Variational Monte Carlo—bridging concepts of machine learning and high-dimensional partial differential equations
A statistical learning approach for high-dimensional parametric PDEs related to uncertainty quantification is derived. The method is based on the minimization of an empirical risk on a selected model class, and it is shown to be applicable to a broad range of problems. A general unified convergence...
Saved in:
Published in | Advances in computational mathematics Vol. 45; no. 5-6; pp. 2503 - 2532 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A statistical learning approach for high-dimensional parametric PDEs related to uncertainty quantification is derived. The method is based on the minimization of an empirical risk on a selected model class, and it is shown to be applicable to a broad range of problems. A general unified convergence analysis is derived, which takes into account the approximation and the statistical errors. By this, a combination of theoretical results from numerical analysis and statistics is obtained. Numerical experiments illustrate the performance of the method with the model class of hierarchical tensors. |
---|---|
AbstractList | A statistical learning approach for high-dimensional parametric PDEs related to uncertainty quantification is derived. The method is based on the minimization of an empirical risk on a selected model class, and it is shown to be applicable to a broad range of problems. A general unified convergence analysis is derived, which takes into account the approximation and the statistical errors. By this, a combination of theoretical results from numerical analysis and statistics is obtained. Numerical experiments illustrate the performance of the method with the model class of hierarchical tensors. |
Author | Schneider, Reinhold Trunschke, Philipp Eigel, Martin Wolf, Sebastian |
Author_xml | – sequence: 1 givenname: Martin surname: Eigel fullname: Eigel, Martin organization: Weierstrass Institute – sequence: 2 givenname: Reinhold surname: Schneider fullname: Schneider, Reinhold organization: TU Berlin – sequence: 3 givenname: Philipp orcidid: 0000-0002-2995-126X surname: Trunschke fullname: Trunschke, Philipp email: ptrunschke@mail.tu-berlin.de organization: TU Berlin – sequence: 4 givenname: Sebastian surname: Wolf fullname: Wolf, Sebastian organization: Weierstrass Institute, TU Berlin |
BookMark | eNp9kE1OwzAQhS1UJFrgAqwisQ6M7SR2lqjiTwKxQWwtxxm3Rqnd2umCHYfghJyEtEFCYtHV2Hrvm3l6MzLxwSMhFxSuKIC4ThSKosiB1jnUgvFcHpEpLQXL60GYDO-dJGglT8gspXcAqCtRTkl609Hp3gWvu-w5-B6zuY5d-P78aqJrF84vMhO8wXWfsmCzlTZL5zHrUEe_E7Vvs6VbLPPWrdCncdFax94Ns3XWYkS__-Bmuz-Uzsix1V3C8995Sl7vbl_nD_nTy_3j_OYpN5zWfU6RlbSRghqoqGWgK2l4ISyvGkZLYxuGpSxpK0rbVoCMoqR1XTSAFRRg-Cm5HNeuY9hsMfXqPWzjEC8pxjnjFZcgBpccXSaGlCJaZVy_z9lH7TpFQe0aVmPDaqhR7RtWckDZP3Qd3UrHj8MQH6E0mP0C41-qA9QPwq6SgQ |
CitedBy_id | crossref_primary_10_1007_s00365_021_09551_4 crossref_primary_10_1007_s11222_022_10087_1 crossref_primary_10_1007_s42985_021_00102_x crossref_primary_10_3389_fams_2021_702486 crossref_primary_10_1002_nme_6339 crossref_primary_10_1002_nla_2463 crossref_primary_10_1016_j_engappai_2023_107536 crossref_primary_10_1051_m2an_2021070 crossref_primary_10_1007_s00521_022_07017_7 crossref_primary_10_1137_21M1402170 crossref_primary_10_1137_22M1498401 crossref_primary_10_1137_20M1372500 crossref_primary_10_1615_Int_J_UncertaintyQuantification_2022039164 crossref_primary_10_1007_s10915_021_01532_w crossref_primary_10_1137_21M1461988 crossref_primary_10_1142_S0219530524500271 |
Cites_doi | 10.1007/978-3-642-14394-6_5 10.1016/j.cma.2013.11.015 10.5802/smai-jcm.24 10.1007/s00211-016-0850-x 10.1017/CBO9780511618635 10.1007/978-0-387-21606-5_1 10.1142/S0218202513500681 10.1007/978-1-4612-3094-6 10.1016/j.cma.2004.05.027 10.1142/S0219530511001728 10.1561/2200000018 10.1103/PhysRevB.16.3081 10.1016/j.laa.2017.02.028 10.1016/0890-5401(92)90010-D 10.1090/S0273-0979-01-00923-5 10.1017/S0962492915000033 10.1007/s10208-016-9317-9 10.1137/140969063 10.1137/1.9781611974829.ch4 10.1017/CBO9780511618796 10.1016/S0045-7825(01)00237-7 10.1007/978-3-642-28027-6 10.1137/1.9781611973228 10.1007/s00365-006-0655-2 10.1007/978-1-4939-1323-7 10.1007/978-1-4614-7138-7 10.1137/130916849 10.2139/ssrn.3370910 10.1007/s10208-010-9072-2 10.1073/pnas.1718942115 10.1017/CBO9781139017329 10.1007/978-90-481-3520-2 10.1007/978-3-642-69894-1 10.1051/m2an/2015017 10.1137/15M1013973 10.1007/s42985-019-0006-9 10.1137/1126059 10.1137/050645142 10.1007/s00041-009-9094-9 10.1137/090752286 10.1145/1968.1972 10.1137/070680540 10.1137/15M1016448 10.1017/S0962492911000055 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10444-019-09723-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1572-9044 |
EndPage | 2532 |
ExternalDocumentID | 10_1007_s10444_019_09723_8 |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: SE10 funderid: https://doi.org/10.13039/501100001659 – fundername: BIMoS, Technische Universität Berlin (DE) |
GroupedDBID | -52 -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z83 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-1e251b871c061f20a68c347f36b215cfb2e5851d75fd60e21e81994b0e6040c3 |
IEDL.DBID | U2A |
ISSN | 1019-7168 |
IngestDate | Fri Jul 25 11:13:21 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Tue Jul 01 02:55:34 EDT 2025 Fri Feb 21 02:38:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5-6 |
Keywords | 62J02 35R60 Partial differential equations Statistical learning Uncertainty quantification 15A69 Tree tensor networks 65C20 41A63 Machine learning 65D15 68Q32 65N22 65N30 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-1e251b871c061f20a68c347f36b215cfb2e5851d75fd60e21e81994b0e6040c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2995-126X |
PQID | 2332363807 |
PQPubID | 2043875 |
PageCount | 30 |
ParticipantIDs | proquest_journals_2332363807 crossref_citationtrail_10_1007_s10444_019_09723_8 crossref_primary_10_1007_s10444_019_09723_8 springer_journals_10_1007_s10444_019_09723_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Advances in computational mathematics |
PublicationTitleAbbrev | Adv Comput Math |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Matthies, Keese (CR8) 2005; 194 Deb, Babuška, Oden (CR9) 2001; 190 Prössdorf, Silbermann (CR77) 1991; 52 Cohen, DeVore, Schwab (CR18) 2010; 10 CR38 CR36 CR79 Lord, Powell, Shardlow (CR4) 2014 CR78 CR76 CR75 Shalev-Shwartz (CR31) 2011; 4 Oseledets (CR63) 2011; 33 CR73 CR72 CR71 Eigel, Pfeffer, Schneider (CR57) 2017; 136 CR70 Cucker, Zhou (CR33) 2007 Vapnik, Chervonenkis (CR27) 1982; 26 Eigel, Gittelson, Schwab, Zander (CR56) 2015; 49 CR2 Ghanem, Spanos (CR10) 1991 James, Witten, Hastie, Tibshirani (CR40) 2013 CR5 Bohn, Griebel (CR35) 2017; 55 Eigel, Merdon, Neumann (CR84) 2016; 4 CR7 CR49 CR48 Ceperley, Chester, Kalos (CR3) 1977; 16 CR45 CR44 CR41 CR83 CR82 Weinan, Yu (CR47) 2018; 6 CR81 CR80 Schwab, Gittelson (CR6) 2011; 20 Cohen, Devore, Schwab (CR19) 2011; 9 Cucker, Smale (CR32) 2001; 39 Chervonenkis, Vapnik (CR26) 1971; 32 Giraldi, Liu, Matthies, Nouy (CR16) 2015; 37 Eigel, Gittelson, Schwab, Zander (CR55) 2014; 270 Hackbusch, Kühn (CR64) 2009; 15 Han, Jentzen, Weinan (CR46) 2018; 115 Valiant (CR28) 1984; 27 CR15 CR14 CR58 Babuška, Nobile, Tempone (CR61) 2007; 45 CR13 CR12 CR11 CR54 CR53 Hoang, Schwab (CR67) 2014; 24 CR51 Bespalov, Powell, Silvester (CR59) 2014; 36 CR50 Cohen, Devore, Schwab (CR17) 2011; 9 Bishop (CR39) 2006 Rauhut, Schneider, Stojanac (CR52) 2017; 523 Cohen, DeVore (CR20) 2015; 24 Temlyakov (CR43) 2008; 27 Braess (CR42) 2007 Pinkus (CR34) 1985 CR25 CR69 CR24 CR68 CR23 CR22 Nobile, Tempone, Webster (CR62) 2008; 46 CR66 CR21 Haussler (CR29) 1992; 100 CR65 Bachmayr, Schneider, Uschmajew (CR1) 2016; 16 CR60 Anthony, Bartlett (CR30) 2009 Schölkopf, Smola (CR37) 2002 Nouy (CR74) 2017; 15 9723_CR38 RG Ghanem (9723_CR10) 1991 9723_CR36 F Nobile (9723_CR62) 2008; 46 I Oseledets (9723_CR63) 2011; 33 B Bohn (9723_CR35) 2017; 55 9723_CR78 9723_CR79 A Cohen (9723_CR19) 2011; 9 F Cucker (9723_CR32) 2001; 39 A Chervonenkis (9723_CR26) 1971; 32 H Rauhut (9723_CR52) 2017; 523 9723_CR76 D Braess (9723_CR42) 2007 A Pinkus (9723_CR34) 1985 9723_CR75 9723_CR72 9723_CR73 M Eigel (9723_CR84) 2016; 4 9723_CR70 9723_CR71 9723_CR5 A Cohen (9723_CR20) 2015; 24 9723_CR25 9723_CR69 9723_CR2 9723_CR23 9723_CR24 9723_CR68 G James (9723_CR40) 2013 LG Valiant (9723_CR28) 1984; 27 9723_CR7 S Shalev-Shwartz (9723_CR31) 2011; 4 C Schwab (9723_CR6) 2011; 20 I Babuška (9723_CR61) 2007; 45 9723_CR21 9723_CR65 9723_CR22 VN Vapnik (9723_CR27) 1982; 26 9723_CR66 Markus Bachmayr (9723_CR1) 2016; 16 9723_CR60 E Weinan (9723_CR47) 2018; 6 GJ Lord (9723_CR4) 2014 9723_CR14 9723_CR58 9723_CR15 J Han (9723_CR46) 2018; 115 9723_CR12 9723_CR13 A Cohen (9723_CR18) 2010; 10 Manas K. Deb (9723_CR9) 2001; 190 VH Hoang (9723_CR67) 2014; 24 CM Bishop (9723_CR39) 2006 V Temlyakov (9723_CR43) 2008; 27 A Cohen (9723_CR17) 2011; 9 D Haussler (9723_CR29) 1992; 100 B Schölkopf (9723_CR37) 2002 9723_CR54 9723_CR11 9723_CR53 Hermann G. Matthies (9723_CR8) 2005; 194 9723_CR50 9723_CR51 W Hackbusch (9723_CR64) 2009; 15 L Giraldi (9723_CR16) 2015; 37 9723_CR49 9723_CR48 9723_CR45 M Eigel (9723_CR55) 2014; 270 M Eigel (9723_CR56) 2015; 49 F Cucker (9723_CR33) 2007 D. Ceperley (9723_CR3) 1977; 16 A Bespalov (9723_CR59) 2014; 36 M Anthony (9723_CR30) 2009 9723_CR80 A Nouy (9723_CR74) 2017; 15 9723_CR44 9723_CR41 M Eigel (9723_CR57) 2017; 136 S Prössdorf (9723_CR77) 1991; 52 9723_CR83 9723_CR81 9723_CR82 |
References_xml | – volume: 9 start-page: 11 issue: 1 year: 2011 end-page: 47 ident: CR19 article-title: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s publication-title: Anal. Appl. (Singap.) – ident: CR45 – ident: CR70 – ident: CR22 – ident: CR49 – ident: CR68 – volume: 15 start-page: 171 year: 2017 ident: CR74 article-title: Low-rank methods for high-dimensional approximation and model order reduction publication-title: Model Reduction and Approximation: Theory and Algorithms – ident: CR51 – ident: CR12 – year: 1985 ident: CR34 publication-title: n-Widths in approximation theory – volume: 115 start-page: 8505 issue: 34 year: 2018 end-page: 8510 ident: CR46 article-title: Solving high-dimensional partial differential equations using deep learning publication-title: Proc. Natl. Acad. Sci. – volume: 37 start-page: A347 issue: 1 year: 2015 end-page: A368 ident: CR16 article-title: To be or not to be intrusive? the solution of parametric and stochastic equations–?proper generalized decomposition publication-title: SIAM J. Sci. Comput. – year: 2002 ident: CR37 publication-title: Learning with kernels: support vector machines, regularization, optimization, and beyond – volume: 39 start-page: 1 issue: 01 year: 2001 end-page: 50 ident: CR32 article-title: On the mathematical foundations of learning publication-title: Bull. Amer. Math. Soc. – volume: 55 start-page: 1843 issue: 4 year: 2017 end-page: 1866 ident: CR35 article-title: Error estimates for multivariate regression on discretized function spaces publication-title: SIAM J. Numer. Anal. – ident: CR54 – volume: 46 start-page: 2411 issue: 5 year: 2008 end-page: 2442 ident: CR62 article-title: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data publication-title: SIAM J. Numer. Anal. – ident: CR80 – start-page: xii+ 503 year: 2014 end-page: xii+ 503 ident: CR4 publication-title: An introduction to computational stochastic PDEs. Cambridge Texts in Applied Mathematics – ident: CR58 – volume: 24 start-page: 1 year: 2015 end-page: 159 ident: CR20 article-title: Approximation of high-dimensional parametric PDEs publication-title: Acta Numerica. – volume: 24 start-page: 797 issue: 4 year: 2014 end-page: 826 ident: CR67 article-title: N-term Wiener chaos approximation rate for elliptic PDEs with lognormal Gaussian random inputs publication-title: Math. Models Methods Appl. Sci. – ident: CR25 – volume: 45 start-page: 1005 issue: 3 year: 2007 end-page: 1034 ident: CR61 article-title: A stochastic collocation method for elliptic partial differential equations with random input data publication-title: SIAM J. Numer. Anal. – volume: 33 start-page: 2295 issue: 5 year: 2011 end-page: 2317 ident: CR63 article-title: Tensor-train decomposition publication-title: SIAM J. Sci. Comput. – year: 2006 ident: CR39 publication-title: Pattern recognition and machine learning – ident: CR21 – ident: CR71 – volume: 49 start-page: 1367 issue: 5 year: 2015 end-page: 1398 ident: CR56 article-title: A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes publication-title: ESAIM: Mathematical Modelling and Numerical Analysis – year: 2013 ident: CR40 publication-title: An introduction to statistical learning. Vol. 112 – volume: 20 start-page: 291 year: 2011 end-page: 467 ident: CR6 article-title: Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs publication-title: Acta Numer. – ident: CR75 – ident: CR15 – ident: CR50 – ident: CR11 – volume: 194 start-page: 1295 issue: 12-16 year: 2005 end-page: 1331 ident: CR8 article-title: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations publication-title: Computer Methods in Applied Mechanics and Engineering – ident: CR60 – ident: CR36 – ident: CR78 – ident: CR5 – ident: CR81 – volume: 9 start-page: 11 issue: 1 year: 2011 end-page: 47 ident: CR17 article-title: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s publication-title: Anal. Appl. (Singap.) – volume: 27 start-page: 1134 issue: 11 year: 1984 end-page: 1142 ident: CR28 article-title: A theory of the learnable publication-title: Commun. ACM – volume: 36 start-page: A339 issue: 2 year: 2014 end-page: A363 ident: CR59 article-title: Energy norm a posteriori error estimation for parametric operator equations publication-title: SIAM J. Sci. Comput. – ident: CR66 – ident: CR72 – ident: CR14 – ident: CR2 – ident: CR53 – volume: 16 start-page: 1423 issue: 6 year: 2016 end-page: 1472 ident: CR1 article-title: Tensor Networks and Hierarchical Tensors for the Solution of High-Dimensional Partial Differential Equations publication-title: Foundations of Computational Mathematics – ident: CR82 – volume: 26 start-page: 532 issue: 3 year: 1982 end-page: 553 ident: CR27 article-title: Necessary and sufficient conditions for the uniform convergence of means to their expectations publication-title: Theory of Probability & Its Applications – ident: CR79 – volume: 4 start-page: 107 issue: 2 year: 2011 end-page: 194 ident: CR31 article-title: Online learning and online convex optimization publication-title: Foundations and Trends${\circledR }$Ⓡ in Machine Learning – volume: 4 start-page: 1219 issue: 1 year: 2016 end-page: 1245 ident: CR84 article-title: An adaptive multilevel Monte Carlo method with stochastic bounds for quantities of interest with uncertain data publication-title: SIAM/ASA Journal on Uncertainty Quantification – year: 2007 ident: CR42 publication-title: Finite elements: theory, fast solvers, and applications in solid mechanics – volume: 16 start-page: 3081 issue: 7 year: 1977 end-page: 3099 ident: CR3 article-title: Monte Carlo simulation of a many-fermion study publication-title: Physical Review B – ident: CR23 – volume: 10 start-page: 615 issue: 6 year: 2010 end-page: 646 ident: CR18 article-title: Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs publication-title: Found. Comput. Math. – year: 2009 ident: CR30 publication-title: Neural network learning: theoretical foundations – ident: CR69 – ident: CR44 – ident: CR48 – ident: CR73 – volume: 52 start-page: 5 year: 1991 end-page: 534 ident: CR77 article-title: Numerical analysis for integral and related operator equations publication-title: Operator Theory – volume: 15 start-page: 706 issue: 5 year: 2009 end-page: 722 ident: CR64 article-title: A new scheme for the tensor representation. English publication-title: J. Fourier Anal. Appl. – volume: 136 start-page: 765 issue: 3 year: 2017 end-page: 803 ident: CR57 article-title: Adaptive stochastic Galerkin FEM with hierarchical tensor representations publication-title: Numerische Mathematik – ident: CR65 – volume: 523 start-page: 220 year: 2017 end-page: 262 ident: CR52 article-title: Low rank tensor recovery via iterative hard thresholding publication-title: Linear Algebra Appl. – ident: CR38 – volume: 27 start-page: 33 issue: 1 year: 2008 end-page: 74 ident: CR43 article-title: Approximation in learning theory publication-title: Constr. Approx. – ident: CR13 – volume: 6 start-page: 1 year: 2018 end-page: 12 ident: CR47 article-title: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems publication-title: Communications in Mathematics and Statistics – volume: 270 start-page: 247 year: 2014 end-page: 269 ident: CR55 article-title: Adaptive stochastic Galerkin FEM publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2007 ident: CR33 publication-title: Learning theory: an approximation theory viewpoint. Cambridge Monographs on Applied and Computational Mathematics – volume: 32 start-page: 207 year: 1971 end-page: 217 ident: CR26 article-title: Theory of uniform convergence of frequencies of events to their probabilities and problems of search for an optimal solution from empirical data (Average risk minimization based on empirical data, showing relationship of problem to uniform convergence of averages toward expectation value) publication-title: Autom. Remote. Control. – ident: CR7 – ident: CR76 – ident: CR83 – volume: 190 start-page: 6359 issue: 48 year: 2001 end-page: 6372 ident: CR9 article-title: Solution of stochastic partial differential equations using Galerkin finite element techniques publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 100 start-page: 78 issue: 1 year: 1992 end-page: 150 ident: CR29 article-title: Decision theoretic generalizations of the PAC model for neural net and other learning applications publication-title: Inf. Comput. – ident: CR41 – ident: CR24 – start-page: x + 214 year: 1991 end-page: x + 214 ident: CR10 publication-title: Stochastic finite elements: a spectral approach – ident: 9723_CR68 doi: 10.1007/978-3-642-14394-6_5 – ident: 9723_CR22 – volume: 270 start-page: 247 year: 2014 ident: 9723_CR55 publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2013.11.015 – ident: 9723_CR13 doi: 10.5802/smai-jcm.24 – ident: 9723_CR51 – volume-title: Pattern recognition and machine learning year: 2006 ident: 9723_CR39 – ident: 9723_CR70 – volume: 136 start-page: 765 issue: 3 year: 2017 ident: 9723_CR57 publication-title: Numerische Mathematik doi: 10.1007/s00211-016-0850-x – ident: 9723_CR41 – volume-title: Finite elements: theory, fast solvers, and applications in solid mechanics year: 2007 ident: 9723_CR42 doi: 10.1017/CBO9780511618635 – ident: 9723_CR11 doi: 10.1007/978-0-387-21606-5_1 – ident: 9723_CR78 – volume: 24 start-page: 797 issue: 4 year: 2014 ident: 9723_CR67 publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202513500681 – start-page: x + 214 volume-title: Stochastic finite elements: a spectral approach year: 1991 ident: 9723_CR10 doi: 10.1007/978-1-4612-3094-6 – volume: 194 start-page: 1295 issue: 12-16 year: 2005 ident: 9723_CR8 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2004.05.027 – volume: 9 start-page: 11 issue: 1 year: 2011 ident: 9723_CR19 publication-title: Anal. Appl. (Singap.) doi: 10.1142/S0219530511001728 – volume: 4 start-page: 107 issue: 2 year: 2011 ident: 9723_CR31 publication-title: Foundations and Trends${\circledR }$Ⓡ in Machine Learning doi: 10.1561/2200000018 – volume: 16 start-page: 3081 issue: 7 year: 1977 ident: 9723_CR3 publication-title: Physical Review B doi: 10.1103/PhysRevB.16.3081 – ident: 9723_CR36 – ident: 9723_CR80 – volume: 523 start-page: 220 year: 2017 ident: 9723_CR52 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2017.02.028 – ident: 9723_CR2 – volume: 100 start-page: 78 issue: 1 year: 1992 ident: 9723_CR29 publication-title: Inf. Comput. doi: 10.1016/0890-5401(92)90010-D – volume: 39 start-page: 1 issue: 01 year: 2001 ident: 9723_CR32 publication-title: Bull. Amer. Math. Soc. doi: 10.1090/S0273-0979-01-00923-5 – volume: 6 start-page: 1 year: 2018 ident: 9723_CR47 publication-title: Communications in Mathematics and Statistics – volume: 24 start-page: 1 year: 2015 ident: 9723_CR20 publication-title: Acta Numerica. doi: 10.1017/S0962492915000033 – ident: 9723_CR21 – volume: 16 start-page: 1423 issue: 6 year: 2016 ident: 9723_CR1 publication-title: Foundations of Computational Mathematics doi: 10.1007/s10208-016-9317-9 – ident: 9723_CR25 – volume: 37 start-page: A347 issue: 1 year: 2015 ident: 9723_CR16 publication-title: SIAM J. Sci. Comput. doi: 10.1137/140969063 – ident: 9723_CR73 – volume: 15 start-page: 171 year: 2017 ident: 9723_CR74 publication-title: Model Reduction and Approximation: Theory and Algorithms doi: 10.1137/1.9781611974829.ch4 – volume-title: Learning theory: an approximation theory viewpoint. Cambridge Monographs on Applied and Computational Mathematics year: 2007 ident: 9723_CR33 doi: 10.1017/CBO9780511618796 – volume-title: Learning with kernels: support vector machines, regularization, optimization, and beyond year: 2002 ident: 9723_CR37 – volume: 190 start-page: 6359 issue: 48 year: 2001 ident: 9723_CR9 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/S0045-7825(01)00237-7 – ident: 9723_CR65 doi: 10.1007/978-3-642-28027-6 – ident: 9723_CR5 doi: 10.1137/1.9781611973228 – ident: 9723_CR83 – volume: 27 start-page: 33 issue: 1 year: 2008 ident: 9723_CR43 publication-title: Constr. Approx. doi: 10.1007/s00365-006-0655-2 – ident: 9723_CR69 doi: 10.1007/978-1-4939-1323-7 – volume-title: An introduction to statistical learning. Vol. 112 year: 2013 ident: 9723_CR40 doi: 10.1007/978-1-4614-7138-7 – volume: 36 start-page: A339 issue: 2 year: 2014 ident: 9723_CR59 publication-title: SIAM J. Sci. Comput. doi: 10.1137/130916849 – ident: 9723_CR14 – ident: 9723_CR45 doi: 10.2139/ssrn.3370910 – volume: 32 start-page: 207 year: 1971 ident: 9723_CR26 publication-title: Autom. Remote. Control. – ident: 9723_CR24 – volume: 10 start-page: 615 issue: 6 year: 2010 ident: 9723_CR18 publication-title: Found. Comput. Math. doi: 10.1007/s10208-010-9072-2 – volume: 115 start-page: 8505 issue: 34 year: 2018 ident: 9723_CR46 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1718942115 – ident: 9723_CR66 – ident: 9723_CR72 – ident: 9723_CR76 – start-page: xii+ 503 volume-title: An introduction to computational stochastic PDEs. Cambridge Texts in Applied Mathematics year: 2014 ident: 9723_CR4 doi: 10.1017/CBO9781139017329 – volume-title: Neural network learning: theoretical foundations year: 2009 ident: 9723_CR30 – ident: 9723_CR7 doi: 10.1007/978-90-481-3520-2 – volume-title: n-Widths in approximation theory year: 1985 ident: 9723_CR34 doi: 10.1007/978-3-642-69894-1 – ident: 9723_CR82 – ident: 9723_CR38 – volume: 49 start-page: 1367 issue: 5 year: 2015 ident: 9723_CR56 publication-title: ESAIM: Mathematical Modelling and Numerical Analysis doi: 10.1051/m2an/2015017 – ident: 9723_CR53 – ident: 9723_CR15 – volume: 55 start-page: 1843 issue: 4 year: 2017 ident: 9723_CR35 publication-title: SIAM J. Numer. Anal. doi: 10.1137/15M1013973 – ident: 9723_CR49 doi: 10.1007/s42985-019-0006-9 – volume: 26 start-page: 532 issue: 3 year: 1982 ident: 9723_CR27 publication-title: Theory of Probability & Its Applications doi: 10.1137/1126059 – volume: 45 start-page: 1005 issue: 3 year: 2007 ident: 9723_CR61 publication-title: SIAM J. Numer. Anal. doi: 10.1137/050645142 – ident: 9723_CR23 – volume: 15 start-page: 706 issue: 5 year: 2009 ident: 9723_CR64 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-009-9094-9 – ident: 9723_CR50 – volume: 33 start-page: 2295 issue: 5 year: 2011 ident: 9723_CR63 publication-title: SIAM J. Sci. Comput. doi: 10.1137/090752286 – ident: 9723_CR44 – ident: 9723_CR75 – ident: 9723_CR48 – ident: 9723_CR71 – volume: 27 start-page: 1134 issue: 11 year: 1984 ident: 9723_CR28 publication-title: Commun. ACM doi: 10.1145/1968.1972 – ident: 9723_CR79 – ident: 9723_CR58 – ident: 9723_CR60 – ident: 9723_CR12 – volume: 46 start-page: 2411 issue: 5 year: 2008 ident: 9723_CR62 publication-title: SIAM J. Numer. Anal. doi: 10.1137/070680540 – volume: 4 start-page: 1219 issue: 1 year: 2016 ident: 9723_CR84 publication-title: SIAM/ASA Journal on Uncertainty Quantification doi: 10.1137/15M1016448 – ident: 9723_CR54 – volume: 52 start-page: 5 year: 1991 ident: 9723_CR77 publication-title: Operator Theory – ident: 9723_CR81 – volume: 9 start-page: 11 issue: 1 year: 2011 ident: 9723_CR17 publication-title: Anal. Appl. (Singap.) doi: 10.1142/S0219530511001728 – volume: 20 start-page: 291 year: 2011 ident: 9723_CR6 publication-title: Acta Numer. doi: 10.1017/S0962492911000055 |
SSID | ssj0009675 |
Score | 2.368481 |
Snippet | A statistical learning approach for high-dimensional parametric PDEs related to uncertainty quantification is derived. The method is based on the minimization... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2503 |
SubjectTerms | Computational mathematics Computational Mathematics and Numerical Analysis Computational Science and Engineering Computer simulation Empirical analysis Machine learning Mathematical analysis Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematical models Mathematics Mathematics and Statistics Model reduction of parametrized Systems Numerical analysis Partial differential equations Tensors Visualization |
Title | Variational Monte Carlo—bridging concepts of machine learning and high-dimensional partial differential equations |
URI | https://link.springer.com/article/10.1007/s10444-019-09723-8 https://www.proquest.com/docview/2332363807 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTsJAEJ4oXPTgD2pEkezBm27S7pZtOQIBiQZOYPDUtMvWCwJSvPsQPqFP4ux2S9WoiadN0-k26ex0vtmd-QbgUrq6h4UUFINln3o8iimCepfG6H2kJ91EmQ39wVD0x97tpDGxRWFpnu2eH0maP_WnYjfP0xkTOsXHZ5wG21BuYOyuE7nGrFVQ7QpDr-tqSYwGAlsq8_McX91RgTG_HYsab9M7gD0LE0kr0-shbKl5BfYtZCTWINMK7A42tKvpEaT3GPna3T0y0LxTpBOtZov31zdTmIWvIjKrU0zJIiFPJpNSEds64pFE8ynRBMZ0qkn_M8IOstSrC8e8l4q5UM8ZR3h6DKNed9TpU9tVgUo0tzV1FUKaGOMkia48YU4kAsk9P-EiRvcvk5gpfVQ49RvJVDiKuSrQ_MGxowQavOQnUJov5uoUiM95IiPZiIQjPS9iTRklEsMnxCxNodxmFdz824bSMo7rxhezsOBK1voIUR-h0UcYVOFq88wy49v4U7qWqyy0tpeGjHPGhSbSr8J1rsbi9u-znf1P_Bx2mF5JJrelBqX16kVdIEJZx3Uot3rt9lCPNw933bpZoB99m9_g |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5BGYCBnwKiUMADG1hq7NRJx6qiKtB0alG3KHEclpKWpuw8BE_Ik3B2nBYQIDFFURxH8t3lvrPvvgO4lI7uYSEFxWDZoy6PYoqg3qExeh_pSidVZkM_GIjeyL0bN8e2KCwvs93LI0nzp_5U7Oa6OmNCp_h4jFN_HTYQDPhal0esvaLaFYZe19EjMRrwbanMz3N8dUcrjPntWNR4m-4e7FiYSNqFXPdhTWVV2LWQkViDzKuwHSxpV_MDyB8w8rW7eyTQvFOkE80n0_fXN1OYhZ8isqhTzMk0JU8mk1IR2zrikURZQjSBMU006X9B2EFmWrvwWvZSMTfqueAIzw9h2L0ZdnrUdlWgEs1tQR2FkCbGOEmiK09ZIxK-5K6XchGj-5dpzJQ-Kky8ZpqIhmKO8jV_cNxQAg1e8iOoZNNMHQPxOE9lJJuRaEjXjVhLRqnE8AkxS0sop1UDp1zbUFrGcd34YhKuuJK1PEKUR2jkEfo1uFq-Myv4Nv4cXS9FFlrby0PGOeNCE-nX4LoU4-rx77Od_G_4BWz2hkE_7N8O7k9hi2mtMnkudags5i_qDNHKIj43yvkBKbTfww |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaI8cyBG0SsSZZ2RwRMvIY4MMStatOEy-jGOu78CH4hvwQnTRkgQOJUVU1Tpbblz4n9GWBPBbaHhZIUg-WQCp6kFEF9QFP0PkqowGi3od-9lmc9cXHfuv9Uxe-y3asjybKmwbI05ePDYWYOPxW-CWGzJ2y6T8g4jaZhRthqYNToHjua0O5KR7Ub2JEYGUS-bObnOb66pgne_HZE6jxPZwkWPGQkR6WMl2FK53VY9PCReOMs6jDf_aBgLVaguMMo2O_0ka5dHTlORv3B28urK9LCTxFV1iwWZGDIo8uq1MS3kXggSZ4RS2ZMM9sAoCTvIEOraXit-qq4G_1U8oUXq3DbOb09PqO-wwJVaHpjGmiENynGTArdumHNREaKi9BwmSIUUCZl2h4bZmHLZLKpWaAjyyWcNrVE41d8DWr5INfrQELOjUpUK5FNJUTC2ioxCkMpxC9tqYN2A4Lq38bKs4_bJhj9eMKbbOURozxiJ484asD-xzvDknvjz9Fblchib4dFzDhnXFpS_QYcVGKcPP59to3_Dd-F2ZuTTnx1fn25CXPMKpVLedmC2nj0rLcRuIzTHaeb7wnp4_Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Monte+Carlo%E2%80%94bridging+concepts+of+machine+learning+and+high-dimensional+partial+differential+equations&rft.jtitle=Advances+in+computational+mathematics&rft.au=Eigel%2C+Martin&rft.au=Schneider%2C+Reinhold&rft.au=Trunschke%2C+Philipp&rft.au=Wolf%2C+Sebastian&rft.date=2019-12-01&rft.pub=Springer+US&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=45&rft.issue=5-6&rft.spage=2503&rft.epage=2532&rft_id=info:doi/10.1007%2Fs10444-019-09723-8&rft.externalDocID=10_1007_s10444_019_09723_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon |