Violence detection in videos for an intelligent surveillance system using MoBSIFT and movement filtering algorithm

Action recognition is an active research area in computer vision as it has enormous applications in today’s world, out of which, recognizing violent action is of great importance since it is closely related to our safety and security. An intelligent surveillance system is the idea of automatically r...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 23; no. 2; pp. 611 - 623
Main Authors Febin, I. P., Jayasree, K., Joy, Preetha Theresa
Format Journal Article
LanguageEnglish
Published London Springer London 01.05.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1433-7541
1433-755X
DOI10.1007/s10044-019-00821-3

Cover

Loading…
Abstract Action recognition is an active research area in computer vision as it has enormous applications in today’s world, out of which, recognizing violent action is of great importance since it is closely related to our safety and security. An intelligent surveillance system is the idea of automatically recognizing suspicious activities in surveillance videos and thereby supporting security personals to take up right action on the right time. Under this area, most of the researchers were focused on people detection and tracking, loitering, etc., whereas detecting violent actions or fights is comparatively a less studied area. Previous works considered the local spatiotemporal feature extractors; however, it accompanies the overhead of complex optical flow estimation. Even though the temporal derivative is a fast alternative to optical flow, it alone gives very low accuracy and scales-dependent result. Hence, here we propose a cascaded method of violence detection based on motion boundary SIFT (MoBSIFT) and movement filtering. In this method, the surveillance videos are checked through a movement filtering algorithm based on temporal derivative and avoid most of the nonviolent actions from going through feature extraction. Only the filtered frames may allow going through feature extraction. In addition to scale-invariant feature transform (SIFT) and histogram of optical flow feature, motion boundary histogram is also extracted and combined to form MoBSIFT descriptor. The experimental results show that the proposed MoBSIFT outperforms the existing methods in accuracy by its high tolerance to camera movements. Time complexity has also proved to be reduced by the use of movement filtering along with MoBSIFT.
AbstractList Action recognition is an active research area in computer vision as it has enormous applications in today’s world, out of which, recognizing violent action is of great importance since it is closely related to our safety and security. An intelligent surveillance system is the idea of automatically recognizing suspicious activities in surveillance videos and thereby supporting security personals to take up right action on the right time. Under this area, most of the researchers were focused on people detection and tracking, loitering, etc., whereas detecting violent actions or fights is comparatively a less studied area. Previous works considered the local spatiotemporal feature extractors; however, it accompanies the overhead of complex optical flow estimation. Even though the temporal derivative is a fast alternative to optical flow, it alone gives very low accuracy and scales-dependent result. Hence, here we propose a cascaded method of violence detection based on motion boundary SIFT (MoBSIFT) and movement filtering. In this method, the surveillance videos are checked through a movement filtering algorithm based on temporal derivative and avoid most of the nonviolent actions from going through feature extraction. Only the filtered frames may allow going through feature extraction. In addition to scale-invariant feature transform (SIFT) and histogram of optical flow feature, motion boundary histogram is also extracted and combined to form MoBSIFT descriptor. The experimental results show that the proposed MoBSIFT outperforms the existing methods in accuracy by its high tolerance to camera movements. Time complexity has also proved to be reduced by the use of movement filtering along with MoBSIFT.
Author Febin, I. P.
Joy, Preetha Theresa
Jayasree, K.
Author_xml – sequence: 1
  givenname: I. P.
  surname: Febin
  fullname: Febin, I. P.
  email: febimolu@gmail.com
  organization: Department of Computer Engineering, Govt. Model Engineering College Thrikkakara
– sequence: 2
  givenname: K.
  surname: Jayasree
  fullname: Jayasree, K.
  organization: Department of Computer Engineering, Govt. Model Engineering College Thrikkakara
– sequence: 3
  givenname: Preetha Theresa
  surname: Joy
  fullname: Joy, Preetha Theresa
  organization: Department of Computer Science and Engineering, College of Engineering Cherthala
BookMark eNp9kMFKAzEQhoNUsK2-gKeA59VkJ9vuHrVYLVQ8WMVbSLOzNSW7qUla6Nu7a0XBQy-ZkPm_mfANSK9xDRJyydk1Z2x8E9pTiITxImEsT3kCJ6TPBUAyzrL33u9d8DMyCGHNGACkeZ_4N-MsNhppiRF1NK6hpqE7U6ILtHKequ4horVmhU2kYet3aKxVHRP2IWJNt8E0K_rk7l5m00ULlLR2O6y7eGVsRN-1lV05b-JHfU5OK2UDXvzUIXmd3i8mj8n8-WE2uZ0nGngRE14hK5kYFaCzPNO4FCXoQnCeqTRf8jSvhF4KpgpgAstC5yA4jLFSUEClFMKQXB3mbrz73GKIcu22vmlXyrTNjFIY5axN5YeU9i4Ej5XUJqrOQ_TKWMmZ7AzLg2HZGpbfhiW0aPoP3XhTK78_DsEBCptOC_q_Xx2hvgCH3JHR
CitedBy_id crossref_primary_10_1016_j_jisa_2023_103583
crossref_primary_10_1007_s40313_021_00868_w
crossref_primary_10_3390_bdcc7030150
crossref_primary_10_1007_s00034_024_02824_w
crossref_primary_10_48084_etasr_8194
crossref_primary_10_1109_ACCESS_2023_3310885
crossref_primary_10_1186_s12888_024_06248_3
crossref_primary_10_7717_peerj_cs_920
crossref_primary_10_1007_s10044_023_01166_8
crossref_primary_10_3233_WEB_230103
crossref_primary_10_1007_s11042_022_12532_9
crossref_primary_10_1007_s00500_023_07820_x
crossref_primary_10_2139_ssrn_4111254
crossref_primary_10_1007_s41315_024_00400_8
crossref_primary_10_3390_s22124502
crossref_primary_10_1109_ACCESS_2023_3284472
crossref_primary_10_1186_s40537_024_00984_9
crossref_primary_10_1142_S0218001422550023
crossref_primary_10_1007_s11042_023_17064_4
crossref_primary_10_3390_s23042358
crossref_primary_10_1109_TII_2021_3116377
crossref_primary_10_1080_23335777_2021_1940303
crossref_primary_10_1007_s11042_024_19388_1
crossref_primary_10_1007_s13042_025_02540_0
crossref_primary_10_1007_s13369_024_09536_y
crossref_primary_10_32604_cmc_2023_030197
crossref_primary_10_4218_etrij_2023_0222
crossref_primary_10_1016_j_ins_2022_05_045
crossref_primary_10_1016_j_engappai_2024_109800
crossref_primary_10_1155_2021_5587873
crossref_primary_10_3390_s22062216
crossref_primary_10_1007_s11276_023_03571_7
crossref_primary_10_1016_j_knosys_2022_109456
crossref_primary_10_2478_ijanmc_2024_0036
crossref_primary_10_1155_2021_9965781
crossref_primary_10_3233_JIFS_234365
crossref_primary_10_1007_s11760_022_02213_3
crossref_primary_10_1016_j_neucom_2024_128113
Cites_doi 10.1109/CVPRW.2012.6239348
10.1109/TCSVT.2016.2589858
10.1109/CVPR.2011.5995407
10.1109/ICASSP.2014.6854259
10.1016/j.snb.2012.11.071
10.1109/SIBGRAPI.2010.38
10.1016/j.neucom.2015.07.105
10.1007/s11042-015-2648-8
10.1016/j.imavis.2016.01.006
10.3390/computers2020088
10.1007/11752912_55
10.1007/978-3-540-89796-5_33
10.1109/TPAMI.2007.70711
10.1109/AVSS.2007.4425310
10.1371/journal
10.1109/ICIP.1998.723496
10.1186/1687-6180-2013-176
10.1007/978-3-642-23678-5_39
10.1007/11744047_33
10.1109/CVPRW.2012.6239234
10.1109/WACV.2015.27
10.1016/j.cviu.2006.07.013
10.1016/j.patrec.2017.04.015
10.1145/973264.973282
10.1109/ICPR.2002.1044748
10.1023/B:VISI.0000029664.99615.94
10.1016/j.eswa.2010.10.031
10.1109/TIFS.2017.2725820
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Springer-Verlag London Ltd., part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Springer-Verlag London Ltd., part of Springer Nature 2019.
DBID AAYXX
CITATION
DOI 10.1007/s10044-019-00821-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
EndPage 623
ExternalDocumentID 10_1007_s10044_019_00821_3
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-1fe0d04693c585ceb4d3c94115a28b128f4cb40a9304ed9c834137efa393faae3
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Fri Jul 25 05:37:39 EDT 2025
Thu Apr 24 22:59:38 EDT 2025
Tue Jul 01 01:15:16 EDT 2025
Fri Feb 21 02:29:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Action recognition
Abnormal activity detection
Video content analysis
Video event detection
Violence detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1fe0d04693c585ceb4d3c94115a28b128f4cb40a9304ed9c834137efa393faae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2393623680
PQPubID 2043691
PageCount 13
ParticipantIDs proquest_journals_2393623680
crossref_citationtrail_10_1007_s10044_019_00821_3
crossref_primary_10_1007_s10044_019_00821_3
springer_journals_10_1007_s10044_019_00821_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Chen M, Hauptmann A (2009) MoSIFT: recognizing human actions in surveillance videos. Technical report, Carnegie Mellon University, Pittsburgh, USA
Giannakopoulos T, Makris A, Kosmopoulos D, Perantonis S, Theodoridis S (2010) Audio-visual fusion for detecting violent scenes in videos. In: Artificial intelligence: theories, models and applications, pp 91–100
GaoZNieWLiuAZhangHEvaluation of local spatial–temporal features for cross-view action recognitionNeurocomputing201617311011710.1016/j.neucom.2015.07.105
Yun K, Honorio J, Chattopadhyay D, Berg TL, Samaras D (2012) Two-person interaction detection using body-pose features and multiple instance learning. In: IEEE computer society conference on computer vision and pattern recognition workshops, pp 28–35
MabroukABZagroubaESpatio-temporal feature using optical flow based distribution for violence detectionPattern Recognit Lett201792626710.1016/j.patrec.2017.04.015
GorelickLBlankMShechtmanEIraniMBasriRActions as space-time shapesIEEE Trans Pattern Anal Mach Intell200729122247225310.1109/TPAMI.2007.70711
KeS-RThucHLeeY-JA review on video-based human activity recognitionComputers201328813110.3390/computers2020088
Mousavi H, Mohammadi S, Perina A, Chellali R, Murino V (2015) Analyzing tracklets for the detection of abnormal crowd behavior. In: IEEE winter conference on applications of computer vision, pp 148–15
LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vision20046029111010.1023/B:VISI.0000029664.99615.94
Colque RVHM, Junior CAC, Schwartz WR (2015) Histograms of optical flow orientation and magnitude to detect anomalous events in videos. In: 28th SIBGRAPI conference on graphics, patterns and images, pp 126–133
Datta A, Shah M, Da Vitoria Lobo N (2002) Person-on-person violence detection in video data. In: 16th international conference on pattern recognition, pp 433–438
Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local svm approach. In: 17th international conference on pattern recognition (ICPR’04), IEEE Comp. Soc. Washington, DC, USA, vol 3, pp 32–36
LiuMWangMWangJLiDComparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: application to the recognition of orange beverage and Chinese vinegarSens Actuators B201317797098010.1016/j.snb.2012.11.071
Giannakopoulos T, Kosmopoulos D, Aristidou A, Theodoridis S (2006) Violence content classification using audio features. In: Proceedings of the 4th helenic conference on advances in artificial intelligence. Springer, pp 502–507
GaoYLiuHSunXWangCLiuYViolence detection using oriented violent flowsImage Vis Comput201648–49374110.1016/j.imavis.2016.01.006
PaulMHaqueSMEChakrabortySHuman detection in surveillance videos and its applications a reviewEURASIP J Adv Signal Process2013201317610.1186/1687-6180-2013-176
Nam J, Alghoniemy M, Tewfik AH (1998) Audio-visual content-based violent scene characterization. In: Proceedings 1998 international conference on image processing. ICIP98 (Cat. No. 98CB36269). IEEE Comput. Soc, Chicago, USA, pp 353–357
Zajdel W, Krijnders JD, Andringa T, Gavrila DM (2007) CASSANDRA: audio-video sensor fusion for aggression detection. In: 2007 IEEE conference on advanced video and signal based surveillance, pp 200–205
WeinlandDRonfardRBoyerEFree viewpoint action recognition using motion history volumesComput Vis Image Underst200610424925710.1016/j.cviu.2006.07.013
LorenaACJacinthoLuis FOSiqueiraMFDe GiovanniRLohmannLGde AndréCPLFCarvalhoMYComparing machine learning classifiers in potential distribution modellingExpert Syst Appl2011385268527510.1016/j.eswa.2010.10.031
Clarin C, Dionisio J, Echavez M, Naval P (2005) DOVE: Detection of movie violence using motion intensity analysis on skin and blood. Technical report, University of the Philippines
Xu L, Gong C, Yang J, Wu Q, Yao L (2014) Violent video detection based on MoSIFT feature and sparse coding. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 3538–3542
Cheng W, Chu W, Ling J (2003) Semantic context detection based on hierarchical audio models. In: Proceedings of the ACM SIGMM workshop on multimedia information retrieval, pp. 109–115
GraciaISSuarezODGarciaGBKimT-KFast fight detectionPLoS ONE2015104e012044810.1371/journal
Gong Y, Wang W, Jiang S, Huang Q, Gao W (2008) Detecting violent scenes in movies by auditory and visual cues. In: Proceedings of the 9th Pacific Rim conference on multimedia. Springer, Berlin, Heidelberg, pp 317–326
ZhangTJiaWHeXYangJDiscriminative dictionary learning with motion weber local descriptor for violence detectionIEEE Trans Circuits Syst Video Technol201727369670910.1109/TCSVT.2016.2589858
SenstTEiseleinVKuhnASikoraTCrowd violence detection using global motion-compensated lagrangian features and scale-sensitive video-level representationIEEE Trans Inf Forensics Secur201712122945295610.1109/TIFS.2017.2725820
de Souza FD, Chavez GC, do Valle EA, de A Araujo A (2010) Violence detection in video using spatio-temporal features. In: 23rd SIBGRAPI conference on graphics, patterns and images, pp 224–230
Hassner T, Itcher Y, Kliper-Gross O (2012) Violent flows: real-time detection of violent crowd behavior. In: 2012 IEEE computer society conference on computer vision and pattern recognition workshops. IEEE, Providence, USA, pp 1–6
Bermejo E, Deni O, Bueno G, Sukthankar R. (2011) Violence detection in video using computer vision techniques. In: Proceedings of the 14th international conference on computer analysis of images and patterns. Springer, pp 332–339
Dalal N, Triggs B, Schmid C (2006) Human Detection using oriented histograms of flow and appearance. In: Proceedings of 9th ECCV, pp 428–441
Chen L-H, Hsu H-W, Wang L-Y, Su C-W (2011) Violence detection in movies. In: 2011 Eighth international conference computer graphics, imaging and visualization. IEEE Comput. Soc, Washington, DC, USA, pp 119–124
Lin J, Wang W (2009) Weakly-supervised violence detection in movies with audio and video based cotraining. In: Proceedings of the 10th Pacific Rim conference on multimedia. Springer, Berlin, Heidelberg, pp 930–935
Deniz O, Serrano I, Bueno G, Tae-Tyun K (2014) Fast violence detection in video. In: VISAPP 2014  proceedings of the 9th international conference on computer vision theory and applications, pp 478–485
ZhangTYangZJiaWYangBYangJHeXA new method for violence detection in surveillance scenesMultimed Tools Appl2016757327734910.1007/s11042-015-2648-8
Wang H, Klaser A, Schmid C, Liu C-L (2011) Action recognition by dense trajectories. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Colorado Springs, USA, pp 3169–3176
821_CR20
Y Gao (821_CR23) 2016; 48–49
821_CR22
M Liu (821_CR35) 2013; 177
821_CR21
M Paul (821_CR33) 2013; 2013
821_CR29
821_CR3
821_CR6
821_CR5
821_CR2
T Zhang (821_CR24) 2016; 75
L Gorelick (821_CR30) 2007; 29
821_CR1
T Senst (821_CR26) 2017; 12
AC Lorena (821_CR36) 2011; 38
S-R Ke (821_CR4) 2013; 2
DG Lowe (821_CR32) 2004; 60
821_CR11
821_CR10
821_CR13
D Weinland (821_CR31) 2006; 104
821_CR12
821_CR34
821_CR15
821_CR14
821_CR8
821_CR17
821_CR7
821_CR16
821_CR19
821_CR9
Z Gao (821_CR18) 2016; 173
IS Gracia (821_CR28) 2015; 10
T Zhang (821_CR25) 2017; 27
AB Mabrouk (821_CR27) 2017; 92
References_xml – reference: Hassner T, Itcher Y, Kliper-Gross O (2012) Violent flows: real-time detection of violent crowd behavior. In: 2012 IEEE computer society conference on computer vision and pattern recognition workshops. IEEE, Providence, USA, pp 1–6
– reference: Gong Y, Wang W, Jiang S, Huang Q, Gao W (2008) Detecting violent scenes in movies by auditory and visual cues. In: Proceedings of the 9th Pacific Rim conference on multimedia. Springer, Berlin, Heidelberg, pp 317–326
– reference: Datta A, Shah M, Da Vitoria Lobo N (2002) Person-on-person violence detection in video data. In: 16th international conference on pattern recognition, pp 433–438
– reference: GaoZNieWLiuAZhangHEvaluation of local spatial–temporal features for cross-view action recognitionNeurocomputing201617311011710.1016/j.neucom.2015.07.105
– reference: GorelickLBlankMShechtmanEIraniMBasriRActions as space-time shapesIEEE Trans Pattern Anal Mach Intell200729122247225310.1109/TPAMI.2007.70711
– reference: Giannakopoulos T, Kosmopoulos D, Aristidou A, Theodoridis S (2006) Violence content classification using audio features. In: Proceedings of the 4th helenic conference on advances in artificial intelligence. Springer, pp 502–507
– reference: Giannakopoulos T, Makris A, Kosmopoulos D, Perantonis S, Theodoridis S (2010) Audio-visual fusion for detecting violent scenes in videos. In: Artificial intelligence: theories, models and applications, pp 91–100
– reference: Wang H, Klaser A, Schmid C, Liu C-L (2011) Action recognition by dense trajectories. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Colorado Springs, USA, pp 3169–3176
– reference: Chen L-H, Hsu H-W, Wang L-Y, Su C-W (2011) Violence detection in movies. In: 2011 Eighth international conference computer graphics, imaging and visualization. IEEE Comput. Soc, Washington, DC, USA, pp 119–124
– reference: LiuMWangMWangJLiDComparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: application to the recognition of orange beverage and Chinese vinegarSens Actuators B201317797098010.1016/j.snb.2012.11.071
– reference: Yun K, Honorio J, Chattopadhyay D, Berg TL, Samaras D (2012) Two-person interaction detection using body-pose features and multiple instance learning. In: IEEE computer society conference on computer vision and pattern recognition workshops, pp 28–35
– reference: WeinlandDRonfardRBoyerEFree viewpoint action recognition using motion history volumesComput Vis Image Underst200610424925710.1016/j.cviu.2006.07.013
– reference: ZhangTJiaWHeXYangJDiscriminative dictionary learning with motion weber local descriptor for violence detectionIEEE Trans Circuits Syst Video Technol201727369670910.1109/TCSVT.2016.2589858
– reference: MabroukABZagroubaESpatio-temporal feature using optical flow based distribution for violence detectionPattern Recognit Lett201792626710.1016/j.patrec.2017.04.015
– reference: Lin J, Wang W (2009) Weakly-supervised violence detection in movies with audio and video based cotraining. In: Proceedings of the 10th Pacific Rim conference on multimedia. Springer, Berlin, Heidelberg, pp 930–935
– reference: Zajdel W, Krijnders JD, Andringa T, Gavrila DM (2007) CASSANDRA: audio-video sensor fusion for aggression detection. In: 2007 IEEE conference on advanced video and signal based surveillance, pp 200–205
– reference: Xu L, Gong C, Yang J, Wu Q, Yao L (2014) Violent video detection based on MoSIFT feature and sparse coding. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 3538–3542
– reference: LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vision20046029111010.1023/B:VISI.0000029664.99615.94
– reference: de Souza FD, Chavez GC, do Valle EA, de A Araujo A (2010) Violence detection in video using spatio-temporal features. In: 23rd SIBGRAPI conference on graphics, patterns and images, pp 224–230
– reference: Chen M, Hauptmann A (2009) MoSIFT: recognizing human actions in surveillance videos. Technical report, Carnegie Mellon University, Pittsburgh, USA
– reference: Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local svm approach. In: 17th international conference on pattern recognition (ICPR’04), IEEE Comp. Soc. Washington, DC, USA, vol 3, pp 32–36
– reference: Mousavi H, Mohammadi S, Perina A, Chellali R, Murino V (2015) Analyzing tracklets for the detection of abnormal crowd behavior. In: IEEE winter conference on applications of computer vision, pp 148–15
– reference: PaulMHaqueSMEChakrabortySHuman detection in surveillance videos and its applications a reviewEURASIP J Adv Signal Process2013201317610.1186/1687-6180-2013-176
– reference: Clarin C, Dionisio J, Echavez M, Naval P (2005) DOVE: Detection of movie violence using motion intensity analysis on skin and blood. Technical report, University of the Philippines
– reference: LorenaACJacinthoLuis FOSiqueiraMFDe GiovanniRLohmannLGde AndréCPLFCarvalhoMYComparing machine learning classifiers in potential distribution modellingExpert Syst Appl2011385268527510.1016/j.eswa.2010.10.031
– reference: Cheng W, Chu W, Ling J (2003) Semantic context detection based on hierarchical audio models. In: Proceedings of the ACM SIGMM workshop on multimedia information retrieval, pp. 109–115
– reference: GaoYLiuHSunXWangCLiuYViolence detection using oriented violent flowsImage Vis Comput201648–49374110.1016/j.imavis.2016.01.006
– reference: Nam J, Alghoniemy M, Tewfik AH (1998) Audio-visual content-based violent scene characterization. In: Proceedings 1998 international conference on image processing. ICIP98 (Cat. No. 98CB36269). IEEE Comput. Soc, Chicago, USA, pp 353–357
– reference: Bermejo E, Deni O, Bueno G, Sukthankar R. (2011) Violence detection in video using computer vision techniques. In: Proceedings of the 14th international conference on computer analysis of images and patterns. Springer, pp 332–339
– reference: Dalal N, Triggs B, Schmid C (2006) Human Detection using oriented histograms of flow and appearance. In: Proceedings of 9th ECCV, pp 428–441
– reference: ZhangTYangZJiaWYangBYangJHeXA new method for violence detection in surveillance scenesMultimed Tools Appl2016757327734910.1007/s11042-015-2648-8
– reference: SenstTEiseleinVKuhnASikoraTCrowd violence detection using global motion-compensated lagrangian features and scale-sensitive video-level representationIEEE Trans Inf Forensics Secur201712122945295610.1109/TIFS.2017.2725820
– reference: KeS-RThucHLeeY-JA review on video-based human activity recognitionComputers201328813110.3390/computers2020088
– reference: Deniz O, Serrano I, Bueno G, Tae-Tyun K (2014) Fast violence detection in video. In: VISAPP 2014  proceedings of the 9th international conference on computer vision theory and applications, pp 478–485
– reference: GraciaISSuarezODGarciaGBKimT-KFast fight detectionPLoS ONE2015104e012044810.1371/journal
– reference: Colque RVHM, Junior CAC, Schwartz WR (2015) Histograms of optical flow orientation and magnitude to detect anomalous events in videos. In: 28th SIBGRAPI conference on graphics, patterns and images, pp 126–133
– ident: 821_CR20
  doi: 10.1109/CVPRW.2012.6239348
– volume: 27
  start-page: 696
  issue: 3
  year: 2017
  ident: 821_CR25
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2016.2589858
– ident: 821_CR34
  doi: 10.1109/CVPR.2011.5995407
– ident: 821_CR9
– ident: 821_CR19
  doi: 10.1109/ICASSP.2014.6854259
– volume: 177
  start-page: 970
  year: 2013
  ident: 821_CR35
  publication-title: Sens Actuators B
  doi: 10.1016/j.snb.2012.11.071
– ident: 821_CR1
  doi: 10.1109/SIBGRAPI.2010.38
– volume: 173
  start-page: 110
  year: 2016
  ident: 821_CR18
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.105
– ident: 821_CR22
– volume: 75
  start-page: 7327
  year: 2016
  ident: 821_CR24
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-015-2648-8
– volume: 48–49
  start-page: 37
  year: 2016
  ident: 821_CR23
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2016.01.006
– volume: 2
  start-page: 88
  year: 2013
  ident: 821_CR4
  publication-title: Computers
  doi: 10.3390/computers2020088
– ident: 821_CR5
– ident: 821_CR7
  doi: 10.1007/11752912_55
– ident: 821_CR8
  doi: 10.1007/978-3-540-89796-5_33
– volume: 29
  start-page: 2247
  issue: 12
  year: 2007
  ident: 821_CR30
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.70711
– ident: 821_CR12
– ident: 821_CR14
– ident: 821_CR15
  doi: 10.1109/AVSS.2007.4425310
– volume: 10
  start-page: e0120448
  issue: 4
  year: 2015
  ident: 821_CR28
  publication-title: PLoS ONE
  doi: 10.1371/journal
– ident: 821_CR10
  doi: 10.1109/ICIP.1998.723496
– volume: 2013
  start-page: 176
  year: 2013
  ident: 821_CR33
  publication-title: EURASIP J Adv Signal Process
  doi: 10.1186/1687-6180-2013-176
– ident: 821_CR3
  doi: 10.1007/978-3-642-23678-5_39
– ident: 821_CR6
  doi: 10.1007/11744047_33
– ident: 821_CR29
– ident: 821_CR17
  doi: 10.1109/CVPRW.2012.6239234
– ident: 821_CR2
– ident: 821_CR21
  doi: 10.1109/WACV.2015.27
– volume: 104
  start-page: 249
  year: 2006
  ident: 821_CR31
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2006.07.013
– volume: 92
  start-page: 62
  year: 2017
  ident: 821_CR27
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2017.04.015
– ident: 821_CR11
  doi: 10.1145/973264.973282
– ident: 821_CR16
  doi: 10.1109/ICPR.2002.1044748
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 821_CR32
  publication-title: Int J Comput Vision
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 38
  start-page: 5268
  year: 2011
  ident: 821_CR36
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.10.031
– ident: 821_CR13
– volume: 12
  start-page: 2945
  issue: 12
  year: 2017
  ident: 821_CR26
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2017.2725820
SSID ssj0033328
Score 2.4181318
Snippet Action recognition is an active research area in computer vision as it has enormous applications in today’s world, out of which, recognizing violent action is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 611
SubjectTerms Algorithms
Complexity
Computer Science
Computer vision
Feature extraction
Filtration
Histograms
Motion perception
Movement
Optical flow (image analysis)
Pattern Recognition
Security
Surveillance
Theoretical Advances
Violence
Title Violence detection in videos for an intelligent surveillance system using MoBSIFT and movement filtering algorithm
URI https://link.springer.com/article/10.1007/s10044-019-00821-3
https://www.proquest.com/docview/2393623680
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCy8EYWCPLCBpaR20mQsiPISLFAEU-T4AZVKgprA7-cutSkgQGKL_Bpytr_v5LvvCNmPEhtyqyTTXCcMEM8yGSf4BXRYmRxQEfOdr67js6G4uI_uXVJY5aPd_ZNkc1N_SnYLBEZMpAxxK2R8nixE6LvDLh52-_7-5Zw3FVWBCHDWi0ToUmV-XuMrHM045rdn0QZtBitkydFE2p_adZXMmWKNLDvKSN2BrKDJV2Xwbetkcucyiag2dRNoVdBRQTHfrqwocFQqscErcda0ep28GSw-hHOmys4Uw-Ef6VV5dHM-uIUJmj6XjbJ4Te0IH9ixW44fy8mofnreIMPBye3xGXOVFZiCI1ez0JpAo2fMFbgLYBKhuUoFsEPZTXKALCtULgKZ8kAYnaoEsa5nrOQpt1IavklaRVmYLUKNTY2SOpRxngihlez1jIwkN1bLGBZuk9D_4Ew52XGsfjHOZoLJaJQMjJI1Rsl4mxx8zHmZim78Obrj7Za5A1hlqOwGzC5OgjY59Lacdf--2vb_hu-QxS564E0IZIe06smr2QWaUud7ZKF_-nB5stfsznenjOEv
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDnBhRxQK-MANLCW1mybHgqjKUi60iFvkeIFKkKAm8P3MpDYFBEjcIsf2IS_2e5Zn3hBy1I5tyK2STHMdM2A8y2QU4xPIYWUyYEXMdx7cRP2RuLxv37uksNJHu_sryXqn_pTsFgiMmEgY8lbI-DxZBDEQYyDXqNX1-y_nvK6oCkKAs05bhC5V5uc5vtLRTGN-uxat2aa3RlacTKTdKa7rZM7kG2TVSUbqFmQJTb4qg2_bJJM7l0lEtanqQKucjnOK-XZFSUGjUokN3omzouXr5M1g8SEcM3V2phgO_0AHxentRW8IAzR9Lmpn8YraMV6w42v59FBMxtXj8xYZ9c6HZ33mKiswBUuuYqE1gcaTMVdwXABIhOYqEaAOZSvOgLKsUJkIZMIDYXSiYuS6jrGSJ9xKafg2WciL3OwQamxilNShjLJYCK1kp2NkW3JjtYxg4gYJ_QdOlbMdx-oXT-nMMBlBSQGUtAYl5Q1y_DHmZWq68WfvpsctdQuwTNHZDZRdFAcNcuKxnL3-fbbd_3U_JEv94eA6vb64udojyy08jdfhkE2yUE1ezT5Ilio7qP_Qd1iy4o4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJMSFHVEo4AM3sJrUbpocy1KVpQgJirhFjpdSqSQoDXw_M1loQYDEzfJ28NieZ3neG0KOWr51uVWSaa59Bh7PMun5WAI4rEwEXhH5zv1brzcQV0-tpxkWfx7tXn1JFpwGVGmKs8arto0Z4psjMHoiYOjDXMbnySJcxy7u60GzU93FnPM8uyqAAs7aLeGWtJmf5_jqmqZ489sXae55umtkpYSMtFPYeJ3MmXiDrJbwkZaHcwJVVYaGqm6TpI8lq4hqk-VBVzEdxRS5d8mEAl6lEisqVc6MTt7Sd4OJiHBMofJMMTR-SPvJ6f1l9wEGaPqS5CrjGbUj_GzHZjkeJukoe37ZIoPuxcNZj5VZFpiC9cqYa42j8ZXMFTwdwDxCcxUIQIqy6UfgvqxQkXBkwB1hdKB89HttYyUPuJXS8G2yECex2SHU2MAoqV3pRb4QWsl228iW5MZq6cHENeJWCxyqUoIcM2GMw6l4MholBKOEuVFCXiPHn2NeCwGOP3vXK7uF5WGchKjyBijP850aOalsOW3-fbbd_3U_JEt3593w5vL2eo8sN_FhnkdG1slClr6ZfUAvWXSQb9APa2Tmyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Violence+detection+in+videos+for+an+intelligent+surveillance+system+using+MoBSIFT+and+movement+filtering+algorithm&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Febin%2C+I.+P.&rft.au=Jayasree%2C+K.&rft.au=Joy%2C+Preetha+Theresa&rft.date=2020-05-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=23&rft.issue=2&rft.spage=611&rft.epage=623&rft_id=info:doi/10.1007%2Fs10044-019-00821-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_019_00821_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon