Facial expression recognition algorithm based on parameter adaptive initialization of CNN and LSTM
In view of the high dimensionality, nonrigidity, multiscale variation and the influence of illumination and angle on facial expressions, it is quite difficult to obtain facial expression images or videos using computers and analyze facial morphology and changes to accurately obtain the emotional cha...
Saved in:
Published in | The Visual computer Vol. 36; no. 3; pp. 483 - 498 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0178-2789 1432-2315 |
DOI | 10.1007/s00371-019-01635-4 |
Cover
Loading…
Abstract | In view of the high dimensionality, nonrigidity, multiscale variation and the influence of illumination and angle on facial expressions, it is quite difficult to obtain facial expression images or videos using computers and analyze facial morphology and changes to accurately obtain the emotional changes of the subjects. Existing facial expression recognition algorithms have the following problems in the application process: the existing shallow feature extraction model has lost a lot of effective feature information and low recognition accuracy. The facial expression recognition method based on deep learning has problems such as overfitting, gradient explosion and parameter initialization. Therefore, this paper develops a facial expression recognition algorithm based on the deep learning method. An adaptive model parameter initialization based on the multilayer maxout network linear activation function is proposed to initialize the convolutional neural network (CNN) and the long–short-term memory network (LSTM) method. It can effectively overcome the gradient disappearance and gradient explosion problems in the deep learning model training process. At the same time, the convolutional neural network with an LSTM memory unit is used to extract the related information from the image sequence, and the facial expression judgment is based on a single-frame image and historical-related information. However, the top-level structure of the CNN model is a fully connected feedforward neural network, which undertakes the task of expression classification. Therefore, the SVM classification method replaces the top-level classifier to further improve the expression classification accuracy. Experiments show that the facial expression recognition method proposed in this paper not only accurately identifies various expressions but also has good adaptive ability. This is because the method achieves the adaptive initialization of the parameters of the deep learning model construction process and also analyzes the relevance of the expression database expression, thereby improving the accuracy of expression recognition. |
---|---|
AbstractList | In view of the high dimensionality, nonrigidity, multiscale variation and the influence of illumination and angle on facial expressions, it is quite difficult to obtain facial expression images or videos using computers and analyze facial morphology and changes to accurately obtain the emotional changes of the subjects. Existing facial expression recognition algorithms have the following problems in the application process: the existing shallow feature extraction model has lost a lot of effective feature information and low recognition accuracy. The facial expression recognition method based on deep learning has problems such as overfitting, gradient explosion and parameter initialization. Therefore, this paper develops a facial expression recognition algorithm based on the deep learning method. An adaptive model parameter initialization based on the multilayer maxout network linear activation function is proposed to initialize the convolutional neural network (CNN) and the long–short-term memory network (LSTM) method. It can effectively overcome the gradient disappearance and gradient explosion problems in the deep learning model training process. At the same time, the convolutional neural network with an LSTM memory unit is used to extract the related information from the image sequence, and the facial expression judgment is based on a single-frame image and historical-related information. However, the top-level structure of the CNN model is a fully connected feedforward neural network, which undertakes the task of expression classification. Therefore, the SVM classification method replaces the top-level classifier to further improve the expression classification accuracy. Experiments show that the facial expression recognition method proposed in this paper not only accurately identifies various expressions but also has good adaptive ability. This is because the method achieves the adaptive initialization of the parameters of the deep learning model construction process and also analyzes the relevance of the expression database expression, thereby improving the accuracy of expression recognition. |
Author | Liu, Zhiwen An, Fengping |
Author_xml | – sequence: 1 givenname: Fengping orcidid: 0000-0002-2220-2987 surname: An fullname: An, Fengping email: anfengping@163.com, anfengping1985@163.com, anfengping@bit.edu.cn organization: School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, School of Information and Electronics, Beijing Institute of Technology – sequence: 2 givenname: Zhiwen surname: Liu fullname: Liu, Zhiwen organization: School of Information and Electronics, Beijing Institute of Technology |
BookMark | eNp9kM9LwzAUx4NMcJv-A54Cnqv50a7pUYZTYc6D8xxek9eZ0bU16UT9621XQfCwwyMv4ft5eXwmZFTVFRJyydk1Zyy9CYzJlEeMZ13NZBLFJ2TMYykiIXkyImPGUxWJVGVnZBLClnX3NM7GJF-AcVBS_Gw8huDqino09aZybd9Duam9a992NIeAlnZPDXjYYYuegoWmdR9IXZ-G0n3DAaoLOl-tKFSWLl_WT-fktIAy4MXvOSWvi7v1_CFaPt8_zm-XkZE8ayPBlUpsLrKiYLGNLc5yC7GyIDmmBrhhaNJE5AYtKIO5yaALZAw4qqSwhZySq2Fu4-v3PYZWb-u9r7ovtci4YnGiOiNTooaU8XUIHgttXHvYu_XgSs2Z7o3qwajujOqDUd2j4h_aeLcD_3UckgMUunC1Qf-31RHqBwf8jUY |
CitedBy_id | crossref_primary_10_1007_s13735_019_00175_w crossref_primary_10_1007_s00371_019_01705_7 crossref_primary_10_1007_s11760_024_03603_5 crossref_primary_10_1007_s00371_020_01794_9 crossref_primary_10_1007_s00371_022_02655_3 crossref_primary_10_1007_s10489_024_05954_5 crossref_primary_10_1111_exsy_13314 crossref_primary_10_1007_s11760_025_03984_1 crossref_primary_10_1007_s11135_024_02048_9 crossref_primary_10_1063_5_0221181 crossref_primary_10_1016_j_compeleceng_2024_110038 crossref_primary_10_1007_s11276_021_02665_4 crossref_primary_10_1002_cta_3624 crossref_primary_10_1142_S0218348X22401053 crossref_primary_10_1007_s00371_020_02037_7 crossref_primary_10_1360_SST_2022_0480 crossref_primary_10_1007_s00500_023_09029_4 crossref_primary_10_1007_s11517_021_02383_1 crossref_primary_10_1142_S0218348X22400977 crossref_primary_10_1016_j_irfa_2022_102202 crossref_primary_10_1155_2022_7094539 crossref_primary_10_1007_s00371_019_01759_7 crossref_primary_10_1016_j_aej_2023_01_017 crossref_primary_10_1021_acs_energyfuels_4c05843 crossref_primary_10_1007_s00371_019_01773_9 crossref_primary_10_1007_s00371_019_01715_5 crossref_primary_10_1016_j_apenergy_2025_125341 crossref_primary_10_1016_j_bspc_2022_103970 crossref_primary_10_1007_s00371_021_02069_7 crossref_primary_10_3390_s22218293 crossref_primary_10_1145_3433544 crossref_primary_10_1016_j_engappai_2023_106661 crossref_primary_10_1109_ACCESS_2021_3121791 crossref_primary_10_3390_app14041337 crossref_primary_10_1016_j_iswa_2024_200339 crossref_primary_10_1007_s00371_020_01994_3 crossref_primary_10_1016_j_procs_2022_12_109 crossref_primary_10_1186_s42492_022_00109_0 crossref_primary_10_1155_2020_8845176 |
Cites_doi | 10.1126/science.1127647 10.1109/TIP.2014.2375634 10.1007/s11704-015-5323-3 10.1016/j.patcog.2016.07.026 10.1016/j.imavis.2011.07.002 10.1109/TVCG.2013.249 10.1108/IR-04-2018-0060 10.1016/j.imavis.2008.08.005 10.1109/TIP.2017.2689999 10.1016/j.neunet.2014.09.005 10.1109/CVPR.2014.233 10.1109/FG.2017.23 10.1007/978-3-319-46475-6_27 10.1145/2818346.2830595 10.1109/CVPR.2017.490 10.1109/ACII.2015.7344636 10.1109/ICCV.2015.341 10.1109/ICCV.2017.345 10.1007/978-3-319-16817-3_10 10.1109/FG.2011.5771463 10.1109/CVPR.2014.226 10.1007/978-3-319-69096-4_48 10.1109/SIBGRAPI.2015.14 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00371-019-01635-4 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1432-2315 |
EndPage | 498 |
ExternalDocumentID | 10_1007_s00371_019_01635_4 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61701188 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-21885db29ff04d4de6bda48da31e7ca1c0ec752bceda8cebc9abda90a1e85fdf3 |
IEDL.DBID | U2A |
ISSN | 0178-2789 |
IngestDate | Fri Jul 25 23:32:52 EDT 2025 Tue Jul 01 01:05:47 EDT 2025 Thu Apr 24 22:55:41 EDT 2025 Fri Feb 21 02:34:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Deep learning Facial expression recognition CNN LSTM SVM Model parameter initialization method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-21885db29ff04d4de6bda48da31e7ca1c0ec752bceda8cebc9abda90a1e85fdf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2220-2987 |
PQID | 2918045814 |
PQPubID | 2043737 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2918045814 crossref_citationtrail_10_1007_s00371_019_01635_4 crossref_primary_10_1007_s00371_019_01635_4 springer_journals_10_1007_s00371_019_01635_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200300 2020-3-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 3 year: 2020 text: 20200300 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | International Journal of Computer Graphics |
PublicationTitle | The Visual computer |
PublicationTitleAbbrev | Vis Comput |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Zhang, Huang, Du (CR22) 2017; 26 Goodfellow, Erhan, Carrier (CR26) 2015; 64 Cao, Weng, Zhou (CR24) 2014; 20 CR19 CR18 CR17 CR16 CR15 Eleftheriadis, Rudovic, Pantic (CR13) 2015; 24 CR12 CR11 Pransky (CR1) 2018; 45 CR10 Deng, Jin, Zhen (CR6) 2005; 11 CR30 Shan, Gong, McOwan (CR7) 2009; 27 CR4 CR28 CR9 Zhang, Yu, Mao (CR20) 2016; 10 Vouloutsi, Verschure (CR2) 2018; 10 CR25 Hinton, Salakhutdinov (CR14) 2006; 313 CR23 CR21 Lopes, de Aguiar, De Souza (CR29) 2017; 61 Pickett (CR3) 2018; 57 Satiyan, Nagarajan, Hariharan (CR8) 2010; 3 Mehrabian (CR5) 2008; 12 Zhao, Huang, Taini (CR27) 2011; 29 1635_CR30 1635_CR11 1635_CR10 V Vouloutsi (1635_CR2) 2018; 10 1635_CR12 1635_CR15 M Satiyan (1635_CR8) 2010; 3 1635_CR17 L Pickett (1635_CR3) 2018; 57 1635_CR16 1635_CR19 F Zhang (1635_CR20) 2016; 10 1635_CR18 G Zhao (1635_CR27) 2011; 29 GE Hinton (1635_CR14) 2006; 313 AT Lopes (1635_CR29) 2017; 61 C Cao (1635_CR24) 2014; 20 S Eleftheriadis (1635_CR13) 2015; 24 HB Deng (1635_CR6) 2005; 11 1635_CR4 A Mehrabian (1635_CR5) 2008; 12 IJ Goodfellow (1635_CR26) 2015; 64 1635_CR21 1635_CR23 1635_CR25 1635_CR28 C Shan (1635_CR7) 2009; 27 J Pransky (1635_CR1) 2018; 45 1635_CR9 K Zhang (1635_CR22) 2017; 26 |
References_xml | – volume: 57 start-page: 12A issue: 1 year: 2018 ident: CR3 article-title: Don’t fear the cobot: collaborative robots, or cobots, are infiltrating factories on a global scale. But can robots and humans really work together in harmony? We asked the experts publication-title: Quality – ident: CR18 – volume: 3 start-page: 91 year: 2010 end-page: 99 ident: CR8 article-title: Recognition of facial expression using Haar wavelet transform publication-title: Trans. Int. J. Electr. Electron. Syst. Res. JEESR Univ. Technol. Mara UiTM – volume: 313 start-page: 504 issue: 5786 year: 2006 end-page: 507 ident: CR14 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: CR4 – volume: 24 start-page: 189 issue: 1 year: 2015 end-page: 204 ident: CR13 article-title: Discriminative shared Gaussian processes for multiview and view-invariant facial expression recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2375634 – ident: CR16 – ident: CR12 – volume: 10 start-page: 832 issue: 5 year: 2016 end-page: 844 ident: CR20 article-title: Pose-robust feature learning for facial expression recognition publication-title: Front. Comput. Sci. doi: 10.1007/s11704-015-5323-3 – ident: CR30 – volume: 61 start-page: 610 year: 2017 end-page: 628 ident: CR29 article-title: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.07.026 – ident: CR10 – ident: CR25 – volume: 12 start-page: 193 year: 2008 end-page: 200 ident: CR5 article-title: Communication without words publication-title: Commun. Theory – volume: 29 start-page: 607 issue: 9 year: 2011 end-page: 619 ident: CR27 article-title: Facial expression recognition from near-infrared videos publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2011.07.002 – ident: CR23 – ident: CR21 – ident: CR19 – volume: 20 start-page: 413 issue: 3 year: 2014 end-page: 425 ident: CR24 article-title: Facewarehouse: a 3d facial expression database for visual computing publication-title: IEEE Trans. Vis. Comput. Gr. doi: 10.1109/TVCG.2013.249 – ident: CR15 – volume: 45 start-page: 307 issue: 3 year: 2018 end-page: 310 ident: CR1 article-title: The Pransky interview–Martin Haegele, Head of Department Robotics and Assistive Systems publication-title: Fraunhofer IPA. Ind. Robot Int. J. doi: 10.1108/IR-04-2018-0060 – ident: CR17 – volume: 27 start-page: 803 issue: 6 year: 2009 end-page: 816 ident: CR7 article-title: Facial expression recognition based on local binary patterns: a comprehensive study publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2008.08.005 – volume: 11 start-page: 86 issue: 11 year: 2005 end-page: 96 ident: CR6 article-title: A new facial expression recognition method based on local Gabor filter bank and PCA plus lda publication-title: Int. J. Inf. Technol. – ident: CR11 – ident: CR9 – volume: 26 start-page: 4193 issue: 9 year: 2017 end-page: 4203 ident: CR22 article-title: Facial expression recognition based on deep evolutional spatial-temporal networks publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2689999 – volume: 10 start-page: 327 year: 2018 ident: CR2 article-title: Emotions and self-regulation publication-title: Living Mach. Handb. Res. Biomim. Biohybrid Syst. – volume: 64 start-page: 59 year: 2015 end-page: 63 ident: CR26 article-title: Challenges in representation learning: a report on three machine learning contests publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.005 – ident: CR28 – ident: 1635_CR18 doi: 10.1109/CVPR.2014.233 – volume: 64 start-page: 59 year: 2015 ident: 1635_CR26 publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.005 – ident: 1635_CR30 doi: 10.1109/FG.2017.23 – ident: 1635_CR23 doi: 10.1007/978-3-319-46475-6_27 – ident: 1635_CR11 doi: 10.1145/2818346.2830595 – volume: 57 start-page: 12A issue: 1 year: 2018 ident: 1635_CR3 publication-title: Quality – ident: 1635_CR16 doi: 10.1109/CVPR.2017.490 – volume: 45 start-page: 307 issue: 3 year: 2018 ident: 1635_CR1 publication-title: Fraunhofer IPA. Ind. Robot Int. J. doi: 10.1108/IR-04-2018-0060 – ident: 1635_CR4 – volume: 11 start-page: 86 issue: 11 year: 2005 ident: 1635_CR6 publication-title: Int. J. Inf. Technol. – ident: 1635_CR9 doi: 10.1109/ACII.2015.7344636 – ident: 1635_CR12 doi: 10.1109/ICCV.2015.341 – volume: 3 start-page: 91 year: 2010 ident: 1635_CR8 publication-title: Trans. Int. J. Electr. Electron. Syst. Res. JEESR Univ. Technol. Mara UiTM – volume: 10 start-page: 832 issue: 5 year: 2016 ident: 1635_CR20 publication-title: Front. Comput. Sci. doi: 10.1007/s11704-015-5323-3 – volume: 10 start-page: 327 year: 2018 ident: 1635_CR2 publication-title: Living Mach. Handb. Res. Biomim. Biohybrid Syst. – volume: 27 start-page: 803 issue: 6 year: 2009 ident: 1635_CR7 publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2008.08.005 – ident: 1635_CR17 doi: 10.1109/ICCV.2017.345 – volume: 12 start-page: 193 year: 2008 ident: 1635_CR5 publication-title: Commun. Theory – volume: 20 start-page: 413 issue: 3 year: 2014 ident: 1635_CR24 publication-title: IEEE Trans. Vis. Comput. Gr. doi: 10.1109/TVCG.2013.249 – ident: 1635_CR28 doi: 10.1007/978-3-319-16817-3_10 – ident: 1635_CR10 doi: 10.1109/FG.2011.5771463 – volume: 24 start-page: 189 issue: 1 year: 2015 ident: 1635_CR13 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2375634 – volume: 26 start-page: 4193 issue: 9 year: 2017 ident: 1635_CR22 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2689999 – volume: 29 start-page: 607 issue: 9 year: 2011 ident: 1635_CR27 publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2011.07.002 – volume: 61 start-page: 610 year: 2017 ident: 1635_CR29 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.07.026 – ident: 1635_CR15 doi: 10.1109/CVPR.2014.226 – ident: 1635_CR25 – ident: 1635_CR21 doi: 10.1007/978-3-319-69096-4_48 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 1635_CR14 publication-title: Science doi: 10.1126/science.1127647 – ident: 1635_CR19 doi: 10.1109/SIBGRAPI.2015.14 |
SSID | ssj0017749 |
Score | 2.4813385 |
Snippet | In view of the high dimensionality, nonrigidity, multiscale variation and the influence of illumination and angle on facial expressions, it is quite difficult... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 483 |
SubjectTerms | Accuracy Algorithms Artificial Intelligence Artificial neural networks Classification Computer Graphics Computer Science Convex analysis Deep learning Emotions Face recognition Feature extraction Image Processing and Computer Vision Intelligence Machine learning Mathematical models Multilayers Neural networks Original Article Parameters Support vector machines |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XfQgfuJ0Sg7etNh0adeeRMfGEFdEN9it5FOFrZuugn--L1naqeBupU0CfS957_fyvhC64EL5OlShxylNTEqO9FgYcC9oCaIAXwsZmeTkQRr1R_R-HI7dhdvChVWWMtEKajkT5o78OkhIbJx6hN7M3z3TNcp4V10LjU1UBxEcg_FVv-umj0-VHwHAjQXABGwlk_Pp0mZs8pytVgemtIkXArXr0d-qaYU3_7hIrebp7aIdBxnx7ZLHe2hD5fto-0chwQPEe8xcfWP15eJac1xFBsEzm7zArxSvU2yUlsTwypT8nppQGMwkmxuZh9_MaDZxiZl4pnEnTTHLJX54Hg4O0ajXHXb6nuue4Ak4VoUHujsOJQ8SrX0qqVQRl4zGkrWIagtGhK9EG9gilGSxUFwkDAYkPiMqDrXUrSNUy2e5OkZYxZHiXPNIAOCSImJatVuUcT8WXEfcbyBSEi4TrrS46XAxyaqiyJbYGRA7s8TOaANdVnPmy8Iaa0c3S35k7pAtstWWaKCrkkerz_-vdrJ-tVO0FRir2kaaNVGt-PhUZwA9Cn7u9tc3tpTX0A priority: 102 providerName: ProQuest |
Title | Facial expression recognition algorithm based on parameter adaptive initialization of CNN and LSTM |
URI | https://link.springer.com/article/10.1007/s00371-019-01635-4 https://www.proquest.com/docview/2918045814 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6svejBR1V8lj1400CSbtLk2EpT8RFEW6insE8t1FQ0gj_f2biJD1TwtCE72cPM7s43mRfAIRfK1YEKHE5pbFJypMMCnzt-R3gK8bWQoUlOvkzD0zE9mwQTmxT2XEW7Vy7J8qauk93K6nJo-pr4HlSTDm1AMzC2O-7isd-rfQcIaErQ66F9ZPI8barMz2t8VUcfGPObW7TUNskarFiYSHrvcl2HBZW3YLVqwUDsiWzB8qd6ghvAE2b-gBP1asNbc1IHCOEzm93Nn6bF_QMxuksSfGUqfz-YiBjCJHs0Vx-ZGmo2s_mZZK7JSZoSlktycTO63IRxMhidnDq2iYIj8HQVDqrwKJDcj7V2qaRShVwyGknW8VRXME-4SnRROkJJFgnFRcyQIHaZp6JAS93ZgsV8nqttICoKFeeahwJxlxQh06rboYy7keA65O4OeBUvM2ErjJtGF7Osro1c8j9D_mcl_zO6A0f1N4_v9TX-pN6vRJTZs_ac-bEXGXevh9PHldg-pn9fbfd_5Huw5BtjuwxA24fF4ulFHSAiKXgbGlEybEOzl_T7qRmHt-cDHPuD9Oq6XW7PN8pw3yc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xOJQeKqCtCM89lFNr1XbWjn2oqgoIoSS5NEjc3H3MQqXECZCq7Z_qb-zMxk6gEty4WfZ4Zc_O7nyz8wJ4pw2GLsEk0FLmnJJjA5XEOoibJkLC18amnJzc66edC_n1Mrlcgr91LgyHVdZ7ot-o7djwGfnHOI8ydupF8vPkJuCuUexdrVtozMTiHP_8IpPt7tPZMc3vYRy3TwZHnaDqKhAYErdpQDotS6yOc-dCaaXFVFslM6uaEbaMikyIpkWfa9CqzKA2uSKCPFQRZomzrknjLsMq_VbOKyprn869FgSlPNyOyDLjDNMqScen6vnaeGS4c3QSKflAPlSEC3T7n0PW67n2OryqAKr4MpOoDVjCchNe3itb-Bp0W_FBu8DfVRRtKeZxSHSthlfEuOn1SLCKtIJucYHxEQfeCGXVhHdY8YOp1bBKAxVjJ476faFKK7rfBr03cPEsXH0LK-W4xC0QmKWotdOpIXhnTaoctppS6TAz2qU6bEBUM64wVSFz7qcxLOYlmD2zC2J24ZldyAa8n78zmZXxeJJ6t56PolrSd8VCABvwoZ6jxePHR9t-erQDeNEZ9LpF96x_vgNrMdvzPsZtF1amtz9xj0DPVO97SRPw_blF-x9QGxeN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfTBj6k4nZoH37TYdGnXPo5pmboVwQ32FvKpg60bs4J_vkmXdlNU8K001zzcJbnf9e53AeCScekqX_oOwzgylBzhUN9jjtfgSGp8zUVgyMm9JOgM8MPQH66w-PNq9yIlueA0mC5NaXYzE-qmJL7lneZ0GGxqfbTLdPA62NDHMTLreuC1yjyCBjc5AEY6VjKcT0ub-XmOr65piTe_pUhzzxPvgR0LGWFrYeN9sCbTKtgtrmOAdndWwfZKb8EDwGJq_oZD-WFLXVNYFgvpZzp-mc5H2esEGj8moH5luoBPTHUMpILOzDEIR0aaji1XE04VbCcJpKmA3ed-7xAM4rt-u-PYCxUcrlWTOdqdh75gXqSUiwUWMmCC4lDQBpJNThF3JW9qS3EpaMgl4xHVApFLkQx9JVTjCFTSaSqPAZRhIBlTLOAagwkeUCWbDUyZG3KmAubWACp0SbjtNm4uvRiTsk9yrn-i9U9y_RNcA1flN7NFr40_peuFiYjdd2_Ei1BoUr9ID18XZlsO_z7byf_EL8Dm021MuvfJ4ynY8kwMntel1UElm7_LMw1UMnaer8VPIMLgxg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facial+expression+recognition+algorithm+based+on+parameter+adaptive+initialization+of+CNN+and+LSTM&rft.jtitle=The+Visual+computer&rft.au=An%2C+Fengping&rft.au=Liu%2C+Zhiwen&rft.date=2020-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=36&rft.issue=3&rft.spage=483&rft.epage=498&rft_id=info:doi/10.1007%2Fs00371-019-01635-4&rft.externalDocID=10_1007_s00371_019_01635_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |