Saliency-based feature fusion convolutional network for blind image quality assessment

Quality assessment plays an important role in promoting the prevalence of digital imaging technology as well as the associated products. Since the human being is the ultimate assessor of image quality, the human visual system model has received much attention. In this paper, we present a novel IQA a...

Full description

Saved in:
Bibliographic Details
Published inSignal, image and video processing Vol. 16; no. 2; pp. 419 - 427
Main Authors Shen, Lili, Zhang, Chuhe, Hou, Chunping
Format Journal Article
LanguageEnglish
Published London Springer London 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1863-1703
1863-1711
DOI10.1007/s11760-021-01958-7

Cover

Abstract Quality assessment plays an important role in promoting the prevalence of digital imaging technology as well as the associated products. Since the human being is the ultimate assessor of image quality, the human visual system model has received much attention. In this paper, we present a novel IQA approach via analysis of human visual characteristics. Given that salient regions have greater impacts on subjects’ judgments of image quality, a saliency-based filtering model is first designed to collect saliency patches, and a saliency weighting matrix is obtained to represent their priority. Second, to learn more effective feature representations, we design a sub-network with up-sampling layers to capture features from different levels. Features are synthesized by utilizing a feature fusion convolutional network with two-stream structure. Features from different levels are mapped to a local score. Finally, the local score of each salient patch is summarized by a saliency-weighting model to work out the final predicted score. The experimental results on a series of publicly available databases, e.g., LIVE, CISQ and TID2013 demonstrate that the proposed method outperforms other state-of-the-art methods.
AbstractList Quality assessment plays an important role in promoting the prevalence of digital imaging technology as well as the associated products. Since the human being is the ultimate assessor of image quality, the human visual system model has received much attention. In this paper, we present a novel IQA approach via analysis of human visual characteristics. Given that salient regions have greater impacts on subjects’ judgments of image quality, a saliency-based filtering model is first designed to collect saliency patches, and a saliency weighting matrix is obtained to represent their priority. Second, to learn more effective feature representations, we design a sub-network with up-sampling layers to capture features from different levels. Features are synthesized by utilizing a feature fusion convolutional network with two-stream structure. Features from different levels are mapped to a local score. Finally, the local score of each salient patch is summarized by a saliency-weighting model to work out the final predicted score. The experimental results on a series of publicly available databases, e.g., LIVE, CISQ and TID2013 demonstrate that the proposed method outperforms other state-of-the-art methods.
Author Shen, Lili
Hou, Chunping
Zhang, Chuhe
Author_xml – sequence: 1
  givenname: Lili
  surname: Shen
  fullname: Shen, Lili
  email: sll@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 2
  givenname: Chuhe
  surname: Zhang
  fullname: Zhang, Chuhe
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 3
  givenname: Chunping
  surname: Hou
  fullname: Hou, Chunping
  organization: School of Electrical and Information Engineering, Tianjin University
BookMark eNp9kEtLAzEUhYMoWGv_gKuA62gebZJZSvEFBRc-tiGTScrUadImGaX_3tQRBRe9m3sX57ucc87AsQ_eAnBB8BXBWFwnQgTHCFOCMKlmEokjMCKSM0QEIce_N2anYJLSCpdhVEguR-DtWXet9WaHap1sA53VuY8Wuj61wUMT_Efo-lxu3UFv82eI79CFCOuu9Q1s13pp4bYvT_IO6pRsSmvr8zk4cbpLdvKzx-D17vZl_oAWT_eP85sFMoxUGVHMKy44ZVhPCdFiKg3HlswkK-4M57UUtakc5Y2oMDbcuIpbLBtHzcw1xrIxuBz-bmLY9jZltQp9LF6TopxhKqopEUUlB5WJIaVonTJt1vtQOeq2UwSrfZFqKFKVItV3kWqP0n_oJpbQcXcYYgOUitgvbfxzdYD6AmDLiAs
CitedBy_id crossref_primary_10_1007_s11760_022_02415_9
Cites_doi 10.1109/TIP.2012.2191563
10.1109/TNNLS.2018.2829819
10.1109/TIP.2016.2585880
10.1109/JSTSP.2016.2639328
10.1016/j.sigpro.2015.08.012
10.1016/j.sigpro.2015.03.019
10.1109/LSP.2010.2043888
10.1016/j.sigpro.2017.11.015
10.1109/MSP.2011.942473
10.1007/s11263-015-0816-y
10.1007/s11042-017-5070-6
10.1007/s11760-017-1166-8
10.1109/TIP.2012.2214050
10.1016/j.sigpro.2018.04.019
10.3390/app9122499
10.1016/j.patcog.2018.04.016
10.1109/MSP.2017.2736018
10.1109/TIP.2018.2883741
10.1109/TCSVT.2011.2133770
10.1109/LSP.2013.2243725
10.1109/TIP.2014.2355716
10.1117/1.3267105
10.1109/TMM.2019.2913315
10.1088/0954-898X_5_4_006
10.1016/j.ins.2019.01.034
10.1016/j.image.2010.05.006
10.1109/TIP.2018.2875913
10.1109/TIP.2012.2190086
10.1109/LSP.2016.2537321
10.1109/TIP.2011.2147325
10.1109/LSP.2012.2227726
10.1109/TIP.2019.2902831
10.1109/TIP.2017.2760518
10.1109/TIP.2003.819861
10.1109/TMM.2014.2373812
10.1109/TIP.2006.881959
10.1109/TIP.2017.2774045
10.1016/j.image.2019.115676
10.1109/TII.2019.2927527
10.1109/TCYB.2015.2392129
10.1109/ICIP.2018.8451285
10.1109/ICIP.2016.7533065
10.1109/ICME.2017.8019508
10.1109/ICPR.2008.4761848
10.1109/CVPR.2014.224
10.1109/ICASSP.2018.8462369
10.1109/ICIP.2015.7351311
10.7551/mitpress/7503.003.0073
10.1109/TNNLS.2015.2461603
10.1109/CVPR.2018.00083
10.1007/978-3-319-02895-8_36
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s11760-021-01958-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
EndPage 427
ExternalDocumentID 10_1007_s11760_021_01958_7
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-2069676230a411a748c60e1583786c66b87bc9f26d7900c6cf96e08df2c5fdce3
IEDL.DBID U2A
ISSN 1863-1703
IngestDate Wed Aug 13 00:01:50 EDT 2025
Tue Jul 01 03:24:17 EDT 2025
Thu Apr 24 22:56:49 EDT 2025
Fri Feb 21 02:47:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Blind quality assessment
Feature fusion
Saliency-weighting model
Saliency-based filter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2069676230a411a748c60e1583786c66b87bc9f26d7900c6cf96e08df2c5fdce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2630279417
PQPubID 2044169
PageCount 9
ParticipantIDs proquest_journals_2630279417
crossref_citationtrail_10_1007_s11760_021_01958_7
crossref_primary_10_1007_s11760_021_01958_7
springer_journals_10_1007_s11760_021_01958_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Liu, Engelke, Wang, Le Callet, Heynderickx (CR28) 2013; 20
Yue, Hou, Gu, Zhou, Liu (CR5) 2019; 21
Zhou, Chen, Li (CR11) 2019; 28
Ruderman (CR31) 1994; 5
Xu, Ye, Li, Du, Liu, Doermann (CR37) 2016; 25
CR36
CR30
Ma, Liu, Zhang, Duanmu, Wang, Zuo (CR13) 2017; 27
Yue, Hou, Gu, Zhou, Zhai (CR3) 2018; 28
Moorthy, Bovik (CR9) 2011; 20
Wang, Bovik, Sheikh, Simoncelli (CR24) 2004; 13
Kim, Lee (CR23) 2016; 11
Liu, Heynderickx (CR25) 2011; 21
Moorthy, Bovik (CR34) 2010; 17
Bosse, Maniry, Müller, Wiegand, Samek (CR14) 2017; 27
Saad, Bovik, Charrier (CR33) 2012; 21
Yan, Gong, Zhang (CR20) 2018; 28
CR4
CR49
Li, Lin, Fang (CR39) 2016; 23
CR48
Sheikh, Sabir, Bovik (CR53) 2006; 15
CR46
Xue, Mou, Zhang, Bovik, Feng (CR35) 2014; 23
CR43
CR42
CR41
Yue, Hou, Jiang, Yang (CR1) 2018; 150
Larson, Chandler (CR54) 2010; 19
Engelke, Kaprykowsky, Zepernick, Ndjiki-Nya (CR27) 2011; 28
Ye, Doermann (CR10) 2012; 21
CR19
CR18
CR17
He, Liu (CR6) 2020; 80
Kim, Nguyen, Lee (CR47) 2018; 30
Tang, Jiang, Xu, Liu, Li (CR7) 2019; 9
CR55
CR51
Bianco, Celona, Napoletano, Schettini (CR15) 2018; 12
Mittal, Moorthy, Bovik (CR32) 2012; 21
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (CR16) 2015; 115
Jia, Zhang (CR50) 2018; 77
Gao, Yu, Zhu, Huang, Tian (CR52) 2018; 81
CR29
Gu, Zhai, Yang, Zhang (CR38) 2014; 17
Oszust (CR44) 2019; 482
CR22
CR21
Mittal, Soundararajan, Bovik (CR8) 2012; 20
Le Meur, Ninassi, Le Callet, Barba (CR26) 2010; 25
Yang, Ming (CR40) 2016; 120
Shi, Zhang, Cao, Pang, Luo (CR2) 2018; 145
Kim, Zeng, Ghadiyaram, Lee, Zhang, Bovik (CR12) 2017; 34
Gao, Yu (CR45) 2016; 124
K Ma (1958_CR13) 2017; 27
G Yue (1958_CR5) 2019; 21
F Gao (1958_CR45) 2016; 124
O Le Meur (1958_CR26) 2010; 25
Z Shi (1958_CR2) 2018; 145
AK Moorthy (1958_CR9) 2011; 20
1958_CR55
Y Tang (1958_CR7) 2019; 9
W Xue (1958_CR35) 2014; 23
W Zhou (1958_CR11) 2019; 28
1958_CR17
1958_CR18
J Kim (1958_CR12) 2017; 34
1958_CR19
AK Moorthy (1958_CR34) 2010; 17
G Yue (1958_CR3) 2018; 28
M Oszust (1958_CR44) 2019; 482
J Xu (1958_CR37) 2016; 25
S He (1958_CR6) 2020; 80
U Engelke (1958_CR27) 2011; 28
1958_CR21
1958_CR22
K Gu (1958_CR38) 2014; 17
S Bosse (1958_CR14) 2017; 27
MA Saad (1958_CR33) 2012; 21
1958_CR29
EC Larson (1958_CR54) 2010; 19
Q Yan (1958_CR20) 2018; 28
Q Li (1958_CR39) 2016; 23
1958_CR4
S Bianco (1958_CR15) 2018; 12
G Yue (1958_CR1) 2018; 150
J Kim (1958_CR23) 2016; 11
S Jia (1958_CR50) 2018; 77
1958_CR30
F Gao (1958_CR52) 2018; 81
DL Ruderman (1958_CR31) 1994; 5
1958_CR36
A Mittal (1958_CR8) 2012; 20
P Ye (1958_CR10) 2012; 21
J Kim (1958_CR47) 2018; 30
HR Sheikh (1958_CR53) 2006; 15
Z Wang (1958_CR24) 2004; 13
H Liu (1958_CR28) 2013; 20
1958_CR51
H Liu (1958_CR25) 2011; 21
1958_CR41
A Mittal (1958_CR32) 2012; 21
1958_CR42
1958_CR43
O Russakovsky (1958_CR16) 2015; 115
1958_CR46
1958_CR48
1958_CR49
Y Yang (1958_CR40) 2016; 120
References_xml – ident: CR22
– volume: 21
  start-page: 3339
  issue: 8
  year: 2012
  ident: CR33
  article-title: Blind image quality assessment: a natural scene statistics approach in the DCT domain
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2191563
– volume: 30
  start-page: 11
  issue: 1
  year: 2018
  ident: CR47
  article-title: Deep CNN-based blind image quality predictor
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2829819
– volume: 25
  start-page: 4444
  issue: 9
  year: 2016
  ident: CR37
  article-title: Blind image quality assessment based on high order statistics aggregation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2585880
– ident: CR49
– volume: 11
  start-page: 206
  issue: 1
  year: 2016
  ident: CR23
  article-title: Fully deep blind image quality predictor
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2016.2639328
– ident: CR4
– ident: CR51
– volume: 124
  start-page: 210
  year: 2016
  ident: CR45
  article-title: Biologically inspired image quality assessment
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.08.012
– volume: 120
  start-page: 797
  year: 2016
  ident: CR40
  article-title: Image quality assessment based on the space similarity decomposition model
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.03.019
– ident: CR29
– ident: CR42
– volume: 17
  start-page: 513
  issue: 5
  year: 2010
  ident: CR34
  article-title: A two-step framework for constructing blind image quality indices
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2010.2043888
– ident: CR21
– volume: 145
  start-page: 99
  year: 2018
  ident: CR2
  article-title: Full-reference image quality assessment based on image segmentation with edge feature
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2017.11.015
– volume: 28
  start-page: 50
  issue: 6
  year: 2011
  ident: CR27
  article-title: Visual attention in quality assessment
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2011.942473
– ident: CR46
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: CR16
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– ident: CR19
– volume: 77
  start-page: 14859
  issue: 12
  year: 2018
  ident: CR50
  article-title: Saliency-based deep convolutional neural network for no-reference image quality assessment
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-5070-6
– volume: 12
  start-page: 355
  issue: 2
  year: 2018
  ident: CR15
  article-title: On the use of deep learning for blind image quality assessment
  publication-title: SIViP
  doi: 10.1007/s11760-017-1166-8
– ident: CR36
– volume: 21
  start-page: 4695
  issue: 12
  year: 2012
  ident: CR32
  article-title: No-reference image quality assessment in the spatial domain
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2214050
– volume: 150
  start-page: 204
  year: 2018
  ident: CR1
  article-title: Blind stereoscopic 3D image quality assessment via analysis of naturalness, structure, and binocular asymmetry
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.04.019
– volume: 9
  start-page: 2499
  issue: 12
  year: 2019
  ident: CR7
  article-title: Blind image quality assessment based on multi-window method and HSV color space
  publication-title: Appl. Sci.
  doi: 10.3390/app9122499
– volume: 81
  start-page: 432
  year: 2018
  ident: CR52
  article-title: Blind image quality prediction by exploiting multi-level deep representations
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2018.04.016
– volume: 34
  start-page: 130
  issue: 6
  year: 2017
  ident: CR12
  article-title: Deep convolutional neural models for picture-quality prediction: challenges and solutions to data-driven image quality assessment
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2736018
– volume: 28
  start-page: 2200
  issue: 5
  year: 2018
  ident: CR20
  article-title: Two-stream convolutional networks for blind image quality assessment
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2883741
– volume: 21
  start-page: 971
  issue: 7
  year: 2011
  ident: CR25
  article-title: Visual attention in objective image quality assessment: based on eye-tracking data
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2011.2133770
– volume: 20
  start-page: 355
  issue: 4
  year: 2013
  ident: CR28
  article-title: How does image content affect the added value of visual attention in objective image quality assessment?
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2013.2243725
– volume: 23
  start-page: 4850
  issue: 11
  year: 2014
  ident: CR35
  article-title: Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2355716
– ident: CR18
– ident: CR43
– volume: 19
  start-page: 011006
  issue: 1
  year: 2010
  ident: CR54
  article-title: Most apparent distortion: full-reference image quality assessment and the role of strategy
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.3267105
– volume: 21
  start-page: 2184
  issue: 9
  year: 2019
  ident: CR5
  article-title: No-reference quality evaluator of transparently encrypted images
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2019.2913315
– volume: 5
  start-page: 517
  issue: 4
  year: 1994
  ident: CR31
  article-title: The statistics of natural images
  publication-title: Netw. Comput. Neural Syst.
  doi: 10.1088/0954-898X_5_4_006
– ident: CR30
– volume: 482
  start-page: 334
  year: 2019
  ident: CR44
  article-title: No-Reference quality assessment of noisy images with local features and visual saliency models
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.01.034
– volume: 25
  start-page: 547
  issue: 7
  year: 2010
  ident: CR26
  article-title: Overt visual attention for free-viewing and quality assessment tasks: impact of the regions of interest on a video quality metric
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2010.05.006
– volume: 28
  start-page: 2075
  issue: 4
  year: 2018
  ident: CR3
  article-title: Combining local and global measures for DIBR-synthesized image quality evaluation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2875913
– volume: 21
  start-page: 3129
  issue: 7
  year: 2012
  ident: CR10
  article-title: No-reference image quality assessment using visual codebooks
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2190086
– volume: 23
  start-page: 541
  issue: 4
  year: 2016
  ident: CR39
  article-title: No-reference quality assessment for multiply-distorted images in gradient domain
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2537321
– volume: 20
  start-page: 3350
  issue: 12
  year: 2011
  ident: CR9
  article-title: Blind image quality assessment: from natural scene statistics to perceptual quality
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2147325
– ident: CR48
– volume: 20
  start-page: 209
  issue: 3
  year: 2012
  ident: CR8
  article-title: Making a completely blind image quality analyzer
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2012.2227726
– volume: 28
  start-page: 3946
  issue: 8
  year: 2019
  ident: CR11
  article-title: Dual-stream interactive networks for no-reference stereoscopic image quality assessment
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2902831
– volume: 27
  start-page: 206
  issue: 1
  year: 2017
  ident: CR14
  article-title: Deep neural networks for no-reference and full-reference image quality assessment
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2760518
– ident: CR17
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: CR24
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 17
  start-page: 50
  issue: 1
  year: 2014
  ident: CR38
  article-title: Using free energy principle for blind image quality assessment
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2014.2373812
– ident: CR55
– volume: 15
  start-page: 3440
  issue: 11
  year: 2006
  ident: CR53
  article-title: A statistical evaluation of recent full reference image quality assessment algorithms
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.881959
– volume: 27
  start-page: 1202
  issue: 3
  year: 2017
  ident: CR13
  article-title: End-to-end blind image quality assessment using deep neural networks
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2774045
– ident: CR41
– volume: 80
  start-page: 115676
  year: 2020
  ident: CR6
  article-title: Image quality assessment based on adaptive multiple Skyline query
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2019.115676
– ident: 1958_CR4
  doi: 10.1109/TII.2019.2927527
– volume: 25
  start-page: 4444
  issue: 9
  year: 2016
  ident: 1958_CR37
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2585880
– volume: 28
  start-page: 50
  issue: 6
  year: 2011
  ident: 1958_CR27
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2011.942473
– ident: 1958_CR41
– ident: 1958_CR43
  doi: 10.1109/TCYB.2015.2392129
– ident: 1958_CR48
  doi: 10.1109/ICIP.2018.8451285
– ident: 1958_CR21
  doi: 10.1109/ICIP.2016.7533065
– volume: 17
  start-page: 50
  issue: 1
  year: 2014
  ident: 1958_CR38
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2014.2373812
– volume: 145
  start-page: 99
  year: 2018
  ident: 1958_CR2
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2017.11.015
– ident: 1958_CR19
  doi: 10.1109/ICME.2017.8019508
– volume: 11
  start-page: 206
  issue: 1
  year: 2016
  ident: 1958_CR23
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2016.2639328
– volume: 9
  start-page: 2499
  issue: 12
  year: 2019
  ident: 1958_CR7
  publication-title: Appl. Sci.
  doi: 10.3390/app9122499
– volume: 30
  start-page: 11
  issue: 1
  year: 2018
  ident: 1958_CR47
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2829819
– volume: 23
  start-page: 4850
  issue: 11
  year: 2014
  ident: 1958_CR35
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2355716
– volume: 81
  start-page: 432
  year: 2018
  ident: 1958_CR52
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2018.04.016
– volume: 34
  start-page: 130
  issue: 6
  year: 2017
  ident: 1958_CR12
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2736018
– ident: 1958_CR17
– volume: 28
  start-page: 2075
  issue: 4
  year: 2018
  ident: 1958_CR3
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2875913
– volume: 28
  start-page: 3946
  issue: 8
  year: 2019
  ident: 1958_CR11
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2902831
– volume: 23
  start-page: 541
  issue: 4
  year: 2016
  ident: 1958_CR39
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2537321
– volume: 12
  start-page: 355
  issue: 2
  year: 2018
  ident: 1958_CR15
  publication-title: SIViP
  doi: 10.1007/s11760-017-1166-8
– ident: 1958_CR29
  doi: 10.1109/ICPR.2008.4761848
– volume: 124
  start-page: 210
  year: 2016
  ident: 1958_CR45
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.08.012
– ident: 1958_CR18
  doi: 10.1109/CVPR.2014.224
– ident: 1958_CR46
  doi: 10.1109/ICASSP.2018.8462369
– ident: 1958_CR30
– volume: 28
  start-page: 2200
  issue: 5
  year: 2018
  ident: 1958_CR20
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2883741
– volume: 21
  start-page: 971
  issue: 7
  year: 2011
  ident: 1958_CR25
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2011.2133770
– volume: 20
  start-page: 355
  issue: 4
  year: 2013
  ident: 1958_CR28
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2013.2243725
– volume: 5
  start-page: 517
  issue: 4
  year: 1994
  ident: 1958_CR31
  publication-title: Netw. Comput. Neural Syst.
  doi: 10.1088/0954-898X_5_4_006
– volume: 482
  start-page: 334
  year: 2019
  ident: 1958_CR44
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.01.034
– volume: 120
  start-page: 797
  year: 2016
  ident: 1958_CR40
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.03.019
– volume: 20
  start-page: 3350
  issue: 12
  year: 2011
  ident: 1958_CR9
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2147325
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 1958_CR24
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 21
  start-page: 3129
  issue: 7
  year: 2012
  ident: 1958_CR10
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2190086
– volume: 27
  start-page: 1202
  issue: 3
  year: 2017
  ident: 1958_CR13
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2774045
– volume: 21
  start-page: 4695
  issue: 12
  year: 2012
  ident: 1958_CR32
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2214050
– volume: 20
  start-page: 209
  issue: 3
  year: 2012
  ident: 1958_CR8
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2012.2227726
– volume: 77
  start-page: 14859
  issue: 12
  year: 2018
  ident: 1958_CR50
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-5070-6
– ident: 1958_CR22
  doi: 10.1109/ICIP.2015.7351311
– volume: 25
  start-page: 547
  issue: 7
  year: 2010
  ident: 1958_CR26
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2010.05.006
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 1958_CR16
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– volume: 150
  start-page: 204
  year: 2018
  ident: 1958_CR1
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.04.019
– volume: 21
  start-page: 2184
  issue: 9
  year: 2019
  ident: 1958_CR5
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2019.2913315
– volume: 80
  start-page: 115676
  year: 2020
  ident: 1958_CR6
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2019.115676
– volume: 27
  start-page: 206
  issue: 1
  year: 2017
  ident: 1958_CR14
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2760518
– volume: 15
  start-page: 3440
  issue: 11
  year: 2006
  ident: 1958_CR53
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.881959
– volume: 19
  start-page: 011006
  issue: 1
  year: 2010
  ident: 1958_CR54
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.3267105
– ident: 1958_CR36
– ident: 1958_CR51
  doi: 10.7551/mitpress/7503.003.0073
– ident: 1958_CR42
  doi: 10.1109/TNNLS.2015.2461603
– ident: 1958_CR49
  doi: 10.1109/CVPR.2018.00083
– ident: 1958_CR55
  doi: 10.1007/978-3-319-02895-8_36
– volume: 21
  start-page: 3339
  issue: 8
  year: 2012
  ident: 1958_CR33
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2191563
– volume: 17
  start-page: 513
  issue: 5
  year: 2010
  ident: 1958_CR34
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2010.2043888
SSID ssj0000327868
Score 2.234582
Snippet Quality assessment plays an important role in promoting the prevalence of digital imaging technology as well as the associated products. Since the human being...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 419
SubjectTerms Computer Imaging
Computer Science
Digital imaging
Image filters
Image Processing and Computer Vision
Image quality
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Quality assessment
Salience
Signal,Image and Speech Processing
Vision
Weighting
Title Saliency-based feature fusion convolutional network for blind image quality assessment
URI https://link.springer.com/article/10.1007/s11760-021-01958-7
https://www.proquest.com/docview/2630279417
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolMoDG1iy48R2xha1VCC6QFGZovgRCQkKou3Av8fOowEESEwZ_BjOd-cv9n2fAU5FqlzO82XlGVfY4X-L0yg1OMxYSnWgqIw93_lmzEeT8GoaTUtS2Lyqdq-uJPNMXZPdqOAE-5ICT3KTWKxDM3L_7j4cJ0FvdbJCWCBkwYGT3OtvElayZX6e5uuOVMPMbzej-YYz3IGtEimiXrG0u7BmZy3Yrl5hQGVQtmDzk6TgHtzfOmDt6ZTY708GZTZX7kTZ0h-LIV9kXjqbm3tW1IAjB1yRcjYx6PHZ5RdUMC3fUbqS7dyHyXBwdzHC5dsJWLugWjjn5zF3iY6RNKQ0FaHUnFgaef14rjlXUigdZwE3IiZEc53F3BJpskBHmdGWHUBj9jKzh4DymA6J1SYKQqlMrJhOpVIO2RBmGG0DreyX6FJY3L9v8ZTUksje5omzeZLbPBFtOFuNeS1kNf7s3amWJSlDbJ4E3F-5xiF1zefVUtXNv8929L_ux7AReMpDXnfWgcbibWlPHBBZqC40e8N-f-y_lw_Xg27uhx_ZgNX4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG0Sy48R2xgpRFWi70KJuUfwRCQkCou3Av8dOnBYQIDHbvuHsOz_Z994BnPNM2pznyspzJgOL_02QxZkOopxmRIWSiMTxnQdD1htHt5N44klh07ravf6SLDP1kuxGOMOBKylwJDcR8FVYs2BAuL4F47CzeFnBNOSi4sAJ5vQ3MfVsmZ_NfL2RljDz289oeeF0d2DLI0XUqbZ2F1ZM0YTtugsD8kHZhM1PkoJ78HBvgbWjUwbuftIoN6VyJ8rn7lkMuSJzf9is7aKqAUcWuCJpfaLR47PNL6hiWr6jbCHbuQ_j7vXoqhf43gmBskE1s4efJcwmOoqziJCMR0IxbEjs9OOZYkwKLlWSh0zzBGPFVJ4wg4XOQxXnWhl6AI3ipTCHgMqYjrBROg4jIXUiqcqElBbZYKopaQGp_ZcqLyzu-ls8pUtJZOfz1Po8LX2e8hZcLNa8VrIaf85u19uS-hCbpiFzX65JROzwZb1Vy-HfrR39b_oZrPdGg37avxneHcNG6OgPZQ1aGxqzt7k5saBkJk_LM_gBrKDV2w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQfTgoypWq-bgTUOT7G6SPRa11FcRtNLbsnmBoGvR7cF_b7KPtooKnvM4TGYmH5n5vgBwzFPpcp5vK7dMIof_DUqjVKPQBilRVBIRe77z7YD1h-HVKBrNsfiLbve6JFlyGrxKU5Z3xtp2ZsQ3whlGvr3AE94E4otgyaVj4j19SLvTVxYcUC5KPpxgXosTBxVz5udtvt5OM8j5rUpaXD69DbBWoUbYLY95EyyYrAnW6x8ZYBWgTbA6Jy-4BR7vHcj21Erk7yoNrSlUPKGd-Ccy6BvOK8dze2dlPzh0IBZKZx8Nn15croEl6_IDplMJz20w7F08nPVR9Y8CUi7AchcILGYu6QU4DQlJeSgUw4ZEXkueKcak4FLFljLNY4wVUzZmBgttqYqsVibYAY3sNTO7ABbxHWKjdERDIXUsA5UKKR3KwYEOSAuQ2n6JqkTG_V8Xz8lMHtnbPHE2TwqbJ7wFTqZrxqXExp-z2_WxJFW4vSeU-fJrHBI3fFof1Wz49932_jf9CCzfnfeSm8vB9T5YoZ4JUbSjtUEjf5uYA4dPcnlYuOAnRBXaFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Saliency-based+feature+fusion+convolutional+network+for+blind+image+quality+assessment&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Shen%2C+Lili&rft.au=Zhang%2C+Chuhe&rft.au=Hou%2C+Chunping&rft.date=2022-03-01&rft.pub=Springer+London&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=16&rft.issue=2&rft.spage=419&rft.epage=427&rft_id=info:doi/10.1007%2Fs11760-021-01958-7&rft.externalDocID=10_1007_s11760_021_01958_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon