Cross-dataset heterogeneous adaptation learning based facial attributes estimation
Recently, human facial attributes analysis has become an important research topic in the field of pattern recognition and computer vision. In fact, various tasks reveal related but different patterns between facial age attribute, race attribute, and gender attribute. Therefore, it is important to co...
Saved in:
Published in | Multimedia tools and applications Vol. 81; no. 25; pp. 36489 - 36504 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, human facial attributes analysis has become an important research topic in the field of pattern recognition and computer vision. In fact, various tasks reveal related but different patterns between facial age attribute, race attribute, and gender attribute. Therefore, it is important to construct a facial multi-attribute estimation model to reveal the relationship between different attributes. However, on the one hand, there are some drawbacks in existing facial datasets, such as the lack of some attribute labels or incomplete attribute distribution, so it is infeasible to realize facial multi-attribute estimation on single facial dataset at the same time. On the other hand, in different datasets facial attributes features and labels tend to be heterogeneous, the distribution divergence and the dimension differences due to the changes in collection equipment and image resolution. To this end, this work first proposes the Cross-dataset heterogeneous Adaptation learning facial multiple attributeS joint Estimation (CASE) to mitigate distribution divergence among different facial attributes. Firstly, this work adopts different coding strategies for different face attributes, to maintain the inherent attributes of face attributes. Secondly, in order to explore the potential relationship between labels of different attributes, labels of different attributes are merged and the output relation regularization term for multi-label mapping projection is constructed. Finally, extensive experiments have testified the effectiveness and superiority of the proposed methods. |
---|---|
AbstractList | Recently, human facial attributes analysis has become an important research topic in the field of pattern recognition and computer vision. In fact, various tasks reveal related but different patterns between facial age attribute, race attribute, and gender attribute. Therefore, it is important to construct a facial multi-attribute estimation model to reveal the relationship between different attributes. However, on the one hand, there are some drawbacks in existing facial datasets, such as the lack of some attribute labels or incomplete attribute distribution, so it is infeasible to realize facial multi-attribute estimation on single facial dataset at the same time. On the other hand, in different datasets facial attributes features and labels tend to be heterogeneous, the distribution divergence and the dimension differences due to the changes in collection equipment and image resolution. To this end, this work first proposes the Cross-dataset heterogeneous Adaptation learning facial multiple attributeS joint Estimation (CASE) to mitigate distribution divergence among different facial attributes. Firstly, this work adopts different coding strategies for different face attributes, to maintain the inherent attributes of face attributes. Secondly, in order to explore the potential relationship between labels of different attributes, labels of different attributes are merged and the output relation regularization term for multi-label mapping projection is constructed. Finally, extensive experiments have testified the effectiveness and superiority of the proposed methods. |
Author | Zhang, Fengyuan Chu, Yi Wang, Chao Liu, Mengyu Tian, Qing |
Author_xml | – sequence: 1 givenname: Qing surname: Tian fullname: Tian, Qing email: tianqing@nuist.edu.cn organization: School of Computer and Software, Nanjing University of Information Science and Technology, Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology – sequence: 2 givenname: Yi surname: Chu fullname: Chu, Yi organization: School of Computer and Software, Nanjing University of Information Science and Technology – sequence: 3 givenname: Fengyuan surname: Zhang fullname: Zhang, Fengyuan organization: School of Changwang, Nanjing University of Information Science and Technology – sequence: 4 givenname: Chao surname: Wang fullname: Wang, Chao organization: School of Computer and Software, Nanjing University of Information Science and Technology – sequence: 5 givenname: Mengyu surname: Liu fullname: Liu, Mengyu organization: School of Electrical and Electronic Engineering, The University of Manchester |
BookMark | eNp9kEtLAzEQx4NUsK1-AU8LnqOZPDa7Rym-oCCInsPsJlu3rNmapAe_vakrCB56mjn8HzO_BZn50TtCLoFdA2P6JgIwySnjnIJQUlI4IXNQWlCtOczyLipGtWJwRhYxbhmDUnE5Jy-rMMZILSaMLhXvLrkwbpx34z4WaHGXMPWjLwaHwfd-UzRZZ4sO2x6HAlMKfbNPLhYupv7jR3tOTjscorv4nUvydn_3unqk6-eHp9XtmrYC6kQ5YKm1LbvG1qJuGsZlBZVGDi0rUbdSKJDSloDc6qrRjpVOaOls0wkrLYgluZpyd2H83Od-sx33wedKwzVooZSq6qzik6o9PBpcZ3YhHxq-DDBzYGcmdiazMz_szCG6-mdq-wlECtgPx61issbc4zcu_F11xPUN3gCF_A |
CitedBy_id | crossref_primary_10_1016_j_engappai_2023_107515 |
Cites_doi | 10.3906/elk-1311-58 10.1109/ICDM.2017.150 10.1109/CVPR.2016.90 10.1109/TIFS.2020.2969552 10.1109/TPAMI.2011.191 10.1109/TIP.2006.881993 10.1109/TNN.2010.2091281 10.1007/978-3-540-74976-9_23 10.1016/j.sysarc.2021.102000 10.1109/TPAMI.2014.2362759 10.1007/s13042-016-0500-8 10.1016/j.neucom.2017.01.064 10.1007/978-981-15-1097-7_15 10.1109/CVPR.2009.5206681 10.1109/TIP.2015.2481327 10.24963/ijcai.2019/492 10.1016/j.imavis.2017.10.003 10.1016/j.patcog.2016.08.031 10.1109/ICCV.2013.274 10.1016/j.future.2019.12.022 10.1609/aaai.v32i1.11792 10.1109/TPAMI.2017.2738004 10.1109/CVPR.2017.463 10.1609/aaai.v33i01.33018754 10.1007/978-3-030-58526-6_20 10.1109/TCYB.2020.2988721 10.1109/CVPR.2016.532 10.3390/s20185162 10.1109/TKDE.2009.191 10.1109/CVPR.2012.6247972 10.1007/s11063-019-09993-9 10.1109/TPAMI.2014.2321570 10.1609/aaai.v30i1.10306 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-022-13544-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 36504 |
ExternalDocumentID | 10_1007_s11042_022_13544_1 |
GrantInformation_xml | – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions funderid: https://doi.org/10.13039/501100012246 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20170956 funderid: https://doi.org/10.13039/501100004608 – fundername: National Natural Science Foundation of China grantid: 62176128 funderid: https://doi.org/10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: NJ2019010 funderid: https://doi.org/10.13039/501100012226 – fundername: Qinglan Project of Jiangsu Province of China funderid: https://doi.org/10.13039/501100013088 – fundername: National Natural Science Foundation of China grantid: 61702273 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-21a677d6fbd939bb0248187a21c06a7c435144d61a2d78b7e06e374edbf3d4d13 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 22:55:32 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Tue Jul 01 04:13:16 EDT 2025 Fri Feb 21 02:44:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | Heterogeneous adaptation Joint estimation Facial attributes estimation Cross-dataset |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-21a677d6fbd939bb0248187a21c06a7c435144d61a2d78b7e06e374edbf3d4d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2717355589 |
PQPubID | 54626 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2717355589 crossref_primary_10_1007_s11042_022_13544_1 crossref_citationtrail_10_1007_s11042_022_13544_1 springer_journals_10_1007_s11042_022_13544_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221000 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Wang J, Chen Y et al (2017) Balanced distribution adaptation for transfer learning, IEEE Int Conf Data Mining, pp 1129–1134 LuXJainAKEthnicity identification from face imagesInt Soc Opt and Photonics20145404114123 MaTLiuQLGIEM: Global and local node influence based community detectionFutur Gener Comput Syst202010553354610.1016/j.future.2019.12.022 Long M, Wang J et al (2013) Transfer feature learning with joint distribution adaptation, IEEE Int Conf Comput Vis, pp 2200–2207 TianQChenSCross-heterogeneous-dataset age estimation through correlation representation learningNeurcomputing201723828629510.1016/j.neucom.2017.01.064 WeiXWireless edge caching based on content similarity in dynamic environmentsJ Syst Archit202111510200010.1016/j.sysarc.2021.102000 Han H, Jain AK et al (2014) Age, gender and race estimation from unconstrained face images, MSU Technical Report MSU-CSE-14-5 BenAbdelkader C, Griffin P et al (2005) A local regionbased approach to gender classification from face images, IEEE Comput Soc Conf Comput Vis Pattern Recognit, pp 1–6 Satpal S, Sarawagi S (2007) Domain adaptation of conditional probability models via feature subsetting, European conference on machine learning and principles and practice of knowledge discovery in datasets, pp 224–235 Zhang Z, Song y et al (2017) Age progression/regression by conditional adversarial Autoencoder, IEEE Conf Comput Vis Pattern Recognit, pp 5810–5818 Guo G, Mu G et al (2009) Human age estimation using bioinspired features, IEEE Conf Comput Vis Pattern Recognit, pp 112–119 WuBAiHet atFacial image retrieval based on demographic classificationInt Conf Pattern Recognit20043914917 HanHJainKHeterogeneous face attribute estimation: A deep multi-task learning approachIEEE Trans Pattern Anal Mach Intell201740112597260910.1109/TPAMI.2017.2738004 LiSLiuFet atOptimization of face recognition system based on azure iot edgComput Mater Contin201961313771389 GolubGHVan LoanCFMatrix computations, vol 32012Washington, D.CJHU press Abirami B, Subashini TS (2017) Automatic race estimation from facial images using shape and color features, Data Eng Commun Technol, pp 173–181 TianYWangLImage and feature space based domain adaptation for vehicle detectionComput Mater Contin202065323972412 TianQCaoMRelationships SelfLearning based GenderAware age estimationNeural Process Lett2019502141216010.1007/s11063-019-09993-9 TianQChenSJoint gender classification and age estimation by nearly orthogonalizing their semantic spacesImage Vis Comput20186992110.1016/j.imavis.2017.10.003 Tian Q, Ma C et al (2020) A convex discriminant semantic correlation analysis for cross-view recognition, IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2020.2988721 XiaMZhangXMulti-stage feature constraints learning for age estimationIEEE Trans Inf Forensics Secur2020152417242810.1109/TIFS.2020.2969552 QiGJAggarwalCExploring context and content links in social media: A latent space methodIEEE Trans Pattern Anal Mach Intell201234585086210.1109/TPAMI.2011.191 Cao Y, Long M et al (2018) Unsupervised domain adaptation with distribution matching machines, AAAI Conf Artif Intell, pp 2795–2802 Pan SJ, Tsang et al (2011) Domain adaptation via transfer component analysis, IEEE Trans Neural Netw learn Syst, pp 199–210 Pan SJTsangTransfer learning via dimensionality reductionAAAI Conf Artif Intell20088677682 Liu J, Zhang L (2019) Optimal projection guided transfer hashing for image retrieval, AAAI Conf Artif Intell, pp 8754–8761 Zhang Y, Yeung D-Y et al (2010) A convex formulation for learning task relationships in multi-task learning, IEEE Int Conf Uncertainty Artif Intell, pp 733–742 MoeiniAMoeiniHSafaiAMRegression facial attribute classification viasimultaneous dictionary learningPattern Recogn2017629911310.1016/j.patcog.2016.08.031 Rani SNChandrajithMA deep convolutional architectural framework for radiograph image processing at bit plane level for gender & age assessmentComput Mater Contin2020622679694 He K, Zhang X et al (2016) Deep residual learning for image recognition, IEEE Conf Comput Vis Pattern Recognit, pp 770–778 Ricanek K, Tesafaye T (2006) Morph: A longitudinal image dataset of normal adult age progression, IEEE Int Conf Auto Face Gesture Recognit, pp 341–345 Lee BKLeeYSDistinction between real faces and photos by analysis of face dataIntell Autom Soft Comput2020261133139 Tan Z, Yang Y et al (2019) Deeply-learned hybrid representations for facial age estimation, Int Joint Conf Artif Intell , pp 3548–3554 Guo G, Wang X (2012) A study on human age estimation under facial expression changes, IEEE Int Conf Comput Vis Pattern Recognit, pp 2547–2553 LiewSSHaniMKGender classification: a convolutional neural network approachTurk J Elec Eng & Comp Sci2016241248126410.3906/elk-1311-58 LuJLiongVECost-Sensitive local binary feature learning for facial age estimationIEEE Trans Image Process2015241253565368340611910.1109/TIP.2015.2481327 NarayananRRamaCFace verification across age progressionIEEE Trans Image Process2006153349336110.1109/TIP.2006.881993 Gong S, Liu X, et at (2020) Jointly de-biasing face recognition and demographic attribute estimation, European Conf Comput Vis, pp 330–347 Niu Z, Zhou M et al (2016) Ordinal regression with multiple output cnn for age estimation, IEEE Conf Comput Vis Pattern Recogni, pp 4920–4928 Jiang J, Zhai CX et al (2007) Instance weighting for domain adaptation in NLP, Proceedings of the 45th annual meeting of the association of computational linguistics, pp 264–271 ZhengyZhaoWDrug side-effect prediction using heterogeneous features and bipartite local modelsComput Mater Contin2019602481496 LiuHMaZRegularized partial least squares for multi-label learningInt J Mach Learn Cybern2018933534610.1007/s13042-016-0500-8 ChowdharyCLAnalytical study of hybrid techniques for image encryption and decryptionSensors20202018516210.3390/s20185162 BerryMJALinoffGSData Mining Techniques: For Marketing, Sales, and Customer Relationship Management2011New YorkJohn Wiley & Sons FuSHeHLearning race from face: A surveyIEEE Trans Pattern Anal Mach Intell201736122483250910.1109/TPAMI.2014.2321570 PanSJYangQA survey on transfer learningIEEE Trans Knowl Data Eng2010221345135910.1109/TKDE.2009.191 TianQSunHAge estimation via selecting discriminated features and preserving geometryKSII Trans Internet Inf Syst20201417211737 Moeini A, Moeini H et al (2017) Regression facial attribute classification via simultaneous dictionary learning, Pattern Recogn, pp 99–113 HanHOttoDemographic estimation from face images: Human vs. machine performanceIEEE Trans Pattern Anal Mach Intell20153761148116110.1109/TPAMI.2014.2362759 Sun B, Feng J et al (2016) Return of frustratingly easy domain adaptation, AAAI Conf Artif Intell, pp 2058–2065 R Narayanan (13544_CR27) 2006; 15 S Li (13544_CR17) 2019; 61 13544_CR28 GJ Qi (13544_CR32) 2012; 34 M Chandrajith (13544_CR33) 2020; 62 B Wu (13544_CR46) 2004; 3 13544_CR30 13544_CR1 13544_CR2 SS Liew (13544_CR18) 2016; 24 13544_CR35 13544_CR34 13544_CR37 13544_CR36 13544_CR8 13544_CR9 Pan SJ (13544_CR29) 2008; 8 13544_CR4 Q Tian (13544_CR39) 2017; 238 13544_CR20 13544_CR21 Y Tian (13544_CR43) 2020; 65 X Wei (13544_CR45) 2021; 115 13544_CR26 A Moeini (13544_CR25) 2017; 62 H Liu (13544_CR19) 2018; 9 Q Tian (13544_CR40) 2018; 69 y Zheng (13544_CR50) 2019; 60 SJ Pan (13544_CR31) 2010; 22 13544_CR49 J Lu (13544_CR23) 2015; 24 Q Tian (13544_CR38) 2019; 50 13544_CR11 13544_CR10 S Fu (13544_CR6) 2017; 36 13544_CR15 13544_CR14 GH Golub (13544_CR7) 2012 T Ma (13544_CR24) 2020; 105 M Xia (13544_CR47) 2020; 15 X Lu (13544_CR22) 2014; 5404 H Han (13544_CR13) 2015; 37 Q Tian (13544_CR42) 2020; 14 YS Lee (13544_CR16) 2020; 26 13544_CR41 13544_CR44 MJA Berry (13544_CR3) 2011 13544_CR48 H Han (13544_CR12) 2017; 40 CL Chowdhary (13544_CR5) 2020; 20 |
References_xml | – reference: WuBAiHet atFacial image retrieval based on demographic classificationInt Conf Pattern Recognit20043914917 – reference: BenAbdelkader C, Griffin P et al (2005) A local regionbased approach to gender classification from face images, IEEE Comput Soc Conf Comput Vis Pattern Recognit, pp 1–6 – reference: ChowdharyCLAnalytical study of hybrid techniques for image encryption and decryptionSensors20202018516210.3390/s20185162 – reference: TianYWangLImage and feature space based domain adaptation for vehicle detectionComput Mater Contin202065323972412 – reference: Jiang J, Zhai CX et al (2007) Instance weighting for domain adaptation in NLP, Proceedings of the 45th annual meeting of the association of computational linguistics, pp 264–271 – reference: TianQCaoMRelationships SelfLearning based GenderAware age estimationNeural Process Lett2019502141216010.1007/s11063-019-09993-9 – reference: FuSHeHLearning race from face: A surveyIEEE Trans Pattern Anal Mach Intell201736122483250910.1109/TPAMI.2014.2321570 – reference: Cao Y, Long M et al (2018) Unsupervised domain adaptation with distribution matching machines, AAAI Conf Artif Intell, pp 2795–2802 – reference: Sun B, Feng J et al (2016) Return of frustratingly easy domain adaptation, AAAI Conf Artif Intell, pp 2058–2065 – reference: Liu J, Zhang L (2019) Optimal projection guided transfer hashing for image retrieval, AAAI Conf Artif Intell, pp 8754–8761 – reference: Zhang Y, Yeung D-Y et al (2010) A convex formulation for learning task relationships in multi-task learning, IEEE Int Conf Uncertainty Artif Intell, pp 733–742 – reference: TianQChenSCross-heterogeneous-dataset age estimation through correlation representation learningNeurcomputing201723828629510.1016/j.neucom.2017.01.064 – reference: Long M, Wang J et al (2013) Transfer feature learning with joint distribution adaptation, IEEE Int Conf Comput Vis, pp 2200–2207 – reference: TianQSunHAge estimation via selecting discriminated features and preserving geometryKSII Trans Internet Inf Syst20201417211737 – reference: WeiXWireless edge caching based on content similarity in dynamic environmentsJ Syst Archit202111510200010.1016/j.sysarc.2021.102000 – reference: Zhang Z, Song y et al (2017) Age progression/regression by conditional adversarial Autoencoder, IEEE Conf Comput Vis Pattern Recognit, pp 5810–5818 – reference: LiewSSHaniMKGender classification: a convolutional neural network approachTurk J Elec Eng & Comp Sci2016241248126410.3906/elk-1311-58 – reference: Satpal S, Sarawagi S (2007) Domain adaptation of conditional probability models via feature subsetting, European conference on machine learning and principles and practice of knowledge discovery in datasets, pp 224–235 – reference: BerryMJALinoffGSData Mining Techniques: For Marketing, Sales, and Customer Relationship Management2011New YorkJohn Wiley & Sons – reference: Abirami B, Subashini TS (2017) Automatic race estimation from facial images using shape and color features, Data Eng Commun Technol, pp 173–181 – reference: HanHOttoDemographic estimation from face images: Human vs. machine performanceIEEE Trans Pattern Anal Mach Intell20153761148116110.1109/TPAMI.2014.2362759 – reference: LiuHMaZRegularized partial least squares for multi-label learningInt J Mach Learn Cybern2018933534610.1007/s13042-016-0500-8 – reference: HanHJainKHeterogeneous face attribute estimation: A deep multi-task learning approachIEEE Trans Pattern Anal Mach Intell201740112597260910.1109/TPAMI.2017.2738004 – reference: TianQChenSJoint gender classification and age estimation by nearly orthogonalizing their semantic spacesImage Vis Comput20186992110.1016/j.imavis.2017.10.003 – reference: LiSLiuFet atOptimization of face recognition system based on azure iot edgComput Mater Contin201961313771389 – reference: QiGJAggarwalCExploring context and content links in social media: A latent space methodIEEE Trans Pattern Anal Mach Intell201234585086210.1109/TPAMI.2011.191 – reference: LuJLiongVECost-Sensitive local binary feature learning for facial age estimationIEEE Trans Image Process2015241253565368340611910.1109/TIP.2015.2481327 – reference: Tan Z, Yang Y et al (2019) Deeply-learned hybrid representations for facial age estimation, Int Joint Conf Artif Intell , pp 3548–3554 – reference: Wang J, Chen Y et al (2017) Balanced distribution adaptation for transfer learning, IEEE Int Conf Data Mining, pp 1129–1134 – reference: PanSJYangQA survey on transfer learningIEEE Trans Knowl Data Eng2010221345135910.1109/TKDE.2009.191 – reference: Guo G, Mu G et al (2009) Human age estimation using bioinspired features, IEEE Conf Comput Vis Pattern Recognit, pp 112–119 – reference: Moeini A, Moeini H et al (2017) Regression facial attribute classification via simultaneous dictionary learning, Pattern Recogn, pp 99–113 – reference: Han H, Jain AK et al (2014) Age, gender and race estimation from unconstrained face images, MSU Technical Report MSU-CSE-14-5 – reference: LuXJainAKEthnicity identification from face imagesInt Soc Opt and Photonics20145404114123 – reference: Rani SNChandrajithMA deep convolutional architectural framework for radiograph image processing at bit plane level for gender & age assessmentComput Mater Contin2020622679694 – reference: Gong S, Liu X, et at (2020) Jointly de-biasing face recognition and demographic attribute estimation, European Conf Comput Vis, pp 330–347 – reference: Pan SJ, Tsang et al (2011) Domain adaptation via transfer component analysis, IEEE Trans Neural Netw learn Syst, pp 199–210 – reference: Ricanek K, Tesafaye T (2006) Morph: A longitudinal image dataset of normal adult age progression, IEEE Int Conf Auto Face Gesture Recognit, pp 341–345 – reference: Tian Q, Ma C et al (2020) A convex discriminant semantic correlation analysis for cross-view recognition, IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2020.2988721 – reference: MoeiniAMoeiniHSafaiAMRegression facial attribute classification viasimultaneous dictionary learningPattern Recogn2017629911310.1016/j.patcog.2016.08.031 – reference: Lee BKLeeYSDistinction between real faces and photos by analysis of face dataIntell Autom Soft Comput2020261133139 – reference: Niu Z, Zhou M et al (2016) Ordinal regression with multiple output cnn for age estimation, IEEE Conf Comput Vis Pattern Recogni, pp 4920–4928 – reference: NarayananRRamaCFace verification across age progressionIEEE Trans Image Process2006153349336110.1109/TIP.2006.881993 – reference: Pan SJTsangTransfer learning via dimensionality reductionAAAI Conf Artif Intell20088677682 – reference: Guo G, Wang X (2012) A study on human age estimation under facial expression changes, IEEE Int Conf Comput Vis Pattern Recognit, pp 2547–2553 – reference: ZhengyZhaoWDrug side-effect prediction using heterogeneous features and bipartite local modelsComput Mater Contin2019602481496 – reference: He K, Zhang X et al (2016) Deep residual learning for image recognition, IEEE Conf Comput Vis Pattern Recognit, pp 770–778 – reference: MaTLiuQLGIEM: Global and local node influence based community detectionFutur Gener Comput Syst202010553354610.1016/j.future.2019.12.022 – reference: GolubGHVan LoanCFMatrix computations, vol 32012Washington, D.CJHU press – reference: XiaMZhangXMulti-stage feature constraints learning for age estimationIEEE Trans Inf Forensics Secur2020152417242810.1109/TIFS.2020.2969552 – volume: 24 start-page: 1248 year: 2016 ident: 13544_CR18 publication-title: Turk J Elec Eng & Comp Sci doi: 10.3906/elk-1311-58 – ident: 13544_CR15 – volume: 3 start-page: 914 year: 2004 ident: 13544_CR46 publication-title: Int Conf Pattern Recognit – ident: 13544_CR44 doi: 10.1109/ICDM.2017.150 – volume: 60 start-page: 481 issue: 2 year: 2019 ident: 13544_CR50 publication-title: Comput Mater Contin – volume: 5404 start-page: 114 year: 2014 ident: 13544_CR22 publication-title: Int Soc Opt and Photonics – ident: 13544_CR14 doi: 10.1109/CVPR.2016.90 – ident: 13544_CR34 – volume: 15 start-page: 2417 year: 2020 ident: 13544_CR47 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2020.2969552 – volume: 34 start-page: 850 issue: 5 year: 2012 ident: 13544_CR32 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2011.191 – volume: 15 start-page: 3349 year: 2006 ident: 13544_CR27 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2006.881993 – ident: 13544_CR11 – ident: 13544_CR30 doi: 10.1109/TNN.2010.2091281 – ident: 13544_CR35 doi: 10.1007/978-3-540-74976-9_23 – volume: 115 start-page: 102000 year: 2021 ident: 13544_CR45 publication-title: J Syst Archit doi: 10.1016/j.sysarc.2021.102000 – volume: 37 start-page: 1148 issue: 6 year: 2015 ident: 13544_CR13 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2014.2362759 – volume: 9 start-page: 335 year: 2018 ident: 13544_CR19 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-016-0500-8 – volume: 238 start-page: 286 year: 2017 ident: 13544_CR39 publication-title: Neurcomputing doi: 10.1016/j.neucom.2017.01.064 – ident: 13544_CR1 doi: 10.1007/978-981-15-1097-7_15 – ident: 13544_CR9 doi: 10.1109/CVPR.2009.5206681 – volume: 26 start-page: 133 issue: 1 year: 2020 ident: 13544_CR16 publication-title: Intell Autom Soft Comput – volume: 24 start-page: 5356 issue: 12 year: 2015 ident: 13544_CR23 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2015.2481327 – ident: 13544_CR37 doi: 10.24963/ijcai.2019/492 – volume: 69 start-page: 9 year: 2018 ident: 13544_CR40 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2017.10.003 – ident: 13544_CR26 doi: 10.1016/j.patcog.2016.08.031 – ident: 13544_CR49 – ident: 13544_CR21 doi: 10.1109/ICCV.2013.274 – volume: 105 start-page: 533 year: 2020 ident: 13544_CR24 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.12.022 – volume: 8 start-page: 677 year: 2008 ident: 13544_CR29 publication-title: AAAI Conf Artif Intell – volume: 14 start-page: 1721 year: 2020 ident: 13544_CR42 publication-title: KSII Trans Internet Inf Syst – ident: 13544_CR4 doi: 10.1609/aaai.v32i1.11792 – volume: 40 start-page: 2597 issue: 11 year: 2017 ident: 13544_CR12 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2738004 – volume-title: Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management year: 2011 ident: 13544_CR3 – ident: 13544_CR48 doi: 10.1109/CVPR.2017.463 – ident: 13544_CR20 doi: 10.1609/aaai.v33i01.33018754 – ident: 13544_CR2 – ident: 13544_CR8 doi: 10.1007/978-3-030-58526-6_20 – volume: 62 start-page: 679 issue: 2 year: 2020 ident: 13544_CR33 publication-title: Comput Mater Contin – ident: 13544_CR41 doi: 10.1109/TCYB.2020.2988721 – ident: 13544_CR28 doi: 10.1109/CVPR.2016.532 – volume: 61 start-page: 1377 issue: 3 year: 2019 ident: 13544_CR17 publication-title: Comput Mater Contin – volume: 20 start-page: 5162 issue: 18 year: 2020 ident: 13544_CR5 publication-title: Sensors doi: 10.3390/s20185162 – volume: 65 start-page: 2397 issue: 3 year: 2020 ident: 13544_CR43 publication-title: Comput Mater Contin – volume: 22 start-page: 1345 year: 2010 ident: 13544_CR31 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2009.191 – ident: 13544_CR10 doi: 10.1109/CVPR.2012.6247972 – volume-title: Matrix computations, vol 3 year: 2012 ident: 13544_CR7 – volume: 50 start-page: 2141 year: 2019 ident: 13544_CR38 publication-title: Neural Process Lett doi: 10.1007/s11063-019-09993-9 – volume: 36 start-page: 2483 issue: 12 year: 2017 ident: 13544_CR6 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2014.2321570 – volume: 62 start-page: 99 year: 2017 ident: 13544_CR25 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2016.08.031 – ident: 13544_CR36 doi: 10.1609/aaai.v30i1.10306 |
SSID | ssj0016524 |
Score | 2.3011866 |
Snippet | Recently, human facial attributes analysis has become an important research topic in the field of pattern recognition and computer vision. In fact, various... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 36489 |
SubjectTerms | 1213: Computational Optimization and Applications for Heterogeneous Multimedia Data Adaptation Computer Communication Networks Computer Science Computer vision Data Structures and Information Theory Datasets Image resolution Labels Learning Multimedia Information Systems Pattern recognition Regularization Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQLDDwKCAKBXlgA0ux4_iSsaqoKgYGRKVukR07MKC2IuH_40ucBhAgMSdxpHvk7nLffUfINQhjXOQdKRbcMGnKmPkyAhuuhgvrLFjboHwf1Gwu7xfJIgyFVR3avWtJNl_qftiN4ygJos95nEjJfM2zk2Dt7q14Lsab3oFKwirbNGI-HvIwKvPzGV_DUZ9jfmuLNtFmekj2Q5pIx61ej8iWWw7IQbeCgQaPHJC9T3yCx-Rxgi9hiPqsXE1fEOqy8hbifHlPtdXrtu9Ow6qIZ4oxzNJS439zqut2-5WrKFJvtDONJ2Q-vXuazFhYmsAK7001E1wrAKtKY7M4MwY5y3gKWvAiUhoKidB9aRXXwkJqwEXKxSCd9Wqy0vL4lGwvV0t3RmiSpRGIAmwBiXSFSR347KSMgZvIQARDwjvZ5UVgFMfFFq95z4WM8s69vPNG3jkfkpvNM-uWT-PPu0edSvLgW1UuEDiANGXZkNx2auov_37a-f9uvyC7orEURO6NyHb99u4ufQZSm6vG4D4AEAvQTg priority: 102 providerName: Springer Nature |
Title | Cross-dataset heterogeneous adaptation learning based facial attributes estimation |
URI | https://link.springer.com/article/10.1007/s11042-022-13544-1 https://www.proquest.com/docview/2717355589 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFH8RuOjBD9SIIunBmzauXbeOk0HCRzQhhkiCp2Vdix4MoMz_376tAzWR67Z2yfvoa_t-7_0AriRXynjWkXzOFBVq5lN7jMCEq2JcGy21zlG-o3A4EQ_TYOou3FYOVlmuiflCrRcp3pHfckwXY3Oq9t3ygyJrFGZXHYVGBWp2CY7s4at23xs9jdd5hDBwtLaRR21sZK5spiieY1iagmh25gdCUPY7NG32m39SpHnk6R_Cvtsykk6h4yPYMfM6HJR0DMR5Zx32fvQWPIZxF39CEQG6Mhl5Q9jLwlqLsUd9kuhkWeTgiaONeCUYzzSZJXiHTpKsYMIyK4JtOIr6xhOY9HvP3SF1BAo0tZ6VUc6SUEodzpRu-22lsH8Zi2TCWeqFiUwFwviFDlnCtYyUNF5ofCmMtirTQjP_FKrzxdycAQnakSd5KnUqA2FSFRnUxsyXTHlKerIBrJRdnLru4khy8R5v-iKjvGMr7ziXd8wacL0esyx6a2z9ulmqJHZ-too3VtGAm1JNm9f_z3a-fbYL2OW5ZSBqrwnV7PPLXNrdR6ZaUIn6gxbUOoOXx17LGZx9OuGdb9ZA2F4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xFEDBjVhYwAVUYBEfiZMCIbSwLGeBQKILceyFAu0uJAjxU3wjnhwsIEFHncRRZp49dmbmPYBNxbW2nptIgjNNpe4K6o4RmHDVjBtrlDFFle9l0LmRp7f-7Qi8170wWFZZr4nFQm36Kf4j3-WYLkZyqmh_8ERRNQqzq7WERgmLM_v26o5s2d7JofPvFufto-tWh1aqAjR1cMspZ0mglAm62kQi0hpJvVioEs5SL0hUKrG2XZqAJdyoUCvrBVYoaY37DiMNE27cURiXQkQ4o8L28WfWIvArEd3Qoy4Ss6pJp2zVY9gIg7XzTPhSUvY9EA53tz8SskWca8_CdLVBJQclouZgxPbmYaYWfyDVWjAPU1-YDBfgqoUvoVhvmtmcPGCRTd9h0_ZfMpKYZFBm_EklUnFPMHoa0k3wjz1J8lJ3y2YEST_KbspFuPkXwy7BWK_fs8tA_Cj0FE-VSZUvbapDi77vCsW0p5WnGsBq28VpxWWOkhqP8ZCFGe0dO3vHhb1j1oDtz2cGJZPHn3c3a5fE1azO4iEGG7BTu2l4-ffRVv4ebQMmOtcX5_H5yeXZKkzyAiVYL9iEsfz5xa65fU-u1wuwEbj7b3R_ACM2D94 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB50BdGDb3F95qAnDTZp2nQPIr4WXywiCt5q06R6kN3VdhH_mr_OTJu6KujNc9uETr5kksw38wFsSq6U8exE8jlTVKjMp_YYgQFXxbg2Wmpdsnw74emtOL8L7kbgvc6FQVplvSaWC7XupXhHvssxXIzFqVq7maNFXB239_vPFBWkMNJay2lUELkwb6_2-JbvnR3bsd7ivH1yc3RKncIATS30CspZEkqpw0zplt9SCgt8sUgmnKVemMhUIM9d6JAlXMtISeOFxpfCaPtPWmjm23ZHYUzaU5HXgLHDk87V9WcMIwycpG7kUeuXmUvZqRL3GKbFIJOe-YEQlH13i8O97o_wbOn12jMw5bar5KDC1yyMmO4cTNdSEMStDHMw-aWu4TxcH2EnFNmnuSnII1JuehappjfISaKTfhX_J06y4oGgL9UkS_D-niRFpcJlcoIlQKrcygW4_RfTLkKj2-uaJSBBK_IkT6VOZSBMqiKDSMh8yZSnpCebwGrbxamrbI4CG0_xsCYz2ju29o5Le8esCduf3_Sruh5_vr1aD0ns5ngeDxHZhJ16mIaPf29t-e_WNmDcIju-POtcrMAEL0GC5MFVaBQvA7NmN0GFWndoI3D_3wD_AIR8FXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-dataset+heterogeneous+adaptation+learning+based+facial+attributes+estimation&rft.jtitle=Multimedia+tools+and+applications&rft.au=Tian%2C+Qing&rft.au=Chu%2C+Yi&rft.au=Zhang%2C+Fengyuan&rft.au=Wang%2C+Chao&rft.date=2022-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=25&rft.spage=36489&rft.epage=36504&rft_id=info:doi/10.1007%2Fs11042-022-13544-1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |