Modelling permafrost deformation with InSAR technology considering soil moisture variation and spatial-temporal heterogeneity of the freeze‒thaw process
Monitoring and modelling surface deformation are crucial components of understanding the freeze‒thaw process and preventing disasters in permafrost regions. However, previous methods had limitations that inhibited the interpretation of freeze‒thaw deformation, such as a lack of physical meaning, an...
Saved in:
Published in | International journal of remote sensing Vol. 45; no. 24; pp. 9065 - 9086 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Taylor & Francis
16.12.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Monitoring and modelling surface deformation are crucial components of understanding the freeze‒thaw process and preventing disasters in permafrost regions. However, previous methods had limitations that inhibited the interpretation of freeze‒thaw deformation, such as a lack of physical meaning, an inability to reflect the physical freeze-thaw process and consideration of only a single external factor's impact on permafrost deformation. This study proposes an improved degree-day model (IDM) for quantitatively isolating surface deformation using interferometric synthetic aperture radar (InSAR) technology over permafrost. We considered the effect of soil moisture variation on permafrost deformation and incorporated interannual variation in the freeze‒thaw process due to climate change. By applying small baseline subset (SBAS) technology to Sentinel-1 InSAR measurements over the Wudaoliang permafrost region on the Qinghai‒Tibet Plateau from 2018 to 2019, we estimated long-term and seasonal permafrost deformation. The reliability of InSAR results was validated using in situ measurements, with root mean square errors (RMSEs) less than 10 mm. The results showed that the average linear deformation rates in 2018 and 2019 were −3.8 mm a
−1
and −11.0 mm a
−1
, respectively, and the maximum seasonal deformations were 15.7 mm and 13.2 mm, respectively. Compared with the original degree-day model (ODM), the method used in this study produced smaller residual deformations of 6.9 mm and 6.4 mm, highlighting its ability to improve a quantitative description of permafrost deformation. |
---|---|
AbstractList | Monitoring and modelling surface deformation are crucial components of understanding the freeze‒thaw process and preventing disasters in permafrost regions. However, previous methods had limitations that inhibited the interpretation of freeze‒thaw deformation, such as a lack of physical meaning, an inability to reflect the physical freeze–thaw process and consideration of only a single external factor’s impact on permafrost deformation. This study proposes an improved degree-day model (IDM) for quantitatively isolating surface deformation using interferometric synthetic aperture radar (InSAR) technology over permafrost. We considered the effect of soil moisture variation on permafrost deformation and incorporated interannual variation in the freeze‒thaw process due to climate change. By applying small baseline subset (SBAS) technology to Sentinel-1 InSAR measurements over the Wudaoliang permafrost region on the Qinghai‒Tibet Plateau from 2018 to 2019, we estimated long-term and seasonal permafrost deformation. The reliability of InSAR results was validated using in situ measurements, with root mean square errors (RMSEs) less than 10 mm. The results showed that the average linear deformation rates in 2018 and 2019 were −3.8 mm a−1 and −11.0 mm a−1, respectively, and the maximum seasonal deformations were 15.7 mm and 13.2 mm, respectively. Compared with the original degree-day model (ODM), the method used in this study produced smaller residual deformations of 6.9 mm and 6.4 mm, highlighting its ability to improve a quantitative description of permafrost deformation. Monitoring and modelling surface deformation are crucial components of understanding the freeze‒thaw process and preventing disasters in permafrost regions. However, previous methods had limitations that inhibited the interpretation of freeze‒thaw deformation, such as a lack of physical meaning, an inability to reflect the physical freeze-thaw process and consideration of only a single external factor's impact on permafrost deformation. This study proposes an improved degree-day model (IDM) for quantitatively isolating surface deformation using interferometric synthetic aperture radar (InSAR) technology over permafrost. We considered the effect of soil moisture variation on permafrost deformation and incorporated interannual variation in the freeze‒thaw process due to climate change. By applying small baseline subset (SBAS) technology to Sentinel-1 InSAR measurements over the Wudaoliang permafrost region on the Qinghai‒Tibet Plateau from 2018 to 2019, we estimated long-term and seasonal permafrost deformation. The reliability of InSAR results was validated using in situ measurements, with root mean square errors (RMSEs) less than 10 mm. The results showed that the average linear deformation rates in 2018 and 2019 were −3.8 mm a −1 and −11.0 mm a −1 , respectively, and the maximum seasonal deformations were 15.7 mm and 13.2 mm, respectively. Compared with the original degree-day model (ODM), the method used in this study produced smaller residual deformations of 6.9 mm and 6.4 mm, highlighting its ability to improve a quantitative description of permafrost deformation. Monitoring and modelling surface deformation are crucial components of understanding the freeze‒thaw process and preventing disasters in permafrost regions. However, previous methods had limitations that inhibited the interpretation of freeze‒thaw deformation, such as a lack of physical meaning, an inability to reflect the physical freeze-thaw process and consideration of only a single external factor's impact on permafrost deformation. This study proposes an improved degree-day model (IDM) for quantitatively isolating surface deformation using interferometric synthetic aperture radar (InSAR) technology over permafrost. We considered the effect of soil moisture variation on permafrost deformation and incorporated interannual variation in the freeze‒thaw process due to climate change. By applying small baseline subset (SBAS) technology to Sentinel-1 InSAR measurements over the Wudaoliang permafrost region on the Qinghai‒Tibet Plateau from 2018 to 2019, we estimated long-term and seasonal permafrost deformation. The reliability of InSAR results was validated using in situ measurements, with root mean square errors (RMSEs) less than 10 mm. The results showed that the average linear deformation rates in 2018 and 2019 were −3.8 mm a⁻¹ and −11.0 mm a⁻¹, respectively, and the maximum seasonal deformations were 15.7 mm and 13.2 mm, respectively. Compared with the original degree-day model (ODM), the method used in this study produced smaller residual deformations of 6.9 mm and 6.4 mm, highlighting its ability to improve a quantitative description of permafrost deformation. |
Author | Gao, Guanyou Zhang, Ya Li, Jiachen Yan, Dong Wang, Qijie |
Author_xml | – sequence: 1 givenname: Guanyou surname: Gao fullname: Gao, Guanyou organization: Central South University – sequence: 2 givenname: Qijie surname: Wang fullname: Wang, Qijie email: qjwang@csu.edu.cn organization: Central South University – sequence: 3 givenname: Jiachen surname: Li fullname: Li, Jiachen organization: Central South University – sequence: 4 givenname: Ya surname: Zhang fullname: Zhang, Ya organization: Central South University – sequence: 5 givenname: Dong surname: Yan fullname: Yan, Dong organization: Central South University |
BookMark | eNp9kc9u1DAQxi3USmxbHgHJEhcuWfw_8Y2qAlqpCKnAOfIm442rxA62l9Vy4hk49vF4Ehy2XHrgNB7p982Mv-8MnfjgAaGXlKwpacgbQgWnVNE1I0ysmSCKcP4MrShXqpKa0BO0WphqgZ6js5TuCSGqlvUKPXwMPYyj81s8Q5yMjSFl3IMNpckueLx3ecA3_vPlHc7QDT6MYXvAXfDJ9RAXYQpuxFNwKe8i4O8muqPS-B6nubzNWGWY5hDNiAfIEMMWPLh8wMHiPAC2EeAH_P75Kw9mj-cYOkjpAp1aMyZ48VjP0df3775cXVe3nz7cXF3eVh2nOlcUABjfECO1ERyk0lZtdKO7jbDAO7JhVBoJ5ceNqGujqZVNIxmXlHNgDPg5en2cW_Z-20HK7eRSV0wxHsIutZxKwZTUQhT01RP0PuyiL9cVSrBaKN3IQskj1RUzUwTbztFNJh5aStolsfZfYu2SWPuYWNG9Peqc_2v_PsSxb7M5jCHaaHznljX_HfEHDICitQ |
Cites_doi | 10.3390/rs11161865 10.1016/j.gloplacha.2014.09.002 10.1109/access.2020.2988482 10.1038/srep15542 10.1016/j.earscirev.2019.03.008 10.1016/j.rse.2021.112778 10.1029/2019GL083398 10.1029/2007JD009539 10.1016/j.rse.2016.07.019 10.1016/j.rse.2013.07.006 10.1029/2018jf004618 10.1029/1998gl900033 10.1080/01431160902929255 10.1016/j.jag.2017.09.002 10.1002/ppp.2059 10.3354/cr01549 10.1109/mgrs.2022.3170350 10.5194/tc-14-4279-2020 10.1016/j.rse.2020.112007 10.1002/joc.5161 10.1007/s11629-015-3745-x 10.1016/j.earscirev.2018.12.004 10.1007/s11434-007-0004-8 10.1016/j.jag.2022.102822 10.3390/rs13234744 10.1016/j.geomorph.2023.108582 10.1109/36.868878 10.6038/cjg2022Q0617 10.3390/rs14133168 10.1109/tgrs.2002.803792 10.1109/TGRS.2012.2227761 10.1016/j.scitotenv.2016.12.155 10.1002/2013JB010588 10.1080/17538947.2014.923943 10.31223/osf.io/9sz6m 10.1002/qj.3803 10.1029/2021gl097586 10.1016/j.jag.2023.103530 10.1109/36.868877 10.1098/rspa.1995.0059 10.3390/s20164464 10.1029/2018gl077960 10.1109/36.898661 10.1029/2009jf001547 10.23919/JSEE.2021.000109 10.1080/17538947.2023.2218116 10.1016/j.rse.2012.04.020 10.1016/j.jag.2021.102527 10.1002/1099-1530(200007/09)11:3<219:aid-ppp352>3.0.co;2-7 10.3390/rs15153728 10.1016/j.scitotenv.2017.07.080 10.1029/2021GL095029 10.1080/01431161.2014.999886 10.6038/cjg20130506 10.1080/00040851.1997.12003258 10.1029/2011GL048757 10.1109/jstars.2018.2873219 10.1029/2011jf002041 10.11947/j.AGCS.2022.20220156 10.1080/07038992.2014.1012836 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
DOI | 10.1080/01431161.2024.2406033 |
DatabaseName | Taylor & Francis Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aerospace Database AGRICOLA |
Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1366-5901 |
EndPage | 9086 |
ExternalDocumentID | 10_1080_01431161_2024_2406033 2406033 |
Genre | Research Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2022YFB3903602 – fundername: Scientific Research Project of Hunan Provincial Department of Education, China grantid: 21A0006 – fundername: the Innovation Foundation for Postgraduate of Central South University, China grantid: 2022ZZTS0011 – fundername: Natural Science Foundation of Changsha City, China grantid: kq2208262 – fundername: National Natural Science Foundation of China grantid: 42330112 – fundername: the Hunan Provincial Innovation Foundation for Postgraduate, China grantid: CX20220102 – fundername: National Science Fund for Distinguished Young Scholars grantid: 41925016 |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 0YH 29J 30N 4.4 5GY 5VS AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABLJU ABPAQ ABPEM ABRLO ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P H13 HF~ IPNFZ J.P KYCEM LJTGL M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M TASJS 7S9 L.6 |
ID | FETCH-LOGICAL-c319t-1eee23b0a59a43e569f6b989cb4fe3c0b215a5e0008477a91f5885235133e22e3 |
IEDL.DBID | 0YH |
ISSN | 0143-1161 1366-5901 |
IngestDate | Thu Aug 07 14:49:09 EDT 2025 Wed Aug 13 05:56:27 EDT 2025 Tue Jul 01 04:05:05 EDT 2025 Wed Dec 25 09:04:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-1eee23b0a59a43e569f6b989cb4fe3c0b215a5e0008477a91f5885235133e22e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/01431161.2024.2406033 |
PQID | 3142746985 |
PQPubID | 2045515 |
PageCount | 22 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_01431161_2024_2406033 proquest_miscellaneous_3154265944 proquest_journals_3142746985 crossref_primary_10_1080_01431161_2024_2406033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-16 |
PublicationDateYYYYMMDD | 2024-12-16 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | International journal of remote sensing |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_5_29_1 e_1_3_5_27_1 e_1_3_5_25_1 e_1_3_5_23_1 e_1_3_5_44_1 e_1_3_5_46_1 e_1_3_5_48_1 e_1_3_5_3_1 e_1_3_5_61_1 e_1_3_5_40_1 e_1_3_5_42_1 e_1_3_5_9_1 e_1_3_5_21_1 e_1_3_5_5_1 e_1_3_5_7_1 e_1_3_5_18_1 e_1_3_5_39_1 e_1_3_5_16_1 e_1_3_5_37_1 e_1_3_5_14_1 e_1_3_5_35_1 e_1_3_5_12_1 e_1_3_5_33_1 e_1_3_5_56_1 e_1_3_5_58_1 e_1_3_5_50_1 e_1_3_5_52_1 e_1_3_5_54_1 e_1_3_5_10_1 e_1_3_5_31_1 e_1_3_5_28_1 e_1_3_5_26_1 e_1_3_5_24_1 e_1_3_5_22_1 e_1_3_5_45_1 e_1_3_5_47_1 e_1_3_5_49_1 e_1_3_5_2_1 e_1_3_5_60_1 e_1_3_5_41_1 e_1_3_5_43_1 e_1_3_5_8_1 e_1_3_5_20_1 e_1_3_5_4_1 e_1_3_5_6_1 e_1_3_5_17_1 e_1_3_5_38_1 e_1_3_5_15_1 e_1_3_5_13_1 e_1_3_5_36_1 e_1_3_5_11_1 e_1_3_5_34_1 e_1_3_5_55_1 e_1_3_5_57_1 e_1_3_5_59_1 e_1_3_5_19_1 e_1_3_5_51_1 e_1_3_5_53_1 e_1_3_5_32_1 e_1_3_5_30_1 |
References_xml | – ident: e_1_3_5_2_1 doi: 10.3390/rs11161865 – ident: e_1_3_5_45_1 doi: 10.1016/j.gloplacha.2014.09.002 – ident: e_1_3_5_56_1 doi: 10.1109/access.2020.2988482 – ident: e_1_3_5_30_1 doi: 10.1038/srep15542 – ident: e_1_3_5_26_1 doi: 10.1016/j.earscirev.2019.03.008 – ident: e_1_3_5_10_1 doi: 10.1016/j.rse.2021.112778 – ident: e_1_3_5_12_1 doi: 10.1029/2019GL083398 – ident: e_1_3_5_47_1 doi: 10.1029/2007JD009539 – ident: e_1_3_5_60_1 doi: 10.1016/j.rse.2016.07.019 – ident: e_1_3_5_7_1 doi: 10.1016/j.rse.2013.07.006 – ident: e_1_3_5_8_1 doi: 10.1029/2018jf004618 – ident: e_1_3_5_17_1 doi: 10.1029/1998gl900033 – ident: e_1_3_5_48_1 doi: 10.1080/01431160902929255 – ident: e_1_3_5_38_1 doi: 10.1016/j.jag.2017.09.002 – ident: e_1_3_5_46_1 doi: 10.1002/ppp.2059 – ident: e_1_3_5_36_1 doi: 10.3354/cr01549 – ident: e_1_3_5_58_1 doi: 10.1109/mgrs.2022.3170350 – ident: e_1_3_5_35_1 doi: 10.5194/tc-14-4279-2020 – ident: e_1_3_5_11_1 doi: 10.1016/j.rse.2020.112007 – ident: e_1_3_5_18_1 doi: 10.1002/joc.5161 – ident: e_1_3_5_53_1 doi: 10.1007/s11629-015-3745-x – ident: e_1_3_5_27_1 doi: 10.1016/j.earscirev.2018.12.004 – ident: e_1_3_5_51_1 doi: 10.1007/s11434-007-0004-8 – ident: e_1_3_5_59_1 doi: 10.1016/j.jag.2022.102822 – ident: e_1_3_5_42_1 doi: 10.3390/rs13234744 – ident: e_1_3_5_49_1 doi: 10.1016/j.geomorph.2023.108582 – ident: e_1_3_5_15_1 doi: 10.1109/36.868878 – ident: e_1_3_5_52_1 doi: 10.6038/cjg2022Q0617 – ident: e_1_3_5_61_1 doi: 10.3390/rs14133168 – ident: e_1_3_5_3_1 doi: 10.1109/tgrs.2002.803792 – ident: e_1_3_5_14_1 doi: 10.1109/TGRS.2012.2227761 – ident: e_1_3_5_54_1 doi: 10.1016/j.scitotenv.2016.12.155 – ident: e_1_3_5_22_1 doi: 10.1002/2013JB010588 – ident: e_1_3_5_28_1 doi: 10.1080/17538947.2014.923943 – ident: e_1_3_5_57_1 doi: 10.31223/osf.io/9sz6m – ident: e_1_3_5_19_1 doi: 10.1002/qj.3803 – ident: e_1_3_5_9_1 doi: 10.1029/2021gl097586 – ident: e_1_3_5_23_1 doi: 10.1016/j.jag.2023.103530 – ident: e_1_3_5_4_1 doi: 10.1109/36.868877 – ident: e_1_3_5_40_1 doi: 10.1098/rspa.1995.0059 – ident: e_1_3_5_43_1 doi: 10.3390/s20164464 – ident: e_1_3_5_20_1 doi: 10.1029/2018gl077960 – ident: e_1_3_5_16_1 doi: 10.1109/36.898661 – ident: e_1_3_5_32_1 doi: 10.1029/2009jf001547 – ident: e_1_3_5_50_1 doi: 10.23919/JSEE.2021.000109 – ident: e_1_3_5_55_1 doi: 10.1080/17538947.2023.2218116 – ident: e_1_3_5_6_1 doi: 10.1016/j.rse.2012.04.020 – ident: e_1_3_5_24_1 doi: 10.1016/j.jag.2021.102527 – ident: e_1_3_5_37_1 doi: 10.1002/1099-1530(200007/09)11:3<219:aid-ppp352>3.0.co;2-7 – ident: e_1_3_5_13_1 doi: 10.3390/rs15153728 – ident: e_1_3_5_39_1 doi: 10.1016/j.scitotenv.2017.07.080 – ident: e_1_3_5_33_1 doi: 10.1029/2021GL095029 – ident: e_1_3_5_5_1 doi: 10.1080/01431161.2014.999886 – ident: e_1_3_5_25_1 doi: 10.6038/cjg20130506 – ident: e_1_3_5_34_1 doi: 10.1080/00040851.1997.12003258 – ident: e_1_3_5_21_1 doi: 10.1029/2011GL048757 – ident: e_1_3_5_41_1 doi: 10.1109/jstars.2018.2873219 – ident: e_1_3_5_31_1 doi: 10.1029/2011jf002041 – ident: e_1_3_5_29_1 doi: 10.11947/j.AGCS.2022.20220156 – ident: e_1_3_5_44_1 doi: 10.1080/07038992.2014.1012836 |
SSID | ssj0006757 |
Score | 2.4556055 |
Snippet | Monitoring and modelling surface deformation are crucial components of understanding the freeze‒thaw process and preventing disasters in permafrost regions.... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 9065 |
SubjectTerms | Annual variations China Climate change composite index Deformation Deformation effects deformation model Disasters Emergency preparedness Freeze-thaw freeze-thaw cycles heat sums Heterogeneity In situ measurement Interannual variations Interferometric synthetic aperture radar interferometry Modelling Moisture content Permafrost Qinghai‒Tibet Plateau SAR (radar) Soil moisture Soil moisture effects Soil moisture variation Soil moisture variations soil water spatial-temporal heterogeneity Synthetic aperture radar Synthetic aperture radar interferometry |
Title | Modelling permafrost deformation with InSAR technology considering soil moisture variation and spatial-temporal heterogeneity of the freeze‒thaw process |
URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2024.2406033 https://www.proquest.com/docview/3142746985 https://www.proquest.com/docview/3154265944 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BciiXitIi0qbRInF1ant3newxokQGCQ7QiMfFWtuzSqXUjhIHVE78Bo78vP4SZuy1RVQhDhwte2xp5_XNeB6MvRDoQvJoknq5EcqTxs89g37Fy62GEDIESpYS-m_fRfFCvvmk2mrCrSurpBjaNoMialtNym3SbVsRd0Ej6QJEKhjdhXJMLskX4iHrhyStKNL-57gzxoiHm45pmsSJNG0Tz99es-ee9oaX3jPWtQeaP2aHDjryWcPrI_YAiifswG0xX94es1-02Kyesc3XZHAtdXTwHLoGRU5ZV_66-DB7z6sup84zt7STCLfl9YrflMj83Qb4V4ykG0o8LL6l6muz8tw4qxVfUi1NiSIIiOV5aTmiSW43AN_h7sfPamm-8XXTiHDCFvNXVy9jz-1e8DJUysoLACAUqW-UNlKAirSNUj3VWSotiMxPESoYBQQh5GRidGDVdIpBLa2LgTAE8ZT1irKAZ4wL8GWWAWIVk0spQ2OFshh1oe77eR75AzZujzxZNyM2kqCdXOp4lBCPEsejAdN_Miap6tyGbRaRJOIftMOWi4nTViKRGJxHeqoG7Hl3G_WMfp6YAsodPaMQzCgt5el_fP6MPaJLqocJoiHrVZsdnCOqqdJRLbcj1p_Fl18-_gaR6vIm |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9RADLZKOZRLKS-xpYVB4polycwkO8cKUW2h3QO0Um_RZOLRIpZktc22oid-A0d-Xn9J7TxWLQj10HPiZDIP-7NjfwZ4J8mEFEmaB4WVOlA2LAJLdiUovMEYHQElzwH9o0kyPlGfTvXpjVoYTqtkH9q3RBGNrubDzcHoPiXuPXPSRQRVyL2L1ZBtUijlA3ioTZJyFwMZTlbamABxWzLNVJwk01fx_O8xt-zTLfbSf7R1Y4L2H4PrB99mnnwfLut86C7_4nW839dtwWaHUMVeu6WewBqWT2Gja5Y-_fkM_nD_tIbKW8xZr3suHBEFruogBQd3xUH5de-LqFehe-G63qAseFZ9m4kfFe2x5QLFOTnsrSSNWpxxkredBR1r1kxMOWWnop2O5DKIygsCrcIvEC_x6tfvemovxLytd3gOJ_sfjz-Mg67FQ-Do7NdBhIixzEOrjVUSdWJ8kpuRcbnyKF2YEyKxGhmpqDS1JvJ6NCLfmbvSYByjfAHrZVXiSxASQ-UcEiSyhVIqtl5qT84dqZiwKJJwAMN-YbN5y-SRRT1BajflGU951k35AMzN5c_qJoTi234nmbxDdqffK1mnFFhExSl37NQDeLu6TMeZ_9HYEqsl36MJM2mj1PY9Xv8GNsbHR4fZ4cHk8yt4xJc4BSdKdmC9Xixxl4BUnb9uTso1lCkT9w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VVoJeSnmJ0FIWiauD7d114mMFRH1AhIBK3Ky1d1apCHaUOEXtqb-hx_48fgkz9jqiIMShZ3vs9T5mvhnPfAPwSpIJsckgD6yROlAmtIEhuxJYl2KMBQElxwH9D-Pk4EQdfdVdNuHCp1WyD-1aoohGV_PhnlnXZcS9Zkq6iJAKeXex6rNJCqW8AxsJk4dzFUc4XiljwsNtxTQzcZJMV8Tzr8fcME83yEv_UtaNBRrdh7wbe5t48q2_rPN-cfEHreOtPm4btjw-FfvthnoAa1g-hHu-Vfrk_BFcc_e0hshbzFirOy4bERZXVZCCQ7visPy8_0nUq8C9KHxnUBZcVKdT8b2iHbacozgjd72VpEGLBad4m2ngObOmYsIJOxXtcySHQVROEGQVbo54gT8vr-qJ-SFmbbXDYzgZvfvy5iDwDR6Cgk5-HUSIGMs8NDo1SqJOUpfk6TAtcuVQFmFOeMRoZJyiBgOTRk4Ph-Q5c08ajGOUT2C9rEp8CkJiqIoCCRAZq5SKjZPakWtHCia0Ngl70O_WNZu1PB5Z1NGj-inPeMozP-U9SH9f_axuAiiu7XaSyf_I7nZbJfMqgUVUPOB-nboHL1eX6TDzHxpTYrXkezQhJp0q9ewWr38Bdz--HWXvD8fHO7DJVzj_Jkp2Yb2eL_E5oag632vOyS8iAhKb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+permafrost+deformation+with+InSAR+technology+considering+soil+moisture+variation+and+spatial-temporal+heterogeneity+of+the+freeze%E2%80%92thaw+process&rft.jtitle=International+journal+of+remote+sensing&rft.au=Gao%2C+Guanyou&rft.au=Wang%2C+Qijie&rft.au=Li%2C+Jiachen&rft.au=Zhang%2C+Ya&rft.date=2024-12-16&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=45&rft.issue=24&rft.spage=9065&rft.epage=9086&rft_id=info:doi/10.1080%2F01431161.2024.2406033&rft.externalDBID=0YH&rft.externalDocID=2406033 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |