Reliability-based design optimization under dependent random variables by a generalized polynomial chaos expansion
This article brings forward a new computational method for reliability-based design optimization (RBDO) of complex mechanical systems subject to input random variables following arbitrary, dependent probability distributions. It involves a generalized polynomial chaos expansion (GPCE) for reliabilit...
Saved in:
Published in | Structural and multidisciplinary optimization Vol. 65; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article brings forward a new computational method for reliability-based design optimization (RBDO) of complex mechanical systems subject to input random variables following arbitrary, dependent probability distributions. It involves a generalized polynomial chaos expansion (GPCE) for reliability analysis subject to dependent input random variables, a novel fusion of the GPCE approximation and score functions for estimating the sensitivities of the failure probability with respect to design variables, and standard gradient-based optimization algorithms, resulting in a multi-point single-step design process. The method, designated as the multi-point single-step GPCE method or simply the MPSS-GPCE method, yields analytical formulae for computing the failure probability and its design sensitivities concurrently from a single stochastic simulation or analysis. For this reason, the MPSS-GPCE method affords the ability to solve industrial-scale problems with large design spaces. Numerical results stemming from mathematical functions or elementary engineering problems indicate that the new method provides more accurate or computationally efficient design solutions than existing methods or reference solutions. Furthermore, the shape design optimization of a jet engine compressor blade root was successfully conducted, demonstrating the power of the new method in confronting practical RBDO problems. |
---|---|
AbstractList | This article brings forward a new computational method for reliability-based design optimization (RBDO) of complex mechanical systems subject to input random variables following arbitrary, dependent probability distributions. It involves a generalized polynomial chaos expansion (GPCE) for reliability analysis subject to dependent input random variables, a novel fusion of the GPCE approximation and score functions for estimating the sensitivities of the failure probability with respect to design variables, and standard gradient-based optimization algorithms, resulting in a multi-point single-step design process. The method, designated as the multi-point single-step GPCE method or simply the MPSS-GPCE method, yields analytical formulae for computing the failure probability and its design sensitivities concurrently from a single stochastic simulation or analysis. For this reason, the MPSS-GPCE method affords the ability to solve industrial-scale problems with large design spaces. Numerical results stemming from mathematical functions or elementary engineering problems indicate that the new method provides more accurate or computationally efficient design solutions than existing methods or reference solutions. Furthermore, the shape design optimization of a jet engine compressor blade root was successfully conducted, demonstrating the power of the new method in confronting practical RBDO problems. |
ArticleNumber | 21 |
Author | Lee, Dongjin Rahman, Sharif |
Author_xml | – sequence: 1 givenname: Dongjin orcidid: 0000-0003-3346-8059 surname: Lee fullname: Lee, Dongjin email: dongjin-lee@uiowa.edu organization: Department of Mechanical Engineering, The University of Iowa – sequence: 2 givenname: Sharif surname: Rahman fullname: Rahman, Sharif organization: Department of Mechanical Engineering, The University of Iowa |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6uZ3W03OUrxCwqCKHgL2eykpmyTNdmK7a83tqLgoacM5H3eGZ4RGTjvkJBzYJfAWHUVGYMJz1gOGSsgL7LqiAxhCpMMSs4Hv3P1ekJGMS4ZY5yVYkjCE7ZW1ba1_SarVcSGNhjtwlHf9XZlt6q33tG1azCknw7T4HoalGv8in6okOAWI603VNEFOgyqtdvU0vl24_zKqpbqN-Ujxc9OuZjKTsmxUW3Es593TF5ub55n99n88e5hdj3PdAGizwAFThrOtSkQRF0xmJbG8LqEBhpRo9IlMhAAOiWNNtWUc0RmuBG8VFoVY3Kx7-2Cf19j7OXSr4NLK2U-hbIUxSQXKZXvUzr4GAMa2QW7UmEjgclvt3LvVia3cudWVgni_yBt-52pPijbHkaLPRrTHrfA8HfVAeoLWqSTgg |
CitedBy_id | crossref_primary_10_1016_j_ress_2023_109208 crossref_primary_10_3390_app14135452 crossref_primary_10_1007_s00158_022_03477_6 crossref_primary_10_1155_2023_4009397 crossref_primary_10_1615_Int_J_UncertaintyQuantification_2023043457 crossref_primary_10_1109_TPWRS_2024_3380072 crossref_primary_10_1080_15376494_2024_2352800 crossref_primary_10_1007_s10483_024_3108_8 crossref_primary_10_1080_0305215X_2023_2209016 crossref_primary_10_1016_j_cma_2024_117505 crossref_primary_10_1016_j_cma_2023_116704 crossref_primary_10_1016_j_oceaneng_2022_113419 |
Cites_doi | 10.2514/1.28827 10.1016/j.compstruct.2020.112937 10.1061/(ASCE)BE.1943-5592.0001457 10.1214/aoms/1177729394 10.1016/j.ress.2020.106896 10.1016/j.probengmech.2008.07.004 10.2514/1.J051017 10.1137/20M1315774 10.1016/j.cma.2018.09.026 10.1108/EC-03-2019-0113 10.1016/j.apm.2020.03.041 10.2514/1.13510 10.1007/s00158-003-0345-0 10.1007/s00158-015-1337-6 10.1016/j.cma.2017.12.019 10.1007/BF01194859 10.24033/asens.245 10.1007/978-1-4612-0715-3 10.1016/j.advengsoft.2017.06.013 10.1007/s00366-011-0251-9 10.1061/(ASCE)EM.1943-7889.0000047 10.1007/s00158-008-0277-9 10.1007/s00158-020-02820-z 10.1007/BF01743169 10.2307/2371268 10.1115/1.1899691 10.1007/s00158-007-0133-3 10.1016/j.compstruc.2003.09.002 10.1007/s00158-018-2081-5 10.1007/s00158-015-1322-0 10.1007/s00158-014-1150-7 10.1177/117693430600200010 10.1115/1.1649968 10.1016/j.jmaa.2018.04.032 10.1137/S1064827501387826 10.1115/1.2829499 10.1115/1.2779884 10.1016/j.compstruc.2007.05.020 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s00158-021-03123-7 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1615-1488 |
ExternalDocumentID | 10_1007_s00158_021_03123_7 |
GrantInformation_xml | – fundername: national science foundation grantid: CMMI-1933114 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 2.D 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR _50 ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c319t-1e9e5d88cf3e19b70164ff8b41d1d9beac4e01911c1e9fcf7688ee0f8f984aca3 |
IEDL.DBID | U2A |
ISSN | 1615-147X |
IngestDate | Sat Aug 23 13:56:47 EDT 2025 Tue Jul 01 01:31:46 EDT 2025 Thu Apr 24 22:51:55 EDT 2025 Fri Feb 21 02:46:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Design sensitivity analysis Reliability analysis GPCE Stochastic optimization RBDO Score functions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-1e9e5d88cf3e19b70164ff8b41d1d9beac4e01911c1e9fcf7688ee0f8f984aca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3346-8059 |
PQID | 2614493529 |
PQPubID | 2043658 |
ParticipantIDs | proquest_journals_2614493529 crossref_primary_10_1007_s00158_021_03123_7 crossref_citationtrail_10_1007_s00158_021_03123_7 springer_journals_10_1007_s00158_021_03123_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220100 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Structural and multidisciplinary optimization |
PublicationTitleAbbrev | Struct Multidisc Optim |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | KuschelNRackwitzRTwo basic problems in reliability-based structural optimizationMath Methods Oper Res199746330933316030710896.90106 RahmanSUncertainty quantification under dependent random variables by a generalized polynomial dimensional decompositionComput Methods Appl Mech Eng201934491093738806471440.60044 NohYChoiKDuLReliability-based design optimization of problems with correlated input variables using a Gaussian CopulaStruct Multidiscip Optim2009381116 RenXYadavVRahmanSReliability-based design optimization by adaptive-sparse polynomial dimensional decompositionStruct Multidiscip Optim20165334254523475638 das Neves CarneiroGAntónioCCSobol’ indices as dimension reduction technique in evolutionary-based reliability assessmentEng Comput2020371368398 LeeIChoiKDuLGorsichDDimension reduction method for reliability-based robust design optimizationComput Struct20088613–14155015621194.74250 RahmanSExtended polynomial dimensional decomposition for arbitrary probability distributionsJ Eng Mech ASCE20091351214391451 YounBDChoiKYangRJGuLReliability-based design optimization for crashworthiness of vehicle side impactStruct Multidiscip Optim2004263272283 WienerNThe homogeneous chaosAm J Math1938604897936150735664.0887.02 LeeDRahmanSPractical uncertainty quantification analysis involving statistically dependent random variablesAppl Math Model202084324356409121007203996 LiLWanHGaoWTongFLiHReliability based multidisciplinary design optimization of cooling turbine blade considering uncertainty data statisticsStruct Multidiscip Optim2019592659673 StephensRFatemiAStephensRRFuchsHMetal fatigue in engineering2000New YorkWiley-Interscience AgarwalHRenaudJENew decoupled framework for reliability-based design optimizationAIAA J200644715241531 YounBDChoiKKA new response surface methodology for reliability-based design optimizationComput Struct2004822–3241256 LehkỳDSlowikONovákDReliability-based design: artificial neural networks and double-loop reliability-based optimization approachesAdv Eng Softw2018117123135 LuthenNMarelliSSudretBSparse polynomial chaos expansions: literature survey and benchmarkSIAM/ASA J Uncertain Quant20219259364942578791464.65008 SiavashiSEamonCDDevelopment of traffic live-load models for bridge superstructure rating with rbdo and best selection approachJ Bridge Eng201910.1061/(ASCE)BE.1943-5592.0001457 TuJChoiKKParkYHA new study on reliability-based design optimizationJ Mech Des19991214557564 ChiralaksanakulAMahadevanSFirst-order approximation methods in reliability-based design optimizationJ Mech Des20041275851857 ABAQUS (2019) version 2019. Dassault Systèmes Simulia Corp LiangJMourelatosZPNikolaidisEA single-loop approach for system reliability-based design optimizationJ Mech Des20071291212151224 YangITHsiehYHReliability-based design optimization with cooperation between support vector machine and particle swarm optimizationEng Comput2013292151163 FernandesADAtchleyWRGaussian quadrature formulae for arbitrary positive measuresEvol Bioinform200610.1177/117693430600200010 RahmanSStochastic sensitivity analysis by dimensional decomposition and score functionsProbab Eng Mech2009243278287 RosenblattMRemarks on a multivariate transformationAnn Math Stat195223470472495250047.13104 LeeDRahmanSRobust design optimization under dependent random variables by a generalized polynomial chaos expansionStruct Multidiscip Optim2021635242524574244965 AroraJSIntroduction to optimum design2004New YorkMcGraw-Hill MATLAB (2019) version 9.7.0 (R2019b). The MathWorks Inc., Natick, Massachusetts SuryawanshiAGhoshDReliability based optimization in aeroelastic stability problems using polynomial chaos based metamodelsStruct Multidiscip Optim2016535106910803490932 HassanRCrossleyWSpacecraft reliability-based design optimization under uncertainty including discrete variablesJ Spacecraft Rockets2008452394405 RahmanSWeiDDesign sensitivity and reliability-based structural optimization by univariate decompositionStruct Multidiscip Optim2008353245261 HadigolMDoostanALeast squares polynomial chaos expansion: a review of sampling strategiesComput Methods Appl Mech Eng201833238240737644331440.65007 das Neves CarneiroGAntonioCCDimensional reduction applied to the reliability-based robust design optimization of composite structuresCompos Struct2021255112937 RahmanSA polynomial chaos expansion in dependent random variablesJ Math Anal Appl2018464174977537941141397.60069 ToropovVFilatovAPolynkinAMultiparameter structural optimization using FEM and multipoint explicit approximationsStruct Multidiscip Optim199361714 CREO (2016) version 4.0. PTC GautschiWStructural and multidisciplinary optimization. Numerical mathematics and scientific computation2004OxfordOxford University Press StieltjesTJQuelques recherches sur la théorie des quadratures dites mécaniquesAnn Sci l’Écol Norm Supér1884140942616.0242.02 GuXLuJWangHReliability-based design optimization for vehicle occupant protection system based on ensemble of metamodelsStruct Multidiscip Optim2015512533546 XiuDKarniadakisGEThe Wiener–Askey polynomial chaos for stochastic differential equationsSIAM J Sci Comput20022461964419510581014.65004 DuXChenWSequential optimization and reliability assessment method for efficient probabilistic designJ Mech Des20041262225233 BrowderAMathematical analysis: an introduction. Undergraduate texts in mathematics1996BerlinSpringer LeeIChoiKKNohYZhaoLGorsichDSampling-based stochastic sensitivity analysis using score functions for rbdo problems with correlated random variablesJ Mech Des2011101115/14003186 RubinsteinRShapiroADiscrete event systems: sensitivity analysis and stochastic optimization by the score function method1993New YorkWiley0805.93002 NannapaneniSMahadevanSProbability-space surrogate modeling for fast multidisciplinary optimization under uncertaintyReliab Eng Syst Saf2020198106896 KangBChoiKKimDHAn efficient serial-loop strategy for reliability-based robust optimization of electromagnetic design problemsIEEE Trans Magn201754314 ZhaoLChoiKLeeIMetamodeling method using dynamic kriging for design optimizationAIAA J201149920342046 H Agarwal (3123_CR2) 2006; 44 A Browder (3123_CR4) 1996 J Liang (3123_CR23) 2007; 129 3123_CR25 X Gu (3123_CR12) 2015; 51 R Rubinstein (3123_CR35) 1993 IT Yang (3123_CR44) 2013; 29 S Rahman (3123_CR32) 2008; 35 J Tu (3123_CR41) 1999; 121 S Rahman (3123_CR30) 2018; 464 A Suryawanshi (3123_CR39) 2016; 53 BD Youn (3123_CR46) 2004; 26 S Rahman (3123_CR29) 2009; 24 M Rosenblatt (3123_CR34) 1952; 23 L Zhao (3123_CR47) 2011; 49 N Wiener (3123_CR42) 1938; 60 A Chiralaksanakul (3123_CR5) 2004; 127 N Kuschel (3123_CR16) 1997; 46 AD Fernandes (3123_CR10) 2006 V Toropov (3123_CR40) 1993; 6 I Lee (3123_CR20) 2011; 10 G das Neves Carneiro (3123_CR8) 2021; 255 D Lee (3123_CR17) 2020; 84 TJ Stieltjes (3123_CR38) 1884; 1 X Du (3123_CR9) 2004; 126 D Lehkỳ (3123_CR21) 2018; 117 L Li (3123_CR22) 2019; 59 N Luthen (3123_CR24) 2021; 9 R Stephens (3123_CR37) 2000 JS Arora (3123_CR3) 2004 R Hassan (3123_CR14) 2008; 45 X Ren (3123_CR33) 2016; 53 I Lee (3123_CR19) 2008; 86 D Xiu (3123_CR43) 2002; 24 D Lee (3123_CR18) 2021; 63 B Kang (3123_CR15) 2017; 54 S Rahman (3123_CR28) 2009; 135 S Siavashi (3123_CR36) 2019 G das Neves Carneiro (3123_CR7) 2020; 37 M Hadigol (3123_CR13) 2018; 332 S Rahman (3123_CR31) 2019; 344 S Nannapaneni (3123_CR26) 2020; 198 W Gautschi (3123_CR11) 2004 3123_CR1 BD Youn (3123_CR45) 2004; 82 3123_CR6 Y Noh (3123_CR27) 2009; 38 |
References_xml | – reference: TuJChoiKKParkYHA new study on reliability-based design optimizationJ Mech Des19991214557564 – reference: ZhaoLChoiKLeeIMetamodeling method using dynamic kriging for design optimizationAIAA J201149920342046 – reference: RosenblattMRemarks on a multivariate transformationAnn Math Stat195223470472495250047.13104 – reference: LeeDRahmanSRobust design optimization under dependent random variables by a generalized polynomial chaos expansionStruct Multidiscip Optim2021635242524574244965 – reference: RahmanSA polynomial chaos expansion in dependent random variablesJ Math Anal Appl2018464174977537941141397.60069 – reference: DuXChenWSequential optimization and reliability assessment method for efficient probabilistic designJ Mech Des20041262225233 – reference: das Neves CarneiroGAntónioCCSobol’ indices as dimension reduction technique in evolutionary-based reliability assessmentEng Comput2020371368398 – reference: LuthenNMarelliSSudretBSparse polynomial chaos expansions: literature survey and benchmarkSIAM/ASA J Uncertain Quant20219259364942578791464.65008 – reference: XiuDKarniadakisGEThe Wiener–Askey polynomial chaos for stochastic differential equationsSIAM J Sci Comput20022461964419510581014.65004 – reference: RahmanSWeiDDesign sensitivity and reliability-based structural optimization by univariate decompositionStruct Multidiscip Optim2008353245261 – reference: MATLAB (2019) version 9.7.0 (R2019b). The MathWorks Inc., Natick, Massachusetts – reference: RahmanSUncertainty quantification under dependent random variables by a generalized polynomial dimensional decompositionComput Methods Appl Mech Eng201934491093738806471440.60044 – reference: das Neves CarneiroGAntonioCCDimensional reduction applied to the reliability-based robust design optimization of composite structuresCompos Struct2021255112937 – reference: GuXLuJWangHReliability-based design optimization for vehicle occupant protection system based on ensemble of metamodelsStruct Multidiscip Optim2015512533546 – reference: KuschelNRackwitzRTwo basic problems in reliability-based structural optimizationMath Methods Oper Res199746330933316030710896.90106 – reference: FernandesADAtchleyWRGaussian quadrature formulae for arbitrary positive measuresEvol Bioinform200610.1177/117693430600200010 – reference: HadigolMDoostanALeast squares polynomial chaos expansion: a review of sampling strategiesComput Methods Appl Mech Eng201833238240737644331440.65007 – reference: LeeDRahmanSPractical uncertainty quantification analysis involving statistically dependent random variablesAppl Math Model202084324356409121007203996 – reference: YounBDChoiKKA new response surface methodology for reliability-based design optimizationComput Struct2004822–3241256 – reference: YounBDChoiKYangRJGuLReliability-based design optimization for crashworthiness of vehicle side impactStruct Multidiscip Optim2004263272283 – reference: ChiralaksanakulAMahadevanSFirst-order approximation methods in reliability-based design optimizationJ Mech Des20041275851857 – reference: RahmanSStochastic sensitivity analysis by dimensional decomposition and score functionsProbab Eng Mech2009243278287 – reference: StieltjesTJQuelques recherches sur la théorie des quadratures dites mécaniquesAnn Sci l’Écol Norm Supér1884140942616.0242.02 – reference: AgarwalHRenaudJENew decoupled framework for reliability-based design optimizationAIAA J200644715241531 – reference: StephensRFatemiAStephensRRFuchsHMetal fatigue in engineering2000New YorkWiley-Interscience – reference: LeeIChoiKKNohYZhaoLGorsichDSampling-based stochastic sensitivity analysis using score functions for rbdo problems with correlated random variablesJ Mech Des2011101115/14003186 – reference: NohYChoiKDuLReliability-based design optimization of problems with correlated input variables using a Gaussian CopulaStruct Multidiscip Optim2009381116 – reference: NannapaneniSMahadevanSProbability-space surrogate modeling for fast multidisciplinary optimization under uncertaintyReliab Eng Syst Saf2020198106896 – reference: KangBChoiKKimDHAn efficient serial-loop strategy for reliability-based robust optimization of electromagnetic design problemsIEEE Trans Magn201754314 – reference: LeeIChoiKDuLGorsichDDimension reduction method for reliability-based robust design optimizationComput Struct20088613–14155015621194.74250 – reference: LiLWanHGaoWTongFLiHReliability based multidisciplinary design optimization of cooling turbine blade considering uncertainty data statisticsStruct Multidiscip Optim2019592659673 – reference: ToropovVFilatovAPolynkinAMultiparameter structural optimization using FEM and multipoint explicit approximationsStruct Multidiscip Optim199361714 – reference: ABAQUS (2019) version 2019. Dassault Systèmes Simulia Corp – reference: HassanRCrossleyWSpacecraft reliability-based design optimization under uncertainty including discrete variablesJ Spacecraft Rockets2008452394405 – reference: RubinsteinRShapiroADiscrete event systems: sensitivity analysis and stochastic optimization by the score function method1993New YorkWiley0805.93002 – reference: YangITHsiehYHReliability-based design optimization with cooperation between support vector machine and particle swarm optimizationEng Comput2013292151163 – reference: WienerNThe homogeneous chaosAm J Math1938604897936150735664.0887.02 – reference: RahmanSExtended polynomial dimensional decomposition for arbitrary probability distributionsJ Eng Mech ASCE20091351214391451 – reference: LiangJMourelatosZPNikolaidisEA single-loop approach for system reliability-based design optimizationJ Mech Des20071291212151224 – reference: SuryawanshiAGhoshDReliability based optimization in aeroelastic stability problems using polynomial chaos based metamodelsStruct Multidiscip Optim2016535106910803490932 – reference: BrowderAMathematical analysis: an introduction. Undergraduate texts in mathematics1996BerlinSpringer – reference: AroraJSIntroduction to optimum design2004New YorkMcGraw-Hill – reference: GautschiWStructural and multidisciplinary optimization. Numerical mathematics and scientific computation2004OxfordOxford University Press – reference: SiavashiSEamonCDDevelopment of traffic live-load models for bridge superstructure rating with rbdo and best selection approachJ Bridge Eng201910.1061/(ASCE)BE.1943-5592.0001457 – reference: CREO (2016) version 4.0. PTC – reference: LehkỳDSlowikONovákDReliability-based design: artificial neural networks and double-loop reliability-based optimization approachesAdv Eng Softw2018117123135 – reference: RenXYadavVRahmanSReliability-based design optimization by adaptive-sparse polynomial dimensional decompositionStruct Multidiscip Optim20165334254523475638 – volume: 45 start-page: 394 issue: 2 year: 2008 ident: 3123_CR14 publication-title: J Spacecraft Rockets doi: 10.2514/1.28827 – volume: 255 start-page: 112937 year: 2021 ident: 3123_CR8 publication-title: Compos Struct doi: 10.1016/j.compstruct.2020.112937 – year: 2019 ident: 3123_CR36 publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0001457 – volume: 23 start-page: 470 year: 1952 ident: 3123_CR34 publication-title: Ann Math Stat doi: 10.1214/aoms/1177729394 – volume: 10 start-page: 4003186 issue: 1115/1 year: 2011 ident: 3123_CR20 publication-title: J Mech Des – volume: 198 start-page: 106896 year: 2020 ident: 3123_CR26 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.106896 – ident: 3123_CR6 – volume: 24 start-page: 278 issue: 3 year: 2009 ident: 3123_CR29 publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2008.07.004 – volume: 49 start-page: 2034 issue: 9 year: 2011 ident: 3123_CR47 publication-title: AIAA J doi: 10.2514/1.J051017 – volume: 9 start-page: 593 issue: 2 year: 2021 ident: 3123_CR24 publication-title: SIAM/ASA J Uncertain Quant doi: 10.1137/20M1315774 – volume: 344 start-page: 910 year: 2019 ident: 3123_CR31 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.09.026 – volume: 37 start-page: 368 issue: 1 year: 2020 ident: 3123_CR7 publication-title: Eng Comput doi: 10.1108/EC-03-2019-0113 – volume: 84 start-page: 324 year: 2020 ident: 3123_CR17 publication-title: Appl Math Model doi: 10.1016/j.apm.2020.03.041 – volume: 44 start-page: 1524 issue: 7 year: 2006 ident: 3123_CR2 publication-title: AIAA J doi: 10.2514/1.13510 – volume: 26 start-page: 272 issue: 3 year: 2004 ident: 3123_CR46 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-003-0345-0 – volume: 53 start-page: 425 issue: 3 year: 2016 ident: 3123_CR33 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-015-1337-6 – volume: 332 start-page: 382 year: 2018 ident: 3123_CR13 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2017.12.019 – volume: 46 start-page: 309 issue: 3 year: 1997 ident: 3123_CR16 publication-title: Math Methods Oper Res doi: 10.1007/BF01194859 – volume: 1 start-page: 409 year: 1884 ident: 3123_CR38 publication-title: Ann Sci l’Écol Norm Supér doi: 10.24033/asens.245 – volume-title: Introduction to optimum design year: 2004 ident: 3123_CR3 – volume-title: Mathematical analysis: an introduction. Undergraduate texts in mathematics year: 1996 ident: 3123_CR4 doi: 10.1007/978-1-4612-0715-3 – volume-title: Metal fatigue in engineering year: 2000 ident: 3123_CR37 – volume: 117 start-page: 123 year: 2018 ident: 3123_CR21 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.06.013 – volume: 29 start-page: 151 issue: 2 year: 2013 ident: 3123_CR44 publication-title: Eng Comput doi: 10.1007/s00366-011-0251-9 – ident: 3123_CR25 – volume: 135 start-page: 1439 issue: 12 year: 2009 ident: 3123_CR28 publication-title: J Eng Mech ASCE doi: 10.1061/(ASCE)EM.1943-7889.0000047 – volume: 38 start-page: 1 issue: 1 year: 2009 ident: 3123_CR27 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-008-0277-9 – volume: 63 start-page: 2425 issue: 5 year: 2021 ident: 3123_CR18 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-020-02820-z – volume: 6 start-page: 7 issue: 1 year: 1993 ident: 3123_CR40 publication-title: Struct Multidiscip Optim doi: 10.1007/BF01743169 – ident: 3123_CR1 – volume: 60 start-page: 897 issue: 4 year: 1938 ident: 3123_CR42 publication-title: Am J Math doi: 10.2307/2371268 – volume: 127 start-page: 851 issue: 5 year: 2004 ident: 3123_CR5 publication-title: J Mech Des doi: 10.1115/1.1899691 – volume: 35 start-page: 245 issue: 3 year: 2008 ident: 3123_CR32 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-007-0133-3 – volume-title: Discrete event systems: sensitivity analysis and stochastic optimization by the score function method year: 1993 ident: 3123_CR35 – volume: 82 start-page: 241 issue: 2–3 year: 2004 ident: 3123_CR45 publication-title: Comput Struct doi: 10.1016/j.compstruc.2003.09.002 – volume: 59 start-page: 659 issue: 2 year: 2019 ident: 3123_CR22 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-018-2081-5 – volume: 53 start-page: 1069 issue: 5 year: 2016 ident: 3123_CR39 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-015-1322-0 – volume: 51 start-page: 533 issue: 2 year: 2015 ident: 3123_CR12 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-014-1150-7 – volume: 54 start-page: 1 issue: 3 year: 2017 ident: 3123_CR15 publication-title: IEEE Trans Magn – year: 2006 ident: 3123_CR10 publication-title: Evol Bioinform doi: 10.1177/117693430600200010 – volume: 126 start-page: 225 issue: 2 year: 2004 ident: 3123_CR9 publication-title: J Mech Des doi: 10.1115/1.1649968 – volume: 464 start-page: 749 issue: 1 year: 2018 ident: 3123_CR30 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2018.04.032 – volume: 24 start-page: 619 year: 2002 ident: 3123_CR43 publication-title: SIAM J Sci Comput doi: 10.1137/S1064827501387826 – volume: 121 start-page: 557 issue: 4 year: 1999 ident: 3123_CR41 publication-title: J Mech Des doi: 10.1115/1.2829499 – volume-title: Structural and multidisciplinary optimization. Numerical mathematics and scientific computation year: 2004 ident: 3123_CR11 – volume: 129 start-page: 1215 issue: 12 year: 2007 ident: 3123_CR23 publication-title: J Mech Des doi: 10.1115/1.2779884 – volume: 86 start-page: 1550 issue: 13–14 year: 2008 ident: 3123_CR19 publication-title: Comput Struct doi: 10.1016/j.compstruc.2007.05.020 |
SSID | ssj0008049 |
Score | 2.4146233 |
Snippet | This article brings forward a new computational method for reliability-based design optimization (RBDO) of complex mechanical systems subject to input random... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Compressor blades Computational Mathematics and Numerical Analysis Dependent variables Design optimization Design standards Engineering Engineering Design Jet engines Mathematical functions Mechanical systems Polynomials Random variables Reliability analysis Research Paper Theoretical and Applied Mechanics |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6veiD-Inzizz4psGmTdvkSVQUERwiCnsrbZKq4Na5TnH-9d616aaCe257hUty97vL3e8IOQSIKkLLOVNBaJgQKmUpjyIm_cB6Geeprm7Pb7vR9aO46YU9l3ArXVllYxMrQ20KjTnyEx8jFxDoq9PhG8OpUXi76kZoLJI2mGAJwVf7_LJ7dz-1xbIGwAhrGBdxz7XNVM1zCBckwxIF2Nh-wOLfrmmGN_9ckVae52qVrDjISM_qNV4jC3awTpZ_EAlukBFWFteM2xOGjslQU5Vm0AJMQt_1WlJsGBvRZu7tmIKfMkWffkC8jB1UJc0mNKVPNRP1yxdIGRavE2xchv_r57Qoqf0E84EZtk3yeHX5cHHN3DQFpuGYjRm3yoZGSp0HlqssRm6tPJeZ4IYblYEBFhbwHuca3sx1DnGItNbLZa6kSHUabJHWoBjYbULjLDLSiyOlg0yESkujfeVrRBMxADivQ3ijyEQ7qnGcePGaTEmSK-UnoPykUn4Sd8jR9JthTbQx9-29Zn0Sd-jKZLZFOuS4WbPZ4_-l7cyXtkuWfGx6qBIve6Q1Hr3bfYAi4-zA7bdvF9XbEg priority: 102 providerName: ProQuest |
Title | Reliability-based design optimization under dependent random variables by a generalized polynomial chaos expansion |
URI | https://link.springer.com/article/10.1007/s00158-021-03123-7 https://www.proquest.com/docview/2614493529 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPQgPnF1XXLwpoGmTdvkuMo-UFxEXFhPpU1SFXQr21Vcf72TPtYHKnjqoWkKk8nMN5n5JgCHCFG5bxij0vM15VzGNGZBQIXrGSdhLFZF9vxiEPSH_GzkjypSWF5Xu9cpycJSz8lu1r0LaksKUBFdj4aLsOzb2B21eOi25_ZXlKDXQhnKeDiqqDI_z_HVHX1gzG9p0cLbdNdhrYKJpF2u6wYsmPEmrH5qHrgFE1tNXHbZnlHrjDTRRTkGydAMPFb8SmJJYhNS33U7JeibdPZIXjBGtqypnCQzEpPbsvv0_RvO8pQ9zCxZGf-v7uIsJ-YVTYY9VduGYbdzfdqn1Q0KVOHWmlJmpPG1ECr1DJNJaPtppalIONNMywSNLjeI8RhTODJVKcYewhgnFakUPFaxtwNL42xsdoGESaCFEwZSeQn3pRJaudJVFkGECNqcBrBakJGq2ovbWy4eonlj5EL4EQo_KoQfhQ04mn_zVDbX-HN0s16fqNpoeeTagBb1zJUNOK7X7OP177Pt_W_4Pqy4lvhQHL40YWk6eTYHCEemSQsWRbfXguV27-a8g8-TzuDyqlXo5Du_vdqN |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615dByQAWK2D7ABziBxdpxEvtQIQQsW_o4tdLe0sR2CtJ2s93dAtsfxW9kxkl2KRK99RxnLI3HM5_t-WYAXiFEVbEXgpsodlwpk_NcJAnXMvLdQojchtfz45Okf6a-DuLBCvxuuTCUVtn6xOCoXWXpjvydpJMLCpTm_fiKU9coel1tW2jUZnHo5z_xyDbdP_iE6_tayt7n04993nQV4BbNbcaFNz52Wtsy8sIUKdWYKktdKOGEMwU6IuUR9whhcWRpS8Tj2vtuqUujVW7zCOWuwgMVRYZ2lO59WXh-XcNtAlFcqHTQkHQCVY_AieaUEIHbSEY8vR0Il-j2nwfZEOd6m_CoAajsQ21Rj2HFj57Aw7_KFj6FCeUx1_W955zCoGMuJIKwCh3QZcPsZERPm7C2y-6MYVR01SX7gadz4mtNWTFnObuo615_v0Ep42o4J5o0zm-_5dWU-V_orOg-bwvO7kXLz2BtVI38c2BpkTjdTRNjo0LFxmpnpZGWsEuKcLHbAdEqMrNNYXPqrzHMFiWZg_IzVH4WlJ-lHXiz-Gdcl_W4c_Ruuz5Zs8Wn2dIgO_C2XbPl5_9L275b2ktY758eH2VHByeHO7AhiW4Rrnx2YW02ufZ7CIJmxYtgeQzO79vU_wAa-hh9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfRBvOJ0ah5807ClTdvkcahj3oYPDvZW2iRVYWvHVsX56z3pbVNU8LnpKZycnvMlOd8XhE4BojJHU0qE7SjCmAhIQF2XcMvWrZDSQGan5_c9t9tnNwNnsMDiz7rdyyPJnNNgVJritDlWUbMivplSz4lpL4CgtGziLaMVSMfUxHXfale5mOcA2MAaQpk3KGgzP9v4WprmePPbEWlWeTqbaKOAjLidz_EWWtLxNlpfEBLcQRPTWZwrbs-IKUwKq6w1AyeQEkYF1xIbwtgEl_fephjqlEpG-A3Wy4ZBNcXhDAf4KVeifvkAK-NkODPEZfi-fA6SKdbvkD7MDtsu6neuHi-6pLhNgUjwS0qoFtpRnMvI1lSEntHWiiIeMqqoEiEkYKYB71EqYWQkI1iHcK1bEY8EZ4EM7D1Ui5NY7yPsha7iLc8V0g6ZIyRX0hKWNGjCAwDXqiNaOtKXhdS4ufFi6FciyZnzfXC-nznf9-rorHpnnAtt_Dm6Uc6PX_x0U98yi1uIOUvU0Xk5Z_PHv1s7-N_wE7T6cNnx7657t4dozTJ8iGxPpoFq6eRVHwFKScPjLBA_AQ_a3ag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability-based+design+optimization+under+dependent+random+variables+by+a+generalized+polynomial+chaos+expansion&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Lee%2C+Dongjin&rft.au=Rahman%2C+Sharif&rft.date=2022-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=65&rft.issue=1&rft_id=info:doi/10.1007%2Fs00158-021-03123-7&rft.externalDocID=10_1007_s00158_021_03123_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon |