEEE Trans Inf Forensics Secur2020152417242810.1109/TIFS.2020.2969552
– volume: 24
  start-page: 1248
  year: 2016
  ident: 13544_CR18
  publication-title: Turk J Elec Eng & Comp Sci
  doi: 10.3906/elk-1311-58
– ident: 13544_CR15
– volume: 3
  start-page: 914
  year: 2004
  ident: 13544_CR46
  publication-title: Int Conf Pattern Recognit
– ident: 13544_CR44
  doi: 10.1109/ICDM.2017.150
– volume: 60
  start-page: 481
  issue: 2
  year: 2019
  ident: 13544_CR50
  publication-title: Comput Mater Contin
– volume: 5404
  start-page: 114
  year: 2014
  ident: 13544_CR22
  publication-title: Int Soc Opt and Photonics
– ident: 13544_CR14
  doi: 10.1109/CVPR.2016.90
– ident: 13544_CR34
– volume: 15
  start-page: 2417
  year: 2020
  ident: 13544_CR47
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2020.2969552
– volume: 34
  start-page: 850
  issue: 5
  year: 2012
  ident: 13544_CR32
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2011.191
– volume: 15
  start-page: 3349
  year: 2006
  ident: 13544_CR27
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2006.881993
– ident: 13544_CR11
– ident: 13544_CR30
  doi: 10.1109/TNN.2010.2091281
– ident: 13544_CR35
  doi: 10.1007/978-3-540-74976-9_23
– volume: 115
  start-page: 102000
  year: 2021
  ident: 13544_CR45
  publication-title: J Syst Archit
  doi: 10.1016/j.sysarc.2021.102000
– volume: 37
  start-page: 1148
  issue: 6
  year: 2015
  ident: 13544_CR13
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2362759
– volume: 9
  start-page: 335
  year: 2018
  ident: 13544_CR19
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-016-0500-8
– volume: 238
  start-page: 286
  year: 2017
  ident: 13544_CR39
  publication-title: Neurcomputing
  doi: 10.1016/j.neucom.2017.01.064
– ident: 13544_CR1
  doi: 10.1007/978-981-15-1097-7_15
– ident: 13544_CR9
  doi: 10.1109/CVPR.2009.5206681
– volume: 26
  start-page: 133
  issue: 1
  year: 2020
  ident: 13544_CR16
  publication-title: Intell Autom Soft Comput
– volume: 24
  start-page: 5356
  issue: 12
  year: 2015
  ident: 13544_CR23
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2015.2481327
– ident: 13544_CR37
  doi: 10.24963/ijcai.2019/492
– volume: 69
  start-page: 9
  year: 2018
  ident: 13544_CR40
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2017.10.003
– ident: 13544_CR26
  doi: 10.1016/j.patcog.2016.08.031
– ident: 13544_CR49
– ident: 13544_CR21
  doi: 10.1109/ICCV.2013.274
– volume: 105
  start-page: 533
  year: 2020
  ident: 13544_CR24
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.12.022
– volume: 8
  start-page: 677
  year: 2008
  ident: 13544_CR29
  publication-title: AAAI Conf Artif Intell
– volume: 14
  start-page: 1721
  year: 2020
  ident: 13544_CR42
  publication-title: KSII Trans Internet Inf Syst
– ident: 13544_CR4
  doi: 10.1609/aaai.v32i1.11792
– volume: 40
  start-page: 2597
  issue: 11
  year: 2017
  ident: 13544_CR12
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2738004
– volume-title: Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management
  year: 2011
  ident: 13544_CR3
– ident: 13544_CR48
  doi: 10.1109/CVPR.2017.463
– ident: 13544_CR20
  doi: 10.1609/aaai.v33i01.33018754
– ident: 13544_CR2
– ident: 13544_CR8
  doi: 10.1007/978-3-030-58526-6_20
– volume: 62
  start-page: 679
  issue: 2
  year: 2020
  ident: 13544_CR33
  publication-title: Comput Mater Contin
– ident: 13544_CR41
  doi: 10.1109/TCYB.2020.2988721
– ident: 13544_CR28
  doi: 10.1109/CVPR.2016.532
– volume: 61
  start-page: 1377
  issue: 3
  year: 2019
  ident: 13544_CR17
  publication-title: Comput Mater Contin
– volume: 20
  start-page: 5162
  issue: 18
  year: 2020
  ident: 13544_CR5
  publication-title: Sensors
  doi: 10.3390/s20185162
– volume: 65
  start-page: 2397
  issue: 3
  year: 2020
  ident: 13544_CR43
  publication-title: Comput Mater Contin
– volume: 22
  start-page: 1345
  year: 2010
  ident: 13544_CR31
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– ident: 13544_CR10
  doi: 10.1109/CVPR.2012.6247972
– volume-title: Matrix computations, vol 3
  year: 2012
  ident: 13544_CR7
– volume: 50
  start-page: 2141
  year: 2019
  ident: 13544_CR38
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-019-09993-9
– volume: 36
  start-page: 2483
  issue: 12
  year: 2017
  ident: 13544_CR6
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2321570
– volume: 62
  start-page: 99
  year: 2017
  ident: 13544_CR25
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2016.08.031
– ident: 13544_CR36
  doi: 10.1609/aaai.v30i1.10306
SSID ssj0016524
Score 2.3011866
Snippet Recently, human facial attributes analysis has become an important research topic in the field of pattern recognition and computer vision. In fact, various...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 36489
SubjectTerms 1213: Computational Optimization and Applications for Heterogeneous Multimedia Data
Adaptation
Computer Communication Networks
Computer Science
Computer vision
Data Structures and Information Theory
Datasets
Image resolution
Labels
Learning
Multimedia Information Systems
Pattern recognition
Regularization
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQLDDwKCAKBXlgA0ux4_iSsaqoKgYGRKVukR07MKC2IuH_40ucBhAgMSdxpHvk7nLffUfINQhjXOQdKRbcMGnKmPkyAhuuhgvrLFjboHwf1Gwu7xfJIgyFVR3avWtJNl_qftiN4ygJos95nEjJfM2zk2Dt7q14Lsab3oFKwirbNGI-HvIwKvPzGV_DUZ9jfmuLNtFmekj2Q5pIx61ej8iWWw7IQbeCgQaPHJC9T3yCx-Rxgi9hiPqsXE1fEOqy8hbifHlPtdXrtu9Ow6qIZ4oxzNJS439zqut2-5WrKFJvtDONJ2Q-vXuazFhYmsAK7001E1wrAKtKY7M4MwY5y3gKWvAiUhoKidB9aRXXwkJqwEXKxSCd9Wqy0vL4lGwvV0t3RmiSpRGIAmwBiXSFSR347KSMgZvIQARDwjvZ5UVgFMfFFq95z4WM8s69vPNG3jkfkpvNM-uWT-PPu0edSvLgW1UuEDiANGXZkNx2auov_37a-f9uvyC7orEURO6NyHb99u4ufQZSm6vG4D4AEAvQTg
  priority: 102
  providerName: Springer Nature
Title Cross-dataset heterogeneous adaptation learning based facial attributes estimation
URI https://link.springer.com/article/10.1007/s11042-022-13544-1
https://www.proquest.com/docview/2717355589
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFH8RuOjBD9SIIunBmzauXbeOk0HCRzQhhkiCp2Vdix4MoMz_376tAzWR67Z2yfvoa_t-7_0AriRXynjWkXzOFBVq5lN7jMCEq2JcGy21zlG-o3A4EQ_TYOou3FYOVlmuiflCrRcp3pHfckwXY3Oq9t3ygyJrFGZXHYVGBWp2CY7s4at23xs9jdd5hDBwtLaRR21sZK5spiieY1iagmh25gdCUPY7NG32m39SpHnk6R_Cvtsykk6h4yPYMfM6HJR0DMR5Zx32fvQWPIZxF39CEQG6Mhl5Q9jLwlqLsUd9kuhkWeTgiaONeCUYzzSZJXiHTpKsYMIyK4JtOIr6xhOY9HvP3SF1BAo0tZ6VUc6SUEodzpRu-22lsH8Zi2TCWeqFiUwFwviFDlnCtYyUNF5ofCmMtirTQjP_FKrzxdycAQnakSd5KnUqA2FSFRnUxsyXTHlKerIBrJRdnLru4khy8R5v-iKjvGMr7ziXd8wacL0esyx6a2z9ulmqJHZ-too3VtGAm1JNm9f_z3a-fbYL2OW5ZSBqrwnV7PPLXNrdR6ZaUIn6gxbUOoOXx17LGZx9OuGdb9ZA2F4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xFEDBjVhYwAVUYBEfiZMCIbSwLGeBQKILceyFAu0uJAjxU3wjnhwsIEFHncRRZp49dmbmPYBNxbW2nptIgjNNpe4K6o4RmHDVjBtrlDFFle9l0LmRp7f-7Qi8170wWFZZr4nFQm36Kf4j3-WYLkZyqmh_8ERRNQqzq7WERgmLM_v26o5s2d7JofPvFufto-tWh1aqAjR1cMspZ0mglAm62kQi0hpJvVioEs5SL0hUKrG2XZqAJdyoUCvrBVYoaY37DiMNE27cURiXQkQ4o8L28WfWIvArEd3Qoy4Ss6pJp2zVY9gIg7XzTPhSUvY9EA53tz8SskWca8_CdLVBJQclouZgxPbmYaYWfyDVWjAPU1-YDBfgqoUvoVhvmtmcPGCRTd9h0_ZfMpKYZFBm_EklUnFPMHoa0k3wjz1J8lJ3y2YEST_KbspFuPkXwy7BWK_fs8tA_Cj0FE-VSZUvbapDi77vCsW0p5WnGsBq28VpxWWOkhqP8ZCFGe0dO3vHhb1j1oDtz2cGJZPHn3c3a5fE1azO4iEGG7BTu2l4-ffRVv4ebQMmOtcX5_H5yeXZKkzyAiVYL9iEsfz5xa65fU-u1wuwEbj7b3R_ACM2D94
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB50BdGDb3F95qAnDTZp2nQPIr4WXywiCt5q06R6kN3VdhH_mr_OTJu6KujNc9uETr5kksw38wFsSq6U8exE8jlTVKjMp_YYgQFXxbg2Wmpdsnw74emtOL8L7kbgvc6FQVplvSaWC7XupXhHvssxXIzFqVq7maNFXB239_vPFBWkMNJay2lUELkwb6_2-JbvnR3bsd7ivH1yc3RKncIATS30CspZEkqpw0zplt9SCgt8sUgmnKVemMhUIM9d6JAlXMtISeOFxpfCaPtPWmjm23ZHYUzaU5HXgLHDk87V9WcMIwycpG7kUeuXmUvZqRL3GKbFIJOe-YEQlH13i8O97o_wbOn12jMw5bar5KDC1yyMmO4cTNdSEMStDHMw-aWu4TxcH2EnFNmnuSnII1JuehappjfISaKTfhX_J06y4oGgL9UkS_D-niRFpcJlcoIlQKrcygW4_RfTLkKj2-uaJSBBK_IkT6VOZSBMqiKDSMh8yZSnpCebwGrbxamrbI4CG0_xsCYz2ju29o5Le8esCduf3_Sruh5_vr1aD0ns5ngeDxHZhJ16mIaPf29t-e_WNmDcIju-POtcrMAEL0GC5MFVaBQvA7NmN0GFWndoI3D_3wD_AIR8FXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-dataset+heterogeneous+adaptation+learning+based+facial+attributes+estimation&rft.jtitle=Multimedia+tools+and+applications&rft.au=Tian%2C+Qing&rft.au=Chu%2C+Yi&rft.au=Zhang%2C+Fengyuan&rft.au=Wang%2C+Chao&rft.date=2022-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=25&rft.spage=36489&rft.epage=36504&rft_id=info:doi/10.1007%2Fs11042-022-13544-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon