FIXME: synchronize with database! An empirical study of data access self-admitted technical debt
Developers sometimes choose design and implementation shortcuts due to the pressure from tight release schedules. However, shortcuts introduce technical debt that increases as the software evolves. The debt needs to be repaid as fast as possible to minimize its impact on software development and sof...
Saved in:
Published in | Empirical software engineering : an international journal Vol. 27; no. 6 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1382-3256 1573-7616 |
DOI | 10.1007/s10664-022-10119-4 |
Cover
Loading…
Abstract | Developers sometimes choose design and implementation shortcuts due to the pressure from tight release schedules. However, shortcuts introduce technical debt that increases as the software evolves. The debt needs to be repaid as fast as possible to minimize its impact on software development and software quality. Sometimes, technical debt is admitted by developers in comments and commit messages. Such debt is known as self-admitted technical debt (SATD). In data-intensive systems, where data manipulation is a critical functionality, the presence of SATD in the data access logic could seriously harm performance and maintainability. Understanding the composition and distribution of the SATDs across software systems and their evolution could provide insights into managing technical debt efficiently. We present a large-scale empirical study on the prevalence, composition, and evolution of SATD in data-intensive systems. We analyzed 83 open-source systems relying on relational databases as well as 19 systems relying on NoSQL databases. We detected SATD in source code comments obtained from different snapshots of the subject systems. To understand the evolution dynamics of SATDs, we conducted a survival analysis. Next, we performed a manual analysis of 361 sample data-access SATDs, investigating the composition of data-access SATDs and the reasons behind their introduction and removal. We identified 15 new SATD categories, out of which 11 are specific to database access operations. We found that most of the data-access SATDs are introduced in the later stages of change history rather than at the beginning. We also observed that bug fixing and refactoring are the main reasons behind the introduction of data-access SATDs. |
---|---|
AbstractList | Developers sometimes choose design and implementation shortcuts due to the pressure from tight release schedules. However, shortcuts introduce technical debt that increases as the software evolves. The debt needs to be repaid as fast as possible to minimize its impact on software development and software quality. Sometimes, technical debt is admitted by developers in comments and commit messages. Such debt is known as self-admitted technical debt (SATD). In data-intensive systems, where data manipulation is a critical functionality, the presence of SATD in the data access logic could seriously harm performance and maintainability. Understanding the composition and distribution of the SATDs across software systems and their evolution could provide insights into managing technical debt efficiently. We present a large-scale empirical study on the prevalence, composition, and evolution of SATD in data-intensive systems. We analyzed 83 open-source systems relying on relational databases as well as 19 systems relying on NoSQL databases. We detected SATD in source code comments obtained from different snapshots of the subject systems. To understand the evolution dynamics of SATDs, we conducted a survival analysis. Next, we performed a manual analysis of 361 sample data-access SATDs, investigating the composition of data-access SATDs and the reasons behind their introduction and removal. We identified 15 new SATD categories, out of which 11 are specific to database access operations. We found that most of the data-access SATDs are introduced in the later stages of change history rather than at the beginning. We also observed that bug fixing and refactoring are the main reasons behind the introduction of data-access SATDs. |
ArticleNumber | 130 |
Author | Khomh, Foutse Muse, Biruk Asmare Cleve, Anthony Nagy, Csaba Antoniol, Giuliano |
Author_xml | – sequence: 1 givenname: Biruk Asmare orcidid: 0000-0001-8861-9526 surname: Muse fullname: Muse, Biruk Asmare email: biruk-asmare.muse@polymtl.ca organization: Polytechnique Montréal – sequence: 2 givenname: Csaba surname: Nagy fullname: Nagy, Csaba organization: Software Institute, Università della Svizzera italiana – sequence: 3 givenname: Anthony surname: Cleve fullname: Cleve, Anthony organization: Namur Digital Institute, University of Namur – sequence: 4 givenname: Foutse surname: Khomh fullname: Khomh, Foutse organization: Polytechnique Montréal – sequence: 5 givenname: Giuliano surname: Antoniol fullname: Antoniol, Giuliano organization: Polytechnique Montréal |
BookMark | eNp9kMFKAzEURYNUsK3-gKuI62gymUlTd6W0Wqi4UXAXM8kbm9JmapIi9euNrSC46CoPcs57l9tDHd96QOiS0RtG6eA2MipESWhREEYZG5LyBHVZNeBkIJjo5JnLgvCiEmeoF-OSUjoclFUXvU1nr4-TOxx33ixC690X4E-XFtjqpGsd4QqPPIb1xgVn9ArHtLU73Db7f6yNgRhxhFVDtF27lMDiBGbh97CFOp2j00avIlz8vn30Mp08jx_I_Ol-Nh7NieFsmAhrWJGTG8mqsuZAxbCCura0klZyI60xpdQ5vhWMM0kbBpkXklOohWkayfvo-rB3E9qPLcSklu02-HxSFUKKshDZy5Q8UCa0MQZolHFJJ9f6FLRbKUbVT5_q0KfKfap9n6rMavFP3QS31mF3XOIHKWbYv0P4S3XE-gbxRIkS |
CitedBy_id | crossref_primary_10_1007_s10664_024_10535_8 crossref_primary_10_1007_s10664_022_10271_x crossref_primary_10_1007_s10664_024_10449_5 crossref_primary_10_1145_3700793 crossref_primary_10_1016_j_infsof_2023_107354 |
Cites_doi | 10.1007/978-3-030-62522-1_33 10.1145/1595808.1595817 10.1109/TSE.2017.2653105 10.1109/ICSME.2017.8 10.1007/s10664-020-09854-3 10.1109/TSE.2018.2831232 10.1287/mnsc.2015.2196 10.1109/SEAA.2018.00066 10.1109/TSE.2017.2654244 10.1109/MS.2012.130 10.1145/3379597.3387459 10.1109/MTD.2016.9 10.1145/3387906.3388630 10.1007/978-3-319-62386-3_14 10.1109/QRS.2016.38 10.1109/MTD.2014.17 10.1145/3196398.3196423 10.1016/j.infsof.2020.106257 10.1145/3183440.3183478 10.1109/MC.2010.227 10.1145/2684822.2685324 10.1109/MTD.2015.7332621 10.1109/ICSE.2015.59 10.1007/s11219-019-09442-9 10.1007/978-981-15-4851-2_28 10.1016/j.infsof.2018.05.010 10.1109/SANER48275.2020.9054868 10.1109/ICSME.2014.31 10.1109/MTD.2014.9 10.1109/MC.2008.125 10.1145/157709.157715 10.1007/s10664-017-9522-4 10.1145/3194164.3194170 10.1007/s10664-017-9540-2 10.1109/ICDE51399.2021.00008 10.1016/j.infsof.2015.10.008 10.1016/j.jss.2014.12.027 10.1016/j.jss.2019.02.056 10.1186/1471-2105-16-S13-S8 10.1145/2901739.2901742 10.1145/3236024.3264598 10.1109/SEAA.2019.00058 10.1080/01621459.1958.10501452 10.1145/3379597.3387467 10.1006/jcss.2000.1711 10.1145/3183440.3183496 10.1109/ICSME.2017.44 10.5281/zenodo.5825671 10.1109/SANER.2016.72 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ JQ2 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS S0W |
DOI | 10.1007/s10664-022-10119-4 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Technology Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-7616 |
ExternalDocumentID | 10_1007_s10664_022_10119_4 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8R Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 8FD ABRTQ DWQXO JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-1f12101c8154b3e0695ebbd058d83c8dcc48a256d613180f1e1216830eb6cff83 |
IEDL.DBID | BENPR |
ISSN | 1382-3256 |
IngestDate | Fri Jul 25 12:22:33 EDT 2025 Tue Jul 01 03:32:21 EDT 2025 Thu Apr 24 23:00:07 EDT 2025 Fri Feb 21 02:44:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Self-admitted technical debt Data-intensive systems Database access Technical debt |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-1f12101c8154b3e0695ebbd058d83c8dcc48a256d613180f1e1216830eb6cff83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8861-9526 |
PQID | 2686426318 |
PQPubID | 326341 |
ParticipantIDs | proquest_journals_2686426318 crossref_citationtrail_10_1007_s10664_022_10119_4 crossref_primary_10_1007_s10664_022_10119_4 springer_journals_10_1007_s10664_022_10119_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Empirical software engineering : an international journal |
PublicationTitleAbbrev | Empir Software Eng |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Cunningham W (1992) The wycash portfolio management system. In: Addendum to the proceedings on object-oriented programming systems, languages, and applications (addendum), OOPSLA ’92. https://doi.org/10.1145/157709.157715. Association for Computing Machinery, pp 29–30 Weber JH, Cleve A, Meurice L, Ruiz FJB (2014) Managing technical debt in database schemas of critical software. In: 2014 Sixth international workshop on managing technical debt. https://doi.org/10.1109/MTD.2014.17, pp 43–46 Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lucia A, Poshyvanyk D (2015) When and why your code starts to smell bad. In: 2015 IEEE/ACM 37th IEEE international conference on software engineering, vol 1. IEEE, pp 403–414 PapadimitriouCHRaghavanPTamakiHVempalaSLatent semantic indexing: a probabilistic analysisJ Comput Syst Sci2000612217235180255610.1006/jcss.2000.1711 Zampetti F, Serebrenik A, Di Penta M (2020) Automatically learning patterns for self-admitted technical debt removal. In: 2020 IEEE 27th international conference on software analysis, evolution and reengineering (SANER). IEEE, pp 355–366 Potdar A, Shihab E (2014) An exploratory study on self-admitted technical debt. In: 2014 IEEE international conference on software maintenance and evolution. IEEE, pp 91–100 Al-Barak M, Bahsoon R (2016) Database design debts through examining schema evolution. In: 2016 IEEE 8th international workshop on managing technical debt (MTD). https://doi.org/10.1109/MTD.2016.9, pp 17–23 Sadalage PJ, Fowler M (2014) NoSQL distilled: a brief guide to the emerging world of polyglot persistence. Addison-Wesley AlvesNSMendesTSde MendonçaMGSpínolaROShullFSeamanCIdentification and management of technical debtInf Softw Technol201670C10012110.1016/j.infsof.2015.10.008https://doi.org/10.1016/j.infsof.2015.10.008 Johannes D, Khomh F, Antoniol G (2019) A large-scale empirical study of code smells in javascript projects. Softw Qual J:1–44 Muse BA, Rahman MM, Nagy C, Cleve A, Khomh F, Antoniol G (2020) On the prevalence, impact, and evolution of sql code smells in data-intensive systems. In: Proceedings of the 17th international conference on mining software repositories, MSR ’20. https://doi.org/10.1145/3379597.3387467. Association for Computing Machinery, New York, pp 327–338 Yu Z, Fahid FM, Tu H, Menzies T (2020) Identifying self-admitted technical debts with jitterbug: a two-step approach. arXiv:2002.11049 HuangQShihabEXiaXLoDLiSIdentifying self-admitted technical debt in open source projects using text miningEmpir Softw Eng201823141845110.1007/s10664-017-9522-4 TufanoMPalombaFBavotaGOlivetoRDi PentaMDe LuciaAPoshyvanykDWhen and why your code starts to smell bad (and whether the smells go away)IEEE Trans Softw Eng201743111063108810.1109/TSE.2017.2653105 Kamei Y, Maldonado EDS, Shihab E, Ubayashi N (2016) Using analytics to quantify interest of self-admitted technical debt. In: QuASoq/TDA@ APSEC, pp 68–71 Lin D, Neamtiu I (2009) Collateral evolution of applications and databases. In: Proceedings of the joint international and annual ERCIM workshops on principles of software evolution (IWPSE) and software evolution (Evol) workshops. https://doi.org/10.1145/1595808.1595817. ACM, pp 31–40 BleiDMNgAYJordanMILatent dirichlet allocationJ Mach Learn Res2003399310221112.68379 Scherzinger S, Klettke M (2013) Managing schema evolution in noSQL data stores. In: Proceedings of the 14th international symposium on database programming languages (DBPL 2013) YanMXiaXShihabELoDYinJYangXAutomating change-level self-admitted technical debt determinationIEEE Trans Softw Eng201845121211122910.1109/TSE.2018.2831232 Meurice L, Nagy C, Cleve A (2016) Detecting and preventing program inconsistencies under database schema evolution. In: Proceedings of the 2016 IEEE international conference on software quality, reliability and security (QRS 2016). https://doi.org/10.1109/QRS.2016.38. IEEE, pp 262–273 Chang J, Gerrish S, Wang C, Boyd-graber J, Blei D (2009) Reading tea leaves: how humans interpret topic models. In: Bengio Y, Schuurmans D, Lafferty J, Williams C, Culotta A (eds) Advances in neural information processing systems, vol 22. Curran Associates Inc Röder M, Both A, Hinneburg A (2015) Exploring the space of topic coherence measures. In: Proceedings of the eighth ACM international conference on Web search and data mining, pp 399–408 Scherzinger S, Sidortschuck S (2020) An empirical study on the design and evolution of noSQL database schemas. In: Dobbie G, Frank U, Kappel G, Liddle SW, Mayr HC (eds) Conceptual modeling. Springer International Publishing, Cham, pp 441–455 De Freitas Farias MA, de Mendonça Neto MG, da Silva AB, Spínola RO (2015) A contextualized vocabulary model for identifying technical debt on code comments. In: 2015 IEEE 7th international workshop on managing technical debt (MTD). IEEE, pp 25–32 LimETaksandeNSeamanCA balancing act: what software practitioners have to say about technical debtIEEE Softw2012296222710.1109/MS.2012.130https://doi.org/10.1109/MS.2012.130 Xavier L, Ferreira F, Brito R, Valente MT (2020) Beyond the code: mining self-admitted technical debt in issue tracker systems. In: Proceedings of the 17th international conference on mining software repositories, MSR ’20. https://doi.org/10.1145/3379597.3387459. Association for Computing Machinery, pp 137–146 Stonebraker M, Deng D, Brodie ML (2017) Application-database co-evolution: a new design and development paradigm. In: New England database day AnicheMBavotaGTreudeCGerosaMAvan DeursenACode smells for model-view-controller architecturesEmpir Softw Eng20182342121215710.1007/s10664-017-9540-2 CleveAMensTHainautJData-intensive system evolutionComputer201043811011210.1109/MC.2010.227https://doi.org/10.1109/MC.2010.227 SierraGShihabEKameiYA survey of self-admitted technical debtJ Syst Softw2019152708210.1016/j.jss.2019.02.056 da Silva MaldonadoEShihabETsantalisNUsing natural language processing to automatically detect self-admitted technical debtIEEE Trans Softw Eng201743111044106210.1109/TSE.2017.2654244 de Freitas Farias MA, Santos JA, Kalinowski M, Mendonça M, Spínola RO (2016) Investigating the identification of technical debt through code comment analysis. In: International conference on enterprise information systems. Springer, pp 284–309 Zampetti F, Serebrenik A, Di Penta M (2018) Was self-admitted technical debt removal a real removal? An in-depth perspective. In: Proceedings of the 15th international conference on mining software repositories, MSR ’18. https://doi.org/10.1145/3196398.3196423. Association for Computing Machinery, pp 526–536 Park B, Rao DL, Gudivada VN (2021) Dangers of bias in data-intensive information systems. In: Deshpande P, Abraham A, Iyer B, Ma K (eds) Next generation information processing system. Springer Singapore, Singapore, pp 259–271 Maldonado EDS, Abdalkareem R, Shihab E, Serebrenik A (2017) An empirical study on the removal of self-admitted technical debt. In: 2017 IEEE international conference on software maintenance and evolution (ICSME). IEEE, pp 238–248 Alfayez R, Alwehaibi W, Winn R, Venson E, Boehm B (2020) A systematic literature review of technical debt prioritization. In: Proceedings of the 3rd international conference on technical debt, TechDebt ’20. https://doi.org/10.1145/3387906.3388630. Association for Computing Machinery, pp 1–10 Vassiliadis P (2021) Profiles of schema evolution in free open source software projects. In: Proceedings of the 2021 IEEE 37th international conference on data engineering (ICDE), pp 1–12 Albarak M, Bahsoon R (2018) Prioritizing technical debt in database normalization using portfolio theory and data quality metrics. In: Proceedings of the 2018 international conference on technical debt, TechDebt ’18. https://doi.org/10.1145/3194164.3194170. Association for Computing Machinery, pp 31–40 GokhaleMCohenJYooAMillerWMJacobAUlmerCPearceRHardware technologies for high-performance data-intensive computingComputer2008414606810.1109/MC.2008.125 Bavota G, Russo B (2016) A large-scale empirical study on self-admitted technical debt. In: Proceedings of the 13th international conference on mining software repositories, pp 315–326 MaipraditRTreudeCHataHMatsumotoKWait for it: identifying “on-hold” self-admitted technical debtEmpir Softw Eng20202553770379810.1007/s10664-020-09854-3 Alves NSR, Ribeiro LF, Caires V, Mendes TS, Spíanol RO (2014) Towards an ontology of terms on technical debt. In: 2014 Sixth international workshop on managing technical debt. https://doi.org/10.1109/MTD.2014.9, pp 1–7 Nagy C, Cleve A (2018) SQLInspect: a static analyzer to inspect database usage in Java applications. In: Proceedings of the 40th international conference on software engineering: companion proceedings. ACM, pp 93–96 Zampetti F, Noiseux C, Antoniol G, Khomh F, Di Penta M (2017) Recommending when design technical debt should be self-admitted. In: 2017 IEEE International conference on software maintenance and evolution (ICSME). IEEE, pp 216–226 Wehaibi S, Shihab E, Guerrouj L (2016) Examining the impact of self-admitted technical debt on software quality. In: 2016 IEEE 23rd international conference on software analysis, evolution, and reengineering (SANER), vol 1. IEEE, pp 179–188 LiZAvgeriouPLiangPA systematic mapping study on technical debt and its managementJ Syst Softw2015101C19322010.1016/j.jss.2014.12.027https://doi.org/10.1016/j.jss.2014.12.027 RiosNde Mendonça NetoMGSpínolaROA tertiary study on technical debt: types, management strategies, research trends, and base information for practitionersInf Softw Technol201810211714510.1016/j.infsof.2018.05.010https://doi.org/10.1016/j.infsof.2018.05.010 Muse BA, Nagy C, Khomh F, Cleve A, Antoniol G (2022) Replication package for: FIXME: synchronize with database. An empirical study of data access self-admitted technical debt. https://doi.org/10.5281/zenodo.5825671 GitHub Inc (2019) Search API. https://developer.github.com/v3/search Hummel O, Eichelberger H, Giloj A, Werle D, Schmid K (2018) A collection of software engineering ch R Maipradit (10119_CR28) 2020; 25 CH Papadimitriou (10119_CR35) 2000; 61 10119_CR49 M Tufano (10119_CR48) 2017; 43 M Aniche (10119_CR6) 2018; 23 10119_CR45 10119_CR47 10119_CR46 10119_CR41 10119_CR40 E da Silva Maldonado (10119_CR12) 2017; 43 10119_CR43 10119_CR42 NS Alves (10119_CR5) 2016; 70 DM Blei (10119_CR8) 2003; 3 E Lim (10119_CR25) 2012; 29 M Gokhale (10119_CR17) 2008; 41 G Sierra (10119_CR44) 2019; 152 10119_CR3 10119_CR2 M Yan (10119_CR53) 2018; 45 10119_CR1 10119_CR37 10119_CR34 10119_CR33 10119_CR36 10119_CR30 10119_CR32 W Zhao (10119_CR58) 2015; 16 Z Li (10119_CR24) 2015; 101 Q Huang (10119_CR18) 2018; 23 10119_CR9 10119_CR7 10119_CR4 10119_CR27 10119_CR26 10119_CR29 N Rios (10119_CR39) 2018; 102 A Cleve (10119_CR10) 2010; 43 10119_CR21 10119_CR20 10119_CR50 EL Kaplan (10119_CR22) 1958; 53 RGJr Miller (10119_CR31) 2011 10119_CR19 10119_CR16 10119_CR15 N Ramasubbu (10119_CR38) 2016; 62 M Kuutila (10119_CR23) 2020; 121 10119_CR56 10119_CR11 10119_CR55 10119_CR14 10119_CR13 10119_CR57 10119_CR52 10119_CR51 10119_CR54 |
References_xml | – reference: Zampetti F, Noiseux C, Antoniol G, Khomh F, Di Penta M (2017) Recommending when design technical debt should be self-admitted. In: 2017 IEEE International conference on software maintenance and evolution (ICSME). IEEE, pp 216–226 – reference: PapadimitriouCHRaghavanPTamakiHVempalaSLatent semantic indexing: a probabilistic analysisJ Comput Syst Sci2000612217235180255610.1006/jcss.2000.1711 – reference: Sadalage PJ, Fowler M (2014) NoSQL distilled: a brief guide to the emerging world of polyglot persistence. Addison-Wesley – reference: Weber JH, Cleve A, Meurice L, Ruiz FJB (2014) Managing technical debt in database schemas of critical software. In: 2014 Sixth international workshop on managing technical debt. https://doi.org/10.1109/MTD.2014.17, pp 43–46 – reference: LiZAvgeriouPLiangPA systematic mapping study on technical debt and its managementJ Syst Softw2015101C19322010.1016/j.jss.2014.12.027https://doi.org/10.1016/j.jss.2014.12.027 – reference: Röder M, Both A, Hinneburg A (2015) Exploring the space of topic coherence measures. In: Proceedings of the eighth ACM international conference on Web search and data mining, pp 399–408 – reference: MaipraditRTreudeCHataHMatsumotoKWait for it: identifying “on-hold” self-admitted technical debtEmpir Softw Eng20202553770379810.1007/s10664-020-09854-3 – reference: Hummel O, Eichelberger H, Giloj A, Werle D, Schmid K (2018) A collection of software engineering challenges for big data system development. In: 2018 44th Euromicro conference on software engineering and advanced applications (SEAA). https://doi.org/10.1109/SEAA.2018.00066, pp 362–369 – reference: Park B, Rao DL, Gudivada VN (2021) Dangers of bias in data-intensive information systems. In: Deshpande P, Abraham A, Iyer B, Ma K (eds) Next generation information processing system. Springer Singapore, Singapore, pp 259–271 – reference: Zampetti F, Serebrenik A, Di Penta M (2020) Automatically learning patterns for self-admitted technical debt removal. In: 2020 IEEE 27th international conference on software analysis, evolution and reengineering (SANER). IEEE, pp 355–366 – reference: HuangQShihabEXiaXLoDLiSIdentifying self-admitted technical debt in open source projects using text miningEmpir Softw Eng201823141845110.1007/s10664-017-9522-4 – reference: Scherzinger S, Sidortschuck S (2020) An empirical study on the design and evolution of noSQL database schemas. In: Dobbie G, Frank U, Kappel G, Liddle SW, Mayr HC (eds) Conceptual modeling. Springer International Publishing, Cham, pp 441–455 – reference: Chang J, Gerrish S, Wang C, Boyd-graber J, Blei D (2009) Reading tea leaves: how humans interpret topic models. In: Bengio Y, Schuurmans D, Lafferty J, Williams C, Culotta A (eds) Advances in neural information processing systems, vol 22. Curran Associates Inc – reference: Alves NSR, Ribeiro LF, Caires V, Mendes TS, Spíanol RO (2014) Towards an ontology of terms on technical debt. In: 2014 Sixth international workshop on managing technical debt. https://doi.org/10.1109/MTD.2014.9, pp 1–7 – reference: Albarak M, Bahsoon R (2018) Prioritizing technical debt in database normalization using portfolio theory and data quality metrics. In: Proceedings of the 2018 international conference on technical debt, TechDebt ’18. https://doi.org/10.1145/3194164.3194170. Association for Computing Machinery, pp 31–40 – reference: YanMXiaXShihabELoDYinJYangXAutomating change-level self-admitted technical debt determinationIEEE Trans Softw Eng201845121211122910.1109/TSE.2018.2831232 – reference: Spadini D, Aniche M, Bacchelli A (2018) Pydriller: Python framework for mining software repositories. In: Proceedings of the 2018 26th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, ESEC/FSE 2018. https://doi.org/10.1145/3236024.3264598. Association for Computing Machinery, pp 908–911 – reference: KaplanELMeierPNonparametric estimation from incomplete observationsJ Am Stat Assocs1958532824574819386710.1080/01621459.1958.10501452 – reference: Meurice L, Nagy C, Cleve A (2016) Detecting and preventing program inconsistencies under database schema evolution. In: Proceedings of the 2016 IEEE international conference on software quality, reliability and security (QRS 2016). https://doi.org/10.1109/QRS.2016.38. IEEE, pp 262–273 – reference: Xavier L, Ferreira F, Brito R, Valente MT (2020) Beyond the code: mining self-admitted technical debt in issue tracker systems. In: Proceedings of the 17th international conference on mining software repositories, MSR ’20. https://doi.org/10.1145/3379597.3387459. Association for Computing Machinery, pp 137–146 – reference: GitHub Inc (2019) Search API. https://developer.github.com/v3/search/ – reference: Lin D, Neamtiu I (2009) Collateral evolution of applications and databases. In: Proceedings of the joint international and annual ERCIM workshops on principles of software evolution (IWPSE) and software evolution (Evol) workshops. https://doi.org/10.1145/1595808.1595817. ACM, pp 31–40 – reference: Scherzinger S, Klettke M (2013) Managing schema evolution in noSQL data stores. In: Proceedings of the 14th international symposium on database programming languages (DBPL 2013) – reference: Wehaibi S, Shihab E, Guerrouj L (2016) Examining the impact of self-admitted technical debt on software quality. In: 2016 IEEE 23rd international conference on software analysis, evolution, and reengineering (SANER), vol 1. IEEE, pp 179–188 – reference: Alfayez R, Alwehaibi W, Winn R, Venson E, Boehm B (2020) A systematic literature review of technical debt prioritization. In: Proceedings of the 3rd international conference on technical debt, TechDebt ’20. https://doi.org/10.1145/3387906.3388630. Association for Computing Machinery, pp 1–10 – reference: Bavota G, Russo B (2016) A large-scale empirical study on self-admitted technical debt. In: Proceedings of the 13th international conference on mining software repositories, pp 315–326 – reference: Foidl H, Felderer M, Biffl S (2019) Technical debt in data-intensive software systems. In: 2019 45th Euromicro conference on software engineering and advanced applications (SEAA). https://doi.org/10.1109/SEAA.2019.00058, pp 338–341 – reference: Zampetti F, Serebrenik A, Di Penta M (2018) Was self-admitted technical debt removal a real removal? An in-depth perspective. In: Proceedings of the 15th international conference on mining software repositories, MSR ’18. https://doi.org/10.1145/3196398.3196423. Association for Computing Machinery, pp 526–536 – reference: da Silva MaldonadoEShihabETsantalisNUsing natural language processing to automatically detect self-admitted technical debtIEEE Trans Softw Eng201743111044106210.1109/TSE.2017.2654244 – reference: Al-Barak M, Bahsoon R (2016) Database design debts through examining schema evolution. In: 2016 IEEE 8th international workshop on managing technical debt (MTD). https://doi.org/10.1109/MTD.2016.9, pp 17–23 – reference: GokhaleMCohenJYooAMillerWMJacobAUlmerCPearceRHardware technologies for high-performance data-intensive computingComputer2008414606810.1109/MC.2008.125 – reference: Nagy C, Cleve A (2018) SQLInspect: a static analyzer to inspect database usage in Java applications. In: Proceedings of the 40th international conference on software engineering: companion proceedings. ACM, pp 93–96 – reference: LimETaksandeNSeamanCA balancing act: what software practitioners have to say about technical debtIEEE Softw2012296222710.1109/MS.2012.130https://doi.org/10.1109/MS.2012.130 – reference: MillerRGJrSurvival analysis2011New YorkWiley – reference: Potdar A, Shihab E (2014) An exploratory study on self-admitted technical debt. In: 2014 IEEE international conference on software maintenance and evolution. IEEE, pp 91–100 – reference: Muse BA, Rahman MM, Nagy C, Cleve A, Khomh F, Antoniol G (2020) On the prevalence, impact, and evolution of sql code smells in data-intensive systems. In: Proceedings of the 17th international conference on mining software repositories, MSR ’20. https://doi.org/10.1145/3379597.3387467. Association for Computing Machinery, New York, pp 327–338 – reference: AnicheMBavotaGTreudeCGerosaMAvan DeursenACode smells for model-view-controller architecturesEmpir Softw Eng20182342121215710.1007/s10664-017-9540-2 – reference: Liu Z, Huang Q, Xia X, Shihab E, Lo D, Li S (2018) Satd detector: a text-mining-based self-admitted technical debt detection tool. In: Proceedings of the 40th international conference on software engineering: companion proceedings, pp 9–12 – reference: Maldonado EDS, Abdalkareem R, Shihab E, Serebrenik A (2017) An empirical study on the removal of self-admitted technical debt. In: 2017 IEEE international conference on software maintenance and evolution (ICSME). IEEE, pp 238–248 – reference: de Freitas Farias MA, Santos JA, Kalinowski M, Mendonça M, Spínola RO (2016) Investigating the identification of technical debt through code comment analysis. In: International conference on enterprise information systems. Springer, pp 284–309 – reference: Cunningham W (1992) The wycash portfolio management system. In: Addendum to the proceedings on object-oriented programming systems, languages, and applications (addendum), OOPSLA ’92. https://doi.org/10.1145/157709.157715. Association for Computing Machinery, pp 29–30 – reference: De Freitas Farias MA, de Mendonça Neto MG, da Silva AB, Spínola RO (2015) A contextualized vocabulary model for identifying technical debt on code comments. In: 2015 IEEE 7th international workshop on managing technical debt (MTD). IEEE, pp 25–32 – reference: Muse BA, Nagy C, Khomh F, Cleve A, Antoniol G (2022) Replication package for: FIXME: synchronize with database. An empirical study of data access self-admitted technical debt. https://doi.org/10.5281/zenodo.5825671 – reference: Johannes D, Khomh F, Antoniol G (2019) A large-scale empirical study of code smells in javascript projects. Softw Qual J:1–44 – reference: Stonebraker M, Deng D, Brodie ML (2017) Application-database co-evolution: a new design and development paradigm. In: New England database day – reference: Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lucia A, Poshyvanyk D (2015) When and why your code starts to smell bad. In: 2015 IEEE/ACM 37th IEEE international conference on software engineering, vol 1. IEEE, pp 403–414 – reference: TufanoMPalombaFBavotaGOlivetoRDi PentaMDe LuciaAPoshyvanykDWhen and why your code starts to smell bad (and whether the smells go away)IEEE Trans Softw Eng201743111063108810.1109/TSE.2017.2653105 – reference: RiosNde Mendonça NetoMGSpínolaROA tertiary study on technical debt: types, management strategies, research trends, and base information for practitionersInf Softw Technol201810211714510.1016/j.infsof.2018.05.010https://doi.org/10.1016/j.infsof.2018.05.010 – reference: Vassiliadis P (2021) Profiles of schema evolution in free open source software projects. In: Proceedings of the 2021 IEEE 37th international conference on data engineering (ICDE), pp 1–12 – reference: AlvesNSMendesTSde MendonçaMGSpínolaROShullFSeamanCIdentification and management of technical debtInf Softw Technol201670C10012110.1016/j.infsof.2015.10.008https://doi.org/10.1016/j.infsof.2015.10.008 – reference: CleveAMensTHainautJData-intensive system evolutionComputer201043811011210.1109/MC.2010.227https://doi.org/10.1109/MC.2010.227 – reference: SierraGShihabEKameiYA survey of self-admitted technical debtJ Syst Softw2019152708210.1016/j.jss.2019.02.056 – reference: Kamei Y, Maldonado EDS, Shihab E, Ubayashi N (2016) Using analytics to quantify interest of self-admitted technical debt. In: QuASoq/TDA@ APSEC, pp 68–71 – reference: RamasubbuNKemererCFTechnical debt and the reliability of enterprise software systems: a competing risks analysisManag Sci20166251487151010.1287/mnsc.2015.2196https://doi.org/10.1287/mnsc.2015.2196 – reference: KuutilaMMäntyläMFarooqUClaesMTime pressure in software engineering: a systematic reviewInf Softw Technol202012110625710.1016/j.infsof.2020.106257https://doi.org/10.1016/j.infsof.2020.106257 – reference: Yu Z, Fahid FM, Tu H, Menzies T (2020) Identifying self-admitted technical debts with jitterbug: a two-step approach. arXiv:2002.11049 – reference: BleiDMNgAYJordanMILatent dirichlet allocationJ Mach Learn Res2003399310221112.68379 – reference: ZhaoWChenJJPerkinsRLiuZGeWDingYZouWA heuristic approach to determine an appropriate number of topics in topic modelingBMC Bioinform20151613S810.1186/1471-2105-16-S13-S8 – ident: 10119_CR43 doi: 10.1007/978-3-030-62522-1_33 – ident: 10119_CR26 doi: 10.1145/1595808.1595817 – volume: 43 start-page: 1063 issue: 11 year: 2017 ident: 10119_CR48 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2017.2653105 – ident: 10119_CR29 doi: 10.1109/ICSME.2017.8 – volume: 25 start-page: 3770 issue: 5 year: 2020 ident: 10119_CR28 publication-title: Empir Softw Eng doi: 10.1007/s10664-020-09854-3 – volume: 45 start-page: 1211 issue: 12 year: 2018 ident: 10119_CR53 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2018.2831232 – volume: 62 start-page: 1487 issue: 5 year: 2016 ident: 10119_CR38 publication-title: Manag Sci doi: 10.1287/mnsc.2015.2196 – ident: 10119_CR19 doi: 10.1109/SEAA.2018.00066 – volume: 43 start-page: 1044 issue: 11 year: 2017 ident: 10119_CR12 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2017.2654244 – ident: 10119_CR41 – volume: 29 start-page: 22 issue: 6 year: 2012 ident: 10119_CR25 publication-title: IEEE Softw doi: 10.1109/MS.2012.130 – ident: 10119_CR52 doi: 10.1145/3379597.3387459 – ident: 10119_CR1 doi: 10.1109/MTD.2016.9 – volume-title: Survival analysis year: 2011 ident: 10119_CR31 – ident: 10119_CR3 doi: 10.1145/3387906.3388630 – ident: 10119_CR14 doi: 10.1007/978-3-319-62386-3_14 – ident: 10119_CR30 doi: 10.1109/QRS.2016.38 – ident: 10119_CR16 – ident: 10119_CR50 doi: 10.1109/MTD.2014.17 – ident: 10119_CR56 doi: 10.1145/3196398.3196423 – volume: 121 start-page: 106257 year: 2020 ident: 10119_CR23 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2020.106257 – ident: 10119_CR27 doi: 10.1145/3183440.3183478 – ident: 10119_CR54 – volume: 3 start-page: 993 year: 2003 ident: 10119_CR8 publication-title: J Mach Learn Res – volume: 43 start-page: 110 issue: 8 year: 2010 ident: 10119_CR10 publication-title: Computer doi: 10.1109/MC.2010.227 – ident: 10119_CR40 doi: 10.1145/2684822.2685324 – ident: 10119_CR13 doi: 10.1109/MTD.2015.7332621 – ident: 10119_CR47 doi: 10.1109/ICSE.2015.59 – ident: 10119_CR20 doi: 10.1007/s11219-019-09442-9 – ident: 10119_CR36 doi: 10.1007/978-981-15-4851-2_28 – volume: 102 start-page: 117 year: 2018 ident: 10119_CR39 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2018.05.010 – ident: 10119_CR57 doi: 10.1109/SANER48275.2020.9054868 – ident: 10119_CR37 doi: 10.1109/ICSME.2014.31 – ident: 10119_CR4 doi: 10.1109/MTD.2014.9 – ident: 10119_CR9 – volume: 41 start-page: 60 issue: 4 year: 2008 ident: 10119_CR17 publication-title: Computer doi: 10.1109/MC.2008.125 – ident: 10119_CR11 doi: 10.1145/157709.157715 – volume: 23 start-page: 418 issue: 1 year: 2018 ident: 10119_CR18 publication-title: Empir Softw Eng doi: 10.1007/s10664-017-9522-4 – ident: 10119_CR2 doi: 10.1145/3194164.3194170 – volume: 23 start-page: 2121 issue: 4 year: 2018 ident: 10119_CR6 publication-title: Empir Softw Eng doi: 10.1007/s10664-017-9540-2 – ident: 10119_CR49 doi: 10.1109/ICDE51399.2021.00008 – volume: 70 start-page: 100 issue: C year: 2016 ident: 10119_CR5 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2015.10.008 – volume: 101 start-page: 193 issue: C year: 2015 ident: 10119_CR24 publication-title: J Syst Softw doi: 10.1016/j.jss.2014.12.027 – volume: 152 start-page: 70 year: 2019 ident: 10119_CR44 publication-title: J Syst Softw doi: 10.1016/j.jss.2019.02.056 – volume: 16 start-page: S8 issue: 13 year: 2015 ident: 10119_CR58 publication-title: BMC Bioinform doi: 10.1186/1471-2105-16-S13-S8 – ident: 10119_CR7 doi: 10.1145/2901739.2901742 – ident: 10119_CR45 doi: 10.1145/3236024.3264598 – ident: 10119_CR15 doi: 10.1109/SEAA.2019.00058 – volume: 53 start-page: 457 issue: 282 year: 1958 ident: 10119_CR22 publication-title: J Am Stat Assocs doi: 10.1080/01621459.1958.10501452 – ident: 10119_CR32 doi: 10.1145/3379597.3387467 – ident: 10119_CR46 – ident: 10119_CR21 – volume: 61 start-page: 217 issue: 2 year: 2000 ident: 10119_CR35 publication-title: J Comput Syst Sci doi: 10.1006/jcss.2000.1711 – ident: 10119_CR34 doi: 10.1145/3183440.3183496 – ident: 10119_CR55 doi: 10.1109/ICSME.2017.44 – ident: 10119_CR33 doi: 10.5281/zenodo.5825671 – ident: 10119_CR42 – ident: 10119_CR51 doi: 10.1109/SANER.2016.72 |
SSID | ssj0009745 |
Score | 2.3680112 |
Snippet | Developers sometimes choose design and implementation shortcuts due to the pressure from tight release schedules. However, shortcuts introduce technical debt... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Compilers Composition Computer Science Empirical analysis Evolution Interpreters Maintainability Programming Languages Relational data bases Software Software development Software engineering Software Engineering/Programming and Operating Systems Source code Survival analysis |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMAfOi9e_BanUyJ400DTpmnqbcjGFObJwW41SRMYbHXYetC_3iRrrYoKnvOaw8t7ea_Jy-8BXCTcCEVkgBMdCkxFqrBMjXU8xqUNiDyNPYlpfM9GE3o3jaf1o7CyqXZvriT9Tv3psRtjFLvqc-JAZZiuw0bs_t2tFU_CfovaTXxrYgfXw5GN6PVTmZ_n-BqO2hzz27WojzbDHdiq00TUX63rLqzpYg-2mxYMqPbIfXgc3k7Hg2tUvhbKY27fNHJHq8hVfroIdY76BdKL5cyjQJCnyaIn48eR8N0SUannBot8Mats-olWVFcnnGtZHcBkOHi4GeG6aQJW1psqTIxDghHFbW4kIx2wNNZS5kHMcx4pnitFubBayW0cJzwwRFt5xqNAS6aM4dEhdIqnQh8BiqlJYiZshkE1JSbigikhkyR1SP2cki6QRneZqonirrHFPGtZyE7fmdV35vWd0S5cfnyzXPE0_pTuNUuS1b5VZiHjzGHmCe_CVbNM7fDvsx3_T_wENkNvKe68pQed6vlFn9oMpJJn3uDeAZc6zq0 priority: 102 providerName: Springer Nature |
Title | FIXME: synchronize with database! An empirical study of data access self-admitted technical debt |
URI | https://link.springer.com/article/10.1007/s10664-022-10119-4 https://www.proquest.com/docview/2686426318 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3PT9swFMefoL3sMgZsWllXeRI3sIgbx3F2mbop4ZeK0LRK5ZTZji0h0bSs4cD-emzXWQTSuMaOD89-fi8v9ucLcJhyIxSREU71WGAqMoVlZqzjMS5tQORZ4klM0yt2NqMX82QeCm7rcKyy3RP9Rl0tlauRn4wZZw4uTvi31T12qlHu72qQ0NiGvt2Cuf346n_Pr65_dtjd1MsUO9Aejm10D9dmwuU5xih2p9mJA59h-jw0dfnmi1-kPvIU7-BtSBnRZDPHu7Cl6z3YaeUYUPDOffhdnM-n-Ve0fqyVR97-1ciVWZE7Beqi1Rc0qZFerG49FgR5sixaGt-OhFdORGt9Z7CoFreNTUXRhvDqOldaNu9hVuS_fpzhIKCAlfWsBhPj8GBEcZsnyVhHLEu0lFWU8IrHildKUS6sVSob0wmPDNG2P-NxpCVTxvD4A_TqZa0_AkqoSRMmbLZBNSUm5oIpIdM0c3j9ipIBkNZ2pQp0cSdycVd2XGRn79Lau_T2LukAjv69s9qwNV7tPWynpAx-ti67VTGA43aauub_j3bw-mif4M3YrwxXaxlCr_nzoD_b7KORI9jmxekI-pPTm8t8FBacfTobT54AL0PWow |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTtwwFL2idNFuWh6tOi0PI8GqtRonjuMgIYQo0xlgWIE0u2A7tjQSZKadVBX9KL4RX09C1Eplx9rOXVwf-574cQ7AbiadMkxHNLOxolzlhurc-YknpPYFUeZpUGIaXYjBFT8dp-MluG_fwuC1ynZNDAt1OTW4R_41FlKguDiTh7MfFF2j8HS1tdBYwOLM3v32v2zzg-E3P757cdw_uTwe0MZVgBoPt5oyh5pZzEhPHnRiI5GnVusySmUpEyNLY7hUngiUvtAxGTlmfX8hk8hqYZyTiY_7Al7yJMlxRsn-907kNwumyCjrRxMfonmk0zzVE4JTvDvPUGaN8r8LYcdu_zmQDXWuvwJvGoJKjhaIWoUlW63B29b8gTRrwTpc94fj0ck-md9VJgjs_rEEN3UJ3jnF2rhDjipib2eTIEJCgo4tmbrQTlTwaSRze-OoKm8ntSe-ZKEni51Lq-t3cPUsiX0Py9W0sh-ApNxlqVCe23DLmUukEkbpLMtRzL_krAeszV1hGi1ztNS4KToVZsx34fNdhHwXvAefH7-ZLZQ8nuy90Q5J0czqedFhsAdf2mHqmv8f7ePT0bbh1eBydF6cDy_OPsHrOKAEd3k2YLn--ctuet5T660ANgLXz43uBy8iDbM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxQxEB7qFcQXf4tnq0bQJw3d7GazWaFItXf0rD2KWLi3bZJNoNDunb2V0v5p_nXN5LIuCvatz0nmYfIlM0km3wfwtpBOGaYTWthUUa5KQ3Xp_MITUvuAKMs8MDEdTMXeEf86y2dr8Lv7C4Nlld2eGDbqem7wjnwrFVIguTiTWy6WRRzujj8tflJUkMKX1k5OYwWRfXt54Y9vy-3Jrp_rd2k6Hv34skejwgA1HnotZQ75s5iRPpHQmU1EmVut6ySXtcyMrI3hUvmkoPZBj8nEMev7C5klVgvjnMy83TuwXvhTUTKA9c-j6eH3nvK3CBLJSPJHM28kftmJH_eE4BQr6RmSrlH-d1jsc91_nmdD1Bs_hPsxXSU7K3w9gjXbPIYHnRQEiTvDEzgeT2YHo49kedmYQLd7ZQle8RKsQMVI-YbsNMSeLU4CJQkJrLZk7kI7UUG1kSztqaOqPjtpfRpMVuyy2Lm2un0KR7fi2mcwaOaNfQ4k567IhfKZDrecuUwqYZQuihKp_WvOhsA631UmMpujwMZp1XMyo78r7-8q-LviQ3j_Z8xixetxY-_NbkqquMaXVY_IIXzopqlv_r-1Fzdbew13PbKrb5Pp_gbcSwNI8MpnEwbt-S_70idBrX4V0Ubg-LYBfg2NUBNF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FIXME%3A+synchronize+with+database%21+An+empirical+study+of+data+access+self-admitted+technical+debt&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Muse%2C+Biruk+Asmare&rft.au=Nagy%2C+Csaba&rft.au=Cleve%2C+Anthony&rft.au=Khomh%2C+Foutse&rft.date=2022-11-01&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=27&rft.issue=6&rft_id=info:doi/10.1007%2Fs10664-022-10119-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10664_022_10119_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon |