Facial expression recognition algorithm based on parameter adaptive initialization of CNN and LSTM

In view of the high dimensionality, nonrigidity, multiscale variation and the influence of illumination and angle on facial expressions, it is quite difficult to obtain facial expression images or videos using computers and analyze facial morphology and changes to accurately obtain the emotional cha...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 36; no. 3; pp. 483 - 498
Main Authors An, Fengping, Liu, Zhiwen
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0178-2789
1432-2315
DOI10.1007/s00371-019-01635-4

Cover

Loading…
Abstract In view of the high dimensionality, nonrigidity, multiscale variation and the influence of illumination and angle on facial expressions, it is quite difficult to obtain facial expression images or videos using computers and analyze facial morphology and changes to accurately obtain the emotional changes of the subjects. Existing facial expression recognition algorithms have the following problems in the application process: the existing shallow feature extraction model has lost a lot of effective feature information and low recognition accuracy. The facial expression recognition method based on deep learning has problems such as overfitting, gradient explosion and parameter initialization. Therefore, this paper develops a facial expression recognition algorithm based on the deep learning method. An adaptive model parameter initialization based on the multilayer maxout network linear activation function is proposed to initialize the convolutional neural network (CNN) and the long–short-term memory network (LSTM) method. It can effectively overcome the gradient disappearance and gradient explosion problems in the deep learning model training process. At the same time, the convolutional neural network with an LSTM memory unit is used to extract the related information from the image sequence, and the facial expression judgment is based on a single-frame image and historical-related information. However, the top-level structure of the CNN model is a fully connected feedforward neural network, which undertakes the task of expression classification. Therefore, the SVM classification method replaces the top-level classifier to further improve the expression classification accuracy. Experiments show that the facial expression recognition method proposed in this paper not only accurately identifies various expressions but also has good adaptive ability. This is because the method achieves the adaptive initialization of the parameters of the deep learning model construction process and also analyzes the relevance of the expression database expression, thereby improving the accuracy of expression recognition.
AbstractList In view of the high dimensionality, nonrigidity, multiscale variation and the influence of illumination and angle on facial expressions, it is quite difficult to obtain facial expression images or videos using computers and analyze facial morphology and changes to accurately obtain the emotional changes of the subjects. Existing facial expression recognition algorithms have the following problems in the application process: the existing shallow feature extraction model has lost a lot of effective feature information and low recognition accuracy. The facial expression recognition method based on deep learning has problems such as overfitting, gradient explosion and parameter initialization. Therefore, this paper develops a facial expression recognition algorithm based on the deep learning method. An adaptive model parameter initialization based on the multilayer maxout network linear activation function is proposed to initialize the convolutional neural network (CNN) and the long–short-term memory network (LSTM) method. It can effectively overcome the gradient disappearance and gradient explosion problems in the deep learning model training process. At the same time, the convolutional neural network with an LSTM memory unit is used to extract the related information from the image sequence, and the facial expression judgment is based on a single-frame image and historical-related information. However, the top-level structure of the CNN model is a fully connected feedforward neural network, which undertakes the task of expression classification. Therefore, the SVM classification method replaces the top-level classifier to further improve the expression classification accuracy. Experiments show that the facial expression recognition method proposed in this paper not only accurately identifies various expressions but also has good adaptive ability. This is because the method achieves the adaptive initialization of the parameters of the deep learning model construction process and also analyzes the relevance of the expression database expression, thereby improving the accuracy of expression recognition.
Author Liu, Zhiwen
An, Fengping
Author_xml – sequence: 1
  givenname: Fengping
  orcidid: 0000-0002-2220-2987
  surname: An
  fullname: An, Fengping
  email: anfengping@163.com, anfengping1985@163.com, anfengping@bit.edu.cn
  organization: School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, School of Information and Electronics, Beijing Institute of Technology
– sequence: 2
  givenname: Zhiwen
  surname: Liu
  fullname: Liu, Zhiwen
  organization: School of Information and Electronics, Beijing Institute of Technology
BookMark eNp9kM9LwzAUx4NMcJv-A54Cnqv50a7pUYZTYc6D8xxek9eZ0bU16UT9621XQfCwwyMv4ft5eXwmZFTVFRJyydk1Zyy9CYzJlEeMZ13NZBLFJ2TMYykiIXkyImPGUxWJVGVnZBLClnX3NM7GJF-AcVBS_Gw8huDqino09aZybd9Duam9a992NIeAlnZPDXjYYYuegoWmdR9IXZ-G0n3DAaoLOl-tKFSWLl_WT-fktIAy4MXvOSWvi7v1_CFaPt8_zm-XkZE8ayPBlUpsLrKiYLGNLc5yC7GyIDmmBrhhaNJE5AYtKIO5yaALZAw4qqSwhZySq2Fu4-v3PYZWb-u9r7ovtci4YnGiOiNTooaU8XUIHgttXHvYu_XgSs2Z7o3qwajujOqDUd2j4h_aeLcD_3UckgMUunC1Qf-31RHqBwf8jUY
CitedBy_id crossref_primary_10_1007_s13735_019_00175_w
crossref_primary_10_1007_s00371_019_01705_7
crossref_primary_10_1007_s11760_024_03603_5
crossref_primary_10_1007_s00371_020_01794_9
crossref_primary_10_1007_s00371_022_02655_3
crossref_primary_10_1007_s10489_024_05954_5
crossref_primary_10_1111_exsy_13314
crossref_primary_10_1007_s11760_025_03984_1
crossref_primary_10_1007_s11135_024_02048_9
crossref_primary_10_1063_5_0221181
crossref_primary_10_1016_j_compeleceng_2024_110038
crossref_primary_10_1007_s11276_021_02665_4
crossref_primary_10_1002_cta_3624
crossref_primary_10_1142_S0218348X22401053
crossref_primary_10_1007_s00371_020_02037_7
crossref_primary_10_1360_SST_2022_0480
crossref_primary_10_1007_s00500_023_09029_4
crossref_primary_10_1007_s11517_021_02383_1
crossref_primary_10_1142_S0218348X22400977
crossref_primary_10_1016_j_irfa_2022_102202
crossref_primary_10_1155_2022_7094539
crossref_primary_10_1007_s00371_019_01759_7
crossref_primary_10_1016_j_aej_2023_01_017
crossref_primary_10_1021_acs_energyfuels_4c05843
crossref_primary_10_1007_s00371_019_01773_9
crossref_primary_10_1007_s00371_019_01715_5
crossref_primary_10_1016_j_apenergy_2025_125341
crossref_primary_10_1016_j_bspc_2022_103970
crossref_primary_10_1007_s00371_021_02069_7
crossref_primary_10_3390_s22218293
crossref_primary_10_1145_3433544
crossref_primary_10_1016_j_engappai_2023_106661
crossref_primary_10_1109_ACCESS_2021_3121791
crossref_primary_10_3390_app14041337
crossref_primary_10_1016_j_iswa_2024_200339
crossref_primary_10_1007_s00371_020_01994_3
crossref_primary_10_1016_j_procs_2022_12_109
crossref_primary_10_1186_s42492_022_00109_0
crossref_primary_10_1155_2020_8845176
Cites_doi 10.1126/science.1127647
10.1109/TIP.2014.2375634
10.1007/s11704-015-5323-3
10.1016/j.patcog.2016.07.026
10.1016/j.imavis.2011.07.002
10.1109/TVCG.2013.249
10.1108/IR-04-2018-0060
10.1016/j.imavis.2008.08.005
10.1109/TIP.2017.2689999
10.1016/j.neunet.2014.09.005
10.1109/CVPR.2014.233
10.1109/FG.2017.23
10.1007/978-3-319-46475-6_27
10.1145/2818346.2830595
10.1109/CVPR.2017.490
10.1109/ACII.2015.7344636
10.1109/ICCV.2015.341
10.1109/ICCV.2017.345
10.1007/978-3-319-16817-3_10
10.1109/FG.2011.5771463
10.1109/CVPR.2014.226
10.1007/978-3-319-69096-4_48
10.1109/SIBGRAPI.2015.14
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00371-019-01635-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 498
ExternalDocumentID 10_1007_s00371_019_01635_4
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61701188
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-21885db29ff04d4de6bda48da31e7ca1c0ec752bceda8cebc9abda90a1e85fdf3
IEDL.DBID U2A
ISSN 0178-2789
IngestDate Fri Jul 25 23:32:52 EDT 2025
Tue Jul 01 01:05:47 EDT 2025
Thu Apr 24 22:55:41 EDT 2025
Fri Feb 21 02:34:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
Facial expression recognition
CNN
LSTM
SVM
Model parameter initialization method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-21885db29ff04d4de6bda48da31e7ca1c0ec752bceda8cebc9abda90a1e85fdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2220-2987
PQID 2918045814
PQPubID 2043737
PageCount 16
ParticipantIDs proquest_journals_2918045814
crossref_citationtrail_10_1007_s00371_019_01635_4
crossref_primary_10_1007_s00371_019_01635_4
springer_journals_10_1007_s00371_019_01635_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200300
2020-3-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 3
  year: 2020
  text: 20200300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Zhang, Huang, Du (CR22) 2017; 26
Goodfellow, Erhan, Carrier (CR26) 2015; 64
Cao, Weng, Zhou (CR24) 2014; 20
CR19
CR18
CR17
CR16
CR15
Eleftheriadis, Rudovic, Pantic (CR13) 2015; 24
CR12
CR11
Pransky (CR1) 2018; 45
CR10
Deng, Jin, Zhen (CR6) 2005; 11
CR30
Shan, Gong, McOwan (CR7) 2009; 27
CR4
CR28
CR9
Zhang, Yu, Mao (CR20) 2016; 10
Vouloutsi, Verschure (CR2) 2018; 10
CR25
Hinton, Salakhutdinov (CR14) 2006; 313
CR23
CR21
Lopes, de Aguiar, De Souza (CR29) 2017; 61
Pickett (CR3) 2018; 57
Satiyan, Nagarajan, Hariharan (CR8) 2010; 3
Mehrabian (CR5) 2008; 12
Zhao, Huang, Taini (CR27) 2011; 29
1635_CR30
1635_CR11
1635_CR10
V Vouloutsi (1635_CR2) 2018; 10
1635_CR12
1635_CR15
M Satiyan (1635_CR8) 2010; 3
1635_CR17
L Pickett (1635_CR3) 2018; 57
1635_CR16
1635_CR19
F Zhang (1635_CR20) 2016; 10
1635_CR18
G Zhao (1635_CR27) 2011; 29
GE Hinton (1635_CR14) 2006; 313
AT Lopes (1635_CR29) 2017; 61
C Cao (1635_CR24) 2014; 20
S Eleftheriadis (1635_CR13) 2015; 24
HB Deng (1635_CR6) 2005; 11
1635_CR4
A Mehrabian (1635_CR5) 2008; 12
IJ Goodfellow (1635_CR26) 2015; 64
1635_CR21
1635_CR23
1635_CR25
1635_CR28
C Shan (1635_CR7) 2009; 27
J Pransky (1635_CR1) 2018; 45
1635_CR9
K Zhang (1635_CR22) 2017; 26
References_xml – volume: 57
  start-page: 12A
  issue: 1
  year: 2018
  ident: CR3
  article-title: Don’t fear the cobot: collaborative robots, or cobots, are infiltrating factories on a global scale. But can robots and humans really work together in harmony? We asked the experts
  publication-title: Quality
– ident: CR18
– volume: 3
  start-page: 91
  year: 2010
  end-page: 99
  ident: CR8
  article-title: Recognition of facial expression using Haar wavelet transform
  publication-title: Trans. Int. J. Electr. Electron. Syst. Res. JEESR Univ. Technol. Mara UiTM
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  ident: CR14
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: CR4
– volume: 24
  start-page: 189
  issue: 1
  year: 2015
  end-page: 204
  ident: CR13
  article-title: Discriminative shared Gaussian processes for multiview and view-invariant facial expression recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2375634
– ident: CR16
– ident: CR12
– volume: 10
  start-page: 832
  issue: 5
  year: 2016
  end-page: 844
  ident: CR20
  article-title: Pose-robust feature learning for facial expression recognition
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-015-5323-3
– ident: CR30
– volume: 61
  start-page: 610
  year: 2017
  end-page: 628
  ident: CR29
  article-title: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.07.026
– ident: CR10
– ident: CR25
– volume: 12
  start-page: 193
  year: 2008
  end-page: 200
  ident: CR5
  article-title: Communication without words
  publication-title: Commun. Theory
– volume: 29
  start-page: 607
  issue: 9
  year: 2011
  end-page: 619
  ident: CR27
  article-title: Facial expression recognition from near-infrared videos
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2011.07.002
– ident: CR23
– ident: CR21
– ident: CR19
– volume: 20
  start-page: 413
  issue: 3
  year: 2014
  end-page: 425
  ident: CR24
  article-title: Facewarehouse: a 3d facial expression database for visual computing
  publication-title: IEEE Trans. Vis. Comput. Gr.
  doi: 10.1109/TVCG.2013.249
– ident: CR15
– volume: 45
  start-page: 307
  issue: 3
  year: 2018
  end-page: 310
  ident: CR1
  article-title: The Pransky interview–Martin Haegele, Head of Department Robotics and Assistive Systems
  publication-title: Fraunhofer IPA. Ind. Robot Int. J.
  doi: 10.1108/IR-04-2018-0060
– ident: CR17
– volume: 27
  start-page: 803
  issue: 6
  year: 2009
  end-page: 816
  ident: CR7
  article-title: Facial expression recognition based on local binary patterns: a comprehensive study
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2008.08.005
– volume: 11
  start-page: 86
  issue: 11
  year: 2005
  end-page: 96
  ident: CR6
  article-title: A new facial expression recognition method based on local Gabor filter bank and PCA plus lda
  publication-title: Int. J. Inf. Technol.
– ident: CR11
– ident: CR9
– volume: 26
  start-page: 4193
  issue: 9
  year: 2017
  end-page: 4203
  ident: CR22
  article-title: Facial expression recognition based on deep evolutional spatial-temporal networks
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2689999
– volume: 10
  start-page: 327
  year: 2018
  ident: CR2
  article-title: Emotions and self-regulation
  publication-title: Living Mach. Handb. Res. Biomim. Biohybrid Syst.
– volume: 64
  start-page: 59
  year: 2015
  end-page: 63
  ident: CR26
  article-title: Challenges in representation learning: a report on three machine learning contests
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.005
– ident: CR28
– ident: 1635_CR18
  doi: 10.1109/CVPR.2014.233
– volume: 64
  start-page: 59
  year: 2015
  ident: 1635_CR26
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.005
– ident: 1635_CR30
  doi: 10.1109/FG.2017.23
– ident: 1635_CR23
  doi: 10.1007/978-3-319-46475-6_27
– ident: 1635_CR11
  doi: 10.1145/2818346.2830595
– volume: 57
  start-page: 12A
  issue: 1
  year: 2018
  ident: 1635_CR3
  publication-title: Quality
– ident: 1635_CR16
  doi: 10.1109/CVPR.2017.490
– volume: 45
  start-page: 307
  issue: 3
  year: 2018
  ident: 1635_CR1
  publication-title: Fraunhofer IPA. Ind. Robot Int. J.
  doi: 10.1108/IR-04-2018-0060
– ident: 1635_CR4
– volume: 11
  start-page: 86
  issue: 11
  year: 2005
  ident: 1635_CR6
  publication-title: Int. J. Inf. Technol.
– ident: 1635_CR9
  doi: 10.1109/ACII.2015.7344636
– ident: 1635_CR12
  doi: 10.1109/ICCV.2015.341
– volume: 3
  start-page: 91
  year: 2010
  ident: 1635_CR8
  publication-title: Trans. Int. J. Electr. Electron. Syst. Res. JEESR Univ. Technol. Mara UiTM
– volume: 10
  start-page: 832
  issue: 5
  year: 2016
  ident: 1635_CR20
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-015-5323-3
– volume: 10
  start-page: 327
  year: 2018
  ident: 1635_CR2
  publication-title: Living Mach. Handb. Res. Biomim. Biohybrid Syst.
– volume: 27
  start-page: 803
  issue: 6
  year: 2009
  ident: 1635_CR7
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2008.08.005
– ident: 1635_CR17
  doi: 10.1109/ICCV.2017.345
– volume: 12
  start-page: 193
  year: 2008
  ident: 1635_CR5
  publication-title: Commun. Theory
– volume: 20
  start-page: 413
  issue: 3
  year: 2014
  ident: 1635_CR24
  publication-title: IEEE Trans. Vis. Comput. Gr.
  doi: 10.1109/TVCG.2013.249
– ident: 1635_CR28
  doi: 10.1007/978-3-319-16817-3_10
– ident: 1635_CR10
  doi: 10.1109/FG.2011.5771463
– volume: 24
  start-page: 189
  issue: 1
  year: 2015
  ident: 1635_CR13
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2375634
– volume: 26
  start-page: 4193
  issue: 9
  year: 2017
  ident: 1635_CR22
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2689999
– volume: 29
  start-page: 607
  issue: 9
  year: 2011
  ident: 1635_CR27
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2011.07.002
– volume: 61
  start-page: 610
  year: 2017
  ident: 1635_CR29
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.07.026
– ident: 1635_CR15
  doi: 10.1109/CVPR.2014.226
– ident: 1635_CR25
– ident: 1635_CR21
  doi: 10.1007/978-3-319-69096-4_48
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 1635_CR14
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 1635_CR19
  doi: 10.1109/SIBGRAPI.2015.14
SSID ssj0017749
Score 2.4813385
Snippet In view of the high dimensionality, nonrigidity, multiscale variation and the influence of illumination and angle on facial expressions, it is quite difficult...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 483
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Artificial neural networks
Classification
Computer Graphics
Computer Science
Convex analysis
Deep learning
Emotions
Face recognition
Feature extraction
Image Processing and Computer Vision
Intelligence
Machine learning
Mathematical models
Multilayers
Neural networks
Original Article
Parameters
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XfQgfuJ0Sg7etNh0adeeRMfGEFdEN9it5FOFrZuugn--L1naqeBupU0CfS957_fyvhC64EL5OlShxylNTEqO9FgYcC9oCaIAXwsZmeTkQRr1R_R-HI7dhdvChVWWMtEKajkT5o78OkhIbJx6hN7M3z3TNcp4V10LjU1UBxEcg_FVv-umj0-VHwHAjQXABGwlk_Pp0mZs8pytVgemtIkXArXr0d-qaYU3_7hIrebp7aIdBxnx7ZLHe2hD5fto-0chwQPEe8xcfWP15eJac1xFBsEzm7zArxSvU2yUlsTwypT8nppQGMwkmxuZh9_MaDZxiZl4pnEnTTHLJX54Hg4O0ajXHXb6nuue4Ak4VoUHujsOJQ8SrX0qqVQRl4zGkrWIagtGhK9EG9gilGSxUFwkDAYkPiMqDrXUrSNUy2e5OkZYxZHiXPNIAOCSImJatVuUcT8WXEfcbyBSEi4TrrS46XAxyaqiyJbYGRA7s8TOaANdVnPmy8Iaa0c3S35k7pAtstWWaKCrkkerz_-vdrJ-tVO0FRir2kaaNVGt-PhUZwA9Cn7u9tc3tpTX0A
  priority: 102
  providerName: ProQuest
Title Facial expression recognition algorithm based on parameter adaptive initialization of CNN and LSTM
URI https://link.springer.com/article/10.1007/s00371-019-01635-4
https://www.proquest.com/docview/2918045814
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6svejBR1V8lj1400CSbtLk2EpT8RFEW6insE8t1FQ0gj_f2biJD1TwtCE72cPM7s43mRfAIRfK1YEKHE5pbFJypMMCnzt-R3gK8bWQoUlOvkzD0zE9mwQTmxT2XEW7Vy7J8qauk93K6nJo-pr4HlSTDm1AMzC2O-7isd-rfQcIaErQ66F9ZPI8barMz2t8VUcfGPObW7TUNskarFiYSHrvcl2HBZW3YLVqwUDsiWzB8qd6ghvAE2b-gBP1asNbc1IHCOEzm93Nn6bF_QMxuksSfGUqfz-YiBjCJHs0Vx-ZGmo2s_mZZK7JSZoSlktycTO63IRxMhidnDq2iYIj8HQVDqrwKJDcj7V2qaRShVwyGknW8VRXME-4SnRROkJJFgnFRcyQIHaZp6JAS93ZgsV8nqttICoKFeeahwJxlxQh06rboYy7keA65O4OeBUvM2ErjJtGF7Osro1c8j9D_mcl_zO6A0f1N4_v9TX-pN6vRJTZs_ac-bEXGXevh9PHldg-pn9fbfd_5Huw5BtjuwxA24fF4ulFHSAiKXgbGlEybEOzl_T7qRmHt-cDHPuD9Oq6XW7PN8pw3yc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xOJQeKqCtCM89lFNr1XbWjn2oqgoIoSS5NEjc3H3MQqXECZCq7Z_qb-zMxk6gEty4WfZ4Zc_O7nyz8wJ4pw2GLsEk0FLmnJJjA5XEOoibJkLC18amnJzc66edC_n1Mrlcgr91LgyHVdZ7ot-o7djwGfnHOI8ydupF8vPkJuCuUexdrVtozMTiHP_8IpPt7tPZMc3vYRy3TwZHnaDqKhAYErdpQDotS6yOc-dCaaXFVFslM6uaEbaMikyIpkWfa9CqzKA2uSKCPFQRZomzrknjLsMq_VbOKyprn869FgSlPNyOyDLjDNMqScen6vnaeGS4c3QSKflAPlSEC3T7n0PW67n2OryqAKr4MpOoDVjCchNe3itb-Bp0W_FBu8DfVRRtKeZxSHSthlfEuOn1SLCKtIJucYHxEQfeCGXVhHdY8YOp1bBKAxVjJ476faFKK7rfBr03cPEsXH0LK-W4xC0QmKWotdOpIXhnTaoctppS6TAz2qU6bEBUM64wVSFz7qcxLOYlmD2zC2J24ZldyAa8n78zmZXxeJJ6t56PolrSd8VCABvwoZ6jxePHR9t-erQDeNEZ9LpF96x_vgNrMdvzPsZtF1amtz9xj0DPVO97SRPw_blF-x9QGxeN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfTBj6k4nZoH37TYdGnXPo5pmboVwQ32FvKpg60bs4J_vkmXdlNU8K001zzcJbnf9e53AeCScekqX_oOwzgylBzhUN9jjtfgSGp8zUVgyMm9JOgM8MPQH66w-PNq9yIlueA0mC5NaXYzE-qmJL7lneZ0GGxqfbTLdPA62NDHMTLreuC1yjyCBjc5AEY6VjKcT0ub-XmOr65piTe_pUhzzxPvgR0LGWFrYeN9sCbTKtgtrmOAdndWwfZKb8EDwGJq_oZD-WFLXVNYFgvpZzp-mc5H2esEGj8moH5luoBPTHUMpILOzDEIR0aaji1XE04VbCcJpKmA3ed-7xAM4rt-u-PYCxUcrlWTOdqdh75gXqSUiwUWMmCC4lDQBpJNThF3JW9qS3EpaMgl4xHVApFLkQx9JVTjCFTSaSqPAZRhIBlTLOAagwkeUCWbDUyZG3KmAubWACp0SbjtNm4uvRiTsk9yrn-i9U9y_RNcA1flN7NFr40_peuFiYjdd2_Ei1BoUr9ID18XZlsO_z7byf_EL8Dm021MuvfJ4ynY8kwMntel1UElm7_LMw1UMnaer8VPIMLgxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facial+expression+recognition+algorithm+based+on+parameter+adaptive+initialization+of+CNN+and+LSTM&rft.jtitle=The+Visual+computer&rft.au=An%2C+Fengping&rft.au=Liu%2C+Zhiwen&rft.date=2020-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=36&rft.issue=3&rft.spage=483&rft.epage=498&rft_id=info:doi/10.1007%2Fs00371-019-01635-4&rft.externalDocID=10_1007_s00371_019_01635_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon