Modelling permafrost deformation with InSAR technology considering soil moisture variation and spatial-temporal heterogeneity of the freeze‒thaw process

Monitoring and modelling surface deformation are crucial components of understanding the freeze‒thaw process and preventing disasters in permafrost regions. However, previous methods had limitations that inhibited the interpretation of freeze‒thaw deformation, such as a lack of physical meaning, an...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of remote sensing Vol. 45; no. 24; pp. 9065 - 9086
Main Authors Gao, Guanyou, Wang, Qijie, Li, Jiachen, Zhang, Ya, Yan, Dong
Format Journal Article
LanguageEnglish
Published London Taylor & Francis 16.12.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Monitoring and modelling surface deformation are crucial components of understanding the freeze‒thaw process and preventing disasters in permafrost regions. However, previous methods had limitations that inhibited the interpretation of freeze‒thaw deformation, such as a lack of physical meaning, an inability to reflect the physical freeze-thaw process and consideration of only a single external factor's impact on permafrost deformation. This study proposes an improved degree-day model (IDM) for quantitatively isolating surface deformation using interferometric synthetic aperture radar (InSAR) technology over permafrost. We considered the effect of soil moisture variation on permafrost deformation and incorporated interannual variation in the freeze‒thaw process due to climate change. By applying small baseline subset (SBAS) technology to Sentinel-1 InSAR measurements over the Wudaoliang permafrost region on the Qinghai‒Tibet Plateau from 2018 to 2019, we estimated long-term and seasonal permafrost deformation. The reliability of InSAR results was validated using in situ measurements, with root mean square errors (RMSEs) less than 10 mm. The results showed that the average linear deformation rates in 2018 and 2019 were −3.8 mm a −1 and −11.0 mm a −1 , respectively, and the maximum seasonal deformations were 15.7 mm and 13.2 mm, respectively. Compared with the original degree-day model (ODM), the method used in this study produced smaller residual deformations of 6.9 mm and 6.4 mm, highlighting its ability to improve a quantitative description of permafrost deformation.
AbstractList Monitoring and modelling surface deformation are crucial components of understanding the freeze‒thaw process and preventing disasters in permafrost regions. However, previous methods had limitations that inhibited the interpretation of freeze‒thaw deformation, such as a lack of physical meaning, an inability to reflect the physical freeze–thaw process and consideration of only a single external factor’s impact on permafrost deformation. This study proposes an improved degree-day model (IDM) for quantitatively isolating surface deformation using interferometric synthetic aperture radar (InSAR) technology over permafrost. We considered the effect of soil moisture variation on permafrost deformation and incorporated interannual variation in the freeze‒thaw process due to climate change. By applying small baseline subset (SBAS) technology to Sentinel-1 InSAR measurements over the Wudaoliang permafrost region on the Qinghai‒Tibet Plateau from 2018 to 2019, we estimated long-term and seasonal permafrost deformation. The reliability of InSAR results was validated using in situ measurements, with root mean square errors (RMSEs) less than 10 mm. The results showed that the average linear deformation rates in 2018 and 2019 were −3.8 mm a−1 and −11.0 mm a−1, respectively, and the maximum seasonal deformations were 15.7 mm and 13.2 mm, respectively. Compared with the original degree-day model (ODM), the method used in this study produced smaller residual deformations of 6.9 mm and 6.4 mm, highlighting its ability to improve a quantitative description of permafrost deformation.
Monitoring and modelling surface deformation are crucial components of understanding the freeze‒thaw process and preventing disasters in permafrost regions. However, previous methods had limitations that inhibited the interpretation of freeze‒thaw deformation, such as a lack of physical meaning, an inability to reflect the physical freeze-thaw process and consideration of only a single external factor's impact on permafrost deformation. This study proposes an improved degree-day model (IDM) for quantitatively isolating surface deformation using interferometric synthetic aperture radar (InSAR) technology over permafrost. We considered the effect of soil moisture variation on permafrost deformation and incorporated interannual variation in the freeze‒thaw process due to climate change. By applying small baseline subset (SBAS) technology to Sentinel-1 InSAR measurements over the Wudaoliang permafrost region on the Qinghai‒Tibet Plateau from 2018 to 2019, we estimated long-term and seasonal permafrost deformation. The reliability of InSAR results was validated using in situ measurements, with root mean square errors (RMSEs) less than 10 mm. The results showed that the average linear deformation rates in 2018 and 2019 were −3.8 mm a −1 and −11.0 mm a −1 , respectively, and the maximum seasonal deformations were 15.7 mm and 13.2 mm, respectively. Compared with the original degree-day model (ODM), the method used in this study produced smaller residual deformations of 6.9 mm and 6.4 mm, highlighting its ability to improve a quantitative description of permafrost deformation.
Monitoring and modelling surface deformation are crucial components of understanding the freeze‒thaw process and preventing disasters in permafrost regions. However, previous methods had limitations that inhibited the interpretation of freeze‒thaw deformation, such as a lack of physical meaning, an inability to reflect the physical freeze-thaw process and consideration of only a single external factor's impact on permafrost deformation. This study proposes an improved degree-day model (IDM) for quantitatively isolating surface deformation using interferometric synthetic aperture radar (InSAR) technology over permafrost. We considered the effect of soil moisture variation on permafrost deformation and incorporated interannual variation in the freeze‒thaw process due to climate change. By applying small baseline subset (SBAS) technology to Sentinel-1 InSAR measurements over the Wudaoliang permafrost region on the Qinghai‒Tibet Plateau from 2018 to 2019, we estimated long-term and seasonal permafrost deformation. The reliability of InSAR results was validated using in situ measurements, with root mean square errors (RMSEs) less than 10 mm. The results showed that the average linear deformation rates in 2018 and 2019 were −3.8 mm a⁻¹ and −11.0 mm a⁻¹, respectively, and the maximum seasonal deformations were 15.7 mm and 13.2 mm, respectively. Compared with the original degree-day model (ODM), the method used in this study produced smaller residual deformations of 6.9 mm and 6.4 mm, highlighting its ability to improve a quantitative description of permafrost deformation.
Author Gao, Guanyou
Zhang, Ya
Li, Jiachen
Yan, Dong
Wang, Qijie
Author_xml – sequence: 1
  givenname: Guanyou
  surname: Gao
  fullname: Gao, Guanyou
  organization: Central South University
– sequence: 2
  givenname: Qijie
  surname: Wang
  fullname: Wang, Qijie
  email: qjwang@csu.edu.cn
  organization: Central South University
– sequence: 3
  givenname: Jiachen
  surname: Li
  fullname: Li, Jiachen
  organization: Central South University
– sequence: 4
  givenname: Ya
  surname: Zhang
  fullname: Zhang, Ya
  organization: Central South University
– sequence: 5
  givenname: Dong
  surname: Yan
  fullname: Yan, Dong
  organization: Central South University
BookMark eNp9kc9u1DAQxi3USmxbHgHJEhcuWfw_8Y2qAlqpCKnAOfIm442rxA62l9Vy4hk49vF4Ehy2XHrgNB7p982Mv-8MnfjgAaGXlKwpacgbQgWnVNE1I0ysmSCKcP4MrShXqpKa0BO0WphqgZ6js5TuCSGqlvUKPXwMPYyj81s8Q5yMjSFl3IMNpckueLx3ecA3_vPlHc7QDT6MYXvAXfDJ9RAXYQpuxFNwKe8i4O8muqPS-B6nubzNWGWY5hDNiAfIEMMWPLh8wMHiPAC2EeAH_P75Kw9mj-cYOkjpAp1aMyZ48VjP0df3775cXVe3nz7cXF3eVh2nOlcUABjfECO1ERyk0lZtdKO7jbDAO7JhVBoJ5ceNqGujqZVNIxmXlHNgDPg5en2cW_Z-20HK7eRSV0wxHsIutZxKwZTUQhT01RP0PuyiL9cVSrBaKN3IQskj1RUzUwTbztFNJh5aStolsfZfYu2SWPuYWNG9Peqc_2v_PsSxb7M5jCHaaHznljX_HfEHDICitQ
Cites_doi 10.3390/rs11161865
10.1016/j.gloplacha.2014.09.002
10.1109/access.2020.2988482
10.1038/srep15542
10.1016/j.earscirev.2019.03.008
10.1016/j.rse.2021.112778
10.1029/2019GL083398
10.1029/2007JD009539
10.1016/j.rse.2016.07.019
10.1016/j.rse.2013.07.006
10.1029/2018jf004618
10.1029/1998gl900033
10.1080/01431160902929255
10.1016/j.jag.2017.09.002
10.1002/ppp.2059
10.3354/cr01549
10.1109/mgrs.2022.3170350
10.5194/tc-14-4279-2020
10.1016/j.rse.2020.112007
10.1002/joc.5161
10.1007/s11629-015-3745-x
10.1016/j.earscirev.2018.12.004
10.1007/s11434-007-0004-8
10.1016/j.jag.2022.102822
10.3390/rs13234744
10.1016/j.geomorph.2023.108582
10.1109/36.868878
10.6038/cjg2022Q0617
10.3390/rs14133168
10.1109/tgrs.2002.803792
10.1109/TGRS.2012.2227761
10.1016/j.scitotenv.2016.12.155
10.1002/2013JB010588
10.1080/17538947.2014.923943
10.31223/osf.io/9sz6m
10.1002/qj.3803
10.1029/2021gl097586
10.1016/j.jag.2023.103530
10.1109/36.868877
10.1098/rspa.1995.0059
10.3390/s20164464
10.1029/2018gl077960
10.1109/36.898661
10.1029/2009jf001547
10.23919/JSEE.2021.000109
10.1080/17538947.2023.2218116
10.1016/j.rse.2012.04.020
10.1016/j.jag.2021.102527
10.1002/1099-1530(200007/09)11:3<219:aid-ppp352>3.0.co;2-7
10.3390/rs15153728
10.1016/j.scitotenv.2017.07.080
10.1029/2021GL095029
10.1080/01431161.2014.999886
10.6038/cjg20130506
10.1080/00040851.1997.12003258
10.1029/2011GL048757
10.1109/jstars.2018.2873219
10.1029/2011jf002041
10.11947/j.AGCS.2022.20220156
10.1080/07038992.2014.1012836
ContentType Journal Article
Copyright 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024
2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024
– notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
DOI 10.1080/01431161.2024.2406033
DatabaseName Taylor & Francis Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database

AGRICOLA
Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 9086
ExternalDocumentID 10_1080_01431161_2024_2406033
2406033
Genre Research Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2022YFB3903602
– fundername: Scientific Research Project of Hunan Provincial Department of Education, China
  grantid: 21A0006
– fundername: the Innovation Foundation for Postgraduate of Central South University, China
  grantid: 2022ZZTS0011
– fundername: Natural Science Foundation of Changsha City, China
  grantid: kq2208262
– fundername: National Natural Science Foundation of China
  grantid: 42330112
– fundername: the Hunan Provincial Innovation Foundation for Postgraduate, China
  grantid: CX20220102
– fundername: National Science Fund for Distinguished Young Scholars
  grantid: 41925016
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
0YH
29J
30N
4.4
5GY
5VS
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
H13
HF~
IPNFZ
J.P
KYCEM
LJTGL
M4Z
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
TASJS
7S9
L.6
ID FETCH-LOGICAL-c319t-1eee23b0a59a43e569f6b989cb4fe3c0b215a5e0008477a91f5885235133e22e3
IEDL.DBID 0YH
ISSN 0143-1161
1366-5901
IngestDate Thu Aug 07 14:49:09 EDT 2025
Wed Aug 13 05:56:27 EDT 2025
Tue Jul 01 04:05:05 EDT 2025
Wed Dec 25 09:04:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1eee23b0a59a43e569f6b989cb4fe3c0b215a5e0008477a91f5885235133e22e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/01431161.2024.2406033
PQID 3142746985
PQPubID 2045515
PageCount 22
ParticipantIDs informaworld_taylorfrancis_310_1080_01431161_2024_2406033
proquest_miscellaneous_3154265944
proquest_journals_3142746985
crossref_primary_10_1080_01431161_2024_2406033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-16
PublicationDateYYYYMMDD 2024-12-16
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of remote sensing
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_5_29_1
e_1_3_5_27_1
e_1_3_5_25_1
e_1_3_5_23_1
e_1_3_5_44_1
e_1_3_5_46_1
e_1_3_5_48_1
e_1_3_5_3_1
e_1_3_5_61_1
e_1_3_5_40_1
e_1_3_5_42_1
e_1_3_5_9_1
e_1_3_5_21_1
e_1_3_5_5_1
e_1_3_5_7_1
e_1_3_5_18_1
e_1_3_5_39_1
e_1_3_5_16_1
e_1_3_5_37_1
e_1_3_5_14_1
e_1_3_5_35_1
e_1_3_5_12_1
e_1_3_5_33_1
e_1_3_5_56_1
e_1_3_5_58_1
e_1_3_5_50_1
e_1_3_5_52_1
e_1_3_5_54_1
e_1_3_5_10_1
e_1_3_5_31_1
e_1_3_5_28_1
e_1_3_5_26_1
e_1_3_5_24_1
e_1_3_5_22_1
e_1_3_5_45_1
e_1_3_5_47_1
e_1_3_5_49_1
e_1_3_5_2_1
e_1_3_5_60_1
e_1_3_5_41_1
e_1_3_5_43_1
e_1_3_5_8_1
e_1_3_5_20_1
e_1_3_5_4_1
e_1_3_5_6_1
e_1_3_5_17_1
e_1_3_5_38_1
e_1_3_5_15_1
e_1_3_5_13_1
e_1_3_5_36_1
e_1_3_5_11_1
e_1_3_5_34_1
e_1_3_5_55_1
e_1_3_5_57_1
e_1_3_5_59_1
e_1_3_5_19_1
e_1_3_5_51_1
e_1_3_5_53_1
e_1_3_5_32_1
e_1_3_5_30_1
References_xml – ident: e_1_3_5_2_1
  doi: 10.3390/rs11161865
– ident: e_1_3_5_45_1
  doi: 10.1016/j.gloplacha.2014.09.002
– ident: e_1_3_5_56_1
  doi: 10.1109/access.2020.2988482
– ident: e_1_3_5_30_1
  doi: 10.1038/srep15542
– ident: e_1_3_5_26_1
  doi: 10.1016/j.earscirev.2019.03.008
– ident: e_1_3_5_10_1
  doi: 10.1016/j.rse.2021.112778
– ident: e_1_3_5_12_1
  doi: 10.1029/2019GL083398
– ident: e_1_3_5_47_1
  doi: 10.1029/2007JD009539
– ident: e_1_3_5_60_1
  doi: 10.1016/j.rse.2016.07.019
– ident: e_1_3_5_7_1
  doi: 10.1016/j.rse.2013.07.006
– ident: e_1_3_5_8_1
  doi: 10.1029/2018jf004618
– ident: e_1_3_5_17_1
  doi: 10.1029/1998gl900033
– ident: e_1_3_5_48_1
  doi: 10.1080/01431160902929255
– ident: e_1_3_5_38_1
  doi: 10.1016/j.jag.2017.09.002
– ident: e_1_3_5_46_1
  doi: 10.1002/ppp.2059
– ident: e_1_3_5_36_1
  doi: 10.3354/cr01549
– ident: e_1_3_5_58_1
  doi: 10.1109/mgrs.2022.3170350
– ident: e_1_3_5_35_1
  doi: 10.5194/tc-14-4279-2020
– ident: e_1_3_5_11_1
  doi: 10.1016/j.rse.2020.112007
– ident: e_1_3_5_18_1
  doi: 10.1002/joc.5161
– ident: e_1_3_5_53_1
  doi: 10.1007/s11629-015-3745-x
– ident: e_1_3_5_27_1
  doi: 10.1016/j.earscirev.2018.12.004
– ident: e_1_3_5_51_1
  doi: 10.1007/s11434-007-0004-8
– ident: e_1_3_5_59_1
  doi: 10.1016/j.jag.2022.102822
– ident: e_1_3_5_42_1
  doi: 10.3390/rs13234744
– ident: e_1_3_5_49_1
  doi: 10.1016/j.geomorph.2023.108582
– ident: e_1_3_5_15_1
  doi: 10.1109/36.868878
– ident: e_1_3_5_52_1
  doi: 10.6038/cjg2022Q0617
– ident: e_1_3_5_61_1
  doi: 10.3390/rs14133168
– ident: e_1_3_5_3_1
  doi: 10.1109/tgrs.2002.803792
– ident: e_1_3_5_14_1
  doi: 10.1109/TGRS.2012.2227761
– ident: e_1_3_5_54_1
  doi: 10.1016/j.scitotenv.2016.12.155
– ident: e_1_3_5_22_1
  doi: 10.1002/2013JB010588
– ident: e_1_3_5_28_1
  doi: 10.1080/17538947.2014.923943
– ident: e_1_3_5_57_1
  doi: 10.31223/osf.io/9sz6m
– ident: e_1_3_5_19_1
  doi: 10.1002/qj.3803
– ident: e_1_3_5_9_1
  doi: 10.1029/2021gl097586
– ident: e_1_3_5_23_1
  doi: 10.1016/j.jag.2023.103530
– ident: e_1_3_5_4_1
  doi: 10.1109/36.868877
– ident: e_1_3_5_40_1
  doi: 10.1098/rspa.1995.0059
– ident: e_1_3_5_43_1
  doi: 10.3390/s20164464
– ident: e_1_3_5_20_1
  doi: 10.1029/2018gl077960
– ident: e_1_3_5_16_1
  doi: 10.1109/36.898661
– ident: e_1_3_5_32_1
  doi: 10.1029/2009jf001547
– ident: e_1_3_5_50_1
  doi: 10.23919/JSEE.2021.000109
– ident: e_1_3_5_55_1
  doi: 10.1080/17538947.2023.2218116
– ident: e_1_3_5_6_1
  doi: 10.1016/j.rse.2012.04.020
– ident: e_1_3_5_24_1
  doi: 10.1016/j.jag.2021.102527
– ident: e_1_3_5_37_1
  doi: 10.1002/1099-1530(200007/09)11:3<219:aid-ppp352>3.0.co;2-7
– ident: e_1_3_5_13_1
  doi: 10.3390/rs15153728
– ident: e_1_3_5_39_1
  doi: 10.1016/j.scitotenv.2017.07.080
– ident: e_1_3_5_33_1
  doi: 10.1029/2021GL095029
– ident: e_1_3_5_5_1
  doi: 10.1080/01431161.2014.999886
– ident: e_1_3_5_25_1
  doi: 10.6038/cjg20130506
– ident: e_1_3_5_34_1
  doi: 10.1080/00040851.1997.12003258
– ident: e_1_3_5_21_1
  doi: 10.1029/2011GL048757
– ident: e_1_3_5_41_1
  doi: 10.1109/jstars.2018.2873219
– ident: e_1_3_5_31_1
  doi: 10.1029/2011jf002041
– ident: e_1_3_5_29_1
  doi: 10.11947/j.AGCS.2022.20220156
– ident: e_1_3_5_44_1
  doi: 10.1080/07038992.2014.1012836
SSID ssj0006757
Score 2.4556055
Snippet Monitoring and modelling surface deformation are crucial components of understanding the freeze‒thaw process and preventing disasters in permafrost regions....
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 9065
SubjectTerms Annual variations
China
Climate change
composite index
Deformation
Deformation effects
deformation model
Disasters
Emergency preparedness
Freeze-thaw
freeze-thaw cycles
heat sums
Heterogeneity
In situ measurement
Interannual variations
Interferometric synthetic aperture radar
interferometry
Modelling
Moisture content
Permafrost
Qinghai‒Tibet Plateau
SAR (radar)
Soil moisture
Soil moisture effects
Soil moisture variation
Soil moisture variations
soil water
spatial-temporal heterogeneity
Synthetic aperture radar
Synthetic aperture radar interferometry
Title Modelling permafrost deformation with InSAR technology considering soil moisture variation and spatial-temporal heterogeneity of the freeze‒thaw process
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2024.2406033
https://www.proquest.com/docview/3142746985
https://www.proquest.com/docview/3154265944
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BciiXitIi0qbRInF1ant3newxokQGCQ7QiMfFWtuzSqXUjhIHVE78Bo78vP4SZuy1RVQhDhwte2xp5_XNeB6MvRDoQvJoknq5EcqTxs89g37Fy62GEDIESpYS-m_fRfFCvvmk2mrCrSurpBjaNoMialtNym3SbVsRd0Ej6QJEKhjdhXJMLskX4iHrhyStKNL-57gzxoiHm45pmsSJNG0Tz99es-ee9oaX3jPWtQeaP2aHDjryWcPrI_YAiifswG0xX94es1-02Kyesc3XZHAtdXTwHLoGRU5ZV_66-DB7z6sup84zt7STCLfl9YrflMj83Qb4V4ykG0o8LL6l6muz8tw4qxVfUi1NiSIIiOV5aTmiSW43AN_h7sfPamm-8XXTiHDCFvNXVy9jz-1e8DJUysoLACAUqW-UNlKAirSNUj3VWSotiMxPESoYBQQh5GRidGDVdIpBLa2LgTAE8ZT1irKAZ4wL8GWWAWIVk0spQ2OFshh1oe77eR75AzZujzxZNyM2kqCdXOp4lBCPEsejAdN_Miap6tyGbRaRJOIftMOWi4nTViKRGJxHeqoG7Hl3G_WMfp6YAsodPaMQzCgt5el_fP6MPaJLqocJoiHrVZsdnCOqqdJRLbcj1p_Fl18-_gaR6vIm
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9RADLZKOZRLKS-xpYVB4polycwkO8cKUW2h3QO0Um_RZOLRIpZktc22oid-A0d-Xn9J7TxWLQj10HPiZDIP-7NjfwZ4J8mEFEmaB4WVOlA2LAJLdiUovMEYHQElzwH9o0kyPlGfTvXpjVoYTqtkH9q3RBGNrubDzcHoPiXuPXPSRQRVyL2L1ZBtUijlA3ioTZJyFwMZTlbamABxWzLNVJwk01fx_O8xt-zTLfbSf7R1Y4L2H4PrB99mnnwfLut86C7_4nW839dtwWaHUMVeu6WewBqWT2Gja5Y-_fkM_nD_tIbKW8xZr3suHBEFruogBQd3xUH5de-LqFehe-G63qAseFZ9m4kfFe2x5QLFOTnsrSSNWpxxkredBR1r1kxMOWWnop2O5DKIygsCrcIvEC_x6tfvemovxLytd3gOJ_sfjz-Mg67FQ-Do7NdBhIixzEOrjVUSdWJ8kpuRcbnyKF2YEyKxGhmpqDS1JvJ6NCLfmbvSYByjfAHrZVXiSxASQ-UcEiSyhVIqtl5qT84dqZiwKJJwAMN-YbN5y-SRRT1BajflGU951k35AMzN5c_qJoTi234nmbxDdqffK1mnFFhExSl37NQDeLu6TMeZ_9HYEqsl36MJM2mj1PY9Xv8GNsbHR4fZ4cHk8yt4xJc4BSdKdmC9Xixxl4BUnb9uTso1lCkT9w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VVoJeSnmJ0FIWiauD7d114mMFRH1AhIBK3Ky1d1apCHaUOEXtqb-hx_48fgkz9jqiIMShZ3vs9T5mvhnPfAPwSpIJsckgD6yROlAmtIEhuxJYl2KMBQElxwH9D-Pk4EQdfdVdNuHCp1WyD-1aoohGV_PhnlnXZcS9Zkq6iJAKeXex6rNJCqW8AxsJk4dzFUc4XiljwsNtxTQzcZJMV8Tzr8fcME83yEv_UtaNBRrdh7wbe5t48q2_rPN-cfEHreOtPm4btjw-FfvthnoAa1g-hHu-Vfrk_BFcc_e0hshbzFirOy4bERZXVZCCQ7visPy8_0nUq8C9KHxnUBZcVKdT8b2iHbacozgjd72VpEGLBad4m2ngObOmYsIJOxXtcySHQVROEGQVbo54gT8vr-qJ-SFmbbXDYzgZvfvy5iDwDR6Cgk5-HUSIGMs8NDo1SqJOUpfk6TAtcuVQFmFOeMRoZJyiBgOTRk4Ph-Q5c08ajGOUT2C9rEp8CkJiqIoCCRAZq5SKjZPakWtHCia0Ngl70O_WNZu1PB5Z1NGj-inPeMozP-U9SH9f_axuAiiu7XaSyf_I7nZbJfMqgUVUPOB-nboHL1eX6TDzHxpTYrXkezQhJp0q9ewWr38Bdz--HWXvD8fHO7DJVzj_Jkp2Yb2eL_E5oag632vOyS8iAhKb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+permafrost+deformation+with+InSAR+technology+considering+soil+moisture+variation+and+spatial-temporal+heterogeneity+of+the+freeze%E2%80%92thaw+process&rft.jtitle=International+journal+of+remote+sensing&rft.au=Gao%2C+Guanyou&rft.au=Wang%2C+Qijie&rft.au=Li%2C+Jiachen&rft.au=Zhang%2C+Ya&rft.date=2024-12-16&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=45&rft.issue=24&rft.spage=9065&rft.epage=9086&rft_id=info:doi/10.1080%2F01431161.2024.2406033&rft.externalDBID=0YH&rft.externalDocID=2406033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon