Violence detection in videos for an intelligent surveillance system using MoBSIFT and movement filtering algorithm
Action recognition is an active research area in computer vision as it has enormous applications in today’s world, out of which, recognizing violent action is of great importance since it is closely related to our safety and security. An intelligent surveillance system is the idea of automatically r...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 23; no. 2; pp. 611 - 623 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.05.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7541 1433-755X |
DOI | 10.1007/s10044-019-00821-3 |
Cover
Loading…
Abstract | Action recognition is an active research area in computer vision as it has enormous applications in today’s world, out of which, recognizing violent action is of great importance since it is closely related to our safety and security. An intelligent surveillance system is the idea of automatically recognizing suspicious activities in surveillance videos and thereby supporting security personals to take up right action on the right time. Under this area, most of the researchers were focused on people detection and tracking, loitering, etc., whereas detecting violent actions or fights is comparatively a less studied area. Previous works considered the local spatiotemporal feature extractors; however, it accompanies the overhead of complex optical flow estimation. Even though the temporal derivative is a fast alternative to optical flow, it alone gives very low accuracy and scales-dependent result. Hence, here we propose a cascaded method of violence detection based on motion boundary SIFT (MoBSIFT) and movement filtering. In this method, the surveillance videos are checked through a movement filtering algorithm based on temporal derivative and avoid most of the nonviolent actions from going through feature extraction. Only the filtered frames may allow going through feature extraction. In addition to scale-invariant feature transform (SIFT) and histogram of optical flow feature, motion boundary histogram is also extracted and combined to form MoBSIFT descriptor. The experimental results show that the proposed MoBSIFT outperforms the existing methods in accuracy by its high tolerance to camera movements. Time complexity has also proved to be reduced by the use of movement filtering along with MoBSIFT. |
---|---|
AbstractList | Action recognition is an active research area in computer vision as it has enormous applications in today’s world, out of which, recognizing violent action is of great importance since it is closely related to our safety and security. An intelligent surveillance system is the idea of automatically recognizing suspicious activities in surveillance videos and thereby supporting security personals to take up right action on the right time. Under this area, most of the researchers were focused on people detection and tracking, loitering, etc., whereas detecting violent actions or fights is comparatively a less studied area. Previous works considered the local spatiotemporal feature extractors; however, it accompanies the overhead of complex optical flow estimation. Even though the temporal derivative is a fast alternative to optical flow, it alone gives very low accuracy and scales-dependent result. Hence, here we propose a cascaded method of violence detection based on motion boundary SIFT (MoBSIFT) and movement filtering. In this method, the surveillance videos are checked through a movement filtering algorithm based on temporal derivative and avoid most of the nonviolent actions from going through feature extraction. Only the filtered frames may allow going through feature extraction. In addition to scale-invariant feature transform (SIFT) and histogram of optical flow feature, motion boundary histogram is also extracted and combined to form MoBSIFT descriptor. The experimental results show that the proposed MoBSIFT outperforms the existing methods in accuracy by its high tolerance to camera movements. Time complexity has also proved to be reduced by the use of movement filtering along with MoBSIFT. |
Author | Febin, I. P. Joy, Preetha Theresa Jayasree, K. |
Author_xml | – sequence: 1 givenname: I. P. surname: Febin fullname: Febin, I. P. email: febimolu@gmail.com organization: Department of Computer Engineering, Govt. Model Engineering College Thrikkakara – sequence: 2 givenname: K. surname: Jayasree fullname: Jayasree, K. organization: Department of Computer Engineering, Govt. Model Engineering College Thrikkakara – sequence: 3 givenname: Preetha Theresa surname: Joy fullname: Joy, Preetha Theresa organization: Department of Computer Science and Engineering, College of Engineering Cherthala |
BookMark | eNp9kMFKAzEQhoNUsK2-gKeA59VkJ9vuHrVYLVQ8WMVbSLOzNSW7qUla6Nu7a0XBQy-ZkPm_mfANSK9xDRJyydk1Z2x8E9pTiITxImEsT3kCJ6TPBUAyzrL33u9d8DMyCGHNGACkeZ_4N-MsNhppiRF1NK6hpqE7U6ILtHKequ4horVmhU2kYet3aKxVHRP2IWJNt8E0K_rk7l5m00ULlLR2O6y7eGVsRN-1lV05b-JHfU5OK2UDXvzUIXmd3i8mj8n8-WE2uZ0nGngRE14hK5kYFaCzPNO4FCXoQnCeqTRf8jSvhF4KpgpgAstC5yA4jLFSUEClFMKQXB3mbrz73GKIcu22vmlXyrTNjFIY5axN5YeU9i4Ej5XUJqrOQ_TKWMmZ7AzLg2HZGpbfhiW0aPoP3XhTK78_DsEBCptOC_q_Xx2hvgCH3JHR |
CitedBy_id | crossref_primary_10_1016_j_jisa_2023_103583 crossref_primary_10_1007_s40313_021_00868_w crossref_primary_10_3390_bdcc7030150 crossref_primary_10_1007_s00034_024_02824_w crossref_primary_10_48084_etasr_8194 crossref_primary_10_1109_ACCESS_2023_3310885 crossref_primary_10_1186_s12888_024_06248_3 crossref_primary_10_7717_peerj_cs_920 crossref_primary_10_1007_s10044_023_01166_8 crossref_primary_10_3233_WEB_230103 crossref_primary_10_1007_s11042_022_12532_9 crossref_primary_10_1007_s00500_023_07820_x crossref_primary_10_2139_ssrn_4111254 crossref_primary_10_1007_s41315_024_00400_8 crossref_primary_10_3390_s22124502 crossref_primary_10_1109_ACCESS_2023_3284472 crossref_primary_10_1186_s40537_024_00984_9 crossref_primary_10_1142_S0218001422550023 crossref_primary_10_1007_s11042_023_17064_4 crossref_primary_10_3390_s23042358 crossref_primary_10_1109_TII_2021_3116377 crossref_primary_10_1080_23335777_2021_1940303 crossref_primary_10_1007_s11042_024_19388_1 crossref_primary_10_1007_s13042_025_02540_0 crossref_primary_10_1007_s13369_024_09536_y crossref_primary_10_32604_cmc_2023_030197 crossref_primary_10_4218_etrij_2023_0222 crossref_primary_10_1016_j_ins_2022_05_045 crossref_primary_10_1016_j_engappai_2024_109800 crossref_primary_10_1155_2021_5587873 crossref_primary_10_3390_s22062216 crossref_primary_10_1007_s11276_023_03571_7 crossref_primary_10_1016_j_knosys_2022_109456 crossref_primary_10_2478_ijanmc_2024_0036 crossref_primary_10_1155_2021_9965781 crossref_primary_10_3233_JIFS_234365 crossref_primary_10_1007_s11760_022_02213_3 crossref_primary_10_1016_j_neucom_2024_128113 |
Cites_doi | 10.1109/CVPRW.2012.6239348 10.1109/TCSVT.2016.2589858 10.1109/CVPR.2011.5995407 10.1109/ICASSP.2014.6854259 10.1016/j.snb.2012.11.071 10.1109/SIBGRAPI.2010.38 10.1016/j.neucom.2015.07.105 10.1007/s11042-015-2648-8 10.1016/j.imavis.2016.01.006 10.3390/computers2020088 10.1007/11752912_55 10.1007/978-3-540-89796-5_33 10.1109/TPAMI.2007.70711 10.1109/AVSS.2007.4425310 10.1371/journal 10.1109/ICIP.1998.723496 10.1186/1687-6180-2013-176 10.1007/978-3-642-23678-5_39 10.1007/11744047_33 10.1109/CVPRW.2012.6239234 10.1109/WACV.2015.27 10.1016/j.cviu.2006.07.013 10.1016/j.patrec.2017.04.015 10.1145/973264.973282 10.1109/ICPR.2002.1044748 10.1023/B:VISI.0000029664.99615.94 10.1016/j.eswa.2010.10.031 10.1109/TIFS.2017.2725820 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 Springer-Verlag London Ltd., part of Springer Nature 2019. |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: Springer-Verlag London Ltd., part of Springer Nature 2019. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-019-00821-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
EndPage | 623 |
ExternalDocumentID | 10_1007_s10044_019_00821_3 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-1fe0d04693c585ceb4d3c94115a28b128f4cb40a9304ed9c834137efa393faae3 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Fri Jul 25 05:37:39 EDT 2025 Thu Apr 24 22:59:38 EDT 2025 Tue Jul 01 01:15:16 EDT 2025 Fri Feb 21 02:29:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Action recognition Abnormal activity detection Video content analysis Video event detection Violence detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-1fe0d04693c585ceb4d3c94115a28b128f4cb40a9304ed9c834137efa393faae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2393623680 |
PQPubID | 2043691 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2393623680 crossref_citationtrail_10_1007_s10044_019_00821_3 crossref_primary_10_1007_s10044_019_00821_3 springer_journals_10_1007_s10044_019_00821_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2020 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Chen M, Hauptmann A (2009) MoSIFT: recognizing human actions in surveillance videos. Technical report, Carnegie Mellon University, Pittsburgh, USA Giannakopoulos T, Makris A, Kosmopoulos D, Perantonis S, Theodoridis S (2010) Audio-visual fusion for detecting violent scenes in videos. In: Artificial intelligence: theories, models and applications, pp 91–100 GaoZNieWLiuAZhangHEvaluation of local spatial–temporal features for cross-view action recognitionNeurocomputing201617311011710.1016/j.neucom.2015.07.105 Yun K, Honorio J, Chattopadhyay D, Berg TL, Samaras D (2012) Two-person interaction detection using body-pose features and multiple instance learning. In: IEEE computer society conference on computer vision and pattern recognition workshops, pp 28–35 MabroukABZagroubaESpatio-temporal feature using optical flow based distribution for violence detectionPattern Recognit Lett201792626710.1016/j.patrec.2017.04.015 GorelickLBlankMShechtmanEIraniMBasriRActions as space-time shapesIEEE Trans Pattern Anal Mach Intell200729122247225310.1109/TPAMI.2007.70711 KeS-RThucHLeeY-JA review on video-based human activity recognitionComputers201328813110.3390/computers2020088 Mousavi H, Mohammadi S, Perina A, Chellali R, Murino V (2015) Analyzing tracklets for the detection of abnormal crowd behavior. In: IEEE winter conference on applications of computer vision, pp 148–15 LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vision20046029111010.1023/B:VISI.0000029664.99615.94 Colque RVHM, Junior CAC, Schwartz WR (2015) Histograms of optical flow orientation and magnitude to detect anomalous events in videos. In: 28th SIBGRAPI conference on graphics, patterns and images, pp 126–133 Datta A, Shah M, Da Vitoria Lobo N (2002) Person-on-person violence detection in video data. In: 16th international conference on pattern recognition, pp 433–438 Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local svm approach. In: 17th international conference on pattern recognition (ICPR’04), IEEE Comp. Soc. Washington, DC, USA, vol 3, pp 32–36 LiuMWangMWangJLiDComparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: application to the recognition of orange beverage and Chinese vinegarSens Actuators B201317797098010.1016/j.snb.2012.11.071 Giannakopoulos T, Kosmopoulos D, Aristidou A, Theodoridis S (2006) Violence content classification using audio features. In: Proceedings of the 4th helenic conference on advances in artificial intelligence. Springer, pp 502–507 GaoYLiuHSunXWangCLiuYViolence detection using oriented violent flowsImage Vis Comput201648–49374110.1016/j.imavis.2016.01.006 PaulMHaqueSMEChakrabortySHuman detection in surveillance videos and its applications a reviewEURASIP J Adv Signal Process2013201317610.1186/1687-6180-2013-176 Nam J, Alghoniemy M, Tewfik AH (1998) Audio-visual content-based violent scene characterization. In: Proceedings 1998 international conference on image processing. ICIP98 (Cat. No. 98CB36269). IEEE Comput. Soc, Chicago, USA, pp 353–357 Zajdel W, Krijnders JD, Andringa T, Gavrila DM (2007) CASSANDRA: audio-video sensor fusion for aggression detection. In: 2007 IEEE conference on advanced video and signal based surveillance, pp 200–205 WeinlandDRonfardRBoyerEFree viewpoint action recognition using motion history volumesComput Vis Image Underst200610424925710.1016/j.cviu.2006.07.013 LorenaACJacinthoLuis FOSiqueiraMFDe GiovanniRLohmannLGde AndréCPLFCarvalhoMYComparing machine learning classifiers in potential distribution modellingExpert Syst Appl2011385268527510.1016/j.eswa.2010.10.031 Clarin C, Dionisio J, Echavez M, Naval P (2005) DOVE: Detection of movie violence using motion intensity analysis on skin and blood. Technical report, University of the Philippines Xu L, Gong C, Yang J, Wu Q, Yao L (2014) Violent video detection based on MoSIFT feature and sparse coding. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 3538–3542 Cheng W, Chu W, Ling J (2003) Semantic context detection based on hierarchical audio models. In: Proceedings of the ACM SIGMM workshop on multimedia information retrieval, pp. 109–115 GraciaISSuarezODGarciaGBKimT-KFast fight detectionPLoS ONE2015104e012044810.1371/journal Gong Y, Wang W, Jiang S, Huang Q, Gao W (2008) Detecting violent scenes in movies by auditory and visual cues. In: Proceedings of the 9th Pacific Rim conference on multimedia. Springer, Berlin, Heidelberg, pp 317–326 ZhangTJiaWHeXYangJDiscriminative dictionary learning with motion weber local descriptor for violence detectionIEEE Trans Circuits Syst Video Technol201727369670910.1109/TCSVT.2016.2589858 SenstTEiseleinVKuhnASikoraTCrowd violence detection using global motion-compensated lagrangian features and scale-sensitive video-level representationIEEE Trans Inf Forensics Secur201712122945295610.1109/TIFS.2017.2725820 de Souza FD, Chavez GC, do Valle EA, de A Araujo A (2010) Violence detection in video using spatio-temporal features. In: 23rd SIBGRAPI conference on graphics, patterns and images, pp 224–230 Hassner T, Itcher Y, Kliper-Gross O (2012) Violent flows: real-time detection of violent crowd behavior. In: 2012 IEEE computer society conference on computer vision and pattern recognition workshops. IEEE, Providence, USA, pp 1–6 Bermejo E, Deni O, Bueno G, Sukthankar R. (2011) Violence detection in video using computer vision techniques. In: Proceedings of the 14th international conference on computer analysis of images and patterns. Springer, pp 332–339 Dalal N, Triggs B, Schmid C (2006) Human Detection using oriented histograms of flow and appearance. In: Proceedings of 9th ECCV, pp 428–441 Chen L-H, Hsu H-W, Wang L-Y, Su C-W (2011) Violence detection in movies. In: 2011 Eighth international conference computer graphics, imaging and visualization. IEEE Comput. Soc, Washington, DC, USA, pp 119–124 Lin J, Wang W (2009) Weakly-supervised violence detection in movies with audio and video based cotraining. In: Proceedings of the 10th Pacific Rim conference on multimedia. Springer, Berlin, Heidelberg, pp 930–935 Deniz O, Serrano I, Bueno G, Tae-Tyun K (2014) Fast violence detection in video. In: VISAPP 2014 proceedings of the 9th international conference on computer vision theory and applications, pp 478–485 ZhangTYangZJiaWYangBYangJHeXA new method for violence detection in surveillance scenesMultimed Tools Appl2016757327734910.1007/s11042-015-2648-8 Wang H, Klaser A, Schmid C, Liu C-L (2011) Action recognition by dense trajectories. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Colorado Springs, USA, pp 3169–3176 821_CR20 Y Gao (821_CR23) 2016; 48–49 821_CR22 M Liu (821_CR35) 2013; 177 821_CR21 M Paul (821_CR33) 2013; 2013 821_CR29 821_CR3 821_CR6 821_CR5 821_CR2 T Zhang (821_CR24) 2016; 75 L Gorelick (821_CR30) 2007; 29 821_CR1 T Senst (821_CR26) 2017; 12 AC Lorena (821_CR36) 2011; 38 S-R Ke (821_CR4) 2013; 2 DG Lowe (821_CR32) 2004; 60 821_CR11 821_CR10 821_CR13 D Weinland (821_CR31) 2006; 104 821_CR12 821_CR34 821_CR15 821_CR14 821_CR8 821_CR17 821_CR7 821_CR16 821_CR19 821_CR9 Z Gao (821_CR18) 2016; 173 IS Gracia (821_CR28) 2015; 10 T Zhang (821_CR25) 2017; 27 AB Mabrouk (821_CR27) 2017; 92 |
References_xml | – reference: Hassner T, Itcher Y, Kliper-Gross O (2012) Violent flows: real-time detection of violent crowd behavior. In: 2012 IEEE computer society conference on computer vision and pattern recognition workshops. IEEE, Providence, USA, pp 1–6 – reference: Gong Y, Wang W, Jiang S, Huang Q, Gao W (2008) Detecting violent scenes in movies by auditory and visual cues. In: Proceedings of the 9th Pacific Rim conference on multimedia. Springer, Berlin, Heidelberg, pp 317–326 – reference: Datta A, Shah M, Da Vitoria Lobo N (2002) Person-on-person violence detection in video data. In: 16th international conference on pattern recognition, pp 433–438 – reference: GaoZNieWLiuAZhangHEvaluation of local spatial–temporal features for cross-view action recognitionNeurocomputing201617311011710.1016/j.neucom.2015.07.105 – reference: GorelickLBlankMShechtmanEIraniMBasriRActions as space-time shapesIEEE Trans Pattern Anal Mach Intell200729122247225310.1109/TPAMI.2007.70711 – reference: Giannakopoulos T, Kosmopoulos D, Aristidou A, Theodoridis S (2006) Violence content classification using audio features. In: Proceedings of the 4th helenic conference on advances in artificial intelligence. Springer, pp 502–507 – reference: Giannakopoulos T, Makris A, Kosmopoulos D, Perantonis S, Theodoridis S (2010) Audio-visual fusion for detecting violent scenes in videos. In: Artificial intelligence: theories, models and applications, pp 91–100 – reference: Wang H, Klaser A, Schmid C, Liu C-L (2011) Action recognition by dense trajectories. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Colorado Springs, USA, pp 3169–3176 – reference: Chen L-H, Hsu H-W, Wang L-Y, Su C-W (2011) Violence detection in movies. In: 2011 Eighth international conference computer graphics, imaging and visualization. IEEE Comput. Soc, Washington, DC, USA, pp 119–124 – reference: LiuMWangMWangJLiDComparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: application to the recognition of orange beverage and Chinese vinegarSens Actuators B201317797098010.1016/j.snb.2012.11.071 – reference: Yun K, Honorio J, Chattopadhyay D, Berg TL, Samaras D (2012) Two-person interaction detection using body-pose features and multiple instance learning. In: IEEE computer society conference on computer vision and pattern recognition workshops, pp 28–35 – reference: WeinlandDRonfardRBoyerEFree viewpoint action recognition using motion history volumesComput Vis Image Underst200610424925710.1016/j.cviu.2006.07.013 – reference: ZhangTJiaWHeXYangJDiscriminative dictionary learning with motion weber local descriptor for violence detectionIEEE Trans Circuits Syst Video Technol201727369670910.1109/TCSVT.2016.2589858 – reference: MabroukABZagroubaESpatio-temporal feature using optical flow based distribution for violence detectionPattern Recognit Lett201792626710.1016/j.patrec.2017.04.015 – reference: Lin J, Wang W (2009) Weakly-supervised violence detection in movies with audio and video based cotraining. In: Proceedings of the 10th Pacific Rim conference on multimedia. Springer, Berlin, Heidelberg, pp 930–935 – reference: Zajdel W, Krijnders JD, Andringa T, Gavrila DM (2007) CASSANDRA: audio-video sensor fusion for aggression detection. In: 2007 IEEE conference on advanced video and signal based surveillance, pp 200–205 – reference: Xu L, Gong C, Yang J, Wu Q, Yao L (2014) Violent video detection based on MoSIFT feature and sparse coding. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 3538–3542 – reference: LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vision20046029111010.1023/B:VISI.0000029664.99615.94 – reference: de Souza FD, Chavez GC, do Valle EA, de A Araujo A (2010) Violence detection in video using spatio-temporal features. In: 23rd SIBGRAPI conference on graphics, patterns and images, pp 224–230 – reference: Chen M, Hauptmann A (2009) MoSIFT: recognizing human actions in surveillance videos. Technical report, Carnegie Mellon University, Pittsburgh, USA – reference: Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local svm approach. In: 17th international conference on pattern recognition (ICPR’04), IEEE Comp. Soc. Washington, DC, USA, vol 3, pp 32–36 – reference: Mousavi H, Mohammadi S, Perina A, Chellali R, Murino V (2015) Analyzing tracklets for the detection of abnormal crowd behavior. In: IEEE winter conference on applications of computer vision, pp 148–15 – reference: PaulMHaqueSMEChakrabortySHuman detection in surveillance videos and its applications a reviewEURASIP J Adv Signal Process2013201317610.1186/1687-6180-2013-176 – reference: Clarin C, Dionisio J, Echavez M, Naval P (2005) DOVE: Detection of movie violence using motion intensity analysis on skin and blood. Technical report, University of the Philippines – reference: LorenaACJacinthoLuis FOSiqueiraMFDe GiovanniRLohmannLGde AndréCPLFCarvalhoMYComparing machine learning classifiers in potential distribution modellingExpert Syst Appl2011385268527510.1016/j.eswa.2010.10.031 – reference: Cheng W, Chu W, Ling J (2003) Semantic context detection based on hierarchical audio models. In: Proceedings of the ACM SIGMM workshop on multimedia information retrieval, pp. 109–115 – reference: GaoYLiuHSunXWangCLiuYViolence detection using oriented violent flowsImage Vis Comput201648–49374110.1016/j.imavis.2016.01.006 – reference: Nam J, Alghoniemy M, Tewfik AH (1998) Audio-visual content-based violent scene characterization. In: Proceedings 1998 international conference on image processing. ICIP98 (Cat. No. 98CB36269). IEEE Comput. Soc, Chicago, USA, pp 353–357 – reference: Bermejo E, Deni O, Bueno G, Sukthankar R. (2011) Violence detection in video using computer vision techniques. In: Proceedings of the 14th international conference on computer analysis of images and patterns. Springer, pp 332–339 – reference: Dalal N, Triggs B, Schmid C (2006) Human Detection using oriented histograms of flow and appearance. In: Proceedings of 9th ECCV, pp 428–441 – reference: ZhangTYangZJiaWYangBYangJHeXA new method for violence detection in surveillance scenesMultimed Tools Appl2016757327734910.1007/s11042-015-2648-8 – reference: SenstTEiseleinVKuhnASikoraTCrowd violence detection using global motion-compensated lagrangian features and scale-sensitive video-level representationIEEE Trans Inf Forensics Secur201712122945295610.1109/TIFS.2017.2725820 – reference: KeS-RThucHLeeY-JA review on video-based human activity recognitionComputers201328813110.3390/computers2020088 – reference: Deniz O, Serrano I, Bueno G, Tae-Tyun K (2014) Fast violence detection in video. In: VISAPP 2014 proceedings of the 9th international conference on computer vision theory and applications, pp 478–485 – reference: GraciaISSuarezODGarciaGBKimT-KFast fight detectionPLoS ONE2015104e012044810.1371/journal – reference: Colque RVHM, Junior CAC, Schwartz WR (2015) Histograms of optical flow orientation and magnitude to detect anomalous events in videos. In: 28th SIBGRAPI conference on graphics, patterns and images, pp 126–133 – ident: 821_CR20 doi: 10.1109/CVPRW.2012.6239348 – volume: 27 start-page: 696 issue: 3 year: 2017 ident: 821_CR25 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2016.2589858 – ident: 821_CR34 doi: 10.1109/CVPR.2011.5995407 – ident: 821_CR9 – ident: 821_CR19 doi: 10.1109/ICASSP.2014.6854259 – volume: 177 start-page: 970 year: 2013 ident: 821_CR35 publication-title: Sens Actuators B doi: 10.1016/j.snb.2012.11.071 – ident: 821_CR1 doi: 10.1109/SIBGRAPI.2010.38 – volume: 173 start-page: 110 year: 2016 ident: 821_CR18 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.105 – ident: 821_CR22 – volume: 75 start-page: 7327 year: 2016 ident: 821_CR24 publication-title: Multimed Tools Appl doi: 10.1007/s11042-015-2648-8 – volume: 48–49 start-page: 37 year: 2016 ident: 821_CR23 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2016.01.006 – volume: 2 start-page: 88 year: 2013 ident: 821_CR4 publication-title: Computers doi: 10.3390/computers2020088 – ident: 821_CR5 – ident: 821_CR7 doi: 10.1007/11752912_55 – ident: 821_CR8 doi: 10.1007/978-3-540-89796-5_33 – volume: 29 start-page: 2247 issue: 12 year: 2007 ident: 821_CR30 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2007.70711 – ident: 821_CR12 – ident: 821_CR14 – ident: 821_CR15 doi: 10.1109/AVSS.2007.4425310 – volume: 10 start-page: e0120448 issue: 4 year: 2015 ident: 821_CR28 publication-title: PLoS ONE doi: 10.1371/journal – ident: 821_CR10 doi: 10.1109/ICIP.1998.723496 – volume: 2013 start-page: 176 year: 2013 ident: 821_CR33 publication-title: EURASIP J Adv Signal Process doi: 10.1186/1687-6180-2013-176 – ident: 821_CR3 doi: 10.1007/978-3-642-23678-5_39 – ident: 821_CR6 doi: 10.1007/11744047_33 – ident: 821_CR29 – ident: 821_CR17 doi: 10.1109/CVPRW.2012.6239234 – ident: 821_CR2 – ident: 821_CR21 doi: 10.1109/WACV.2015.27 – volume: 104 start-page: 249 year: 2006 ident: 821_CR31 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2006.07.013 – volume: 92 start-page: 62 year: 2017 ident: 821_CR27 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2017.04.015 – ident: 821_CR11 doi: 10.1145/973264.973282 – ident: 821_CR16 doi: 10.1109/ICPR.2002.1044748 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 821_CR32 publication-title: Int J Comput Vision doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 38 start-page: 5268 year: 2011 ident: 821_CR36 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.10.031 – ident: 821_CR13 – volume: 12 start-page: 2945 issue: 12 year: 2017 ident: 821_CR26 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2017.2725820 |
SSID | ssj0033328 |
Score | 2.4181318 |
Snippet | Action recognition is an active research area in computer vision as it has enormous applications in today’s world, out of which, recognizing violent action is... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 611 |
SubjectTerms | Algorithms Complexity Computer Science Computer vision Feature extraction Filtration Histograms Motion perception Movement Optical flow (image analysis) Pattern Recognition Security Surveillance Theoretical Advances Violence |
Title | Violence detection in videos for an intelligent surveillance system using MoBSIFT and movement filtering algorithm |
URI | https://link.springer.com/article/10.1007/s10044-019-00821-3 https://www.proquest.com/docview/2393623680 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCy8EYWCPLCBpaR20mQsiPISLFAEU-T4AZVKgprA7-cutSkgQGKL_Bpytr_v5LvvCNmPEhtyqyTTXCcMEM8yGSf4BXRYmRxQEfOdr67js6G4uI_uXVJY5aPd_ZNkc1N_SnYLBEZMpAxxK2R8nixE6LvDLh52-_7-5Zw3FVWBCHDWi0ToUmV-XuMrHM045rdn0QZtBitkydFE2p_adZXMmWKNLDvKSN2BrKDJV2Xwbetkcucyiag2dRNoVdBRQTHfrqwocFQqscErcda0ep28GSw-hHOmys4Uw-Ef6VV5dHM-uIUJmj6XjbJ4Te0IH9ixW44fy8mofnreIMPBye3xGXOVFZiCI1ez0JpAo2fMFbgLYBKhuUoFsEPZTXKALCtULgKZ8kAYnaoEsa5nrOQpt1IavklaRVmYLUKNTY2SOpRxngihlez1jIwkN1bLGBZuk9D_4Ew52XGsfjHOZoLJaJQMjJI1Rsl4mxx8zHmZim78Obrj7Za5A1hlqOwGzC5OgjY59Lacdf--2vb_hu-QxS564E0IZIe06smr2QWaUud7ZKF_-nB5stfsznenjOEv |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDnBhRxQK-MANLCW1mybHgqjKUi60iFvkeIFKkKAm8P3MpDYFBEjcIsf2IS_2e5Zn3hBy1I5tyK2STHMdM2A8y2QU4xPIYWUyYEXMdx7cRP2RuLxv37uksNJHu_sryXqn_pTsFgiMmEgY8lbI-DxZBDEQYyDXqNX1-y_nvK6oCkKAs05bhC5V5uc5vtLRTGN-uxat2aa3RlacTKTdKa7rZM7kG2TVSUbqFmQJTb4qg2_bJJM7l0lEtanqQKucjnOK-XZFSUGjUokN3omzouXr5M1g8SEcM3V2phgO_0AHxentRW8IAzR9Lmpn8YraMV6w42v59FBMxtXj8xYZ9c6HZ33mKiswBUuuYqE1gcaTMVdwXABIhOYqEaAOZSvOgLKsUJkIZMIDYXSiYuS6jrGSJ9xKafg2WciL3OwQamxilNShjLJYCK1kp2NkW3JjtYxg4gYJ_QdOlbMdx-oXT-nMMBlBSQGUtAYl5Q1y_DHmZWq68WfvpsctdQuwTNHZDZRdFAcNcuKxnL3-fbbd_3U_JEv94eA6vb64udojyy08jdfhkE2yUE1ezT5Ilio7qP_Qd1iy4o4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJMSFHVEo4AM3sJrUbpocy1KVpQgJirhFjpdSqSQoDXw_M1loQYDEzfJ28NieZ3neG0KOWr51uVWSaa59Bh7PMun5WAI4rEwEXhH5zv1brzcQV0-tpxkWfx7tXn1JFpwGVGmKs8arto0Z4psjMHoiYOjDXMbnySJcxy7u60GzU93FnPM8uyqAAs7aLeGWtJmf5_jqmqZ489sXae55umtkpYSMtFPYeJ3MmXiDrJbwkZaHcwJVVYaGqm6TpI8lq4hqk-VBVzEdxRS5d8mEAl6lEisqVc6MTt7Sd4OJiHBMofJMMTR-SPvJ6f1l9wEGaPqS5CrjGbUj_GzHZjkeJukoe37ZIoPuxcNZj5VZFpiC9cqYa42j8ZXMFTwdwDxCcxUIQIqy6UfgvqxQkXBkwB1hdKB89HttYyUPuJXS8G2yECex2SHU2MAoqV3pRb4QWsl228iW5MZq6cHENeJWCxyqUoIcM2GMw6l4MholBKOEuVFCXiPHn2NeCwGOP3vXK7uF5WGchKjyBijP850aOalsOW3-fbbd_3U_JEt3593w5vL2eo8sN_FhnkdG1slClr6ZfUAvWXSQb9APa2Tmyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Violence+detection+in+videos+for+an+intelligent+surveillance+system+using+MoBSIFT+and+movement+filtering+algorithm&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Febin%2C+I.+P.&rft.au=Jayasree%2C+K.&rft.au=Joy%2C+Preetha+Theresa&rft.date=2020-05-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=23&rft.issue=2&rft.spage=611&rft.epage=623&rft_id=info:doi/10.1007%2Fs10044-019-00821-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_019_00821_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |