Saliency-based feature fusion convolutional network for blind image quality assessment
Quality assessment plays an important role in promoting the prevalence of digital imaging technology as well as the associated products. Since the human being is the ultimate assessor of image quality, the human visual system model has received much attention. In this paper, we present a novel IQA a...
Saved in:
Published in | Signal, image and video processing Vol. 16; no. 2; pp. 419 - 427 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.03.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1863-1703 1863-1711 |
DOI | 10.1007/s11760-021-01958-7 |
Cover
Abstract | Quality assessment plays an important role in promoting the prevalence of digital imaging technology as well as the associated products. Since the human being is the ultimate assessor of image quality, the human visual system model has received much attention. In this paper, we present a novel IQA approach via analysis of human visual characteristics. Given that salient regions have greater impacts on subjects’ judgments of image quality, a saliency-based filtering model is first designed to collect saliency patches, and a saliency weighting matrix is obtained to represent their priority. Second, to learn more effective feature representations, we design a sub-network with up-sampling layers to capture features from different levels. Features are synthesized by utilizing a feature fusion convolutional network with two-stream structure. Features from different levels are mapped to a local score. Finally, the local score of each salient patch is summarized by a saliency-weighting model to work out the final predicted score. The experimental results on a series of publicly available databases, e.g., LIVE, CISQ and TID2013 demonstrate that the proposed method outperforms other state-of-the-art methods. |
---|---|
AbstractList | Quality assessment plays an important role in promoting the prevalence of digital imaging technology as well as the associated products. Since the human being is the ultimate assessor of image quality, the human visual system model has received much attention. In this paper, we present a novel IQA approach via analysis of human visual characteristics. Given that salient regions have greater impacts on subjects’ judgments of image quality, a saliency-based filtering model is first designed to collect saliency patches, and a saliency weighting matrix is obtained to represent their priority. Second, to learn more effective feature representations, we design a sub-network with up-sampling layers to capture features from different levels. Features are synthesized by utilizing a feature fusion convolutional network with two-stream structure. Features from different levels are mapped to a local score. Finally, the local score of each salient patch is summarized by a saliency-weighting model to work out the final predicted score. The experimental results on a series of publicly available databases, e.g., LIVE, CISQ and TID2013 demonstrate that the proposed method outperforms other state-of-the-art methods. |
Author | Shen, Lili Hou, Chunping Zhang, Chuhe |
Author_xml | – sequence: 1 givenname: Lili surname: Shen fullname: Shen, Lili email: sll@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University – sequence: 2 givenname: Chuhe surname: Zhang fullname: Zhang, Chuhe organization: School of Electrical and Information Engineering, Tianjin University – sequence: 3 givenname: Chunping surname: Hou fullname: Hou, Chunping organization: School of Electrical and Information Engineering, Tianjin University |
BookMark | eNp9kEtLAzEUhYMoWGv_gKuA62gebZJZSvEFBRc-tiGTScrUadImGaX_3tQRBRe9m3sX57ucc87AsQ_eAnBB8BXBWFwnQgTHCFOCMKlmEokjMCKSM0QEIce_N2anYJLSCpdhVEguR-DtWXet9WaHap1sA53VuY8Wuj61wUMT_Efo-lxu3UFv82eI79CFCOuu9Q1s13pp4bYvT_IO6pRsSmvr8zk4cbpLdvKzx-D17vZl_oAWT_eP85sFMoxUGVHMKy44ZVhPCdFiKg3HlswkK-4M57UUtakc5Y2oMDbcuIpbLBtHzcw1xrIxuBz-bmLY9jZltQp9LF6TopxhKqopEUUlB5WJIaVonTJt1vtQOeq2UwSrfZFqKFKVItV3kWqP0n_oJpbQcXcYYgOUitgvbfxzdYD6AmDLiAs |
CitedBy_id | crossref_primary_10_1007_s11760_022_02415_9 |
Cites_doi | 10.1109/TIP.2012.2191563 10.1109/TNNLS.2018.2829819 10.1109/TIP.2016.2585880 10.1109/JSTSP.2016.2639328 10.1016/j.sigpro.2015.08.012 10.1016/j.sigpro.2015.03.019 10.1109/LSP.2010.2043888 10.1016/j.sigpro.2017.11.015 10.1109/MSP.2011.942473 10.1007/s11263-015-0816-y 10.1007/s11042-017-5070-6 10.1007/s11760-017-1166-8 10.1109/TIP.2012.2214050 10.1016/j.sigpro.2018.04.019 10.3390/app9122499 10.1016/j.patcog.2018.04.016 10.1109/MSP.2017.2736018 10.1109/TIP.2018.2883741 10.1109/TCSVT.2011.2133770 10.1109/LSP.2013.2243725 10.1109/TIP.2014.2355716 10.1117/1.3267105 10.1109/TMM.2019.2913315 10.1088/0954-898X_5_4_006 10.1016/j.ins.2019.01.034 10.1016/j.image.2010.05.006 10.1109/TIP.2018.2875913 10.1109/TIP.2012.2190086 10.1109/LSP.2016.2537321 10.1109/TIP.2011.2147325 10.1109/LSP.2012.2227726 10.1109/TIP.2019.2902831 10.1109/TIP.2017.2760518 10.1109/TIP.2003.819861 10.1109/TMM.2014.2373812 10.1109/TIP.2006.881959 10.1109/TIP.2017.2774045 10.1016/j.image.2019.115676 10.1109/TII.2019.2927527 10.1109/TCYB.2015.2392129 10.1109/ICIP.2018.8451285 10.1109/ICIP.2016.7533065 10.1109/ICME.2017.8019508 10.1109/ICPR.2008.4761848 10.1109/CVPR.2014.224 10.1109/ICASSP.2018.8462369 10.1109/ICIP.2015.7351311 10.7551/mitpress/7503.003.0073 10.1109/TNNLS.2015.2461603 10.1109/CVPR.2018.00083 10.1007/978-3-319-02895-8_36 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11760-021-01958-7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1863-1711 |
EndPage | 427 |
ExternalDocumentID | 10_1007_s11760_021_01958_7 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z5O Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-2069676230a411a748c60e1583786c66b87bc9f26d7900c6cf96e08df2c5fdce3 |
IEDL.DBID | U2A |
ISSN | 1863-1703 |
IngestDate | Wed Aug 13 00:01:50 EDT 2025 Tue Jul 01 03:24:17 EDT 2025 Thu Apr 24 22:56:49 EDT 2025 Fri Feb 21 02:47:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Blind quality assessment Feature fusion Saliency-weighting model Saliency-based filter |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-2069676230a411a748c60e1583786c66b87bc9f26d7900c6cf96e08df2c5fdce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2630279417 |
PQPubID | 2044169 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2630279417 crossref_citationtrail_10_1007_s11760_021_01958_7 crossref_primary_10_1007_s11760_021_01958_7 springer_journals_10_1007_s11760_021_01958_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Signal, image and video processing |
PublicationTitleAbbrev | SIViP |
PublicationYear | 2022 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Liu, Engelke, Wang, Le Callet, Heynderickx (CR28) 2013; 20 Yue, Hou, Gu, Zhou, Liu (CR5) 2019; 21 Zhou, Chen, Li (CR11) 2019; 28 Ruderman (CR31) 1994; 5 Xu, Ye, Li, Du, Liu, Doermann (CR37) 2016; 25 CR36 CR30 Ma, Liu, Zhang, Duanmu, Wang, Zuo (CR13) 2017; 27 Yue, Hou, Gu, Zhou, Zhai (CR3) 2018; 28 Moorthy, Bovik (CR9) 2011; 20 Wang, Bovik, Sheikh, Simoncelli (CR24) 2004; 13 Kim, Lee (CR23) 2016; 11 Liu, Heynderickx (CR25) 2011; 21 Moorthy, Bovik (CR34) 2010; 17 Bosse, Maniry, Müller, Wiegand, Samek (CR14) 2017; 27 Saad, Bovik, Charrier (CR33) 2012; 21 Yan, Gong, Zhang (CR20) 2018; 28 CR4 CR49 Li, Lin, Fang (CR39) 2016; 23 CR48 Sheikh, Sabir, Bovik (CR53) 2006; 15 CR46 Xue, Mou, Zhang, Bovik, Feng (CR35) 2014; 23 CR43 CR42 CR41 Yue, Hou, Jiang, Yang (CR1) 2018; 150 Larson, Chandler (CR54) 2010; 19 Engelke, Kaprykowsky, Zepernick, Ndjiki-Nya (CR27) 2011; 28 Ye, Doermann (CR10) 2012; 21 CR19 CR18 CR17 He, Liu (CR6) 2020; 80 Kim, Nguyen, Lee (CR47) 2018; 30 Tang, Jiang, Xu, Liu, Li (CR7) 2019; 9 CR55 CR51 Bianco, Celona, Napoletano, Schettini (CR15) 2018; 12 Mittal, Moorthy, Bovik (CR32) 2012; 21 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (CR16) 2015; 115 Jia, Zhang (CR50) 2018; 77 Gao, Yu, Zhu, Huang, Tian (CR52) 2018; 81 CR29 Gu, Zhai, Yang, Zhang (CR38) 2014; 17 Oszust (CR44) 2019; 482 CR22 CR21 Mittal, Soundararajan, Bovik (CR8) 2012; 20 Le Meur, Ninassi, Le Callet, Barba (CR26) 2010; 25 Yang, Ming (CR40) 2016; 120 Shi, Zhang, Cao, Pang, Luo (CR2) 2018; 145 Kim, Zeng, Ghadiyaram, Lee, Zhang, Bovik (CR12) 2017; 34 Gao, Yu (CR45) 2016; 124 K Ma (1958_CR13) 2017; 27 G Yue (1958_CR5) 2019; 21 F Gao (1958_CR45) 2016; 124 O Le Meur (1958_CR26) 2010; 25 Z Shi (1958_CR2) 2018; 145 AK Moorthy (1958_CR9) 2011; 20 1958_CR55 Y Tang (1958_CR7) 2019; 9 W Xue (1958_CR35) 2014; 23 W Zhou (1958_CR11) 2019; 28 1958_CR17 1958_CR18 J Kim (1958_CR12) 2017; 34 1958_CR19 AK Moorthy (1958_CR34) 2010; 17 G Yue (1958_CR3) 2018; 28 M Oszust (1958_CR44) 2019; 482 J Xu (1958_CR37) 2016; 25 S He (1958_CR6) 2020; 80 U Engelke (1958_CR27) 2011; 28 1958_CR21 1958_CR22 K Gu (1958_CR38) 2014; 17 S Bosse (1958_CR14) 2017; 27 MA Saad (1958_CR33) 2012; 21 1958_CR29 EC Larson (1958_CR54) 2010; 19 Q Yan (1958_CR20) 2018; 28 Q Li (1958_CR39) 2016; 23 1958_CR4 S Bianco (1958_CR15) 2018; 12 G Yue (1958_CR1) 2018; 150 J Kim (1958_CR23) 2016; 11 S Jia (1958_CR50) 2018; 77 1958_CR30 F Gao (1958_CR52) 2018; 81 DL Ruderman (1958_CR31) 1994; 5 1958_CR36 A Mittal (1958_CR8) 2012; 20 P Ye (1958_CR10) 2012; 21 J Kim (1958_CR47) 2018; 30 HR Sheikh (1958_CR53) 2006; 15 Z Wang (1958_CR24) 2004; 13 H Liu (1958_CR28) 2013; 20 1958_CR51 H Liu (1958_CR25) 2011; 21 1958_CR41 A Mittal (1958_CR32) 2012; 21 1958_CR42 1958_CR43 O Russakovsky (1958_CR16) 2015; 115 1958_CR46 1958_CR48 1958_CR49 Y Yang (1958_CR40) 2016; 120 |
References_xml | – ident: CR22 – volume: 21 start-page: 3339 issue: 8 year: 2012 ident: CR33 article-title: Blind image quality assessment: a natural scene statistics approach in the DCT domain publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2191563 – volume: 30 start-page: 11 issue: 1 year: 2018 ident: CR47 article-title: Deep CNN-based blind image quality predictor publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2829819 – volume: 25 start-page: 4444 issue: 9 year: 2016 ident: CR37 article-title: Blind image quality assessment based on high order statistics aggregation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2585880 – ident: CR49 – volume: 11 start-page: 206 issue: 1 year: 2016 ident: CR23 article-title: Fully deep blind image quality predictor publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2016.2639328 – ident: CR4 – ident: CR51 – volume: 124 start-page: 210 year: 2016 ident: CR45 article-title: Biologically inspired image quality assessment publication-title: Signal Process. doi: 10.1016/j.sigpro.2015.08.012 – volume: 120 start-page: 797 year: 2016 ident: CR40 article-title: Image quality assessment based on the space similarity decomposition model publication-title: Signal Process. doi: 10.1016/j.sigpro.2015.03.019 – ident: CR29 – ident: CR42 – volume: 17 start-page: 513 issue: 5 year: 2010 ident: CR34 article-title: A two-step framework for constructing blind image quality indices publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2010.2043888 – ident: CR21 – volume: 145 start-page: 99 year: 2018 ident: CR2 article-title: Full-reference image quality assessment based on image segmentation with edge feature publication-title: Signal Process. doi: 10.1016/j.sigpro.2017.11.015 – volume: 28 start-page: 50 issue: 6 year: 2011 ident: CR27 article-title: Visual attention in quality assessment publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2011.942473 – ident: CR46 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: CR16 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – ident: CR19 – volume: 77 start-page: 14859 issue: 12 year: 2018 ident: CR50 article-title: Saliency-based deep convolutional neural network for no-reference image quality assessment publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-017-5070-6 – volume: 12 start-page: 355 issue: 2 year: 2018 ident: CR15 article-title: On the use of deep learning for blind image quality assessment publication-title: SIViP doi: 10.1007/s11760-017-1166-8 – ident: CR36 – volume: 21 start-page: 4695 issue: 12 year: 2012 ident: CR32 article-title: No-reference image quality assessment in the spatial domain publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2214050 – volume: 150 start-page: 204 year: 2018 ident: CR1 article-title: Blind stereoscopic 3D image quality assessment via analysis of naturalness, structure, and binocular asymmetry publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.04.019 – volume: 9 start-page: 2499 issue: 12 year: 2019 ident: CR7 article-title: Blind image quality assessment based on multi-window method and HSV color space publication-title: Appl. Sci. doi: 10.3390/app9122499 – volume: 81 start-page: 432 year: 2018 ident: CR52 article-title: Blind image quality prediction by exploiting multi-level deep representations publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2018.04.016 – volume: 34 start-page: 130 issue: 6 year: 2017 ident: CR12 article-title: Deep convolutional neural models for picture-quality prediction: challenges and solutions to data-driven image quality assessment publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2736018 – volume: 28 start-page: 2200 issue: 5 year: 2018 ident: CR20 article-title: Two-stream convolutional networks for blind image quality assessment publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2883741 – volume: 21 start-page: 971 issue: 7 year: 2011 ident: CR25 article-title: Visual attention in objective image quality assessment: based on eye-tracking data publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2011.2133770 – volume: 20 start-page: 355 issue: 4 year: 2013 ident: CR28 article-title: How does image content affect the added value of visual attention in objective image quality assessment? publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2013.2243725 – volume: 23 start-page: 4850 issue: 11 year: 2014 ident: CR35 article-title: Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2355716 – ident: CR18 – ident: CR43 – volume: 19 start-page: 011006 issue: 1 year: 2010 ident: CR54 article-title: Most apparent distortion: full-reference image quality assessment and the role of strategy publication-title: J. Electron. Imaging doi: 10.1117/1.3267105 – volume: 21 start-page: 2184 issue: 9 year: 2019 ident: CR5 article-title: No-reference quality evaluator of transparently encrypted images publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2019.2913315 – volume: 5 start-page: 517 issue: 4 year: 1994 ident: CR31 article-title: The statistics of natural images publication-title: Netw. Comput. Neural Syst. doi: 10.1088/0954-898X_5_4_006 – ident: CR30 – volume: 482 start-page: 334 year: 2019 ident: CR44 article-title: No-Reference quality assessment of noisy images with local features and visual saliency models publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.01.034 – volume: 25 start-page: 547 issue: 7 year: 2010 ident: CR26 article-title: Overt visual attention for free-viewing and quality assessment tasks: impact of the regions of interest on a video quality metric publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2010.05.006 – volume: 28 start-page: 2075 issue: 4 year: 2018 ident: CR3 article-title: Combining local and global measures for DIBR-synthesized image quality evaluation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2875913 – volume: 21 start-page: 3129 issue: 7 year: 2012 ident: CR10 article-title: No-reference image quality assessment using visual codebooks publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2190086 – volume: 23 start-page: 541 issue: 4 year: 2016 ident: CR39 article-title: No-reference quality assessment for multiply-distorted images in gradient domain publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2537321 – volume: 20 start-page: 3350 issue: 12 year: 2011 ident: CR9 article-title: Blind image quality assessment: from natural scene statistics to perceptual quality publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2147325 – ident: CR48 – volume: 20 start-page: 209 issue: 3 year: 2012 ident: CR8 article-title: Making a completely blind image quality analyzer publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2012.2227726 – volume: 28 start-page: 3946 issue: 8 year: 2019 ident: CR11 article-title: Dual-stream interactive networks for no-reference stereoscopic image quality assessment publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2902831 – volume: 27 start-page: 206 issue: 1 year: 2017 ident: CR14 article-title: Deep neural networks for no-reference and full-reference image quality assessment publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2760518 – ident: CR17 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: CR24 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 17 start-page: 50 issue: 1 year: 2014 ident: CR38 article-title: Using free energy principle for blind image quality assessment publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2014.2373812 – ident: CR55 – volume: 15 start-page: 3440 issue: 11 year: 2006 ident: CR53 article-title: A statistical evaluation of recent full reference image quality assessment algorithms publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.881959 – volume: 27 start-page: 1202 issue: 3 year: 2017 ident: CR13 article-title: End-to-end blind image quality assessment using deep neural networks publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2774045 – ident: CR41 – volume: 80 start-page: 115676 year: 2020 ident: CR6 article-title: Image quality assessment based on adaptive multiple Skyline query publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2019.115676 – ident: 1958_CR4 doi: 10.1109/TII.2019.2927527 – volume: 25 start-page: 4444 issue: 9 year: 2016 ident: 1958_CR37 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2585880 – volume: 28 start-page: 50 issue: 6 year: 2011 ident: 1958_CR27 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2011.942473 – ident: 1958_CR41 – ident: 1958_CR43 doi: 10.1109/TCYB.2015.2392129 – ident: 1958_CR48 doi: 10.1109/ICIP.2018.8451285 – ident: 1958_CR21 doi: 10.1109/ICIP.2016.7533065 – volume: 17 start-page: 50 issue: 1 year: 2014 ident: 1958_CR38 publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2014.2373812 – volume: 145 start-page: 99 year: 2018 ident: 1958_CR2 publication-title: Signal Process. doi: 10.1016/j.sigpro.2017.11.015 – ident: 1958_CR19 doi: 10.1109/ICME.2017.8019508 – volume: 11 start-page: 206 issue: 1 year: 2016 ident: 1958_CR23 publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2016.2639328 – volume: 9 start-page: 2499 issue: 12 year: 2019 ident: 1958_CR7 publication-title: Appl. Sci. doi: 10.3390/app9122499 – volume: 30 start-page: 11 issue: 1 year: 2018 ident: 1958_CR47 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2829819 – volume: 23 start-page: 4850 issue: 11 year: 2014 ident: 1958_CR35 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2355716 – volume: 81 start-page: 432 year: 2018 ident: 1958_CR52 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2018.04.016 – volume: 34 start-page: 130 issue: 6 year: 2017 ident: 1958_CR12 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2736018 – ident: 1958_CR17 – volume: 28 start-page: 2075 issue: 4 year: 2018 ident: 1958_CR3 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2875913 – volume: 28 start-page: 3946 issue: 8 year: 2019 ident: 1958_CR11 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2902831 – volume: 23 start-page: 541 issue: 4 year: 2016 ident: 1958_CR39 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2537321 – volume: 12 start-page: 355 issue: 2 year: 2018 ident: 1958_CR15 publication-title: SIViP doi: 10.1007/s11760-017-1166-8 – ident: 1958_CR29 doi: 10.1109/ICPR.2008.4761848 – volume: 124 start-page: 210 year: 2016 ident: 1958_CR45 publication-title: Signal Process. doi: 10.1016/j.sigpro.2015.08.012 – ident: 1958_CR18 doi: 10.1109/CVPR.2014.224 – ident: 1958_CR46 doi: 10.1109/ICASSP.2018.8462369 – ident: 1958_CR30 – volume: 28 start-page: 2200 issue: 5 year: 2018 ident: 1958_CR20 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2883741 – volume: 21 start-page: 971 issue: 7 year: 2011 ident: 1958_CR25 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2011.2133770 – volume: 20 start-page: 355 issue: 4 year: 2013 ident: 1958_CR28 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2013.2243725 – volume: 5 start-page: 517 issue: 4 year: 1994 ident: 1958_CR31 publication-title: Netw. Comput. Neural Syst. doi: 10.1088/0954-898X_5_4_006 – volume: 482 start-page: 334 year: 2019 ident: 1958_CR44 publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.01.034 – volume: 120 start-page: 797 year: 2016 ident: 1958_CR40 publication-title: Signal Process. doi: 10.1016/j.sigpro.2015.03.019 – volume: 20 start-page: 3350 issue: 12 year: 2011 ident: 1958_CR9 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2147325 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 1958_CR24 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 21 start-page: 3129 issue: 7 year: 2012 ident: 1958_CR10 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2190086 – volume: 27 start-page: 1202 issue: 3 year: 2017 ident: 1958_CR13 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2774045 – volume: 21 start-page: 4695 issue: 12 year: 2012 ident: 1958_CR32 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2214050 – volume: 20 start-page: 209 issue: 3 year: 2012 ident: 1958_CR8 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2012.2227726 – volume: 77 start-page: 14859 issue: 12 year: 2018 ident: 1958_CR50 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-017-5070-6 – ident: 1958_CR22 doi: 10.1109/ICIP.2015.7351311 – volume: 25 start-page: 547 issue: 7 year: 2010 ident: 1958_CR26 publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2010.05.006 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 1958_CR16 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – volume: 150 start-page: 204 year: 2018 ident: 1958_CR1 publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.04.019 – volume: 21 start-page: 2184 issue: 9 year: 2019 ident: 1958_CR5 publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2019.2913315 – volume: 80 start-page: 115676 year: 2020 ident: 1958_CR6 publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2019.115676 – volume: 27 start-page: 206 issue: 1 year: 2017 ident: 1958_CR14 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2760518 – volume: 15 start-page: 3440 issue: 11 year: 2006 ident: 1958_CR53 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.881959 – volume: 19 start-page: 011006 issue: 1 year: 2010 ident: 1958_CR54 publication-title: J. Electron. Imaging doi: 10.1117/1.3267105 – ident: 1958_CR36 – ident: 1958_CR51 doi: 10.7551/mitpress/7503.003.0073 – ident: 1958_CR42 doi: 10.1109/TNNLS.2015.2461603 – ident: 1958_CR49 doi: 10.1109/CVPR.2018.00083 – ident: 1958_CR55 doi: 10.1007/978-3-319-02895-8_36 – volume: 21 start-page: 3339 issue: 8 year: 2012 ident: 1958_CR33 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2191563 – volume: 17 start-page: 513 issue: 5 year: 2010 ident: 1958_CR34 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2010.2043888 |
SSID | ssj0000327868 |
Score | 2.234582 |
Snippet | Quality assessment plays an important role in promoting the prevalence of digital imaging technology as well as the associated products. Since the human being... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 419 |
SubjectTerms | Computer Imaging Computer Science Digital imaging Image filters Image Processing and Computer Vision Image quality Multimedia Information Systems Original Paper Pattern Recognition and Graphics Quality assessment Salience Signal,Image and Speech Processing Vision Weighting |
Title | Saliency-based feature fusion convolutional network for blind image quality assessment |
URI | https://link.springer.com/article/10.1007/s11760-021-01958-7 https://www.proquest.com/docview/2630279417 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolMoDG1iy48R2xha1VCC6QFGZovgRCQkKou3Av8fOowEESEwZ_BjOd-cv9n2fAU5FqlzO82XlGVfY4X-L0yg1OMxYSnWgqIw93_lmzEeT8GoaTUtS2Lyqdq-uJPNMXZPdqOAE-5ICT3KTWKxDM3L_7j4cJ0FvdbJCWCBkwYGT3OtvElayZX6e5uuOVMPMbzej-YYz3IGtEimiXrG0u7BmZy3Yrl5hQGVQtmDzk6TgHtzfOmDt6ZTY708GZTZX7kTZ0h-LIV9kXjqbm3tW1IAjB1yRcjYx6PHZ5RdUMC3fUbqS7dyHyXBwdzHC5dsJWLugWjjn5zF3iY6RNKQ0FaHUnFgaef14rjlXUigdZwE3IiZEc53F3BJpskBHmdGWHUBj9jKzh4DymA6J1SYKQqlMrJhOpVIO2RBmGG0DreyX6FJY3L9v8ZTUksje5omzeZLbPBFtOFuNeS1kNf7s3amWJSlDbJ4E3F-5xiF1zefVUtXNv8929L_ux7AReMpDXnfWgcbibWlPHBBZqC40e8N-f-y_lw_Xg27uhx_ZgNX4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG0Sy48R2xgpRFWi70KJuUfwRCQkCou3Av8dOnBYQIDHbvuHsOz_Z994BnPNM2pznyspzJgOL_02QxZkOopxmRIWSiMTxnQdD1htHt5N44klh07ravf6SLDP1kuxGOMOBKylwJDcR8FVYs2BAuL4F47CzeFnBNOSi4sAJ5vQ3MfVsmZ_NfL2RljDz289oeeF0d2DLI0XUqbZ2F1ZM0YTtugsD8kHZhM1PkoJ78HBvgbWjUwbuftIoN6VyJ8rn7lkMuSJzf9is7aKqAUcWuCJpfaLR47PNL6hiWr6jbCHbuQ_j7vXoqhf43gmBskE1s4efJcwmOoqziJCMR0IxbEjs9OOZYkwKLlWSh0zzBGPFVJ4wg4XOQxXnWhl6AI3ipTCHgMqYjrBROg4jIXUiqcqElBbZYKopaQGp_ZcqLyzu-ls8pUtJZOfz1Po8LX2e8hZcLNa8VrIaf85u19uS-hCbpiFzX65JROzwZb1Vy-HfrR39b_oZrPdGg37avxneHcNG6OgPZQ1aGxqzt7k5saBkJk_LM_gBrKDV2w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQfTgoypWq-bgTUOT7G6SPRa11FcRtNLbsnmBoGvR7cF_b7KPtooKnvM4TGYmH5n5vgBwzFPpcp5vK7dMIof_DUqjVKPQBilRVBIRe77z7YD1h-HVKBrNsfiLbve6JFlyGrxKU5Z3xtp2ZsQ3whlGvr3AE94E4otgyaVj4j19SLvTVxYcUC5KPpxgXosTBxVz5udtvt5OM8j5rUpaXD69DbBWoUbYLY95EyyYrAnW6x8ZYBWgTbA6Jy-4BR7vHcj21Erk7yoNrSlUPKGd-Ccy6BvOK8dze2dlPzh0IBZKZx8Nn15croEl6_IDplMJz20w7F08nPVR9Y8CUi7AchcILGYu6QU4DQlJeSgUw4ZEXkueKcak4FLFljLNY4wVUzZmBgttqYqsVibYAY3sNTO7ABbxHWKjdERDIXUsA5UKKR3KwYEOSAuQ2n6JqkTG_V8Xz8lMHtnbPHE2TwqbJ7wFTqZrxqXExp-z2_WxJFW4vSeU-fJrHBI3fFof1Wz49932_jf9CCzfnfeSm8vB9T5YoZ4JUbSjtUEjf5uYA4dPcnlYuOAnRBXaFw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Saliency-based+feature+fusion+convolutional+network+for+blind+image+quality+assessment&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Shen%2C+Lili&rft.au=Zhang%2C+Chuhe&rft.au=Hou%2C+Chunping&rft.date=2022-03-01&rft.pub=Springer+London&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=16&rft.issue=2&rft.spage=419&rft.epage=427&rft_id=info:doi/10.1007%2Fs11760-021-01958-7&rft.externalDocID=10_1007_s11760_021_01958_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon |